EP1519638B1 - Method for operating a low pressure discharge lamp - Google Patents
Method for operating a low pressure discharge lamp Download PDFInfo
- Publication number
- EP1519638B1 EP1519638B1 EP04019957A EP04019957A EP1519638B1 EP 1519638 B1 EP1519638 B1 EP 1519638B1 EP 04019957 A EP04019957 A EP 04019957A EP 04019957 A EP04019957 A EP 04019957A EP 1519638 B1 EP1519638 B1 EP 1519638B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- lamp
- voltage drop
- time
- switching means
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 16
- 238000010438 heat treatment Methods 0.000 claims abstract description 52
- 238000004804 winding Methods 0.000 claims description 18
- 230000001105 regulatory effect Effects 0.000 claims 1
- 238000012544 monitoring process Methods 0.000 abstract 1
- 238000011017 operating method Methods 0.000 abstract 1
- 239000003990 capacitor Substances 0.000 description 23
- 238000001514 detection method Methods 0.000 description 7
- 230000005669 field effect Effects 0.000 description 5
- 238000012935 Averaging Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000002596 correlated effect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/26—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC
- H05B41/28—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters
- H05B41/295—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
Definitions
- the invention relates to a method for operating at least one low-pressure discharge lamp according to the preamble of patent claim 1.
- the publication WO 00/72640 A1 describes a circuit arrangement and a method for operating a low-pressure discharge lamp by means of a half-bridge inverter, wherein the lamp electrodes of the at least one low-pressure discharge lamp during a heating phase before igniting the gas discharge in the at least one low-pressure discharge lamp by means of a transformer whose primary-side current by means of a controllable switching means is clocked, are acted upon by a heating current and the change in the electrical resistance of at least one lamp electrode is monitored in order to recognize the connected to the operating device type of low-pressure discharge lamp.
- the change in the electrical resistance of the lamp electrode is monitored by means of an ohmic resistor, which is arranged on the secondary side of the transformer.
- Publication WO 00/72642 A1 discloses an electronic ballast for operating at least one low-pressure discharge lamp on an inverter with a connected load circuit which contains the lamp and a series resonant circuit and an evaluation circuit which reacts to different operating states of the lamp and in the event of a defect or removal of the lamp Generates signals that are used to switch off the inverter.
- the inventive method for operating at least one low-pressure discharge lamp by means of an inverter wherein the lamp electrodes of the at least low-pressure discharge lamp during a heating phase before the ignition of the gas discharge in the at least one low-pressure discharge lamp by means of a transformer whose primary-side current is clocked by means of a controllable switching means, are acted upon by a heating current and the change in the electrical resistance of at least one lamp electrode is monitored, according to the invention is characterized in that the controllable switching means is switched in synchronism with a first inverter switching means and the change in the electrical resistance of the at least one lamp electrode by means of a resistive element arranged on the primary side of the transformer is determined by selecting the voltage drop across the resistive element at at least two different times during the heating phase is evaluated.
- the current through the primary winding of the transformer and not the heating current is evaluated on the secondary side of the transformer for detecting the lamp type during the preheating phase of the lamp electrodes.
- This can be dispensed with measuring arrangements in the secondary circuits of the transformer and the monitoring device can be simplified accordingly.
- the method according to the invention can advantageously be used for the operation of a plurality of low-pressure discharge lamps, since the multi-lamp operation requires no additional measuring devices.
- the increase in the electrical resistance of the lamp electrodes with increasing heating, regardless of the number of operated in the load circuit low-pressure discharge lamps according to the invention detected solely by means of a resistive element on the primary side of the transformer by the voltage drop across the resistor element is evaluated at least two different times during the heating phase ,
- the voltage drop across the resistive element is evaluated at a first time in a time window in the range of 10 ms to 50 ms after the beginning of the heating phase is arranged in order to evaluate the cold resistance of the lamp electrodes reliably.
- the voltage drop across the resistance element is evaluated at a second time, which is arranged at the end of the heating phase in order to reliably evaluate the heat resistance of the lamp electrodes. From the comparison of these two measurements, it can be determined whether the lamp electrodes were cold at the beginning of the heating phase or whether a replacement resistor was connected instead of the lamp. The lamp type can already be determined from the second measured value alone.
- a lamp type detection is carried out only when the absolute value of the difference between the two aforementioned measured values exceeds a predetermined size.
- a replacement resistor is connected to the operating device or the lamp electrodes were not sufficiently cooled at the beginning of the heating phase since the last lamp operation.
- the evaluation of the voltage drop across the resistor element is advantageously carried out by means of a low-pass filter.
- the low-pass filter averages the voltage drop across the resistive element over a time interval that is long compared to the switching clock of the controllable switching means and the inverter, but short compared to the duration of the heating phase of the lamp electrodes.
- the duration of the heating phase before the ignition of the gas discharge in the lamp is preferably constant and is about 600 ms, while a switching cycle of the controllable switching means in the heating phase takes about 10 ⁇ s.
- the energy stored in the primary winding of the transformer is dissipated in an advantageous manner during the turn-off of the controllable switching means by means of a second inverter switching means in order to prevent a voltage overload of the controllable switching means.
- the energy stored in the primary winding is preferably fed back into the link capacitor, which serves as a DC voltage source for the inverter in order to use it for the lamp operation can.
- the circuit arrangement shown in FIG. 1 is an electronic ballast for operating a low-pressure discharge lamp, in particular a fluorescent lamp.
- This circuit arrangement has two field effect transistors T1. T2, which are arranged in the manner of a half-bridge inverter. Both field effect transistors receive their control signal from a microcontroller MC.
- a DC link capacitor C1 Parallel to the DC voltage input of the half-bridge inverter T1, T2, a DC link capacitor C1 is arranged with a comparatively large capacity.
- the DC link capacitor C1 serves as a DC voltage source for the half-bridge inverter.
- a DC voltage of about 400 volts is provided, which is the AC line voltage by means of a mains voltage rectifier (not shown) and a boost converter (not shown) is generated.
- the DC link capacitor C1 is arranged parallel to the voltage output of the boost converter.
- a load circuit Connected to the output M of the half-bridge inverter is a load circuit formed as a series resonant circuit, which consists essentially of the lamp inductor L1 and the ignition capacitor C2.
- the lamp electrodes E1, E2 of the fluorescent lamp LP are formed as electrode filaments each having two electrical terminals. Parallel to the electrode coil E1, E2 is in each case a secondary winding S1, S2 of a transformer connected, which serves for inductive heating of the electrode coils E1, E2.
- the primary winding P1 of this transformer is connected in series with the switching path of a further field effect transistor T3, whose control electrode is also acted upon by the microcontroller MC with control signals, and a measuring resistor R1.
- the series circuit of the components P1, T3 and R1 is connected to the output M of the half-bridge inverter.
- a first terminal of the primary winding P1 is connected to the output M of the half-bridge inverter and to the lamp inductor L1, while the second terminal of the primary winding P1 is connected to the field effect transistor T3 and in the forward direction through a diode D1 with the high potential terminal (+). of the DC link capacitor C1 is connected.
- a first terminal of the measuring resistor R1 is connected to the ground potential (-), while the second terminal of the measuring resistor is connected to the field effect transistor T3 and via a low-pass filter R2, C4 to the voltage input A of the microcontroller MC.
- the load circuit L1, C2, LP By means of half-voltage supply of the half-bridge inverter charged coupling capacitor C3 and the alternating switching transistors T1, T2 of the half-bridge inverter, the load circuit L1, C2, LP acted upon in a known manner with a high-frequency AC voltage whose frequency is determined by the switching clock of the transistors T1, T2 and in the range of about 50 kHz up to 150 KHz.
- the transistor T3 is turned on and off by the microcontroller MC in synchronism with the transistor T1.
- the voltage drop across the measuring resistor R1 is averaged over a time interval of a plurality of switching cycles of the transistor T3 and supplied to the voltage input A of the microcontroller MC.
- the input voltage at terminal A of the microcontroller MC is converted by means of an analog-to-digital converter into a digital signal and evaluated in the microcontroller MC.
- the heating phase of the electrode filaments E1, E2 before the ignition of the gas discharge in the fluorescent lamp LP lasts approximately 600 ms.
- the microcontroller MC detects the voltage drop across the capacitor C4 of the low pass filter at two different times during the heating phase. The first detection of the voltage drop across the capacitor C4 by the microcontroller MC is performed about 30 ms after the start of the heating phase and the second detection at the end of the heating phase, that is, about 600 ms after the start of the heating phase.
