EP1865575A1 - Cylindrical electronically scanned antenna - Google Patents
Cylindrical electronically scanned antenna Download PDFInfo
- Publication number
- EP1865575A1 EP1865575A1 EP07109696A EP07109696A EP1865575A1 EP 1865575 A1 EP1865575 A1 EP 1865575A1 EP 07109696 A EP07109696 A EP 07109696A EP 07109696 A EP07109696 A EP 07109696A EP 1865575 A1 EP1865575 A1 EP 1865575A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- phase shift
- coupler
- antenna according
- antenna
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010363 phase shift Effects 0.000 claims abstract description 40
- 230000005855 radiation Effects 0.000 description 5
- 238000005286 illumination Methods 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 235000021183 entrée Nutrition 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
- H01Q21/0037—Particular feeding systems linear waveguide fed arrays
- H01Q21/0043—Slotted waveguides
- H01Q21/005—Slotted waveguides arrays
- H01Q21/0056—Conically or cylindrically arrayed
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/18—Phase-shifters
- H01P1/185—Phase-shifters using a diode or a gas filled discharge tube
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/20—Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/24—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
Definitions
- the present invention relates to a cylindrical antenna with electronic scanning. It applies for example to equip masts, including ships.
- Electron scanning antennas are not very suitable for performing circular panoramic applications, unless equipped with a mechanical rotation device.
- Another solution is to juxtapose several plane antenna panels to cover the 360 °.
- These solutions are complex or expensive to implement. For these reasons in particular, they are not or poorly suited to applications, such as, for example, marine telecommunication antennas installed at the top of the masts.
- the microwave sources are arranged on a cylindrical periphery inside the cylinder formed by the set of radiating guides so that each source illuminates a portion of the coupler array, the microwave sources being activated successively.
- the microwave sources are for example cornets connected to a microwave line switching device, each horn fed by a line.
- the switching device is for example a SP8T type device.
- This switch can be made based on MEMS.
- the incident wave entering the input of a coupler is divided into two waves, these two waves each being reflected on a phase shift cell with identical phases and recomposing themselves into a resulting out-of-phase wave emerging through the output of the coupler juxtaposed to the input.
- the phase shift cells comprise, for example, diodes, the phase shift applied being a function of the state of the diodes.
- the phase shift cells comprise, for example, tunable MEMS, the phase shift applied being a function of the impedance of the MEMS, this impedance being controllable.
- Microwave sources are for example arranged on an inner cylindrical wall, the sources illuminating the couplers in the space available between the inner wall and the radiating guides.
- the radiating guides are for example slot guides.
- the main advantages of the invention are that it has low losses, is simple to implement, is compact and is economical.
- FIG. 1 shows the general appearance of an antenna 1 according to the invention.
- the latter comprises a series of radiating guides 2 arranged in parallel and forming a cylinder.
- These radiating guides 2 are fed by a network of phase shifters 3 itself illuminated by microwave sources 4, 4 'distributed circularly.
- the phase shifter array 3 is disposed at the base of the cylinder.
- the sources 4 are for example fixed on an inner support 5.
- the guides are for example fixed on a concentric reinforcement 6 of the previous 5.
- a group 7 of radiating guides 2 contiguous produces a beam of antenna 8. This beam is produced by the guides illuminated by a microwave source 4 ', via the phase shifters of the network 3, the other sources 4 being inactive.
- the microwave sources 4 are activated successively so as to rotate the antenna beam 8.
- the supply mode of the sources 4, 4 'and the control of the phase shifters producing the movements of the antenna beam 8 will be described later. .
- FIG. 2 illustrates a radiating guide 2 and its associated phase-shifter 21.
- the radiating guide is for example a resonant slotted guide 22.
- the phase-shifter comprises an input 27 and an output 28.
- the input 27 receives the wave 23 emitted by a Microwave source 4. This input 27 is thus disposed opposite this source 4.
- the output 28 of the phase shifter is arranged facing the radiating guide 2.
- the wave 24 outgoing phase shifter, and out of phase, enters the slot guide to radiate in known manner.
- the slots of the guide 2 can be arranged on its short side or on its long side, the slots being oriented towards the outside of the cylinder.
- the guide may be closed on a microwave short circuit, in which case it operates in resonance.
- the guide 2 participates in the formation of the antenna beam 8 when its associated phase shifter 21 is illuminated by a source 4.
- the rotation of the beam around the cylinder is done by activating successively the microwave sources 4. This forms, for example, a scanning in azimuth.
- the resonant mode guides are replaced by progressive mode guides.
- a guide is then closed on a microwave load. An offset of 1% in the frequency band, for example, can thus induce a shift of the order of 1 degree.
- FIG. 3 shows an exploded view of a possible embodiment of the phase shifter 21 of FIG. 2.
- This phase shifter is composed of a waveguide coupler 3db 34 and a pair of phase shift cells 35, 36.
- 3dB coupler is associated with the pair of phase shift cells operating in reflection, the output of the coupler being arranged opposite the phase shift cells.
- the incident wave E coming from a microwave source 4 passing through the input 27 of the coupler 34, is distributed in two incident waves E1, E2 towards the two phase shift cells 35, 36. These two cells reflect these waves. incidental with identical phase shifts.
- the reflected waves S1, S2 enter the coupler 34 to recompose with each other.
- the resulting wave S then emerges from the output 28 of the coupler, juxtaposed at the input 27, with a phase shift ⁇ with respect to the incident wave E.
- the resulting output wave S enters the slot guide 2.
- a value of the phase shift ⁇ applied to the incident wave and reflected in the waveguide 2 creates a given angular offset of the antenna beam 8. This shift is made in a plane perpendicular to the axis 20 of the guides wave, so for example in azimuth.
- the electronic scanning 10 of the antenna beam 8 is performed in a known manner by varying the phase shift ⁇ . This electronic sweep 10 is superimposed on the rotation of the antenna beam 8 around the cylinder forming the antenna.
- Figures 4a and 4b illustrate a possible embodiment of the phase shifter array 3
- Figure 4b is a partial view of Figure 4a. More particularly, these figures show an embodiment of the network formed by the phase shift cells 35, 36 of the phase-shifters 21. These cells are for example implanted on a circular printed circuit 41 having a given width Lc. Two cells 35, 36 assigned to the same phase-shifter are contiguous and arranged radially. Two pairs of cells are radially separated by an area 42. This area is for example a printed conductive track. Its width, not constant, corresponds substantially to the width of the walls of a coupler 3dB. 3dB couplers are for example welded to these areas 42.
