[go: up one dir, main page]

EP1103165B1 - Electronic ballast for at least one low-pressure discharge lamp - Google Patents

Electronic ballast for at least one low-pressure discharge lamp Download PDF

Info

Publication number
EP1103165B1
EP1103165B1 EP00927003A EP00927003A EP1103165B1 EP 1103165 B1 EP1103165 B1 EP 1103165B1 EP 00927003 A EP00927003 A EP 00927003A EP 00927003 A EP00927003 A EP 00927003A EP 1103165 B1 EP1103165 B1 EP 1103165B1
Authority
EP
European Patent Office
Prior art keywords
lamp
heating
electronic ballast
ballast according
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00927003A
Other languages
German (de)
French (fr)
Other versions
EP1103165A1 (en
Inventor
Dietmar Klien
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonicatco GmbH and Co KG
Original Assignee
Tridonicatco GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonicatco GmbH and Co KG filed Critical Tridonicatco GmbH and Co KG
Publication of EP1103165A1 publication Critical patent/EP1103165A1/en
Application granted granted Critical
Publication of EP1103165B1 publication Critical patent/EP1103165B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • H05B41/298Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2981Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions
    • H05B41/2985Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions against abnormal lamp operating conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/07Starting and control circuits for gas discharge lamp using transistors

Definitions

  • the present invention relates to an electronic ballast for operation at least one low-pressure discharge lamp according to the preamble of claim 1.
  • Ballasts are usually used nowadays high-frequency alternating voltage to the gas discharge lamps or fluorescent tubes submit. Apart from the power supply, such electronic ones are used Ballasts also to preheat the electrodes of the gas discharge lamps and gently ignite and operate the lamps. With their help the Efficiency of the lamps increased, a longer lifespan achieved and a Operation under reduced lamp power (dimming) enables.
  • Electrodes or the filaments of the lamp usually for a certain time preheated, which means a gentler lamp start and thus a longer service life the lamp is achieved.
  • the preheating takes place with the help of a spiral heating, which causes a current to flow through the two coils.
  • a heating transformer is used, the Primary winding is connected to the output of an inverter and the two Has secondary windings, each with one of the two lamp filaments are coupled.
  • the Resonance frequency of the series resonance circuit such a changed frequency for the the AC voltage output set that the at the Discharge lamp applied voltage initially does not cause the lamp to ignite.
  • the ballast should also monitor the condition of the lamp Take up a function in order to be able to record any malfunctions and take appropriate measures.
  • a malfunction can, for example then exist if one of the two coils or both are defective or if the lamp has been completely removed.
  • the voltage drop is in series with the Primary winding of the transformer resistance and thus the heating current measured to detect whether there is a filament break or whether the lamp is out of the Arrangement was removed.
  • the procedure just mentioned provides information about the condition of the lamp, but not about what type of lamp it is. Lamps are often different Not externally, but have different electrical parameters and one different power consumption. Then accidentally one in their Features not compatible with the electronic ballast incorrect control can occur. This affects in lighting in simpler cases, but may also be in more serious cases damage the lamp. Such problems could be avoided by determining the type of lamp in a short control measurement before ignition and appropriate measures are initiated. This can mean that the Lamp is not preheated and ignited if it is of the wrong type or even better, that one corresponding to the performance characteristics of the lamp Activation takes place.
  • EP / A / 889675 describes an electronic ballast with an additional one Circuit for recognizing the lamp type using a filament resistance determination known.
  • EP / A / 722263 is a circuit arrangement for coil preheating known from fluorescent lamps.
  • an electronic ballast for operating a Low pressure gas discharge lamp specify that with the lowest possible Material and circuit expenditure the functions just described, that is Lamp detection, lamp condition detection and controllable in their power Filament heating, fulfilled.
  • ballast which has the features of claim 1 has, solved.
  • An essential feature of the ballast is an evaluation circuit, those for recognizing the type and condition of the lamp by the primary winding of the heating transformer current and in addition also through at least one of the two heating circuits flowing current detected and evaluated.
  • the identification the lamp type is done by measuring the lamp filament flowing current, which is a suitable measure of the spiral resistance.
  • filament resistance is a characteristic feature of using lamps distinguish the same appearance but different performance features.
  • the Current through the primary winding provides information about the condition of the lamp.
  • the transformer transforms the heating voltage on the primary winding to the Lamp down strongly, so that the filament resistances in turn to Primary winding are transformed upwards. The behavior of the transformer therefore strongly depends on whether the coils are intact or whether, for example, one The coil is defective and the associated secondary heating circuit is interrupted.
  • a first development of the invention is an optimal control of the heating current and thus to enable the filament heating.
  • This is according to claim 5 thereby achieved that the connection of the primary winding of the heating transformer to the Output of the inverter through one consisting of two switches bidirectional switch is regulated, the between the two switches Primary winding of the heating transformer and a coupling capacitor are arranged.
  • the bidirectional switch can be switched by two series and opposite oriented field effect transistors are formed, which are preferably by a common pulse width modulated signal can be controlled, the Duty cycle of this signal determines the degree of heating. With the help of this arrangement an intermediate discharge of a coupling capacitor contained in the heating circuit avoided and thus achieved a symmetrical heating voltage.
  • the resistance value is one of the two coils. This is above the peak value of the so-called pin current certainly.
  • a short test can be carried out whether the filaments are actually cold. This way misinterpretations can be made during lamp detection, which can occur after a short-term power failure, be avoided.
  • the current measurements are preferably carried out in each case Measurements of the voltage drops across two in the heating circuit of the primary winding or Measuring resistors arranged in the secondary heating circuit of a lamp filament.
  • the electronic ballast is designed such that that the control of the filament heating and adjusting the frequency of the AC voltage, which is applied to the load circuit with the lamp, depending from the previously determined lamp type.
  • the degree of dimming of the lamp can be determined that the Dimming the lamp causes the lamp current to drop due to the Heating current should be substantially balanced.
  • the height of the setpoint for the Pen current i.e. for the sum of lamp current and heating current, is based on this according to the electronic parameters of the lamp.
  • a control measurement at regular intervals detect a possible breakage of the filament or removal of the lamp.
  • the inverter of the ballast is formed by a half bridge from two electronic switches S1 and S2 connected in series, one switch each consisting of a MOS field effect transistor.
  • the two switches S1 and S2 are activated via two connections A1 and A2 connected to the gates of the transistors, which lead to a control / evaluation circuit, not shown.
  • the lower output of the half-bridge is grounded, while the DC voltage U BUS is present at its input, which can be generated, for example, by shaping the usual mains voltage using a combination of radio interference suppressor and rectifier.
  • any other DC voltage source can also be present at the input of the half bridge.
  • the load circuit containing the discharge lamp LA At the exit of the half bridge, i.e. to the common junction of the two Switches S1 and S2 is the load circuit containing the discharge lamp LA connected.
  • This consists of a series resonance circuit consisting of a Choke coil L1 and a resonance capacitor C2 is composed. Between the Choke coil L1 and the resonance capacitor C2 is also a coupling capacitor C1 arranged.
  • the connection node between the two capacitors C1 and C2 is the upper of the two cathodes of the low-pressure gas discharge lamp LA connected.
  • the two cathodes of the lamp LA each have two connections, between each of which a heating coil W1 or W2 for heating the cathodes is provided.
  • the lower cathode of the LA lamp is in turn over two in series switched resistors R1 and R3 connected to ground.
  • the same is the second Connection of the resonance capacitor C2 connected to ground, so that the lamp LA and the resonance capacitor C2 are parallel to each other.
  • the function of the second Resistor R3 will be described later.
  • a heating transformer is provided for heating the two coils W1 and W2. that of a primary winding Tp and two secondary windings Ts1 and Ts2 consists.