- the voltage value detected at the end of the heating phase for detecting the lamp type of the fluorescent lamp LP is compared with a reference value stored in the microcontroller MC. If the threshold is not exceeded, there is no evaluation of the voltage drop at Capacitor C4 or on the measuring resistor R1.
- the time profile of the voltage drop at the measuring resistor R1 or at the capacitor C4 of the low-pass filter is correlated with the time profile of the electrical resistance of the electrode coils E1, E2 during the heating phase.
- the heat resistance of the electrode coils E1, E2, that is, their resistance at the end of the heating phase is different for different types of fluorescent lamps. Therefore, the heat resistance of the electrode filaments can be used for lamp type detection.
- Figures 2 to 4 show the time course of the voltage drop across the current flowing through the primary side current of the transformer P1, S1, S2 resistor R1 after averaging by the low-pass filter R2, C4 for three different operating states of the circuit arrangement according to the preferred embodiment of the invention.
- the time course shown in Figure 2 of the voltage drop across the capacitor C4 corresponds to the operation of the circuit arrangement with a fluorescent lamp LP whose electrode coils E1, E2 were cold at the beginning of the heating phase, that is, had room temperature. Therefore, the voltage drop across the capacitor C4 initially increases, reaching a maximum of 0.48 V after about 30 ms, and then steadily decreasing to assume a minimum of 0.22 V at the end of the heating phase after 600 ms. The maximum is correlated with the cold resistance of the electrode filaments E1, E2 and the minimum at the end of the heating phase is correlated with the heat resistance of the electrode filaments E1, E2.
- the electrical resistance of the existing of tungsten electrode coils E1, E2 is temperature-dependent, that is, it increases with increasing temperature.
- FIG. 3 shows the time profile of the voltage drop across the capacitor C4 for the same circuit arrangement and the same fluorescent lamp LP.
- the electrode filaments E1, E2 were not fully cooled at the beginning of the heating phase, due to the last lamp operation. Therefore, the voltage curve shown in Figure 3 has a less pronounced maximum of only 0.27 V at about 30 ms and the minimum of the curve is also reached at the end of the heating phase, but is only 0.20 V.
- the time profile of the voltage drop across the capacitor C4 shown in FIG. 4 corresponds to the operation of the above circuit arrangement with an ohmic equivalent resistance instead of the electrode filaments E1 or E2 of the fluorescent lamp LP.
- the voltage drop across the capacitor C4, apart from the rise during the first approximately 30 ms of the heating phase, is independent of time and is approximately 0.22 V.
- the microcontroller MC detects the voltage drop across the capacitor C4 for the first time about 30 ms after the start of the heating phase and the second time about 600 ms after the beginning of the heating phase. If the absolute value of the difference of the two voltage values exceeds a predetermined threshold value of, for example, 0.1 V, the voltage value at the end of the heating phase is compared with a reference value stored in the microcontroller MC and used for lamp type detection. This case is given only in the voltage curve shown in Figure 2. In the other two cases, that is to say, in the case of the voltage profiles shown in FIGS. 3 and 4, no evaluation is carried out with regard to the lamp type detection. In these two cases, the data stored by the last lamp operation in the microcontroller MC are used for the operation of the circuit arrangement or the electronic control gear.
- the required ignition voltage for igniting the gas discharge in the fluorescent lamp LP is provided to the capacitor C2 by means of the resonance peaking method by reducing the switching frequency of the half-bridge inverter T1, T2 to be close to the resonance frequency of the series resonant circuit L1, C2.
- a brightness control of the fluorescent lamp LP can be performed by varying the switching frequency of the half-bridge inverter T1, T2.
- the fluorescent lamp LP During the dimming operation of the fluorescent lamp LP, its electrode filaments E1, E2 are acted upon by means of the transformer P1, S1, S2 and the transistor T3 with a heating current which flows in addition to the discharge current through the electrode filaments E1, E2.
- the heating current or the heating power is dependent on the brightness of the Fluorescent lamp set. At low brightness, that is, at high dimming of the fluorescent lamp LP high heat output is set.
- the heating power is adjusted by changing the pulse width of the transistor T3, in particular by changing the duty cycle of the transistor T3.
- the transistor T3 is turned on in synchronism with the transistor T1.
- the turn-on of the transistor T3 is at maximum heating power 100% of the turn-on of the transistor T1. With lower heating power, the turn-on of the transistor T3 is shorter than the turn-on of the transistor T1.
- FIG. 5 shows a further circuit arrangement which is particularly well suited for the application of the method according to the invention.
- This circuit arrangement is largely identical to the circuit arrangement shown in FIG. Therefore, in the figures 1 and 5 identical components bear the same reference numerals.
- the circuit arrangement shown in FIG. 5 has two additional diodes D2, D3 which are each connected in series with a secondary winding S1 or S2 and an electrode spiral E1 or E2.
- the arrangement of the diodes D2, D3 and the winding sense of the transformer windings P1, S1, S2 is coordinated so that the transformer, P1, S1, S2 with the diodes D2, D3 and the transistor T3 form a forward converter.
- the current through the primary winding P1 in the secondary windings S1, S2 induces a heating current for the electrode filaments E1, E2.
- the diodes D2, D3 are poled in the reverse direction, so that during the meantime no heating current can flow.
- the stored energy in the primary winding P1 is dissipated during the conducting phase of the transistor T2 via the diode D1 to the capacitor C1.
- the invention is not limited to the embodiment described in more detail above. Instead of evaluating the voltage drop across the resistor R1 during the preheating phase of the electrodes E1, E2 only at the beginning and at the end of the preheating phase, the entire time profile of this voltage drop can be evaluated by means of the microcontroller MC or only the maximum of the voltage drop on the resistor R1 to the final value of this voltage drop at the end of the preheat phase are compared to allow detection of the lamp type of the low-pressure discharge lamp or fluorescent lamp LP.
Landscapes
- Circuit Arrangements For Discharge Lamps (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum Betreiben mindestens einer Niederdruckentladungslampe gemäß des Oberbegriffs des Patentanspruchs 1.The invention relates to a method for operating at least one low-pressure discharge lamp according to the preamble of
Die Offenlegungsschrift WO 00/72640 A1 beschreibt eine Schaltungsanordnung und ein Verfahren zum Betreiben einer Niederdruckentladungslampe mittels eines Halbbrückenwechselrichters , wobei die Lampenelektroden der mindestens einen Niederdruckentladungslampe während einer Heizphase vor dem Zünden der Gasentladung in der mindestens einen Niederdruckentladungslampe mittels eines Transformators, dessen primärseitiger Strom mittels eines steuerbaren Schaltmittels getaktet wird, mit einem Heizstrom beaufschlagt werden und die Änderung des elektrischen Widerstands mindestens einer Lampenelektrode überwacht wird, um daran den an das Betriebsgerät angeschlossenen Typ der Niederdruckentladungslampe zu erkennen. Die Änderung des elektrischen Widerstands der Lampenelektrode wird mittels eines ohmschen Widerstandes überwacht, der auf der Sekundärseite des Transformators angeordnet ist.The publication WO 00/72640 A1 describes a circuit arrangement and a method for operating a low-pressure discharge lamp by means of a half-bridge inverter, wherein the lamp electrodes of the at least one low-pressure discharge lamp during a heating phase before igniting the gas discharge in the at least one low-pressure discharge lamp by means of a transformer whose primary-side current by means of a controllable switching means is clocked, are acted upon by a heating current and the change in the electrical resistance of at least one lamp electrode is monitored in order to recognize the connected to the operating device type of low-pressure discharge lamp. The change in the electrical resistance of the lamp electrode is monitored by means of an ohmic resistor, which is arranged on the secondary side of the transformer.
Die Offenlegungsschrift WO 00/72642 A1 offenbart ein elektronisches Vorschaltgerät zum Betrieb mindestens einer Niederdruckentladungslampe an einem Wechselrichter mit angeschlossenen Lastkreis, der die Lampe und einen Serienresonanzkreis sowie eine Auswerteschaltung enthält, welche auf unterschiedliche Betriebszustände der Lampe reagiert und im Fall eines Defekts oder Entfernens der Lampe Signale erzeugt, die zum Abschalten des Wechselrichters ausgenutzt werden.Publication WO 00/72642 A1 discloses an electronic ballast for operating at least one low-pressure discharge lamp on an inverter with a connected load circuit which contains the lamp and a series resonant circuit and an evaluation circuit which reacts to different operating states of the lamp and in the event of a defect or removal of the lamp Generates signals that are used to switch off the inverter.