- the printed circuit 41 is for example fixed on a mechanical structure not shown, of circular shape. This structure also supports for example the inner wall 5.
- Each phase shift cell 35, 36 comprises a microwave circuit and a conductive plane substantially parallel to the microwave circuit.
- the microwave circuit and the conductive plane can be advantageously made in the printed circuit 41 which is then of the multilayer type.
- the main purpose of the conducting plane is to reflect the waves E1, E2 described above, and then the microwave circuit effects the phase shift.
- the phase shift cells 35, 36 are for example made using diodes as described in the French patent application published under number 2 807 213. In this case, the phase shift ⁇ applied depends on the state of the diodes.
- the phase shifts can also be realized by inductances or variable capacities.
- MEMS micro-electromechanical systems
- MEMS micro-electromechanical systems
- CM Tasseti G. Bazin-Lissorgues
- JP Gilles JP Gilles
- P. Nicole "New Tunable MEMS Inductors Design for RF and Microwave Applications”
- MEMSWAVE Conference 2003, July 2 - 4, 2003, Toulouse, France the microwave circuit of the phase shift cells 35, 36 thus comprises the aforementioned MEMS.
- the applied phase shift then depends on the impedance presented by these MEMS, this impedance, inductive or capacitive, being controllable.
- the control circuits of the phase shift cells are not shown in FIGS. 4a and 4b. These circuits may for example be located on the rear face of the printed circuit supporting the phase shift cells. This printed circuit may advantageously be of the multilayer type to allow the passage of electrical connections between the phase shift cells and their control circuits.
- FIG. 4c illustrates a possible embodiment of all of the couplers 3dB 21 which couple with the printed circuit 41.
- These couplers 21 each coupled to a pair of phase shift cells 35, 36 can form a single circular part 45. This part is then reported on the printed circuit 41.
- the guides 34 constituting the couplers are for example machined in the same metal part.
- the radiating waveguides 2 are then placed opposite the waveguides forming the outputs of the couplers 3dB.
- FIG. 5 illustrates the mode of illumination of the phase-shifters by the microwave sources 4. More particularly, FIG. 5 illustrates the illumination of the inputs 27 of the phase-shifters by a source 4.
- This source comprises for example a horn 51. This horn is it - even powered by a microwave. This is the microwave wave to emit, itself previously amplified. The horn 51 radiates this wave to the phase shifters.
- the radiation 52 produced by the source 4 illuminates the phase shifters 21 over a length C, this length being circular as illustrated by the representation of this length in FIG. 4a.
- the microwave source adjacent to the source 4 shown in FIG. 5 produces a radiation that illuminates the phase-shifters over a length C1. This length overlaps the length C previous as shown in Figure 4a.
- FIG. 6 is a perspective view of the radiation of FIG. 5.
- the source 4 fixed at the top of the inner wall 5 illuminates the free space between the internal cylindrical wall 5 and the wall formed by the non-radiating faces of the guides. Wave 2. More particularly, the source 4 illuminates the inputs 27 of the phase-shifters 21. The waves emitted by the source 4 thus enter the phase-shifters 21, are phase shifted and then penetrate into the waveguides 2 whose inputs are connected to the outputs 28 phase shifters.
- the microwave sources 4, including the horns 51 are for example connected to a microwave switch. This switch has an input that receives the wave to be transmitted and several outputs each connected to a horn.
- FIG. 7 illustrates an example of a microwave switching device that can advantageously be used.
- This switching device is for example a switch 71 of the SP8T type having an input and eight outputs.
- This SP8T type switch can be made based on PIN or MEMS-based diodes.
- the switch 71 has an input 72 and eight outputs 73.
- the input 72 and the outputs 73 are for example adapted to connect to microwave lines of coaxial type. Such a line connects each horn 51 to the switch 71.
- the incoming wave in the switch is thus successively switched to the different outputs. In this way, the horns arranged around the inner cylinder are successively fed as described above.
- the cylinder forming an antenna according to the invention may have a base forming a circle as illustrated by the figures. It may, however, have a base that does not form a circle.
- the shapes of the phase shift cell arrays, in particular the printed circuit 41, and coupler arrays are adapted.
- An antenna according to the invention of cylindrical shape, can easily integrate with the mast of a ship for example, the antenna then being arranged around the mast.
- Another advantage of an antenna according to the invention is in particular the technological simplicity.
- the different embodiments illustrated by the Figures showed the technological simplicity as well as the types of components used. This antenna also has low losses because of the components used which introduce themselves little loss.
- the length of the radiating guides 2 may be of the order of 30 centimeters for example and the diameter of the cylinder may be of the order of one meter. The result is a relatively compact and space-saving antenna.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
La présente invention concerne une antenne cylindrique à balayage électronique. L'antenne comporte au moins : - un ensemble de guide rayonnants (2) disposés en cylindre, produisant le faisceau d'antenne (8) ; - un réseau (3) de coupleurs 3dB en guide d'onde dont les entrées sont éclairées par un ensemble de sources hyperfréquence (4), la sortie d'un coupleur étant couplée à l'entrée d'un guide rayonnant (2) ; - un réseau de paires de cellules de déphasage couplées chacune à un coupleur 3dB, une onde entrante issue des sources hyperfréquence (4) étant déphasée selon un déphasage commandable Õ, le décalage angulaire du faisceau d'antenne (8) étant fonction de ce déphasage Õ. L'invention s'applique par exemple pour équiper des mâts, notamment de navires.The present invention relates to a cylindrical electronically scanned antenna. The antenna comprises at least: - a set of radiating guides (2) arranged in a cylinder, producing the antenna beam (8); - a network (3) of waveguide 3dB couplers whose inputs are illuminated by a set of microwave sources (4), the output of a coupler being coupled to the input of a radiating guide (2); - a network of pairs of phase shift cells each coupled to a 3dB coupler, an incoming wave coming from the microwave sources (4) being phase shifted according to a controllable phase shift ”Õ, the angular shift of the antenna beam (8) being a function of this phase shift ”Õ. The invention applies for example to equipping masts, in particular of ships.
Description
La présente invention concerne une antenne cylindrique à balayage électronique. Elle s'applique par exemple pour équiper des mâts, notamment de navires.The present invention relates to a cylindrical antenna with electronic scanning. It applies for example to equip masts, including ships.