  • the secondary windings Tsl and Ts2 are each connected in series a filament W1 or W2 of the lamp LA connected, so that two separate secondary Heating circuits are formed.
  • the resistor R3 is inside the secondary Heating circuit of the lower filament W1 arranged so that both one through the lamp LA flowing lamp current as well as the flowing through the lower filament W1 The heating current flows in the same direction through the measuring resistor R3.
  • the Primary winding Tp is part of a series circuit that also has a Coupling capacitor C3 and two controllable switches S3 and S4, between which the Primary winding Tp and the coupling capacitor C3 are arranged.
  • This Series connection is at its lower end via a further resistor R2 to ground connected and at its upper end to the common node of the two switches S1 and S2 of the half-bridge connected, so that they are parallel to the Load circuit and the lower branch of the half-bridge lies.
  • the two switches S3 and S4 each consist of a field effect transistor, but are - like FIG. 1 can be removed - oriented opposite to each other, so that a bidirectional switch is formed.
  • the two are in the circuit diagram Free-wheeling diodes D3 and D4 of the two transistors S3 and S4 are shown.
  • the gates of the two switches S3 and S4 are controlled by the control / evaluation circuit with a pulse width modulated signal via connection A3.
  • the common one Node between the output of diode D1 and the gate of the switch S3 is parallel via a capacitor C4 and one to this capacitor C4 switched resistor R4 with the common node of the two switches S1 and S2 of the half-bridge connected.
  • the circuit shows three with the Control / evaluation circuit connected outputs A4, A5 and A6 to that for measurement of voltage drops across resistors R2 and R3 are used.
  • the measuring signals at the outputs A4, A5 and A6 are used to recognize the Lamp type and to record the status of the lamp, i.e. to check whether it is intact or whether one of the two coils is broken.
  • the control / evaluation circuit regulates the clock signals to the Connections A1 and A2 the AC voltage supplied to the load circuit and through the Pulse width modulated signal at connection A3 heating the coils W1 and W2.
  • FIG. 2 shows a typical timing diagram of the control signals present at the three inputs A1, A2 and A3 and the resultant state of the four switches S1 to S4 for an already ignited and slightly dimmed operating state of the lamp LA.
  • alternating signals are regularly applied to the connections A1 and A2 of the two half-bridge switches S1 and S2 between a high level H and a low level L, such that one of the two switches S1 or S2 is opened (I) and the other is closed (0) is.
  • a high-frequency AC voltage with the period length ⁇ 0 or the frequency 1 / ⁇ 0 is generated at the center of the half-bridge and fed to the load circuit.
  • the degree of dimming of the gas discharge lamp is essentially determined by the deviation of the frequency 1 / ⁇ 0 of the AC voltage from the resonance frequency of the load circuit.
  • a high deviation means high dimming.
  • the selected period length ⁇ 0 actually causes a certain dimming of the lamp.
  • the two electrodes In order to counteract premature aging of the lamp, the two electrodes must be heated by an additional heating current so that they are kept at their emission temperature.
  • the heating takes place by a low-frequency connection of the primary heating circuit to the center of the half-bridge at regular intervals ⁇ H and for a predetermined period ⁇ HH .
  • capacitor C3 then decouples the DC voltage component, so that a symmetrical square-wave voltage with a peak value of U BUS / 2 results in the primary winding Tp of the heating transformer.
  • the coupling capacitor C3 should not be discharged so that a symmetrical voltage signal can be generated at the primary winding Tp at any time. This is particularly important in those cases in which a multi-lamp device is formed in which the peak value of the primary voltage has to be placed close to the transverse discharge voltage of the low-resistance filaments. If the heating circuit were connected to the center of the half-bridge with the help of a single switch (for example only through the lower transistor S4), the coupling capacitor C3 would discharge via the internal freewheeling diode D4 of this transistor in the periods in which the lower switch S2 of the Half bridge is closed.
  • a bidirectional switch is formed from the two field effect transistors S3 and S4, the gates of the two transistors S3 and S4 being controlled by the common pulse-width-modulated signal A3.
  • the mode of operation of this bidirectional switch can also be seen from the curves in FIG. 2. If the signal A3 has a low level L, both switches S3 and S4 are open and the filament heating is switched off. If the control signal A3 changes to a high level H at the beginning of a heating pulse ⁇ HH , the lower transistor switches through and switch S4 is thus closed (I). However, as long as the upper switch S1 of the half-bridge is closed (I), the transistor S3 remains blocked and the second switch S3 is open (0).
  • the PWM signal A3 is switched to a low level and the transistor S4 is thus blocked.
  • the gate of transistor S3 is then no longer controlled via diode D1, and transistor S3 is now kept passively blocked via resistor R4.
  • the additional capacitor C4 ensures that there is no unwanted switching on of the transistor S3 during the off phase ⁇ HL due to the Miller capacitance.
  • both switches S3 and S4 are thus open and discharging of the coupling capacitor C3 via one of the two freewheeling diodes D3 or D4 is also excluded.
  • the period length ⁇ H of the signal A3 is significantly longer than the period length ⁇ 0 of the high-frequency clock signals A1 and A2.
  • the choice of low frequency 1 / ⁇ H depends on several considerations. On the one hand, a frequency 1 / ⁇ H that is too high or a period ⁇ H that is too short should not be selected, since otherwise the heating power is roughly graded. Since switching on the heating circuit influences the light output of the lamp, flickering can occur. On the other hand, the frequency 1 / ⁇ H must not be chosen too low, since the two filaments W1 and W2 otherwise cool down too much during the off phase ⁇ HL , which can have a negative effect on the life of the lamp LA.
  • the frequency 1 / ⁇ H of the pulse width modulated signal A3 should therefore be chosen in any case so that an essentially constant electrode temperature is established.
  • the effective value of the heating voltage and thus the degree of heating power is determined by the pulse duty factor of the pulse-width-modulated signal A3 or by the temporal relationship between high-phase ⁇ HH and low-phase ⁇ HL . It is preferably set in accordance with the degree of dimming and the type of lamp LA. The corresponding procedure for setting the heating output will be explained later. If the already lit lamp LA is operated in the vicinity of the resonance frequency of the load circuit and thus with almost maximum power, the filament heating can be switched off completely in order to reduce power losses. This does not significantly affect the life of the lamp LA, since in this case the operating temperature of the electrodes is sufficient.
  • a relatively high heating power is selected during the preheating of the filaments W1 or W2 in order to enable a short preheating time and a quick ignition of the lamp LA.
  • the half-bridge is also operated at a very high frequency 1 / ⁇ 0 of almost 120 kHz. Since this frequency is far above the resonance frequency of the load circuit, premature and unwanted ignition is avoided.
  • the lamp LA is ignited in a known manner. If closer to that for explanatory recording of the lamp status and the lamp detection none Malfunctions are detected, the after a predetermined heating time Frequency of the alternating voltage emitted by the half-bridge is reduced and the Approximate resonance frequency of the load circuit. This increases the lamp LA applied voltage until finally ignition occurs.
  • This procedure is to control the current flowing from the lower coil W1.
  • This so-called pen stream is made up of two parts, one of which is from the ignited lamp LA flowing lamp current and on the other hand from that of the heating transformer generated average heating current.
  • the goal now is to have this pen flow roughly on one to keep the specified setpoint or within a specified range. Because namely the lamp LA is dimmed by changing the AC voltage frequency, this reduces the lamp current and the electrode temperature.
  • a measure of the additional heating of the electrodes can now be selected, for example, that the current reduction caused by the dimming by the heating current should be balanced again.
  • the control / evaluation circuit is therefore preferred formed so that it measures the pin current and the pulse width of the control signal on Port A3 modulated accordingly.
  • the current is measured by a Brief measurement of the voltage drop across the measuring resistor R3 by one to the Outputs A5 and A6 connected (not shown) voltmeter, the one Part of the control / evaluation circuit or the measurement result to it forwards.
  • the value specified for the pin current depends, among other things, on the type and the power consumption of the LA lamp.
  • the electronic ballast is like this trained that the lamp type with its special electrical parameters (e.g.
  • Preheating current, lamp current, lamp power automatically detects and the control then the lamp LA and the filament heating via the signals A1, A2 and A3 accordingly. Because lamps with different parameters are external can often distinguish very little or not at all, can by an automatic Lamp detection also incorrect control at the same time, resulting in a unsatisfactory light output or even damage can be avoided.