Es ist die Aufgabe der Erfindung, ein vereinfachtes Verfahren zum Erkennen des an das Betriebsgerät angeschlossenen Typs der Niederdruckentladungslampe bereitzustellen.It is the object of the invention to provide a simplified method for detecting the type of low-pressure discharge lamp connected to the operating device.
Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruchs 1 gelöst. Besonders vorteilhafte Ausführungen der Erfindung sind in den abhängigen Patentansprüchen beschrieben.This object is achieved by the features of
Das erfindungsgemäße Verfahren zum Betreiben mindestens einer Niederdruckentladungslampe mittels eines Wechselrichters, wobei die Lampenelektroden der mindestens Niederdruckentladungslampe während einer Heizphase vor dem Zünden der Gasentladung in der mindestens einen Niederdruckentladungslampe mittels eines Transformators, dessen primärseitiger Strom mittels eines steuerbaren Schaltmittels getaktet wird, mit einem Heizstrom beaufschlagt werden und die Änderung des elektrischen Widerstands mindestens einer Lampenelektrode überwacht wird, zeichnet sich erfindungsgemäß dadurch aus, dass das steuerbare Schaltmittel synchron zu einem ersten Wechselrichterschaltmittel geschaltet wird und die Änderung des elektrischen Widerstands der mindestens einen Lampenelektrode mittels eines Widerstandselementes, das auf der Primärseite des Transformators angeordnet ist, bestimmt wird, indem der Spannungsabfall über dem Widerstandselement an mindestens zwei unterschiedlichen Zeitpunkten während der Heizphase ausgewertet wird.The inventive method for operating at least one low-pressure discharge lamp by means of an inverter, wherein the lamp electrodes of the at least low-pressure discharge lamp during a heating phase before the ignition of the gas discharge in the at least one low-pressure discharge lamp by means of a transformer whose primary-side current is clocked by means of a controllable switching means, are acted upon by a heating current and the change in the electrical resistance of at least one lamp electrode is monitored, according to the invention is characterized in that the controllable switching means is switched in synchronism with a first inverter switching means and the change in the electrical resistance of the at least one lamp electrode by means of a resistive element arranged on the primary side of the transformer is determined by selecting the voltage drop across the resistive element at at least two different times during the heating phase is evaluated.
Entsprechend des erfindungsgemäßen Verfahrens wird zur Erkennung des Lampentyps während der Vorheizphase der Lampenelektroden der Strom durch die Primärwicklung des Transformators und nicht der Heizstrom auf der Sekundärseite des Transformators ausgewertet. Dadurch kann auf Messanordnungen in den Sekundärkreisen des Transformators verzichtet werden und die Überwachungsvorrichtung entsprechend vereinfacht werden. Außerdem lässt sich das erfindungsgemäße Verfahren vorteilhaft für den Betrieb von mehreren Niederdruckentladungslampen verwenden, da der Mehrlampenbetrieb keine zusätzlichen Messvorrichtungen erfordert. Das Anwachsen des elektrischen Widerstandes der Lampenelektroden mit zunehmender Aufheizung wird, unabhängig von der Anzahl der im Lastkreis betriebenen Niederdruckentladungslampen, erfindungsgemäß allein mittels eines Widerstandselementes auf der Primärseite des Transformators detektiert, indem der Spannungsabfall über dem Widerstandselement an mindestens zwei unterschiedlichen Zeitpunkten während der Heizphase ausgewertet wird.According to the method of the invention, the current through the primary winding of the transformer and not the heating current is evaluated on the secondary side of the transformer for detecting the lamp type during the preheating phase of the lamp electrodes. This can be dispensed with measuring arrangements in the secondary circuits of the transformer and the monitoring device can be simplified accordingly. In addition, the method according to the invention can advantageously be used for the operation of a plurality of low-pressure discharge lamps, since the multi-lamp operation requires no additional measuring devices. The increase in the electrical resistance of the lamp electrodes with increasing heating, regardless of the number of operated in the load circuit low-pressure discharge lamps according to the invention detected solely by means of a resistive element on the primary side of the transformer by the voltage drop across the resistor element is evaluated at least two different times during the heating phase ,
Vorzugsweise wird der Spannungsabfall über dem Widerstandselement an einem ersten Zeitpunkt ausgewertet, der in einem Zeitfenster im Bereich von 10 ms bis 50 ms nach dem Beginn der Heizphase angeordnet ist, um den Kaltwiderstand der in Lampenelektroden zuverlässig auswerten zu können. Zusätzlich wird erfindungsgemäß der Spannungsabfall über dem Widerstandselement an einem zweiten Zeitpunkt ausgewertet, der am Ende der Heizphase angeordnet ist, um den Warmwiderstand der Lampenelektroden zuverlässig auswerten zu können. Aus dem Vergleich dieser beiden Messwerte kann ermittelt werden, ob die Lampenelektroden zu Beginn der Heizphase kalt waren oder ob anstelle der Lampe ein Ersatzwiderstand angeschlossen war. Aus dem zweiten Messwert allein kann bereits der Lampentyp ermittelt werden. Gemäß der Erfindung wird eine Lampentyperkennung nur dann durchgeführt, wenn der Absolutbetrag der Differenz der beiden vorgenannten Messwerte eine vorgegebene Größe überschreitet. Im anderen Fall wird davon ausgegangen, dass entweder anstelle einer Niederdruckentladungslampe ein Ersatzwiderstand an das Betriebsgerät angeschlossen ist oder die Lampenelektroden zu Beginn der Heizphase seit dem letzten Lampenbetrieb noch nicht ausreichend abgekühlt waren.Preferably, the voltage drop across the resistive element is evaluated at a first time in a time window in the range of 10 ms to 50 ms after the beginning of the heating phase is arranged in order to evaluate the cold resistance of the lamp electrodes reliably. In addition, according to the invention, the voltage drop across the resistance element is evaluated at a second time, which is arranged at the end of the heating phase in order to reliably evaluate the heat resistance of the lamp electrodes. From the comparison of these two measurements, it can be determined whether the lamp electrodes were cold at the beginning of the heating phase or whether a replacement resistor was connected instead of the lamp. The lamp type can already be determined from the second measured value alone. According to the invention, a lamp type detection is carried out only when the absolute value of the difference between the two aforementioned measured values exceeds a predetermined size. In the other case, it is assumed that either instead of a low-pressure discharge lamp, a replacement resistor is connected to the operating device or the lamp electrodes were not sufficiently cooled at the beginning of the heating phase since the last lamp operation.
Die Auswertung des Spannungsabfalls über dem Widerstandselement wird in vorteilhafter Weise mittels eines Tiefpassfilters durchgeführt. Das Tiefpassfilter mittelt den Spannungsabfall an dem Widerstandselement über ein Zeitintervall, das lang im Vergleich zum Schalttakt des steuerbaren Schaltmittels sowie des Wechselrichters, aber kurz im Vergleich zur Dauer der Heizphase der Lampenelektroden ist. Die Dauer der Heizphase vor dem Zünden der Gasentladung in der Lampe ist vorzugsweise konstant und beträgt ca. 600 ms, während ein Schalttakt des steuerbaren Schaltmittels in der Heizphase ungefähr 10 µs beansprucht.The evaluation of the voltage drop across the resistor element is advantageously carried out by means of a low-pass filter. The low-pass filter averages the voltage drop across the resistive element over a time interval that is long compared to the switching clock of the controllable switching means and the inverter, but short compared to the duration of the heating phase of the lamp electrodes. The duration of the heating phase before the ignition of the gas discharge in the lamp is preferably constant and is about 600 ms, while a switching cycle of the controllable switching means in the heating phase takes about 10 μs.