Les antennes à balayage électronique, généralement de forme plane, sont peu adaptées pour effectuer des applications panoramiques circulaires, à moins de les équiper d'un dispositif mécanique de rotation. Une autre solution consiste à juxtaposer plusieurs panneaux d'antennes plan pour couvrir les 360°. Ces solutions sont complexes ou coûteuses à mettre en oeuvre. Pour ces raisons notamment, elles ne sont pas ou peu adaptées à des applications, telles que par exemple, des antennes de télécommunication marine installées en haut des mâts.Electron scanning antennas, generally of flat shape, are not very suitable for performing circular panoramic applications, unless equipped with a mechanical rotation device. Another solution is to juxtapose several plane antenna panels to cover the 360 °. These solutions are complex or expensive to implement. For these reasons in particular, they are not or poorly suited to applications, such as, for example, marine telecommunication antennas installed at the top of the masts.
Un but de l'invention est notamment de permettre une réalisation simple d'une antenne cylindrique. A cet effet, l'invention a pour objet une antenne cylindrique à balayage électronique comportant au moins :
- un ensemble de guides rayonnants disposés en cylindre, produisant le faisceau d'antenne ;
- un réseau de coupleurs 3dB en guide d'onde dont les entrées sont éclairées par un ensemble de sources hyperfréquence, la sortie d'un coupleur étant couplée à l'entrée d'un guide rayonnant ;
- un réseau de paires de cellules de déphasage couplées chacune à un coupleur 3dB, une onde entrante issue des sources hyperfréquence étant déphasée selon un déphasage commandable Δϕ, le décalage angulaire du faisceau d'antenne étant fonction de ce déphasage.
- a set of radiating guides arranged in a cylinder, producing the antenna beam;
- a network of couplers 3dB waveguide whose inputs are illuminated by a set of microwave sources, the output of a coupler being coupled to the input of a radiating guide;
- an array of phase shift cell pairs each coupled to a 3dB coupler, an incoming wave coming from the microwave sources being out of phase with a controllable phase shift Δφ, the angular offset of the antenna beam being a function of this phase shift.
Avantageusement, les sources hyperfréquence sont disposées sur un pourtour cylindrique à l'intérieur du cylindre formé par l'ensemble des guides rayonnants de façon à ce que chaque source éclaire une partie du réseau de coupleurs, les sources hyperfréquence étant activées successivement. Les sources hyperfréquence sont par exemple des cornets reliés à un dispositif d'aiguillage de lignes hyperfréquence, chaque cornet alimenté par une ligne.Advantageously, the microwave sources are arranged on a cylindrical periphery inside the cylinder formed by the set of radiating guides so that each source illuminates a portion of the coupler array, the microwave sources being activated successively. The microwave sources are for example cornets connected to a microwave line switching device, each horn fed by a line.
Avantageusement, le dispositif d'aiguillage est par exemple un dispositif de type SP8T. Ce commutateur peut être réalisé à base de MEMS.
Dans un mode de réalisation, l'onde incidente entrant dans l'entrée d'un coupleur se répartit en deux ondes, ces deux ondes se réfléchissant chacune sur une cellule de déphasage avec des phases identiques et se recomposant en une onde résultante déphasée sortant par la sortie du coupleur juxtaposée à l'entrée.
Les cellules de déphasage comportent par exemple des diodes, le déphasage appliqué étant fonction de l'état des diodes.
Dans un autre mode de réalisation, les cellules de déphasage comportent par exemple des MEMS accordables, le déphasage appliqué étant fonction de l'impédance des MEMS, cette impédance étant commandable.
Les sources hyperfréquences sont par exemple disposées sur une paroi cylindrique intérieure, les sources éclairant les coupleurs dans l'espace disponible entre la paroi intérieure et les guides rayonnants.
Les guides rayonnants sont par exemple des guides à fente.Advantageously, the switching device is for example a SP8T type device. This switch can be made based on MEMS.
In one embodiment, the incident wave entering the input of a coupler is divided into two waves, these two waves each being reflected on a phase shift cell with identical phases and recomposing themselves into a resulting out-of-phase wave emerging through the output of the coupler juxtaposed to the input.
The phase shift cells comprise, for example, diodes, the phase shift applied being a function of the state of the diodes.
In another embodiment, the phase shift cells comprise, for example, tunable MEMS, the phase shift applied being a function of the impedance of the MEMS, this impedance being controllable.
Microwave sources are for example arranged on an inner cylindrical wall, the sources illuminating the couplers in the space available between the inner wall and the radiating guides.
The radiating guides are for example slot guides.
L'invention a notamment pour principaux avantages qu'elle présente de faibles pertes, qu'elle est simple à mettre en oeuvre, qu'elle est compacte et qu'elle est économique.The main advantages of the invention are that it has low losses, is simple to implement, is compact and is economical.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit, faite en regard de dessins annexés qui représentent :
- la figure 1, une antenne cylindrique selon l'invention ;
- la figure 2, un guide rayonnant et son déphaseur associé utilisés dans une antenne selon l'invention ;
- la figure 3, par une vue éclatée un mode de réalisation possible d'un déphaseur utilisé dans une antenne selon l'invention ;
- les figures 4a, 4b et 4c des modes de réalisation possibles du réseau de déphaseurs mis en oeuvre dans une antenne selon l'invention ;
- la figure 5, un mode d'éclairement des déphaseurs par des sources hyperfréquence ;
- la figure 6, une illustration du rayonnement produit par une source hyperfréquence entre les parois intérieure et extérieure d'une antenne selon l'invention ;
- la figure 7, un exemple de réalisation d'un dispositif d'aiguillage d'une onde hyperfréquence entre les différentes sources réparties autour du cylindre formant l'antenne.
- Figure 1, a cylindrical antenna according to the invention;
- Figure 2, a radiating guide and associated phase shifter used in an antenna according to the invention;
- FIG. 3, by an exploded view, a possible embodiment of a phase-shifter used in an antenna according to the invention;
- FIGS. 4a, 4b and 4c of the possible embodiments of the phase shifter array implemented in an antenna according to the invention;
- FIG. 5, a mode of illumination of phase shifters by microwave sources;
- FIG. 6, an illustration of the radiation produced by a microwave source between the inner and outer walls of an antenna according to the invention;
- Figure 7, an exemplary embodiment of a device for switching a microwave between the different sources distributed around the cylinder forming the antenna.