  • the lamp is recognized by a Measure the resistance of one of the two coils.
  • This spiral resistance is a sufficient feature around lamps that fit in a common socket have different performance parameters.
  • a measurement of the peak value of the pin current the in the circuit shown in Fig. 1 also by the voltage drop on Measuring resistor R3 is detected via outputs A5 and A6. This is preferably done Measurement of the coil resistance at the beginning and at the end of the preheating phase. There during preheating - before lighting the LA lamp - none yet Lamp current flows, in this case the voltage drop between the Connection A6 and mass are measured.
  • a relatively low heating output (approx. 5% duty cycle) set to a too strong Avoid heating the coils W1, W2.
  • the half-bridge opens at this time a high frequency of about 120kHz.
  • the pin current is preferably measured at the end of the switch-on phase of the upper switch S 1 of the half bridge and possibly averaged.
  • the measured peak values are then compared in each case with a stored reference value and the lamp type is determined on the basis of the comparison result.
  • Two resistance reference values are therefore required for each lamp type, one for the cold filaments W1, W2 and one for the preheated filaments W1, W2.
  • the pin current depends not only on the coil resistance, but also on the coil voltage and thus on the bus voltage U BUS supplied to the inverter. In order to avoid possible fluctuations and incorrect measurements, the coil detection is therefore only carried out after the system has settled and the bus voltage U BUS has stabilized.
  • the bus voltage U BUS could also be determined in a separate measurement and the voltage drop across the measuring resistor R3 could be set in relation thereto, for example by forming the differential voltage. In this way it would even be possible to carry out the lamp detection independently of such fluctuations.
  • a further misinterpretation when determining the lamp can occur if the mains voltage supplying the electronic ballast briefly fails or is briefly switched off and on again. This is done by a ballast in each Case interpreted as restarting the lamp LA and thus one more time Preheating and lamp detection performed.
  • the coils are W1, W2 in this case not yet cooled and therefore have a different resistance.
  • the Lamp detection then leads to an incorrect result. To this possibility before the resistance is determined, it is checked whether the coil W1, W2 is cold or hot. If the filament W1, W2 is actually still hot, the lamp turns on LA deliberately preheated with a slightly lower heating output and one Lamp detection only based on the resistance measurement at the end of the preheating phase carried out.
  • the slightly different preheating can be accepted that this case rarely occurs.
  • the distinction between a hot one and a cold coil W1, W2 is carried out by measuring the change in Helix resistance within a predetermined short period of time, for example 10ms. If the change is negative, a hot or warm coil W1, W2 assumed and the reduced preheating performed. However, is not a change Ascertainable, this is interpreted as the presence of a cold coil W1, W2 and therefore the usual preheating and lamp determination performed.
  • This too Control measurement is carried out by two short samples of the pen current and the Voltage drop across the measuring resistor R3, the height of the Changes in resistance, for example, can be assessed using a Schmitt trigger can. Since the coil resistance is also measured in these, the two represent Control measurements also the first resistance measurement for the Lamp detection.
  • the peak value of the pen current measured and with the peak value of the primary current of the Heating transformer compared.
  • the pen current is used just like when controlling the Filament heating and as with lamp detection via the voltage drop on Measuring resistor R3 determined.
  • the through the primary winding Tp of the heating transformer current is due to the voltage drop across resistor R2 certainly. For this reason, between the switch S4 and the measuring resistor R2 the output A4 connected to the control / evaluation circuit is provided.
  • the half-bridge with a as high a frequency as possible of about 120 kHz, around that of the lamp LA to keep the supplied voltage as low as possible and to ignite it prematurely avoid.
  • a low duty cycle of the pulse width modulated Control signal set at terminal A3 so that the two coils W1 and W2 are not to be heated too much. Since a current flowing through the primary winding Tp is to be measured, a measurement time is selected at which at the connection A3 a high level H is present and the coupling capacitor C3 is charged. As with the Lamp detection is therefore also carried out shortly before the end of the switch-on phase of the upper switch S1 of the half bridge.
  • Another advantage of this method is that it provides a statement about the lamp state that is independent of possible fluctuations in the supply voltage U BUS .
  • a fluctuation in the U BUS influences the measurement result of the pin current, but the primary heating current is also changed. It is not necessary to wait until the system has settled and the supply voltage U BUS has stabilized. Furthermore, the influence of possible spiral resistance tolerances is reduced.
  • the lamp state can then be checked at regular intervals during normal operation of the lamp LA in order to detect a filament break occurring during this time. For this purpose, however, the lamp current should not influence the heating current too strongly, for example it should not be more than 10% of the pen current. If a filament break occurs during operation of the lamp or if the lamp is removed, this control measurement can be carried out repeatedly until an intact lamp is recognized in the system again. A restart can then be initiated automatically.
  • FIG. 3 A possible chronological sequence of these measurements for lamp detection and for detecting the lamp state just described is shown in the timing diagram in FIG. 3.
  • the lamp starts at time T 0 . It is assumed here that at this point in time T 0 the system has already settled in and the supply voltage U BUS has stabilized.
  • the control measurement is first carried out to determine whether an intact lamp is inserted or whether there is a broken filament. Since the pin current at resistor R3 is compared here with the primary current of the filament heater at resistor R2, this measurement must be carried out at a time T W at which the control signals at terminals A1 and A3 are at a high level H. As has already been said, all measurements are preferably carried out shortly before the signals A1 and A2 change. Furthermore, a frequency of almost 120 kHz is chosen for these signals.
  • T L1 and T L1 ' are then carried out in order to determine whether the filaments W1, W2 are warm or cold. Since temperature changes or changes in resistance are to be observed, a low duty cycle is selected for the control signal at connection A3 during this time.
  • the distance between T L1 and T L1 ' is approx. 10 ms.
  • the coils W1, W2 are preheated in the period ⁇ VH , the heating output taking place in accordance with the state of the coils W1, W2, that is to say a higher heating output is set, for example, if the resistance measured at the later time T L1 'is not lower than that resistance value measured at time T L1 .
  • a measurement of the filament resistance is carried out again at time T L2 and the lamp type is then determined on the basis of the measurement results at times T L1 , T L1 ' and T L2 . If the filaments W1, W2 were warm, only the result of the third measurement is taken into account. If the filaments were cold, all three measurements can be used for the lamp determination. The ignition of the lamp LA, which is not shown, is then initiated.
  • FIG. 4 shows a simplified one Flow diagram of the individual phases during lamp operation. After this Switching on 100 of the mains voltage or a short mains failure is first in the Query 101 just carried out described whether there is a spiral break. If this is the case or if there is no lamp at all in the system, the query is asked 101 continuously repeated until an intact lamp is finally recognized.
  • the next step 102 will make it short successive pin current measurements checked whether the filaments are cold. are the filaments are actually cold, the lamp is preheated normally and the Lamp detection based on the measurement results before and after the preheating phase 103 carried out. If a warm coil was recognized instead, only a reduced one Preheating 104 performed and the lamp type determined at the end. After this Preheating 103 and 104, finally, ignition 105 of the lamp is carried out, the control of the four switches depending on the detected Lamp type is done.
  • the system After ignition 105, the system is in normal or dimming operation 106 by one corresponding to the lamp type and the desired degree of dimming AC voltage frequency and heating power from the control / evaluation circuit is set.
  • a query 107 is carried out as to whether a spiral break has possibly occurred or whether the lamp was removed. If this is the case, the normal / dimming operation ended and the system in the state of the original spiral break query 101 set back.
  • the inverter it would also be conceivable for the inverter to recognize one Turn off the filament break or another defect in the lamp. With the help of a suitable circuit could then be monitored whether the defective lamp by a new one has been replaced. Finally, an intact lamp in the system detected, a restart can be initiated automatically.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