Die in der Primärwicklung des Transformators gespeicherte Energie wird in vorteilhafter Weise während der Ausschaltdauer des steuerbaren Schaltmittels mit Hilfe eines zweiten Wechselrichterschaltmittels abgeführt, um eine Spannungsüberlastung des steuerbaren Schaltmittel zu verhindern. Die in der Primärwicklung gespeicherte Energie wird vorzugsweise in den Zwischenkreiskondensator zurückgespeist, der als Gleichspannungsquelle für den Wechselrichter dient, um sie für den Lampenbetrieb nutzen zu können. - -The energy stored in the primary winding of the transformer is dissipated in an advantageous manner during the turn-off of the controllable switching means by means of a second inverter switching means in order to prevent a voltage overload of the controllable switching means. The energy stored in the primary winding is preferably fed back into the link capacitor, which serves as a DC voltage source for the inverter in order to use it for the lamp operation can. - -
Nachstehend wird die Erfindung anhand eines bevorzugten Ausführungsbeispiels näher erläutert. Es zeigen:
Figur 1- Eine schematische Darstellung einer ersten Schaltungsanordnung zur Durchführung des erfindungsgemäßen Verfahrens
- Figur 2
- Den zeitlichen Verlauf des Spannungsabfalls an dem vom primärseitigen Strom des Transformators durchflossenen Widerstand nach Mittelung durch das Tiefpassfilter für einen ersten Betriebszustand
- Figur 3
- Den zeitlichen Verlauf des Spannungsabfalls an dem vom primärseitigen Strom des Transformators durchflossenen Widerstand nach Mittelung durch das Tiefpassfilter für einen zweiten Betriebszustand
- Figur 4
- Den zeitlichen Verlauf des Spannungsabfalls an dem vom primärseitigen Strom des Transformators durchflossenen Widerstand nach Mittelung durch das Tiefpassfilter für einen dritten Betriebszustand
- Figur 5
- Eine schematische Darstellung einer zweiten Schaltungsanordnung zur Durchführung des erfindungsgemäßen Verfahrens
- FIG. 1
- A schematic representation of a first circuit arrangement for carrying out the method according to the invention
- FIG. 2
- The time profile of the voltage drop across the resistor through which the primary current of the transformer passes after averaging by the low-pass filter for a first operating state
- FIG. 3
- The time profile of the voltage drop across the resistance flowing through the primary side current of the transformer after averaging by the low-pass filter for a second operating state
- FIG. 4
- The time profile of the voltage drop across the resistor through which the primary current of the transformer passes after averaging by the low-pass filter for a third operating state
- FIG. 5
- A schematic representation of a second circuit arrangement for carrying out the method according to the invention
Bei der in Figur 1 abgebildeten Schaltungsanordnung handelt es sich um ein elektronisches Vorschaltgerät zum Betrieb einer Niederdruckentladungslampe, insbesondere einer Leuchtstofflampe.The circuit arrangement shown in FIG. 1 is an electronic ballast for operating a low-pressure discharge lamp, in particular a fluorescent lamp.
Diese Schaltungsanordnung weist zwei Feldeffekttransistoren T1. T2 auf, die nach Art eines Halbbrückenwechselrichters angeordnet sind. Beide Feldeffekttransistoren erhalten ihr Steuersignal von einem Mikrocontroller MC. Parallel zum Gleichspannungseingang des Halbbrückenwechselrichters T1, T2 ist ein Zwischenkreiskondensator C1 mit einer vergleichsweise großen Kapazität angeordnet. Der Zwischenkreiskondensator C1 dient als Gleichspannungsquelle für den Halbbrückenwechselrichter. An dem Zwischenkreiskondensator C1 wird eine Gleichspannung von ungefähr 400 Volt bereitgestellt, die aus der Netzwechselspannung mittels eines Netzspannungsgleichrichters (nicht abgebildet) und eines Hochsetzstellers (nicht abgebildet) erzeugt wird. Der Zwischenkreiskondensator C1 ist parallel zu dem Spannungsausgang des Hochsetzstellers angeordnet. An den Ausgang M des Halbbrückenwechselrichters ist ein als Serienresonanzkreis ausgebildeter Lastkreis angeschlossen, der im wesentlichen aus der Lampendrossel L1 und dem Zündkondensator C2 besteht. Parallel zu dem Zündkondensator C2 sind die Entladungsstrecke der Leuchtstofflampe LP und der Koppelkondensator C3 geschaltet, der während des Lampenbetriebs im eingeschwungenen Zustand des Halbbrückenwechselrichters auf die halbe Versorgungsspannung des Halbbrückenwechselrichters aufgeladen ist. Die Lampenelektroden E1, E2 der Leuchtstofflampe LP sind als Elektrodenwendeln mit jeweils zwei elektrischen Anschlüssen ausgebildet. Parallel zu den Elektrodenwendel E1, E2 ist jeweils eine Sekundärwicklung S1, S2 eines Transformators geschaltet, der zum induktiven Heizen der Elektrodenwendeln E1, E2 dient. Die Primärwicklung P1 dieses Transformators ist in Serie zu der Schaltstrecke eines weiteren Feldeffekttransistors T3, dessen Steuerelektrode ebenfalls von dem Mikrocontroller MC mit Steuersignalen beaufschlagt wird, und eines Messwiderstandes R1 geschaltet. Die Serienschaltung aus den Bauteilen P1, T3 und R1 ist an den Ausgang M des Halbbrückenwechselrichters angeschlossen. Ein erster Anschluss der Primärwicklung P1 ist mit dem Ausgang bzw. Mittenabgriff M des Halbbrückenwechselrichters und mit der Lampendrossel L1 verbunden, während der zweite Anschluss der Primärwicklung P1 mit dem Feldeffekttransistor T3 und in Gleichstromvorwärtsrichtung über eine Diode D1 mit dem hohen Potential liegenden Anschluss (+) des Zwischenkreiskondensators C1 verbunden ist. Ein erster Anschluss des Messwiderstands R1 ist mit dem Massepotential (-) verbunden, während der zweite Anschluss des Messwiderstands mit dem Feldeffekttransistor T3 und über ein Tiefpassfilter R2, C4 mit dem Spannungseingang A des Mikrocontrollers MC verbunden ist.This circuit arrangement has two field effect transistors T1. T2, which are arranged in the manner of a half-bridge inverter. Both field effect transistors receive their control signal from a microcontroller MC. Parallel to the DC voltage input of the half-bridge inverter T1, T2, a DC link capacitor C1 is arranged with a comparatively large capacity. The DC link capacitor C1 serves as a DC voltage source for the half-bridge inverter. At the DC link capacitor C1, a DC voltage of about 400 volts is provided, which is the AC line voltage by means of a mains voltage rectifier (not shown) and a boost converter (not shown) is generated. The DC link capacitor C1 is arranged parallel to the voltage output of the boost converter. Connected to the output M of the half-bridge inverter is a load circuit formed as a series resonant circuit, which consists essentially of the lamp inductor L1 and the ignition capacitor C2. Parallel to the ignition capacitor C2, the discharge path of the fluorescent lamp LP and the coupling capacitor C3 are connected, which is charged during operation of the lamp in the steady state of the half-bridge inverter to half the supply voltage of the half-bridge inverter. The lamp electrodes E1, E2 of the fluorescent lamp LP are formed as electrode filaments each having two electrical terminals. Parallel to the electrode coil E1, E2 is in each case a secondary winding S1, S2 of a transformer connected, which serves for inductive heating of the electrode coils E1, E2. The primary winding P1 of this transformer is connected in series with the switching path of a further field effect transistor T3, whose control electrode is also acted upon by the microcontroller MC with control signals, and a measuring resistor R1. The series circuit of the components P1, T3 and R1 is connected to the output M of the half-bridge inverter. A first terminal of the primary winding P1 is connected to the output M of the half-bridge inverter and to the lamp inductor L1, while the second terminal of the primary winding P1 is connected to the field effect transistor T3 and in the forward direction through a diode D1 with the high potential terminal (+). of the DC link capacitor C1 is connected. A first terminal of the measuring resistor R1 is connected to the ground potential (-), while the second terminal of the measuring resistor is connected to the field effect transistor T3 and via a low-pass filter R2, C4 to the voltage input A of the microcontroller MC.