La figure 1 présente l'allure générale d'une antenne 1 selon l'invention. Cette dernière comporte une série de guides rayonnants 2 disposés parallèlement et formant un cylindre. Ces guides rayonnants 2 sont alimentés par un réseau de déphaseurs 3 lui-même illuminé par des sources hyperfréquence 4, 4' réparties circulairement. Le réseau de déphaseurs 3 est disposé à la base du cylindre. Les sources 4 sont par exemple fixées sur un support intérieur 5. Pour répondre à des exigences de rigidité mécanique, les guides sont par exemple fixés sur une armature 6 concentrique de la précédente 5. Un groupement 7 de guides rayonnants 2 contigus produit un faisceau d'antenne 8. Ce faisceau est produit par les guides illuminés par une source hyperfréquence 4', via les déphaseurs du réseau 3, les autres sources 4 étant inactives. Les sources hyperfréquences 4 sont activées successivement de façon à faire tourner le faisceau d'antenne 8. Le mode d'alimentation des sources 4, 4' ainsi que la commande des déphaseurs produisant les mouvements du faisceau d'antenne 8 seront décrits par la suite.Figure 1 shows the general appearance of an
La figure 2 illustre un guide rayonnant 2 et son déphaseur associé 21. Le guide rayonnant est par exemple un guide résonnant à fentes 22. Le déphaseur comporte une entrée 27 et une sortie 28. L'entrée 27 reçoit l'onde 23 émise par une source hyperfréquence 4. Cette entrée 27 est donc disposée en regard de cette source 4. La sortie 28 du déphaseur est disposée en regard du guide rayonnant 2. L'onde 24 sortant du déphaseur, et déphasée, pénètre dans le guide à fentes pour rayonner de façon connue. Les fentes du guide 2 peuvent être disposées sur son petit côté ou sur son grand côté, les fentes étant orientées vers l'extérieur du cylindre. A son extrémité opposée au déphaseur 21, le guide peut être fermé sur un court-circuit hyperfréquence, dans ce cas il fonctionne en résonance. Le guide 2 participe à la formation du faisceau d'antenne 8 lorsque son déphaseur associé 21 est illuminé par une source 4. Comme il a été indiqué précédemment, la rotation du faisceau autour du cylindre se fait en activant successivement les sources hyperfréquence 4. Cela forme par exemple un balayage en azimut.
Pour effectuer un dépointage en site 29, il est possible de jouer sur la fréquence d'émission. Dans ce cas, les guides en mode résonnant sont remplacés par des guides en mode progressif. Dans ce cas, un guide est alors fermé sur une charge hyperfréquence. Un décalage de 1% dans la bande de fréquence par exemple, peut ainsi induire un décalage de l'ordre de 1 degré.FIG. 2 illustrates a
To perform a misalignment in
La figure 3 détaille par une vue éclatée un mode de réalisation possible du déphaseur 21 de la figure 2. Ce déphaseur est composé d'un coupleur 3db en guide d'onde 34 et d'une paire de cellules de déphasage 35, 36. Le coupleur 3dB est associé à la paire de cellules de déphasage fonctionnant en réflexion, la sortie du coupleur étant disposée en regard des cellules de déphasage. En particulier l'onde incidente E issue d'une source hyperfréquence 4, passant par l'entrée 27 du coupleur 34, se répartit en deux ondes incidentes E1, E2 vers les deux cellules de déphasage 35, 36. Ces deux cellules réfléchissent ces ondes incidentes avec des déphasages identiques. Les ondes réfléchies S1, S2 entrent dans le coupleur 34 pour se recomposer entre elles. L'onde résultante S émerge alors de la sortie 28 du coupleur, juxtaposée à l'entrée 27, avec un déphasage Δϕ par rapport à l'onde incidente E. L'onde résultante de sortie S pénètre dans le guide à fente 2. De façon connue, une valeur du déphasage Δϕ appliqué sur l'onde incidente et réfléchie dans le guide d'onde 2 crée un décalage angulaire donné du faisceau d'antenne 8. Ce décalage est effectué dans un plan perpendiculaire à l'axe 20 des guides d'onde, donc par exemple en azimut. Le balayage électronique 10 du faisceau d'antenne 8 est effectué de façon connue en faisant varier le déphasageΔϕ. Ce balayage électronique 10 se superpose à la rotation du faisceau d'antenne 8 autour du cylindre formant l'antenne.FIG. 3 shows an exploded view of a possible embodiment of the
Les figures 4a et 4b illustrent un mode de réalisation possible du réseau de déphaseurs 3, la figure 4b étant une vue partielle de la figure 4a. Plus particulièrement ces figures présente un mode de réalisation du réseau formé par les cellules de déphasage 35, 36 des déphaseurs 21. Ces cellules sont par exemple implantées sur un circuit imprimé circulaire 41 ayant une largeur donnée Lc. Deux cellules 35, 36 affectées à un même déphaseur sont contiguës et disposées radialement. Deux paires de cellules sont séparées radialement par une zone 42. Cette zone est par exemple une piste conductrice imprimée. Sa largeur, non constante, correspond sensiblement à la largeur des parois d'un coupleur 3dB. Les coupleurs 3dB sont par exemple soudés sur ces zones 42. Le circuit imprimé 41 est par exemple fixé sur une structure mécanique non représentée, de forme circulaire. Cette structure supporte aussi par exemple la paroi intérieure 5.
Chaque cellule de déphasage 35, 36 comporte un circuit hyperfréquence et un plan conducteur sensiblement parallèle au circuit hyperfréquence. Le circuit hyperfréquence et le plan conducteur peuvent être avantageusement réalisés dans le circuit imprimé 41 qui est alors de type multicouche. Le plan conducteur a notamment pour fonction de réfléchir les ondes E1, E2 décrites précédemment, puis le circuit hyperfréquence réalise le déphasage.
Les cellules de déphasage 35, 36 sont par exemple réalisées à l'aide de diodes comme décrit dans la demande de brevet français publiée sous le numéro 2 807 213. Dans ce cas, le déphasage Δϕ appliqué dépend de l'état des diodes.