An electronic ballast for a low-pressure discharge lamp (LA) contains an inverter that is fed with direct voltage (UBUS) and the output of which is connected to a load circuit containing terminal contacts for the lamp (LA), a heating transformer that has a primary winding (Tp), which is connected to the output of the inverter, and a respective secondary winding (Ts1, Ts2), which is located in a heating circuit with a coil (W1, W2), for heating each of the two electrodes of the lamp (LA), and a series circuit arrangement that is connected in parallel with the load circuit and which contains the primary winding (Tp) of the heating transformer and an electronic switch arrangement (S3, S4). For the purpose of identifying the type of lamp and the state of the lamp, the currents in one of the two heating circuits and in the primary winding (Tp) of the heating transformer are measured and evaluated.

Description

Die vorliegende Erfindung betrifft ein elektronisches Vorschaltgerät für den Betrieb mindestens einer Niederdruck-Entladungslampe nach dem Oberbegriff des Anspruchs 1.The present invention relates to an electronic ballast for operation at least one low-pressure discharge lamp according to the preamble of claim 1.

Üblicherweise werden heutzutage Vorschaltgeräte (EVG's) eingesetzt, die eine hochfrequente Wechselspannung an die Gasentladungslampen oder Leuchtstoffröhren abgeben. Abgesehen von der Spannungsversorgung dienen solche elektronischen Vorschaltgeräte außerdem dazu, die Elektroden der Gasentladungslampen vorzuheizen und die Lampen schonend zu zünden und zu betreiben. Mit ihrer Hilfe wird der Wirkungsgrad der Lampen heraufgesetzt, eine längere Lebensdauer erzielt sowie ein Betrieb unter reduzierter Lampenleistung (Dimmen) ermöglicht.Ballasts (ECGs) are usually used nowadays high-frequency alternating voltage to the gas discharge lamps or fluorescent tubes submit. Apart from the power supply, such electronic ones are used Ballasts also to preheat the electrodes of the gas discharge lamps and gently ignite and operate the lamps. With their help the Efficiency of the lamps increased, a longer lifespan achieved and a Operation under reduced lamp power (dimming) enables.