Mittels des auf halber Versorgungsspannung des Halbbrückenwechselrichters aufgeladenen Koppelkondensators C3 und der alternierend schaltenden Transistoren T1, T2 des Halbbrückenwechselrichters wird der Lastkreis L1, C2, LP in bekannter Weise mit einer hochfrequenten Wechselspannung beaufschlagt, deren Frequenz durch den Schalttakt der Transistoren T1, T2 bestimmt ist und im Bereich von ca. 50 KHz bis ca. 150 KHz liegt. Vor dem Zünden der Gasentladung in der Leuchtstofflampe LP werden deren Lampenelektroden E1, E2 mittels des Transformators P1, S1, S2 induktiv mit einem Heizstrom beaufschlagt. Zu diesem Zweck wird der Transistor T3 von dem Mikrocontroller MC synchron mit dem Transistor T1 ein- und ausgeschaltet. Während der Einschaltdauer der Transistoren T1, T3 fließt daher durch die Primärwicklung P1 und den Messwiderstand R1 ein Strom. Während der Ausschaltdauer der Transistoren T1, T3 ist der Stromfluss durch den Messwiderstand R1 unterbrochen. Die im Magnetfeld der Primärwicklung P1 gespeicherte Energie wird während der Ausschaltdauer der Transistoren T1, T3 und der Einschaltdauer des Transistors T2 über die Diode D1 dem Zwischenkreiskondensator C1 zugeführt. Aufgrund der alternierend schaltenden Transistoren T1, T2 und des synchron zum Transistor T1 schaltenden Transistors T3 fließt durch die Primärwicklung P1 ein hochfrequenter Strom, der in den Sekundärwicklungen S1, S2 entsprechende Heizströme für die Elektrodenwendeln E1, E2 induziert. Mit Hilfe des Tiefpassfilters R2, C4 wird der Spannungsabfall an dem Messwiderstand R1 über ein Zeitintervall von mehreren Schalttakten des Transistors T3 gemittelt und dem Spannungseingang A des Mikrocontrollers MC zugeführt. Die Eingangsspannung am Anschluss A des Mikrocontrollers MC wird mittels eines Analog-Digital-Wandlers in ein digitales Signal konvertiert und im Mikrocontroller MC ausgewertet.By means of half-voltage supply of the half-bridge inverter charged coupling capacitor C3 and the alternating switching transistors T1, T2 of the half-bridge inverter, the load circuit L1, C2, LP acted upon in a known manner with a high-frequency AC voltage whose frequency is determined by the switching clock of the transistors T1, T2 and in the range of about 50 kHz up to 150 KHz. Before igniting the gas discharge in the fluorescent lamp LP whose lamp electrodes E1, E2 are inductively acted upon by means of the transformer P1, S1, S2 with a heating current. For this purpose, the transistor T3 is turned on and off by the microcontroller MC in synchronism with the transistor T1. During the turn-on of the transistors T1, T3 therefore flows through the primary winding P1 and the measuring resistor R1, a current. During the turn-off of the transistors T1, T3, the current flow through the measuring resistor R1 is interrupted. The stored in the magnetic field of the primary winding P1 energy is supplied during the turn-off of the transistors T1, T3 and the duty cycle of the transistor T2 via the diode D1 to the DC link capacitor C1. Due to the alternating switching transistors T1, T2 and the synchronous to the transistor T1 switching transistor T3 flows through the primary winding P1, a high-frequency current, which induces corresponding heating currents for the electrode coils E1, E2 in the secondary windings S1, S2. With the aid of the low-pass filter R2, C4, the voltage drop across the measuring resistor R1 is averaged over a time interval of a plurality of switching cycles of the transistor T3 and supplied to the voltage input A of the microcontroller MC. The input voltage at terminal A of the microcontroller MC is converted by means of an analog-to-digital converter into a digital signal and evaluated in the microcontroller MC.
Die Heizphase der Elektrodenwendeln E1, E2 vor dem Zünden der Gasentladung in der Leuchtstofflampe LP dauert ungefähr 600 ms. Der Mikrocontroller MC detektiert den Spannungsabfall an dem Kondensator C4 des Tiefpassfilters zu zwei unterschiedlichen Zeitpunkten während der Heizphase aus. Die erste Detektion des Spannungsabfalls an dem Kondensator C4 durch den Mikrocontroller MC wird ca. 30 ms nach dem Beginn der Heizphase und die zweite Detektion am Ende der Heizphase, das heißt, ca. 600 ms nach dem Beginn der Heizphase durchgeführt. Wenn der Absolutbetrag der Differenz der beiden Spannungswerte einen vorgegebenen Schwellenwert von beispielsweise 0,1 V übertrifft, wird der am Ende der Heizphase detektierte Spannungswert zur Erkennung des Lampentyps der Leuchtstofflampe LP mit einem im Mikrocontroller MC gespeicherten Referenzwert verglichen. Falls der Schwellenwert nicht überschritten wird, erfolgt keine Auswertung des Spannungsabfalls am Kondensator C4 bzw. am Messwiderstand R1. Der zeitliche Verlauf des Spannungsabfalls am Messwiderstand R1 bzw. am Kondensator C4 des Tiefpassfilters ist mit dem zeitlichen Verlauf des elektrischen Widerstands der Elektrodenwendeln E1, E2 während der Heizphase korreliert. Der Warmwiderstand der Elektrodenwendeln E1, E2, das heißt, ihr Widerstand am Ende der Heizphase ist unterschiedlich für verschiedene Typen von Leuchtstofflampen. Daher kann der Warmwiderstand der Elektrodenwendeln zur Lampentyperkennung genutzt werden.The heating phase of the electrode filaments E1, E2 before the ignition of the gas discharge in the fluorescent lamp LP lasts approximately 600 ms. The microcontroller MC detects the voltage drop across the capacitor C4 of the low pass filter at two different times during the heating phase. The first detection of the voltage drop across the capacitor C4 by the microcontroller MC is performed about 30 ms after the start of the heating phase and the second detection at the end of the heating phase, that is, about 600 ms after the start of the heating phase. If the absolute value of the difference of the two voltage values exceeds a predetermined threshold value of, for example, 0.1 V, the voltage value detected at the end of the heating phase for detecting the lamp type of the fluorescent lamp LP is compared with a reference value stored in the microcontroller MC. If the threshold is not exceeded, there is no evaluation of the voltage drop at Capacitor C4 or on the measuring resistor R1. The time profile of the voltage drop at the measuring resistor R1 or at the capacitor C4 of the low-pass filter is correlated with the time profile of the electrical resistance of the electrode coils E1, E2 during the heating phase. The heat resistance of the electrode coils E1, E2, that is, their resistance at the end of the heating phase is different for different types of fluorescent lamps. Therefore, the heat resistance of the electrode filaments can be used for lamp type detection.
Die Figuren 2 bis 4 zeigen den zeitlichen Verlauf des Spannungsabfalls an dem vom primärseitigen Strom des Transformators P1, S1, S2 durchflossenen Widerstand R1 nach Mittelung durch das Tiefpassfilter R2, C4 für drei unterschiedliche Betriebszustände der Schaltungsanordnung gemäß des bevorzugten Ausführungsbeispiels der Erfindung.Figures 2 to 4 show the time course of the voltage drop across the current flowing through the primary side current of the transformer P1, S1, S2 resistor R1 after averaging by the low-pass filter R2, C4 for three different operating states of the circuit arrangement according to the preferred embodiment of the invention.
Der in Figur 2 dargestellte zeitliche Verlauf des Spannungsabfalls am Kondensator C4 entspricht dem Betrieb der Schaltungsanordnung mit einer Leuchtstofflampe LP, deren Elektrodenwendeln E1, E2 zu Beginn der Heizphase kalt waren, das heißt, Raumtemperatur hatten. Der Spannungsabfall am Kondensator C4 wächst daher zunächst an, erreicht nach ca. 30 ms ein Maximum von 0,48 V und nimmt danach stetig ab, um am Ende der Heizphase nach 600 ms ein Minimum von 0.22 V anzunehmen. Das Maximum ist mit dem Kaltwiderstand der Elektrodenwendeln E1, E2 und das Minimum am Ende der Heizphase ist mit dem Warmwiderstand der Elektrodenwendeln E1, E2 korreliert. Der elektrische Widerstand der aus Wolfram bestehenden Elektrodenwendeln E1, E2 ist temperaturabhängig, das heißt, er nimmt mit steigender Temperatur zu.The time course shown in Figure 2 of the voltage drop across the capacitor C4 corresponds to the operation of the circuit arrangement with a fluorescent lamp LP whose electrode coils E1, E2 were cold at the beginning of the heating phase, that is, had room temperature. Therefore, the voltage drop across the capacitor C4 initially increases, reaching a maximum of 0.48 V after about 30 ms, and then steadily decreasing to assume a minimum of 0.22 V at the end of the heating phase after 600 ms. The maximum is correlated with the cold resistance of the electrode filaments E1, E2 and the minimum at the end of the heating phase is correlated with the heat resistance of the electrode filaments E1, E2. The electrical resistance of the existing of tungsten electrode coils E1, E2 is temperature-dependent, that is, it increases with increasing temperature.
Die Figur 3 zeigt den zeitlichen Verlauf des Spannungsabfalls an dem Kondensator C4 für dieselbe Schaltungsanordnung und dieselbe Leuchtstofflampe LP. Allerdings waren die Elektrodenwendeln E1, E2 zu Beginn der Heizphase, aufgrund des letzte Lampenbetriebs, noch nicht vollständig abgekühlt. Daher besitzt der in Figur 3 dargestellte Spannungsverlauf bei ca. 30 ms ein weniger stark ausgeprägtes Maximum von nur 0,27 V und das Minimum der Kurve wird ebenfalls am Ende der Heizphase erreicht, beträgt aber nur 0,20 V.FIG. 3 shows the time profile of the voltage drop across the capacitor C4 for the same circuit arrangement and the same fluorescent lamp LP. However, the electrode filaments E1, E2 were not fully cooled at the beginning of the heating phase, due to the last lamp operation. Therefore, the voltage curve shown in Figure 3 has a less pronounced maximum of only 0.27 V at about 30 ms and the minimum of the curve is also reached at the end of the heating phase, but is only 0.20 V.