Les déphasages peuvent aussi être réalisés par des inductances ou des capacités variables. A cet effet, il est possible d'utiliser des circuits MEMS accordables. Les circuits en technologies MEMS (systèmes micro-électromécaniques) conjuguent la micro-électronique des semi-conducteurs et la technologie du micro-usinage, permettent la réalisation de systèmes sur une puce. Ainsi, dans le cadre de l'invention il est possible d'utiliser des circuits MEMS accordables tels que décrit par exemple dans l'article de
Un avantage par rapport à des déphaseurs à diodes est d'obtenir un pas plus fin au niveau des déphasages Δϕ appliqués aux ondes incidentes. Avec des déphaseurs à diodes, il est possible d'atteindre une commande sur 4 bits, soit un pas de 1/24 = 1/16. Des cellules à déphasage à base de MEMS accordables permettent d'obtenir une commande équivalente à 6 bits par exemple, soit un pas de 1/26 = 1/64. Une diminution du pas de déphase Δϕ permet notamment de diminuer les rayonnements parasites. Les circuits de commande des cellules de déphasage ne sont pas représentés sur les figures 4a et 4b. Ces circuits peuvent être par exemple implantés sur la face arrière du circuit imprimé supportant les cellules de déphasage. Ce circuit imprimé peut être avantageusement du type multicouche pour permettre le passage de liaisons électriques entre les cellules de déphasage et leurs circuits de commande.Figures 4a and 4b illustrate a possible embodiment of the
Each
The
The phase shifts can also be realized by inductances or variable capacities. For this purpose, it is possible to use tunable MEMS circuits. MEMS (micro-electromechanical systems) circuits combine semiconductor microelectronics and micro-machining technology, enabling the realization of systems on a chip. Thus, in the context of the invention it is possible to use tunable MEMS circuits as described for example in the article of
An advantage over diode phase shifters is to obtain a finer pitch at the Δφ phase shifts applied to the incident waves. With some Diode phase shifters, it is possible to achieve a command on 4 bits, a step of 1/2 4 = 1/16. Tunable MEMS phase shifting cells make it possible to obtain a control equivalent to 6 bits for example, ie a pitch of 1/2 6 = 1/64. A decrease of the step of separation Δφ makes it possible in particular to reduce the parasitic radiations. The control circuits of the phase shift cells are not shown in FIGS. 4a and 4b. These circuits may for example be located on the rear face of the printed circuit supporting the phase shift cells. This printed circuit may advantageously be of the multilayer type to allow the passage of electrical connections between the phase shift cells and their control circuits.
La figure 4c illustre un mode de réalisation possible de l'ensemble des coupleurs 3dB 21 qui viennent se coupler au circuit imprimé 41. Ces coupleurs 21 couplés chacun à une paire de cellules déphasage 35, 36 peuvent former une seule pièce 45 circulaire. Cette pièce est alors rapportée sur le circuit imprimé 41. Les guides 34 constituant les coupleurs sont par exemple usinés dans une même pièce métallique. Les guides d'onde rayonnant 2 sont ensuite disposé en regard des guides d'onde formant les sorties des coupleurs 3dB.FIG. 4c illustrates a possible embodiment of all of the
La figure 5 illustre le mode d'éclairement des déphaseurs par les sources hyperfréquence 4. Plus particulièrement, la figure 5 illustre l'éclairement des entrées 27 des déphaseurs par une source 4. Cette source comporte par exemple un cornet 51. Ce cornet est lui-même alimenté par une onde hyperfréquence. Il s'agit de l'onde hyperfréquence à émettre, elle-même préalablement amplifiée. Le cornet 51 rayonne cette onde vers les déphaseurs. Le rayonnement 52 produit par la source 4 éclaire les déphaseurs 21 sur une longueur C, cette longueur étant circulaire comme l'illustre la représentation de cette longueur sur la figure 4a. La source hyperfréquence voisine de la source 4 représentée sur la figure 5 produit un rayonnement qui éclaire les déphaseurs sur une longueur C1. Cette longueur chevauche la longueur C précédente comme l'illustre la figure 4a.FIG. 5 illustrates the mode of illumination of the phase-shifters by the microwave sources 4. More particularly, FIG. 5 illustrates the illumination of the
La figure 6 illustre par une vue en perspective le rayonnement de la figure 5. La source 4 fixée en haut de la paroi interne 5 éclaire l'espace libre entre la paroi cylindrique interne 5 et la paroi formée des faces non rayonnantes des guides d'onde 2. Plus particulièrement, la source 4 éclaire les entrées 27 des déphaseurs 21. Les ondes émises par la source 4 entrent donc dans les déphaseurs 21, sont déphasées puis pénètrent dans les guides d'onde 2 dont les entrées sont reliées aux sorties 28 des déphaseurs.
Les sources hyperfréquence 4, notamment les cornets 51, sont par exemple reliées à un aiguilleur hyperfréquence. Cet aiguilleur comporte une entrée qui reçoit l'onde à émettre et plusieurs sorties reliées chacune à un cornet.FIG. 6 is a perspective view of the radiation of FIG. 5. The
The
La figure 7 illustre un exemple de dispositif d'aiguillage hyperfréquence qui peut avantageusement être utilisé. Ce dispositif d'aiguillage est par exemple un commutateur 71 du type SP8T comportant une entrée et huit sorties. Ce commutateur de type SP8T peut être réalisé à base de diodes PIN ou à base de MEMS. Le commutateur 71 comporte une entrée 72 et huit sorties 73. L'entrée 72 et les sorties 73 sont par exemple adaptées pour se connecter à des lignes hyperfréquence de type coaxial. Une telle ligne relie chaque cornet 51 au commutateur 71.
L'onde entrante dans le commutateur est ainsi successivement commutée vers les différentes sorties. De la sorte, les cornets disposés tout autour du cylindre intérieur sont successivement alimentés comme décrit précédemment.FIG. 7 illustrates an example of a microwave switching device that can advantageously be used. This switching device is for example a
The incoming wave in the switch is thus successively switched to the different outputs. In this way, the horns arranged around the inner cylinder are successively fed as described above.
Le cylindre formant une antenne selon l'invention peut avoir une base formant un cercle comme illustré par les figures. Il peut néanmoins avoir une base ne formant pas un cercle. Dans ce cas, les formes des réseaux de cellules de déphasages, notamment le circuit imprimé 41, et des réseaux de coupleurs sont adaptés.
Une antenne selon l'invention, de forme cylindrique, peut facilement s'intégrer au mât d'un navire par exemple, l'antenne étant alors disposée autour du mât.
Un autre avantage d'une antenne selon l'invention est notamment la simplicité technologique. Les différents modes de réalisation illustrés par les figures ont montré la simplicité technologique ainsi que les types de composants utilisés.
Cette antenne présente aussi de faibles pertes en raison des composants utilisés qui introduisent eux-mêmes peu de pertes.