Dabei werden vor dem Anlegen der Zündspannung an die Entladungslampe die Elektroden bzw. die Wendeln der Lampe in der Regel für eine bestimmte Zeit vorgeheizt, wodurch ein schonenderer Lampenstart und damit eine längere Lebensdauer der Lampe erzielt wird. Das Vorheizen erfolgt mit Hilfe einer Wendelheizung, welche einen Stromfluß durch die beiden Wendeln bewirkt. In einem aus der EP 0 707 438 A3 bekannten Vorschaltgerät wird dafür ein Heiztransformator verwendet, dessen Primärwicklung mit dem Ausgang eines Wechselrichters verbunden ist und der zwei Sekundärwicklungen aufweist, die jeweils mit einer der beiden Lampenwendeln gekoppelt sind. Vor dem Zünden der Entladungslampe wird eine gegenüber der Resonanzfrequenz des Serienresonanzkreises derart veränderte Frequenz für die von dem Wechselrichter abgegebenen Wechselspannung eingestellt, daß die an der Entladungslampe anliegende Spannung vorerst keine Zündung der Lampe bewirkt. Währenddessen fließt durch die beiden sekundären Heizkreise mit den Lampenwendeln ein im wesentlichen konstanter Strom, wodurch diese vorgeheizt werden. Nach einem für die Vorheizung ausreichenden Zeitraum wird dann die Frequenz der dem Serienresonanzkreis zugeführten Wechselspannung so lange in Richtung der Resonanzfrequenz verschoben, bis die sich dadurch erhöhende an der Entladungslampe anliegende Spannung eine Zündung der Lampe bewirkt. Entsprechend der EP 0 748 146 A1 oder der DE 295 14 817 U1 kann dann durch Öffnen eines in Serie mit der Primärwicklung liegenden Schalters die Wendelheizung nach dem Zünden der Lampe abgeschaltet werden, um anderenfalls auftretende Verlustleistungen zu reduzieren.Here, before the ignition voltage is applied to the discharge lamp Electrodes or the filaments of the lamp usually for a certain time preheated, which means a gentler lamp start and thus a longer service life the lamp is achieved. The preheating takes place with the help of a spiral heating, which causes a current to flow through the two coils. In one from EP 0 707 438 A3 known ballast, a heating transformer is used, the Primary winding is connected to the output of an inverter and the two Has secondary windings, each with one of the two lamp filaments are coupled. Before the discharge lamp is ignited, one is opposite the Resonance frequency of the series resonance circuit such a changed frequency for the the AC voltage output set that the at the Discharge lamp applied voltage initially does not cause the lamp to ignite. Meanwhile flows through the two secondary heating circuits with the lamp filaments an essentially constant current, which preheats them. After one for the preheating period, the frequency of the Series resonance circuit supplied AC voltage in the direction of the long Resonance frequency shifted until the thereby increasing on the discharge lamp applied voltage causes the lamp to ignite. According to the EP 0 748 146 A1 or DE 295 14 817 U1 can then be opened in series by opening one with the primary winding lying the coil heating after the ignition of the Lamp are switched off in order to avoid otherwise occurring power losses to reduce.

Die Anforderungen an die elektronischen Vorschaltgeräte werden dabei immer umfangreicher. So ist es beispielsweise üblich, auch einen Dimmbetrieb für die Gasentladungslampe vorzusehen. Ein starkes Dimmen hätte allerdings ein Abkühlen der Lampenelektroden unter deren Emissionstemperatur und damit ein vorzeitiges Altern der Lampe zur Folge. Um diesem Effekt entgegenzuwirken, müssen die Elektroden der Gasentladungslampe auch im bereits gezündeten Betrieb zu einem gewissen Grad beheizt werden. Insbesondere ist es vorteilhaft, die Beheizung der Elektroden in Abhängigkeit vom Dimmgrad so einzustellen, daß diese umso stärker beheizt werden, je stärker die Lampe gedimmt wird, je dunkler sie also ist. Entsprechend der EP 0 707 438 wird die Beheizung der Elektroden während des Dimmens dadurch geregelt, daß der in der Serie mit der Primärwicklung liegende Schalter zeitweise geschlossen wird.The requirements for electronic ballasts are always extensive. So it is common, for example, also a dimmer for the Provide gas discharge lamp. A strong dimming would, however, cool down the Lamp electrodes below their emission temperature and thus premature aging the lamp. In order to counteract this effect, the electrodes of the Gas discharge lamp to a certain extent even when it is already on be heated. In particular, it is advantageous to heat the electrodes in Depending on the degree of dimming so that they are heated the more, depending the lamp is dimmed more, the darker it is. According to the EP 0 707 438 describes the heating of the electrodes during dimming regulated that the switch in the series with the primary winding temporarily is closed.

Das Vorschaltgerät sollte zusätzlich auch eine den Zustand der Lampe überwachende Funktion einnehmen um eventuelle Betriebsstörungen erfassen zu können und dementsprechende Maßnahmen einzuleiten. Eine Betriebsstörung kann beispielsweise dann vorliegen, wenn eine der beiden Wendeln oder auch beide defekt sind oder wenn die Lampe vollständig entfernt wurde. Bei dem in der EP 0 707 438 beschrieben elektronischen Vorschaltgerät wird der Spannungsabfall über einen in Serie mit der Primärwicklung des Transformators liegenden Widerstand und somit der Heizstrom gemessen, um zu erfassen, ob ein Wendelbruch vorliegt oder ob die Lampe aus der Anordnung entfernt wurde.The ballast should also monitor the condition of the lamp Take up a function in order to be able to record any malfunctions and take appropriate measures. A malfunction can, for example then exist if one of the two coils or both are defective or if the lamp has been completely removed. In that described in EP 0 707 438 electronic ballast, the voltage drop is in series with the Primary winding of the transformer resistance and thus the heating current measured to detect whether there is a filament break or whether the lamp is out of the Arrangement was removed.

Das eben genannte Verfahren gibt Auskunft über den Zustand der Lampe, nicht jedoch darüber, um welchen Lampentyp es sich handelt. Oftmals unterscheiden sich Lampen äußerlich nicht, weisen jedoch verschiedene elektrische Parameter und eine unterschiedliche Leistungsaufnahme auf. Wird dann versehentlich eine in ihren Leistungsmerkmalen nicht zu dem elektronische Vorschaltgerät passende Lampe eingesetzt, kann es zu einer falschen Ansteuerung kommen. Dies beeinträchtigt in einfacheren Fällen die Beleuchtung, kann aber in schwerer wiegenden Fällen auch zu einer Beschädigung der Lampe führen. Derartige Probleme könnten vermieden werden, indem vor dem Zünden in einer kurzen Kontrollmessung der Typ der Lampe erfaßt wird und dementsprechende Maßnahmen eingeleitet werden. Dies kann bedeuten, daß die Lampe nicht vorgeheizt und gezündet wird, falls es sich um den falschen Typ handelt oder noch besser, daß eine den Leistungsmerkmalen der Lampe entsprechende Ansteuerung erfolgt.The procedure just mentioned provides information about the condition of the lamp, but not about what type of lamp it is. Lamps are often different Not externally, but have different electrical parameters and one different power consumption. Then accidentally one in their Features not compatible with the electronic ballast incorrect control can occur. This affects in lighting in simpler cases, but may also be in more serious cases damage the lamp. Such problems could be avoided by determining the type of lamp in a short control measurement before ignition and appropriate measures are initiated. This can mean that the Lamp is not preheated and ignited if it is of the wrong type or even better, that one corresponding to the performance characteristics of the lamp Activation takes place.