Der in Figur 4 dargestellte zeitliche Verlauf des Spannungsabfalls am Kondensator C4 entspricht dem Betrieb der obigen Schaltungsanordnung mit einem ohmschen Ersatzwiderstand anstelle der Elektrodenwendeln E1 bzw. E2 der Leuchtstofflampe LP. Der Spannungsabfall an dem Kondensator C4 ist, abgesehen von dem Anstieg während der ersten ca. 30 ms der Heizphase, unabhängig von der Zeit und beträgt ca. 0,22 V.The time profile of the voltage drop across the capacitor C4 shown in FIG. 4 corresponds to the operation of the above circuit arrangement with an ohmic equivalent resistance instead of the electrode filaments E1 or E2 of the fluorescent lamp LP. The voltage drop across the capacitor C4, apart from the rise during the first approximately 30 ms of the heating phase, is independent of time and is approximately 0.22 V.
Der Mikrocontroller MC detektiert den Spannungsabfall an dem Kondensator C4 das erste Mal ca. 30 ms nach dem Beginn der Heizphase und das zweite Mal ca. 600 ms nach dem Beginn der Heizphase. Falls der Absolutbetrag der Differenz der beiden Spannungswerte einen vorgegebenen Schwellenwert von beispielsweise 0, 1 V überschreitet, wird der Spannungswert am Ende der Heizphase mit einem im Mikrocontroller MC gespeicherten Referenzwert verglichen und zur Lampentyperkennung genutzt. Dieser Fall ist nur bei dem in Figur 2 dargestellten Spannungsverlauf gegeben. In den anderen beiden Fällen, das heißt, bei den in den Figuren 3 und 4 dargestellten Spannungsverläufen wird keine Auswertung bezüglich der Lampentyperkennung durchgeführt. In diesen beiden Fällen werden für den Betrieb der Schaltungsanordnung bzw. des elektronischen Betriebsgerätes die vom letzten Lampenbetrieb im Mikrocontroller MC gespeicherten Daten verwendet.The microcontroller MC detects the voltage drop across the capacitor C4 for the first time about 30 ms after the start of the heating phase and the second time about 600 ms after the beginning of the heating phase. If the absolute value of the difference of the two voltage values exceeds a predetermined threshold value of, for example, 0.1 V, the voltage value at the end of the heating phase is compared with a reference value stored in the microcontroller MC and used for lamp type detection. This case is given only in the voltage curve shown in Figure 2. In the other two cases, that is to say, in the case of the voltage profiles shown in FIGS. 3 and 4, no evaluation is carried out with regard to the lamp type detection. In these two cases, the data stored by the last lamp operation in the microcontroller MC are used for the operation of the circuit arrangement or the electronic control gear.
Nach Beendigung der Vorheizphase der Elektrodenwendeln E1. E2 wird an dem Kondensator C2 mittels der Methode der Resonanzüberhöhung die erforderliche Zündspannung zum Zünden der Gasentladung in der Leuchtstofflampe LP bereitgestellt, indem die Schaltfrequenz des Halbbrückenwechselrichters T1, T2 verringert wird, so dass sie nahe der Resonanzfrequenz des Serienresonanzkreises L1, C2 liegt. Nach der Zündung der Gasentladung in der Leuchtstofflampe kann durch Variieren der Schaltfrequenz des Halbbrückenwechselrichters T1, T2 eine Helligkeitsregelung der Leuchtstofflampe LP durchgeführt werden. Während des Dimmbetriebs der Leuchtstofflampe LP werden ihre Elektrodenwendeln E1, E2 mittels des Transformators P1, S1, S2 und des Transistors T3 mit einem Heizstrom beaufschlagt, der zusätzlich zu dem Entladungsstrom durch die Elektrodenwendeln E1, E2 fließt. Der Heizstrom bzw. die Heizleistung wird in Abhängigkeit von der Helligkeit der Leuchtstofflampe eingestellt. Bei geringer Helligkeit, das heißt, bei starker Dimmung der Leuchtstofflampe LP wird eine hohe Heizleistung eingestellt. Die Heizleistung wird durch Verändern der Pulsweite des Transistors T3, insbesondere durch Verändern der Einschaltdauer des Transistors T3 eingestellt. Der Transistor T3 wird synchron zum Transistor T1 eingeschaltet. Die Einschaltdauer des Transistors T3 beträgt bei maximaler Heizleistung 100 % der Einschaltdauer des Transistors T1. Bei geringerer Heizleistung ist die Einschaltdauer des Transistors T3 kürzer als die Einschaltdauer des Transistors T1.After completion of the preheating phase of the electrode coils E1. E2, the required ignition voltage for igniting the gas discharge in the fluorescent lamp LP is provided to the capacitor C2 by means of the resonance peaking method by reducing the switching frequency of the half-bridge inverter T1, T2 to be close to the resonance frequency of the series resonant circuit L1, C2. After the ignition of the gas discharge in the fluorescent lamp, a brightness control of the fluorescent lamp LP can be performed by varying the switching frequency of the half-bridge inverter T1, T2. During the dimming operation of the fluorescent lamp LP, its electrode filaments E1, E2 are acted upon by means of the transformer P1, S1, S2 and the transistor T3 with a heating current which flows in addition to the discharge current through the electrode filaments E1, E2. The heating current or the heating power is dependent on the brightness of the Fluorescent lamp set. At low brightness, that is, at high dimming of the fluorescent lamp LP high heat output is set. The heating power is adjusted by changing the pulse width of the transistor T3, in particular by changing the duty cycle of the transistor T3. The transistor T3 is turned on in synchronism with the transistor T1. The turn-on of the transistor T3 is at maximum heating power 100% of the turn-on of the transistor T1. With lower heating power, the turn-on of the transistor T3 is shorter than the turn-on of the transistor T1.
In der Figur 5 ist eine weitere Schaltungsanordnung abgebildet, die zur Anwendung des erfindungsgemäßen Verfahrens besonders gut geeignet ist. Diese Schaltungsanordnung ist weitgehend identisch mit der in Figur 1 dargestellten Schaltungsanordnung. Daher tragen in den Figuren 1 und 5 identische Bauteile auch dieselben Bezugszeichen. Im Unterschied zu der in der Figur 1 abgebildeten Schaltungsanordnung weist die in Figur 5 dargestellte Schaltungsanordnung zwei zusätzliche Dioden D2, D3, die jeweils in Serie zu einer Sekundärwicklung S1 bzw. S2 und einer Elektrodenwendel E1 bzw. E2 geschaltet sind. Die Anordnung der Dioden D2, D3 und des Wicklungssinns der Transformatorwicklungen P1, S1, S2 ist derart aufeinander abgestimmt, dass der Transformator, P1, S1, S2 mit den Dioden D2, D3 und dem Transistor T3 einen Durchflusswandler bilden. Während der Leitphase des Transistors T3 induziert der Strom durch die Primärwicklung P1 in den Sekundärwicklungen S1, S2 einen Heizstrom für die Elektrodenwendeln E1, E2. Während der Sperrphase des Transistors T3 sind die Dioden D2, D3 in Sperrrichtung gepolt, so dass währenddessen kein Heizstrom fließen kann. Die in der Primärwicklung P1 gespeicherte Energie wird während der Leitphase des Transistors T2 über die Diode D1 an den Kondensator C1 abgeführt.FIG. 5 shows a further circuit arrangement which is particularly well suited for the application of the method according to the invention. This circuit arrangement is largely identical to the circuit arrangement shown in FIG. Therefore, in the figures 1 and 5 identical components bear the same reference numerals. In contrast to the circuit arrangement shown in FIG. 1, the circuit arrangement shown in FIG. 5 has two additional diodes D2, D3 which are each connected in series with a secondary winding S1 or S2 and an electrode spiral E1 or E2. The arrangement of the diodes D2, D3 and the winding sense of the transformer windings P1, S1, S2 is coordinated so that the transformer, P1, S1, S2 with the diodes D2, D3 and the transistor T3 form a forward converter. During the conducting phase of the transistor T3, the current through the primary winding P1 in the secondary windings S1, S2 induces a heating current for the electrode filaments E1, E2. During the blocking phase of the transistor T3, the diodes D2, D3 are poled in the reverse direction, so that during the meantime no heating current can flow. The stored energy in the primary winding P1 is dissipated during the conducting phase of the transistor T2 via the diode D1 to the capacitor C1.