En ce qui concerne les dimensions, la longueur des guides rayonnants 2 peut être de l'ordre de 30 centimètres par exemple et le diamètre du cylindre peut être de l'ordre d'un mètre. Il en résulte une antenne relativement compacte et peu encombrante.The cylinder forming an antenna according to the invention may have a base forming a circle as illustrated by the figures. It may, however, have a base that does not form a circle. In this case, the shapes of the phase shift cell arrays, in particular the printed
An antenna according to the invention, of cylindrical shape, can easily integrate with the mast of a ship for example, the antenna then being arranged around the mast.
Another advantage of an antenna according to the invention is in particular the technological simplicity. The different embodiments illustrated by the Figures showed the technological simplicity as well as the types of components used.
This antenna also has low losses because of the components used which introduce themselves little loss.
Regarding the dimensions, the length of the radiating guides 2 may be of the order of 30 centimeters for example and the diameter of the cylinder may be of the order of one meter. The result is a relatively compact and space-saving antenna.
Claims (10)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0605005A FR2901921B1 (en) | 2006-06-06 | 2006-06-06 | CYLINDRICAL ANTENNA WITH ELECTRONIC SCAN |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1865575A1 true EP1865575A1 (en) | 2007-12-12 |
EP1865575B1 EP1865575B1 (en) | 2009-11-25 |
Family
ID=37692573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07109696A Not-in-force EP1865575B1 (en) | 2006-06-06 | 2007-06-06 | Cylindrical electronically scanned antenna |
Country Status (4)
Country | Link |
---|---|
US (1) | US7548212B2 (en) |
EP (1) | EP1865575B1 (en) |
DE (1) | DE602007003402D1 (en) |
FR (1) | FR2901921B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111710993A (en) * | 2020-07-21 | 2020-09-25 | 内蒙古工业大学 | A beam scanning method and device based on virtual array elements |
Families Citing this family (127)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8547275B2 (en) | 2010-11-29 | 2013-10-01 | Src, Inc. | Active electronically scanned array antenna for hemispherical scan coverage |
US9325075B1 (en) | 2012-05-25 | 2016-04-26 | Lockheed Martin Corporation | Antennae formed using integrated subarrays |
US9525524B2 (en) | 2013-05-31 | 2016-12-20 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9999038B2 (en) | 2013-05-31 | 2018-06-12 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US8897697B1 (en) | 2013-11-06 | 2014-11-25 | At&T Intellectual Property I, Lp | Millimeter-wave surface-wave communications |
US9768833B2 (en) | 2014-09-15 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US10063280B2 (en) | 2014-09-17 | 2018-08-28 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US9615269B2 (en) | 2014-10-02 | 2017-04-04 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9685992B2 (en) | 2014-10-03 | 2017-06-20 | At&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
US9503189B2 (en) | 2014-10-10 | 2016-11-22 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9973299B2 (en) | 2014-10-14 | 2018-05-15 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9577306B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9780834B2 (en) | 2014-10-21 | 2017-10-03 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
US9627768B2 (en) | 2014-10-21 | 2017-04-18 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9653770B2 (en) | 2014-10-21 | 2017-05-16 | At&T Intellectual Property I, L.P. | Guided wave coupler, coupling module and methods for use therewith |
US9769020B2 (en) | 2014-10-21 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
US9312919B1 (en) | 2014-10-21 | 2016-04-12 | At&T Intellectual Property I, Lp | Transmission device with impairment compensation and methods for use therewith |
US9800327B2 (en) | 2014-11-20 | 2017-10-24 | At&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
US9742462B2 (en) | 2014-12-04 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
US10340573B2 (en) | 2016-10-26 | 2019-07-02 | At&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
US9461706B1 (en) | 2015-07-31 | 2016-10-04 | At&T Intellectual Property I, Lp | Method and apparatus for exchanging communication signals |
US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
US9997819B2 (en) | 2015-06-09 | 2018-06-12 | At&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
US10009067B2 (en) | 2014-12-04 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a communication interface |
US9544006B2 (en) | 2014-11-20 | 2017-01-10 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US10243784B2 (en) | 2014-11-20 | 2019-03-26 | At&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
US9876570B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9749013B2 (en) | 2015-03-17 | 2017-08-29 | At&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
US10224981B2 (en) | 2015-04-24 | 2019-03-05 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9705561B2 (en) | 2015-04-24 | 2017-07-11 | At&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
US9793954B2 (en) | 2015-04-28 | 2017-10-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
US9490869B1 (en) | 2015-05-14 | 2016-11-08 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US9871282B2 (en) | 2015-05-14 | 2018-01-16 | At&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
US9748626B2 (en) | 2015-05-14 | 2017-08-29 | At&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
US10650940B2 (en) | 2015-05-15 | 2020-05-12 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
US10812174B2 (en) | 2015-06-03 | 2020-10-20 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US9866309B2 (en) | 2015-06-03 | 2018-01-09 | At&T Intellectual Property I, Lp | Host node device and methods for use therewith |
US9912381B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US9913139B2 (en) | 2015-06-09 | 2018-03-06 | At&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
US9820146B2 (en) | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9667317B2 (en) | 2015-06-15 | 2017-05-30 | At&T Intellectual Property I, L.P. | Method and apparatus for providing security using network traffic adjustments |
US9640850B2 (en) | 2015-06-25 | 2017-05-02 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US9509415B1 (en) | 2015-06-25 | 2016-11-29 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US9865911B2 (en) | 2015-06-25 | 2018-01-09 | At&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
US10148016B2 (en) | 2015-07-14 | 2018-12-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array |
US9882257B2 (en) | 2015-07-14 | 2018-01-30 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9847566B2 (en) | 2015-07-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
US9722318B2 (en) | 2015-07-14 | 2017-08-01 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US10205655B2 (en) | 2015-07-14 | 2019-02-12 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
US9853342B2 (en) | 2015-07-14 | 2017-12-26 | At&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
US10044409B2 (en) | 2015-07-14 | 2018-08-07 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US9628116B2 (en) | 2015-07-14 | 2017-04-18 | At&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
US10090606B2 (en) | 2015-07-15 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