Aus der EP/A/889675 ist ein elektronisches Vorschaltgerät mit einer zusätzlichen Schaltung zum Erkennen des Lampentyps mittels einer Wendelwiderstandsbestimmung bekannt. EP / A / 889675 describes an electronic ballast with an additional one Circuit for recognizing the lamp type using a filament resistance determination known.

Aus der EP/A/722263 schließlich ist eine Schaltungsanordnung zur Wendelvorheizung von Leuchtstofflampen bekannt.Finally, from EP / A / 722263 is a circuit arrangement for coil preheating known from fluorescent lamps.

Ausgehend von dem oben genannten Stand der Technik ist es daher Aufgabe der vorliegenden Erfindung, ein elektronisches Vorschaltgerät zum Betreiben einer Niederdruck-Gasentladungslampe anzugeben, das mit einem möglichst geringen Material- und Schaltungsaufwand die eben beschriebenen Funktionen, also Lampenerkennung, Lampenzustandserfassung und in ihrer Leistung steuerbare Wendelheizung, erfüllt. Starting from the above-mentioned prior art, it is therefore the task of present invention, an electronic ballast for operating a Low pressure gas discharge lamp specify that with the lowest possible Material and circuit expenditure the functions just described, that is Lamp detection, lamp condition detection and controllable in their power Filament heating, fulfilled.

Diese Aufgabe wird durch ein Vorschaltgerät, welches die Merkmale des Anspruchs 1 aufweist, gelöst. Wesentliches Merkmal des Vorschaltgeräts ist eine Auswerteschaltung, die zum Erkennen des Typs und des Zustands der Lampe den durch die Primärwicklung des Heiztransformators fließenden Strom und zusätzlich auch den durch mindestens einen der beiden Heizkreise fließenden Strom erfaßt und auswertet. Die Identifizierung des Lampentyps erfolgt dabei durch die Messung des über die Lampenwendel fließenden Stromes, der ein geeignetes Maß für den Wendelwiderstand darstellt. Der Wendelwiderstand wiederum ist ein charakteristisches Merkmal, um Lampen mit gleichem Aussehen aber unterschiedlichen Leistungsmerkmalen zu unterscheiden. Der Strom durch die Primärwicklung hingegen gibt Auskunft über den Zustand der Lampe. Der Transformator transformiert die Heizspannung an der Primärwicklung zu der Lampe hin stark nach unten, so daß die Wendelwiderstände ihrerseits zur Primärwicklung hin nach oben transformiert werden. Das Verhalten des Transformators hängt daher stark davon ab, ob die Wendeln intakt sind oder ob beispielsweise eine Wendel defekt und damit der dazugehörige sekundäre Heizkreis unterbrochen ist.This object is achieved by a ballast which has the features of claim 1 has, solved. An essential feature of the ballast is an evaluation circuit, those for recognizing the type and condition of the lamp by the primary winding of the heating transformer current and in addition also through at least one of the two heating circuits flowing current detected and evaluated. The identification the lamp type is done by measuring the lamp filament flowing current, which is a suitable measure of the spiral resistance. The In turn, filament resistance is a characteristic feature of using lamps distinguish the same appearance but different performance features. The Current through the primary winding, however, provides information about the condition of the lamp. The transformer transforms the heating voltage on the primary winding to the Lamp down strongly, so that the filament resistances in turn to Primary winding are transformed upwards. The behavior of the transformer therefore strongly depends on whether the coils are intact or whether, for example, one The coil is defective and the associated secondary heating circuit is interrupted.

Eine erste Weiterbildung der Erfindung, ist eine optimale Kontrolle des Heizstromes und damit der Wendelheizung zu ermöglichen. Diese wird entsprechend dem Anspruch 5 dadurch erreicht, daß das Zuschalten der Primärwicklung des Heiztransformators an den Ausgang des Wechselrichters durch einen aus zwei Schaltern bestehenden bidirektionalen Schalter geregelt wird, wobei zwischen den beiden Schaltern die Primärwicklung des Heiztransformators und ein Koppelkondensator angeordnet sind. Der bidirektionale Schalter kann durch zwei in Serie geschaltete und entgegengesetzt orientierte Feldeffektransistoren gebildet werden, die vorzugsweise durch ein gemeinsames pulsweitenmoduliertes Signal angesteuert werden, wobei das Tastverhältnis dieses Signals den Heizgrad bestimmt. Mit Hilfe dieser Anordnung wird ein zwischenzeitliches Entladen eines in dem Heizkreis enthaltenen Koppelkondensators vermieden und damit eine symmetrische Heizspannung erzielt.A first development of the invention is an optimal control of the heating current and thus to enable the filament heating. This is according to claim 5 thereby achieved that the connection of the primary winding of the heating transformer to the Output of the inverter through one consisting of two switches bidirectional switch is regulated, the between the two switches Primary winding of the heating transformer and a coupling capacitor are arranged. The bidirectional switch can be switched by two series and opposite oriented field effect transistors are formed, which are preferably by a common pulse width modulated signal can be controlled, the Duty cycle of this signal determines the degree of heating. With the help of this arrangement an intermediate discharge of a coupling capacitor contained in the heating circuit avoided and thus achieved a symmetrical heating voltage.

Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche. Zur Bestimmung des Lampentyps wird - wie bereits erwähnt wurde - der Widerstandswert einer der beiden Wendeln herangezogen. Dieser wird über den Scheitelwert des sog. Stiftstromes bestimmt. Zum Erkennen eines Wendelbruchs oder eines Entfernens der Lampe werden der Strom an der Primärwicklung und zeitgleich auch der Stiftstrom gemessen und beide Ströme zueinander in Relation gesetzt. Dieses Verfahren ermöglicht eine von eventuellen Spannungsschwankungen unabhängige Aussage über den Zustand der Lampe. Dabei wird vorzugsweise zuerst überprüft, ob eine intakte Lampe vorhanden ist und erst anschließend der Lampentyp bestimmt. Um die Zuverlässigkeit der Lampenbestimmung zu erhöhen, kann die Messung zweimal durchgeführt werden, einmal vor und einmal nach dem Vorheizen der Lampe. Die dabei gemessenen Widerstandswerte können mit intern gespeicherten Referenzwerten verglichen werden und dann bekannten Lampentypen zugeordnet werden. Ferner kann vor dem Start der Wendelvorheizung und der Lampenerkennung ein kurzer Test durchgeführt werden, ob die Wendeln auch tatsächlich kalt sind. Auf diese Weise können Fehlinterpretationen bei der Lampenerkennung, die nach einem kurzfristigen Netzausfall auftreten können, vermieden werden. Vorzugsweise erfolgen die Strommessungen jeweils durch Messungen der Spannungsabfälle über zwei in dem Heizkreis der Primärwicklung bzw. in dem sekundären Heizkreis einer Lampenwendel angeordnete Meßwiderstände.Developments of the invention are the subject of the dependent claims. For determination of the lamp type - as already mentioned - the resistance value is one of the two coils. This is above the peak value of the so-called pin current certainly. To detect a filament break or to remove the lamp the current at the primary winding and at the same time the pin current measured and both currents in relation to each other. This procedure enables one of possible voltage fluctuations independent statement about the state of the Lamp. It is preferably first checked whether an intact lamp is present and only then determine the lamp type. To the reliability of the To increase the lamp determination, the measurement can be carried out twice, once before and once after preheating the lamp. The measured Resistance values can be compared with internally stored reference values and then be assigned to known lamp types. Furthermore, before the start of the Filament preheating and lamp detection a short test can be carried out whether the filaments are actually cold. This way misinterpretations can be made during lamp detection, which can occur after a short-term power failure, be avoided. The current measurements are preferably carried out in each case Measurements of the voltage drops across two in the heating circuit of the primary winding or Measuring resistors arranged in the secondary heating circuit of a lamp filament.

In einer Weiterbildung der Erfindung ist das elektronische Vorschaltgerät so ausgeführt, daß das Ansteuern der Wendelheizung und Einstellen der Frequenz der Wechselspannung, die an den Lastkreis mit der Lampe angelegt wird, in Abhängigkeit von dem zuvor bestimmten Lampentyp erfolgt. Um die Wendelheizung in Abhängigkeit vom Dimmgrad der Lampe einzustellen, kann festgelegt werden, daß die durch das Dimmen der Lampe hervorgerufenen Absenkung des Lampenstroms durch den Heizstrom im wesentlichen ausgeglichen werden soll. Die Höhe Sollwerts für den Stiftstrom, also für die Summe aus Lampenstrom und Heizstrom, richtet sich dabei nach den elektronischen Parametern der Lampe. Vorzugsweise wird auch nach dem Zünden der Lampe in regelmäßigen Abständen eine Kontrollmessung durchgeführt, um einen eventuell auftretenden Wendelbruch oder ein Entfernen der Lampe zu erkennen.In a development of the invention, the electronic ballast is designed such that that the control of the filament heating and adjusting the frequency of the AC voltage, which is applied to the load circuit with the lamp, depending from the previously determined lamp type. Depending on the filament heating the degree of dimming of the lamp can be determined that the Dimming the lamp causes the lamp current to drop due to the Heating current should be substantially balanced. The height of the setpoint for the Pen current, i.e. for the sum of lamp current and heating current, is based on this according to the electronic parameters of the lamp. Preferably also after Ignition of the lamp performed a control measurement at regular intervals detect a possible breakage of the filament or removal of the lamp.

Im folgenden soll die Erfindung anhand der beiliegenden Zeichnung näher erläutert werden. Dabei zeigen:

Fig. 1 das
Ausführungsbeispiel einer erfindungsgemäßen Schaltung;
Fig. 2
ein Taktschema der Steuersignale und die dazugehörigen Zustände der Schalter während des Normal-/Dimmbetriebs der Lampe;
Fig. 3
ein Taktschema der Steuersignale vor dem Zünden der Lampe; und
Fig. 4
ein mögliches Flußdiagramm der unterschiedlichen Betriebsphasen der Lampe.
The invention will be explained in more detail below with reference to the accompanying drawing. Show:
Fig. 1 that
Embodiment of a circuit according to the invention;
Fig. 2
a timing diagram of the control signals and the associated states of the switches during normal / dimming operation of the lamp;
Fig. 3
a timing diagram of the control signals prior to lamp ignition; and
Fig. 4
a possible flow chart of the different operating phases of the lamp.

Entsprechend Fig. 1 wird der Wechselrichter des Vorschaltgeräts durch eine Halbbrücke aus zwei in Serie geschalteten elektronischen Schaltern S1 und S2 gebildet, wobei ein Schalter jeweils aus einem MOS-Feldeffekttransistor besteht. Das Ansteuern der beiden Schalter S1 bzw. S2 erfolgt über zwei mit den Gates der Transistoren verbundene Anschlüsse A1 bzw. A2, die zu einer nicht dargestellten Steuer-/Auswerteschaltung führen. Der untere Ausgang der Halbbrücke liegt auf Masse, während an ihrem Eingang die Gleichspannung UBUS anliegt, die beispielsweise durch die Formung der üblichen Netzspannung durch eine Kombination aus Funkentstörer und Gleichrichter erzeugt werden kann. Alternativ dazu kann allerdings auch eine beliebige andere Gleichspannungsquelle am Eingang der Halbbrücke anliegen.According to FIG. 1, the inverter of the ballast is formed by a half bridge from two electronic switches S1 and S2 connected in series, one switch each consisting of a MOS field effect transistor. The two switches S1 and S2 are activated via two connections A1 and A2 connected to the gates of the transistors, which lead to a control / evaluation circuit, not shown. The lower output of the half-bridge is grounded, while the DC voltage U BUS is present at its input, which can be generated, for example, by shaping the usual mains voltage using a combination of radio interference suppressor and rectifier. As an alternative, however, any other DC voltage source can also be present at the input of the half bridge.