Die Erfindung beschränkt sich nicht auf das oben näher beschriebene Ausführungsbeispiel. Anstatt den Spannungsabfall über den Widerstand R1 während der Vorheizphase der Elektroden E1, E2 nur zu Beginn und am Ende der Vorheizphase auszuwerten, kann mittels des Mikrocontrollers MC auch der gesamte zeitliche Verlauf dieses Spannungsabfalls ausgewertet werden oder nur das Maximum des Spannungsabfalls am Widerstand R1 mit dem Endwert dieses Spannungsabfall am Ende der Vorheizphase verglichen werden, um eine Erkennung des Lampentyps der Niederdruckentladungslampe bzw. Leuchtstofflampe LP zu ermöglichen.The invention is not limited to the embodiment described in more detail above. Instead of evaluating the voltage drop across the resistor R1 during the preheating phase of the electrodes E1, E2 only at the beginning and at the end of the preheating phase, the entire time profile of this voltage drop can be evaluated by means of the microcontroller MC or only the maximum of the voltage drop on the resistor R1 to the final value of this voltage drop at the end of the preheat phase are compared to allow detection of the lamp type of the low-pressure discharge lamp or fluorescent lamp LP.
Claims (5)
- Method for operating at least one low-pressure discharge lamp by means of an inverter, in which the lamp electrodes (E1, E2) of the at least one low-pressure discharge lamp (LP) have a heating current applied to them during a heating phase prior to the ignition of the gas discharge in the at least one low-pressure discharge lamp (LP) by means of a transformer (P1, S1, S2), whose primary-side current is clocked by means of a controllable switching means (T3), and the change in the electrical resistance of at least one lamp electrode (E1, E2) is monitored by means of a resistive element (R1) which is arranged on the primary side of the transformer (P1, S1, S2) by the voltage drop across the resistive element (R1) being evaluated at at least two different points in time during the heating phase, characterized in that the controllable switching means (T3) is switched in synchrony with a first inverter switching means (T1), and the absolute difference between the voltage drop determined across the resistive element (R1) at a first point in time during the heating phase and the voltage drop determined across the resistive element (R1) at a second point in time which is arranged at the end of the heating phase is compared with a predetermined threshold value, and the voltage drop determined at the second point in time is evaluated for the purpose of identifying the type of lamp if the absolute difference exceeds the predetermined threshold value.
- Method according to Claim 1, characterized in that the voltage drop across the resistive element (R1) is evaluated by means of a low-pass filter (R2, C4).
- Method according to Claim 1, characterized in that the energy stored in the primary winding (P1) is dissipated during the switch-off time of the controllable switching means (T3) with the aid of a second inverter switching means (T2) and a diode circuit (D1).
- Method according to Claim 1, characterized in that the first point in time, at which the voltage drop across the resistive element (R1) is evaluated, is arranged in a time window of 10 ms to 50 ms after the beginning of the heating phase.
- Method according to Claim 1, characterized in that, once the gas discharge in the at least one low-pressure discharge lamp (LP) has been ignited, the voltage drop across the resistive element (R1) is evaluated for the purpose of regulating the heating power of the lamp electrodes (E1, E2), and the heating power is varied by varying the switch-on time of the controllable switching means (T3), the controllable switching means (T3) being switched on in synchrony with the first inverter switching means (T1), and its switch-on time being less than or equal to the switch-on time of the first inverter switching means (T1).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10345610A DE10345610A1 (en) | 2003-09-29 | 2003-09-29 | Method for operating at least one low-pressure discharge lamp |
DE10345610 | 2003-09-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1519638A1 EP1519638A1 (en) | 2005-03-30 |
EP1519638B1 true EP1519638B1 (en) | 2007-04-04 |
Family
ID=34178028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04019957A Expired - Lifetime EP1519638B1 (en) | 2003-09-29 | 2004-08-23 | Method for operating a low pressure discharge lamp |
Country Status (7)
Country | Link |
---|---|
US (1) | US6972531B2 (en) |
EP (1) | EP1519638B1 (en) |
JP (1) | JP4652002B2 (en) |
CN (1) | CN100566496C (en) |
AT (1) | ATE358964T1 (en) |
CA (1) | CA2482665A1 (en) |
DE (2) | DE10345610A1 (en) |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004025774A1 (en) * | 2004-05-26 | 2005-12-22 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Ballast for discharge lamp with continuous operation control circuit |
DE102004055976A1 (en) * | 2004-11-19 | 2006-05-24 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Circuit arrangement for operating a high-pressure discharge lamp |
JP3881997B2 (en) * | 2005-01-31 | 2007-02-14 | Tdk株式会社 | Discharge lamp driving device |
DE102005013564A1 (en) * | 2005-03-23 | 2006-09-28 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Circuit arrangement and method for operating at least one lamp |
JP4318659B2 (en) * | 2005-03-28 | 2009-08-26 | Tdk株式会社 | Discharge lamp driving device |
DE102005030115A1 (en) * | 2005-06-28 | 2007-01-18 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Circuit arrangement and method for operating at least one LED and at least one electric lamp |
DE202005013754U1 (en) * | 2005-08-31 | 2005-11-17 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Electronic control gear for operating discharge lamp, has measuring device to measure parameter that correlates to increased electrode temperature, and control device to react to temperature by adjustment of operating parameter of gear |
DE102005046482A1 (en) | 2005-09-28 | 2007-03-29 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Electronic ballast adjusting method for electrical lamp, involves changing settings of parameter of lamp during auxiliary operation of ballast, such that operation is adjusted when ballast recognizes value of resistance and/or dummy load |
DE102005052525A1 (en) * | 2005-11-03 | 2007-05-10 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Control circuit for a switchable heating transformer of an electronic ballast and corresponding method |
DE102006010996A1 (en) * | 2006-03-09 | 2007-09-13 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Electronic ballast and method of operating an electric lamp |
DE102006024700A1 (en) * | 2006-05-26 | 2007-11-29 | Tridonicatco Gmbh & Co. Kg | Electronic lamp ballast with heating circuit |
US7969100B2 (en) * | 2007-05-17 | 2011-06-28 | Liberty Hardware Manufacturing Corp. | Bulb type detector for dimmer circuit and inventive resistance and short circuit detection |
TW200850070A (en) * | 2007-06-14 | 2008-12-16 | Gigno Technology Co Ltd | Driving method and control method of hot cathode fluorescent lamp, and estimate method of temperature of filament in hot cathode fluorescent lamp |
US7728525B2 (en) * | 2007-07-27 | 2010-06-01 | Osram Sylvania Inc. | Relamping circuit for battery powered ballast |
US7626344B2 (en) * | 2007-08-03 | 2009-12-01 | Osram Sylvania Inc. | Programmed ballast with resonant inverter and method for discharge lamps |
US7446488B1 (en) | 2007-08-29 | 2008-11-04 | Osram Sylvania | Metal halide lamp ballast controlled by remote enable switched bias supply |
DE102008012454A1 (en) | 2008-03-04 | 2009-09-10 | Tridonicatco Gmbh & Co. Kg | Method for determining operational parameters of gas discharge lamp operated with electronic ballast, involves determining cold resistance and hot resistance of helices at two different times during preheating phase |
WO2009046891A1 (en) * | 2007-10-02 | 2009-04-16 | Tridonicatco Gmbh & Co. Kg | Method for determining operational parameters for a gas discharge lamp to be operated with electronic ballast and corresponding ballast |
DE102008022198A1 (en) * | 2008-03-04 | 2009-09-10 | Tridonicatco Gmbh & Co. Kg | Type recognition of a gas discharge lamp to be operated with an electronic ballast |
DE102008012453A1 (en) | 2008-03-04 | 2009-09-10 | Tridonicatco Gmbh & Co. Kg | Method for checking that at least two gas discharge lamps to be operated with an electronic ballast are of the same type |
DE102008012452A1 (en) * | 2008-03-04 | 2009-09-10 | Tridonicatco Gmbh & Co. Kg | Circuit for heating and monitoring the heating coils of at least one operated with an electronic ballast gas discharge lamp on spiral breakage |
DE102008019158B3 (en) * | 2008-04-17 | 2009-11-05 | Vossloh-Schwabe Deutschland Gmbh | Coding element e.g. adapter plug, for fluorescent lamp of lighting device, has electrical component accommodated in or at insulator body and connected with contact pins to signalize ballast with electrical characteristics |
EP2274960B1 (en) | 2008-04-25 | 2013-02-27 | OSRAM GmbH | Method and circuit arrangement for operating at least one discharge lamp |
JP2010009791A (en) * | 2008-06-24 | 2010-01-14 | Panasonic Electric Works Co Ltd | Discharge lamp lighting device and lighting fixture |