US9793951B2 (en) | 2015-07-15 | 2017-10-17 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9871283B2 (en) | 2015-07-23 | 2018-01-16 | At&T Intellectual Property I, Lp | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
US9948333B2 (en) | 2015-07-23 | 2018-04-17 | At&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
US9912027B2 (en) | 2015-07-23 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9749053B2 (en) | 2015-07-23 | 2017-08-29 | At&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
US9967173B2 (en) | 2015-07-31 | 2018-05-08 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9735833B2 (en) | 2015-07-31 | 2017-08-15 | At&T Intellectual Property I, L.P. | Method and apparatus for communications management in a neighborhood network |
US9904535B2 (en) | 2015-09-14 | 2018-02-27 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
ITUB20154703A1 (en) * | 2015-09-25 | 2017-03-25 | Luca Galmarini | MEMBRAFOR PERCUSSION PERCUSSION |
US9769128B2 (en) | 2015-09-28 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
US9729197B2 (en) | 2015-10-01 | 2017-08-08 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating network management traffic over a network |
US9876264B2 (en) | 2015-10-02 | 2018-01-23 | At&T Intellectual Property I, Lp | Communication system, guided wave switch and methods for use therewith |
US10355367B2 (en) | 2015-10-16 | 2019-07-16 | At&T Intellectual Property I, L.P. | Antenna structure for exchanging wireless signals |
US9860075B1 (en) | 2016-08-26 | 2018-01-02 | At&T Intellectual Property I, L.P. | Method and communication node for broadband distribution |
FR3056044B1 (en) * | 2016-09-13 | 2019-06-21 | Peugeot Citroen Automobiles Sa | DEVICE FOR TRANSMITTING AND / OR RECEIVING RADIO WITH ANTENNAS AND INDEPENDENT ASSOCIATED OPENINGS |
US10135147B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via an antenna |
US10135146B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via circuits |
US10374316B2 (en) | 2016-10-21 | 2019-08-06 | At&T Intellectual Property I, L.P. | System and dielectric antenna with non-uniform dielectric |
US9991580B2 (en) | 2016-10-21 | 2018-06-05 | At&T Intellectual Property I, L.P. | Launcher and coupling system for guided wave mode cancellation |
US9876605B1 (en) | 2016-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Launcher and coupling system to support desired guided wave mode |
US10811767B2 (en) | 2016-10-21 | 2020-10-20 | At&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
US10312567B2 (en) | 2016-10-26 | 2019-06-04 | At&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
US10291334B2 (en) | 2016-11-03 | 2019-05-14 | At&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
US10224634B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting an operational characteristic of an antenna |
US10225025B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
US10498044B2 (en) | 2016-11-03 | 2019-12-03 | At&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
US10090594B2 (en) | 2016-11-23 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
US10340601B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
US10340603B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
US10178445B2 (en) | 2016-11-23 | 2019-01-08 | At&T Intellectual Property I, L.P. | Methods, devices, and systems for load balancing between a plurality of waveguides |
US10535928B2 (en) | 2016-11-23 | 2020-01-14 | At&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
US10361489B2 (en) | 2016-12-01 | 2019-07-23 | At&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
US10305190B2 (en) | 2016-12-01 | 2019-05-28 | At&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
US10096883B2 (en) | 2016-12-06 | 2018-10-09 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting a wavelength electromagnetic waves |
US10439675B2 (en) | 2016-12-06 | 2019-10-08 | At&T Intellectual Property I, L.P. | Method and apparatus for repeating guided wave communication signals |
US10637149B2 (en) | 2016-12-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Injection molded dielectric antenna and methods for use therewith |
US10727599B2 (en) | 2016-12-06 | 2020-07-28 | At&T Intellectual Property I, L.P. | Launcher with slot antenna and methods for use therewith |
US10326494B2 (en) | 2016-12-06 | 2019-06-18 | At&T Intellectual Property I, L.P. | Apparatus for measurement de-embedding and methods for use therewith |
US10020844B2 (en) | 2016-12-06 | 2018-07-10 | T&T Intellectual Property I, L.P. | Method and apparatus for broadcast communication via guided waves |
US10205212B2 (en) | 2016-12-06 | 2019-02-12 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting a phase of electromagnetic waves |
US9927517B1 (en) | 2016-12-06 | 2018-03-27 | At&T Intellectual Property I, L.P. | Apparatus and methods for sensing rainfall |
US10694379B2 (en) | 2016-12-06 | 2020-06-23 | At&T Intellectual Property I, L.P. | Waveguide system with device-based authentication and methods for use therewith |
US10135145B2 (en) | 2016-12-06 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
US10755542B2 (en) | 2016-12-06 | 2020-08-25 | At&T Intellectual Property I, L.P. | Method and apparatus for surveillance via guided wave communication |
US10382976B2 (en) | 2016-12-06 | 2019-08-13 | At&T Intellectual Property I, L.P. | Method and apparatus for managing wireless communications based on communication paths and network device positions |
US10819035B2 (en) | 2016-12-06 | 2020-10-27 | At&T Intellectual Property I, L.P. | Launcher with helical antenna and methods for use therewith |
US10547348B2 (en) | 2016-12-07 | 2020-01-28 | At&T Intellectual Property I, L.P. | Method and apparatus for switching transmission mediums in a communication system |
US10027397B2 (en) | 2016-12-07 | 2018-07-17 | At&T Intellectual Property I, L.P. | Distributed antenna system and methods for use therewith |
US10243270B2 (en) | 2016-12-07 | 2019-03-26 | At&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
US10168695B2 (en) | 2016-12-07 | 2019-01-01 | At&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
US9893795B1 (en) | 2016-12-07 | 2018-02-13 | At&T Intellectual Property I, Lp | Method and repeater for broadband distribution |
US10446936B2 (en) | 2016-12-07 | 2019-10-15 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
US10389029B2 (en) | 2016-12-07 | 2019-08-20 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
US10139820B2 (en) | 2016-12-07 | 2018-11-27 | At&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
US10359749B2 (en) | 2016-12-07 | 2019-07-23 | At&T Intellectual Property I, L.P. | Method and apparatus for utilities management via guided wave communication |
US10938108B2 (en) | 2016-12-08 | 2021-03-02 | At&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
US10601494B2 (en) | 2016-12-08 | 2020-03-24 | At&T Intellectual Property I, L.P. | Dual-band communication device and method for use therewith |
US9911020B1 (en) | 2016-12-08 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for tracking via a radio frequency identification device |
US10530505B2 (en) | 2016-12-08 | 2020-01-07 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves along a transmission medium |
US10389037B2 (en) | 2016-12-08 | 2019-08-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
US10326689B2 (en) | 2016-12-08 | 2019-06-18 | At&T Intellectual Property I, L.P. | Method and system for providing alternative communication paths |
US10916969B2 (en) | 2016-12-08 | 2021-02-09 | At&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
US9998870B1 (en) | 2016-12-08 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing |
US10103422B2 (en) | 2016-12-08 | 2018-10-16 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10411356B2 (en) | 2016-12-08 | 2019-09-10 | At&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
US10069535B2 (en) | 2016-12-08 | 2018-09-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
US10777873B2 (en) | 2016-12-08 | 2020-09-15 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US9838896B1 (en) | 2016-12-09 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for assessing network coverage |
US10264586B2 (en) | 2016-12-09 | 2019-04-16 | At&T Mobility Ii Llc | Cloud-based packet controller and methods for use therewith |
US10340983B2 (en) | 2016-12-09 | 2019-07-02 | At&T Intellectual Property I, L.P. | Method and apparatus for surveying remote sites via guided wave communications |
US9973940B1 (en) | 2017-02-27 | 2018-05-15 | At&T Intellectual Property I, L.P. | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
US10298293B2 (en) | 2017-03-13 | 2019-05-21 | At&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
LU504381B1 (en) * | 2023-05-31 | 2024-12-11 | Intersoft Electronics Nv | Radial Plate Reflector array antenna |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2807018A (en) | 1953-07-27 | 1957-09-17 | Rca Corp | Slotted waveguide antenna |
US4247858A (en) | 1979-05-21 | 1981-01-27 | Kurt Eichweber | Antennas for use with optical and high-frequency radiation |
US4458250A (en) * | 1981-06-05 | 1984-07-03 | The United States Of America As Represented By The Secretary Of The Navy | 360-Degree scanning antenna with cylindrical array of slotted waveguides |
EP1139484A1 (en) | 2000-03-31 | 2001-10-04 | Thales | Microwave phase shifter and phased array antenna with such phase shifters |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2711440A (en) * | 1944-10-09 | 1955-06-21 | Rines Robert Harvey | Microwave scanning system |
US2836822A (en) * | 1955-08-10 | 1958-05-27 | Hughes Aircraft Co | Method of feeding and scanning a circularly disposed antenna array |
US3699574A (en) * | 1969-10-16 | 1972-10-17 | Us Navy | Scanned cylindrical array monopulse antenna |
-
2006
- 2006-06-06 FR FR0605005A patent/FR2901921B1/en not_active Expired - Fee Related
-
2007
- 2007-06-06 DE DE602007003402T patent/DE602007003402D1/en active Active
- 2007-06-06 US US11/759,081 patent/US7548212B2/en not_active Expired - Fee Related
- 2007-06-06 EP EP07109696A patent/EP1865575B1/en not_active Not-in-force
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2807018A (en) | 1953-07-27 | 1957-09-17 | Rca Corp | Slotted waveguide antenna |
US4247858A (en) | 1979-05-21 | 1981-01-27 | Kurt Eichweber | Antennas for use with optical and high-frequency radiation |
US4458250A (en) * | 1981-06-05 | 1984-07-03 | The United States Of America As Represented By The Secretary Of The Navy | 360-Degree scanning antenna with cylindrical array of slotted waveguides |
EP1139484A1 (en) | 2000-03-31 | 2001-10-04 | Thales | Microwave phase shifter and phased array antenna with such phase shifters |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111710993A (en) * | 2020-07-21 | 2020-09-25 | 内蒙古工业大学 | A beam scanning method and device based on virtual array elements |
Also Published As
Publication number | Publication date |
---|---|
EP1865575B1 (en) | 2009-11-25 |
US7548212B2 (en) | 2009-06-16 |
FR2901921B1 (en) | 2009-01-30 |
DE602007003402D1 (en) | 2010-01-07 |
US20080088520A1 (en) | 2008-04-17 |
FR2901921A1 (en) | 2007-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1865575B1 (en) | Cylindrical electronically scanned antenna | |
EP3073569B1 (en) | Compact butler matrix , planar bi-dimensional beam-former, and planar antenna with such a butler matrix | |
EP2656438B1 (en) | Radio cell with two phase states for transmit array | |
EP2807702B1 (en) | Two dimensional multibeam former, antenna using such and satellite telecommunication system. | |
EP2869400B1 (en) | Bi-polarisation compact power distributor, network of a plurality of distributors, compact radiating element and planar antenna having such a distributor | |
EP3176875B1 (en) | Active antenna architecture with reconfigurable hybrid beam formation | |
EP3011639A1 (en) | Source for parabolic antenna | |
EP0430745B1 (en) | Circular polarized antenna, particularly for array antenna | |
EP3086409A1 (en) | Structural antenna module including elementary radiating sources with individual orientation, radiating panel, radiating network and multibeam antenna comprising at least one such module | |
FR2873236A1 (en) | BROADBAND OMNIDIRECTIONAL RADIANT DEVICE | |
EP1305846B1 (en) | Active dual-polarization microwave reflector, in particular for electronically scanning antenna | |
EP1152483B1 (en) | Dual-band microwave radiating element | |
WO2023218008A1 (en) | Low-profile antenna with two-dimensional electronic scanning | |
EP4207493B1 (en) | Passive directional rf antenna with one or two-dimensional scanning | |
FR2879359A1 (en) | BROADBAND ELECTRONIC SCANNING ANTENNA | |
FR2544554A1 (en) | Radiating element or receiver of left and right circularly polarised microwave signals and plane antenna comprising an array of such elements juxtaposed | |
FR2874748A1 (en) | Hyper frequency splitter for feeding electronically scanned antenna, has ring wave guide with rectangular section and with inlets connected to side that corresponds to side of section | |
FR2762717A1 (en) | TWO-WAY SOURCE FOR FOCUSING OPTICAL ANTENNA | |
EP0546901A1 (en) | Light multipolarized antenna | |
FR2920597A1 (en) | Active dual-polarization and wideband electronically scanning microwave reflector for reflecting-type electronically scanning antenna, has metallic interior protrusions formed along width of interleaved waveguides | |
FR2729011A1 (en) | Dual polarisation antenna network | |
FR3049393A1 (en) | METHOD OF SUPPLYING A RADIAL WAVEGUIDE AND RADIAL WAVEGUIDE DEVICE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17P | Request for examination filed |
Effective date: 20080612 |
|
17Q | First examination report despatched |
Effective date: 20080714 |
|
AKX | Designation fees paid |
Designated state(s): DE GB IT SE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB IT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 602007003402 Country of ref document: DE Date of ref document: 20100107 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20100826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100606 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20130605 Year of fee payment: 7 Ref country code: DE Payment date: 20130529 Year of fee payment: 7 Ref country code: SE Payment date: 20130612 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20130619 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602007003402 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602007003402 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140607 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140606 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602007003402 Country of ref document: DE Effective date: 20150101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150101 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140606 |