WO2009158334A2 (en) * | 2008-06-26 | 2009-12-30 | Osram Sylvania, Inc. | Ballast with lamp-diagnostic filament heating, and method therefor |
US7880391B2 (en) * | 2008-06-30 | 2011-02-01 | Osram Sylvania, Inc. | False failure prevention circuit in emergency ballast |
US8232727B1 (en) | 2009-03-05 | 2012-07-31 | Universal Lighting Technologies, Inc. | Ballast circuit for a gas-discharge lamp having a filament drive circuit with monostable control |
ATE523948T1 (en) * | 2009-04-07 | 2011-09-15 | Osram Gmbh | CONVERSION DEVICE AND CORRESPONDING CONVERSION METHOD |
WO2010121964A1 (en) | 2009-04-24 | 2010-10-28 | Osram Gesellschaft mit beschränkter Haftung | Lamp-coupler-unit for electrodeless high intensity discharge (ehid) lamps with a data memory and communication and an impedance-controlled feedthrough and electrodeless high intensity discharge system with such lamp-coupler-unit |
DE102009019625B4 (en) * | 2009-04-30 | 2014-05-15 | Osram Gmbh | A method of determining a type of gas discharge lamp and electronic ballast for operating at least two different types of gas discharge lamps |
US20100327759A1 (en) * | 2009-06-24 | 2010-12-30 | Koninklijke Philips Electronics N.V. | Electronic ballast for a fluorescent lamp |
WO2011033412A2 (en) | 2009-09-18 | 2011-03-24 | Koninklijke Philips Electronics N.V. | Electronic ballast with dimming circuit |
WO2012042412A2 (en) * | 2010-09-28 | 2012-04-05 | Koninklijke Philips Electronics N.V. | Device and method for automatically detecting installed lamp type |
JP6391997B2 (en) * | 2014-06-06 | 2018-09-19 | 株式会社オーク製作所 | Discharge lamp provided with transmitter and light source device thereof |
WO2019102243A1 (en) * | 2017-11-27 | 2019-05-31 | Zasso Group Ag | Weed inactivation device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06275386A (en) * | 1993-03-18 | 1994-09-30 | Yokogawa Electric Corp | Fluorescent tube lighting system |
US5656891A (en) * | 1994-10-13 | 1997-08-12 | Tridonic Bauelemente Gmbh | Gas discharge lamp ballast with heating control circuit and method of operating same |
DE19923945A1 (en) * | 1999-05-25 | 2000-12-28 | Tridonic Bauelemente | Electronic ballast for at least one low-pressure discharge lamp |
BR0007013A (en) * | 1999-05-25 | 2001-07-03 | Tridonic Bauelemente | Electronic ballast for low pressure discharge lamps |
JP2001210490A (en) * | 2000-01-26 | 2001-08-03 | Matsushita Electric Works Ltd | Discharge lamp lighting device |
US6359387B1 (en) * | 2000-08-31 | 2002-03-19 | Philips Electronics North America Corporation | Gas-discharge lamp type recognition based on built-in lamp electrical properties |
CN1572126A (en) * | 2001-10-18 | 2005-01-26 | 皇家飞利浦电子股份有限公司 | Short circuit ballast protection |
CN1589593A (en) * | 2001-11-23 | 2005-03-02 | 皇家飞利浦电子股份有限公司 | Device for heating electrodes of a discharge lamp |
DE10200053A1 (en) * | 2002-01-02 | 2003-07-17 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Operating device for discharge lamps with preheating device |
-
2003
- 2003-09-29 DE DE10345610A patent/DE10345610A1/en not_active Withdrawn
-
2004
- 2004-08-23 EP EP04019957A patent/EP1519638B1/en not_active Expired - Lifetime
- 2004-08-23 DE DE502004003377T patent/DE502004003377D1/en not_active Expired - Lifetime
- 2004-08-23 AT AT04019957T patent/ATE358964T1/en not_active IP Right Cessation
- 2004-09-21 US US10/944,849 patent/US6972531B2/en not_active Expired - Lifetime
- 2004-09-28 JP JP2004281243A patent/JP4652002B2/en not_active Expired - Fee Related
- 2004-09-28 CA CA002482665A patent/CA2482665A1/en not_active Abandoned
- 2004-09-29 CN CNB2004100820986A patent/CN100566496C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US6972531B2 (en) | 2005-12-06 |
JP4652002B2 (en) | 2011-03-16 |
CN100566496C (en) | 2009-12-02 |
JP2005108841A (en) | 2005-04-21 |
ATE358964T1 (en) | 2007-04-15 |
EP1519638A1 (en) | 2005-03-30 |
CN1638593A (en) | 2005-07-13 |
DE502004003377D1 (en) | 2007-05-16 |
DE10345610A1 (en) | 2005-05-12 |
US20050067980A1 (en) | 2005-03-31 |
CA2482665A1 (en) | 2005-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1519638B1 (en) | Method for operating a low pressure discharge lamp | |
EP1103165B1 (en) | Electronic ballast for at least one low-pressure discharge lamp | |
EP0798952B1 (en) | Circuit arrangement for operating electric lamps and method of operation | |
EP1066739B1 (en) | Method and device for detecting the rectification effect occurring in a gas-discharge lamp | |
DE4328748B4 (en) | Inverter unit | |
EP0800335B1 (en) | Circuit for operating electric lamps | |
EP0707438A2 (en) | Ballast for at least one discharge lamp | |
DE3903520A1 (en) | HIGH FREQUENCY POWER SUPPLY CIRCUIT FOR GAS DISCHARGE LAMPS | |
EP1103166B1 (en) | Electronic ballast for at least one low-pressure discharge lamp | |
DE19843643B4 (en) | Circuit arrangement for starting and operating a high-pressure discharge lamp | |
EP0471332A1 (en) | Circuit assembly for operating a fluorescent lamp | |
DE3338464C2 (en) | Circuit arrangement for operating at least one fluorescent lamp with adjustable brightness on a self-oscillating inverter | |
WO2003024162A1 (en) | Method and device for operating a fluorescent tube in an energy saving manner | |
EP1492393B1 (en) | Ballast for fluorescent lamp and method to detect eol | |
EP2274960B1 (en) | Method and circuit arrangement for operating at least one discharge lamp | |
EP1040733B1 (en) | Electronic lamp ballast | |
EP1048190B1 (en) | Electronic lamp ballast | |
EP2796012B1 (en) | Method, operating device and lighting system with integrated lamp rectifier effect detection | |
EP1860925B1 (en) | Electronic lamp cut-in unit with heater switch | |
DE19501695B4 (en) | Ballast for at least one gas discharge lamp with preheatable lamp filaments | |
EP1040732B1 (en) | Method for detecting a lamp change and electronic lamp ballast for operating gas-discharge lamps using such a method for detecting a lamp change | |
EP1081988A2 (en) | Circuit for operating at least one discharge lamp | |
WO2011091462A2 (en) | Operating device for gas discharge lamps | |
DE102007027179A1 (en) | Integrated control circuit i.e. hardware-controlled application-specific integrated circuit, for electronic ballast of e.g. low pressure-gas discharge lamp, has heating current detector detecting availability of heating circuit switch | |
DE102009053617A1 (en) | Electronic ballast and method for operating at least one discharge lamp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
17P | Request for examination filed |
Effective date: 20050422 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
R17C | First examination report despatched (corrected) |
Effective date: 20051125 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070404 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070404 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 502004003377 Country of ref document: DE Date of ref document: 20070516 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070715 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070904 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070404 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070404 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070404 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070404 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070704 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070404 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070404 |
|
26N | No opposition filed |
Effective date: 20080107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070831 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070404 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070404 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH) |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070404 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070404 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071005 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20101109 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20110809 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20110824 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502004003377 Country of ref document: DE Owner name: OSRAM GMBH, DE Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE Effective date: 20111213 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110831 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110831 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502004003377 Country of ref document: DE Owner name: OSRAM GMBH, DE Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE Effective date: 20130205 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120823 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502004003377 Country of ref document: DE Owner name: OSRAM GMBH, DE Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE Effective date: 20130823 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140821 Year of fee payment: 11 Ref country code: GB Payment date: 20140820 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20140820 Year of fee payment: 11 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150823 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150831 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170822 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004003377 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190301 |