An den Ausgang der Halbbrücke, d.h. an den gemeinsamen Knotenpunkt der beiden Schalter S1 und S2 ist der die Entladungslampe LA enthaltende Lastkreis angeschlossen. Dieser besteht aus einem Serienresonanzkreis, der sich aus einer Drosselspule L1 und einem Resonanzkondensator C2 zusammensetzt. Zwischen der Drosselspule L1 und dem Resonanzkondensator C2 ist ferner ein Koppelkondensator C1 angeordnet. An den Verbindungsknoten zwischen den beiden Kondensatoren C1 und C2 ist die obere der beiden Kathoden der Niederdruck-Gasentladungslampe LA angeschlossen. Die zwei Kathoden der Lampe LA weisen jeweils zwei Anschlüsse auf, zwischen denen jeweils eine Heizwendel W1 bzw. W2 zum Beheizen der Kathoden vorgesehen ist. Die untere Kathode der Lampe LA ist wiederum über zwei in Serie geschaltete Widerstände R1 und R3 mit Masse verbunden. Ebenso ist auch der zweite Anschluß des Resonanzkondensators C2 mit Masse verbunden, so daß die Lampe LA und der Resonanzkondensator C2 parallel zueinander liegen. Der Funktion des zweiten Widerstands R3 wird später noch beschrieben.At the exit of the half bridge, i.e. to the common junction of the two Switches S1 and S2 is the load circuit containing the discharge lamp LA connected. This consists of a series resonance circuit consisting of a Choke coil L1 and a resonance capacitor C2 is composed. Between the Choke coil L1 and the resonance capacitor C2 is also a coupling capacitor C1 arranged. At the connection node between the two capacitors C1 and C2 is the upper of the two cathodes of the low-pressure gas discharge lamp LA connected. The two cathodes of the lamp LA each have two connections, between each of which a heating coil W1 or W2 for heating the cathodes is provided. The lower cathode of the LA lamp is in turn over two in series switched resistors R1 and R3 connected to ground. The same is the second Connection of the resonance capacitor C2 connected to ground, so that the lamp LA and the resonance capacitor C2 are parallel to each other. The function of the second Resistor R3 will be described later.

Zum Beheizen der beiden Wendeln W1 und W2 ist ein Heiztransformator vorgesehen, der aus einer Primärwicklung Tp sowie aus zwei Sekundärwicklungen Ts1 und Ts2 besteht. Die Sekundärwicklungen Tsl und Ts2 sind jeweils in Serienschaltung mit je einer Wendel W1 bzw. W2 der Lampe LA verbunden, so daß zwei getrennte sekundäre Heizkreise gebildet werden. Der Widerstand R3 ist innerhalb des sekundären Heizkreises der unteren Wendel W1 so angeordnet, daß sowohl ein durch die Lampe LA fließender Lampenstrom als auch der durch die untere Wendel W1 fließende Heizstrom in gleicher Richtung durch den Meßwiderstand R3 fließen. Die Primärwicklung Tp ist Bestandteil einer Serienschaltung, die zusätzlich einen Koppelkondensator C3 und zwei steuerbare Schalter S3 und S4, zwischen denen die Primärwicklung Tp und der Koppelkondensator C3 angeordnet sind, aufweist. Diese Serienschaltung ist an ihrem unteren Ende über einen weiteren Widerstand R2 an Masse angeschlossen und an ihrem oberen Ende mit dem gemeinsamen Knotenpunkt der beiden Schalter S1 und S2 der Halbbrücke verbunden, so daß sie parallel zu dem Lastkreis und dem unteren Zweig der Halbbrücke liegt. Auch die beiden Schalter S3 und S4 bestehen jeweils aus einem Feldeffekttransistor, sind allerdings - wie Fig. 1 entnommen werden kann - entgegengesetzt zueinander orientiert, so daß ein bidirektionaler Schalter gebildet wird. Ferner sind in dem Schaltbild die beiden Freilaufdioden D3 und D4 der beiden Transistoren S3 und S4 gezeigt.A heating transformer is provided for heating the two coils W1 and W2. that of a primary winding Tp and two secondary windings Ts1 and Ts2 consists. The secondary windings Tsl and Ts2 are each connected in series a filament W1 or W2 of the lamp LA connected, so that two separate secondary Heating circuits are formed. The resistor R3 is inside the secondary Heating circuit of the lower filament W1 arranged so that both one through the lamp LA flowing lamp current as well as the flowing through the lower filament W1 The heating current flows in the same direction through the measuring resistor R3. The Primary winding Tp is part of a series circuit that also has a Coupling capacitor C3 and two controllable switches S3 and S4, between which the Primary winding Tp and the coupling capacitor C3 are arranged. This Series connection is at its lower end via a further resistor R2 to ground connected and at its upper end to the common node of the two switches S1 and S2 of the half-bridge connected, so that they are parallel to the Load circuit and the lower branch of the half-bridge lies. Also the two switches S3 and S4 each consist of a field effect transistor, but are - like FIG. 1 can be removed - oriented opposite to each other, so that a bidirectional switch is formed. Furthermore, the two are in the circuit diagram Free-wheeling diodes D3 and D4 of the two transistors S3 and S4 are shown.

Das Ansteuern der Gates der beiden Schalter S3 bzw. S4 erfolgt durch die Steuer/Auswerteschaltung mit einem pulsweitenmoduliertes Signal über den Anschluß A3. Zwischen den beiden Gates befindet sich ferner eine Diode D1. Der gemeinsame Knotenpunkt zwischen dem Ausgang der Diode D1 und dem Gateanschluß des Schalters S3 ist über einen Kondensator C4 und einen zu diesem Kondensator C4 parallel geschalteten Widerstand R4 mit dem gemeinsamen Knotenpunkt der beiden Schalter S1 und S2 der Halbbrücke verbunden. Abschließend weist die Schaltung drei mit der Steuer-/Auswerteschaltung verbundene Ausgänge A4, A5 und A6 auf, die zur Messung der Spannungsabfälle an den Widerständen R2 und R3 verwendet werden.The gates of the two switches S3 and S4 are controlled by the control / evaluation circuit with a pulse width modulated signal via connection A3. There is also a diode D1 between the two gates. The common one Node between the output of diode D1 and the gate of the switch S3 is parallel via a capacitor C4 and one to this capacitor C4 switched resistor R4 with the common node of the two switches S1 and S2 of the half-bridge connected. In conclusion, the circuit shows three with the Control / evaluation circuit connected outputs A4, A5 and A6 to that for measurement of voltage drops across resistors R2 and R3 are used.

Die Meßsignale an den Ausgängen A4, A5 und A6 werden zum Erkennen des Lampentyps und zur Erfassung des Zustands der Lampe, also zur Kontrolle ob sie intakt ist oder ob eventuell eine der beiden Wendeln gebrochen ist, verwendet. Auf der anderen Seite regelt die Steuer-/Auswerteschaltung durch die Taktsignale an den Anschlüssen A1 und A2 die dem Lastkreis zugeführte Wechselspannung und durch das pulsweitenmodulierte Signal am Anschluß A3 die Heizung der Wendeln W1 bzw. W2.The measuring signals at the outputs A4, A5 and A6 are used to recognize the Lamp type and to record the status of the lamp, i.e. to check whether it is intact or whether one of the two coils is broken. On the On the other hand, the control / evaluation circuit regulates the clock signals to the Connections A1 and A2 the AC voltage supplied to the load circuit and through the Pulse width modulated signal at connection A3 heating the coils W1 and W2.

Im folgenden soll zunächst die Funktion des aus den beiden Feldeffektransistoren S3 und S4 gebildeten bidirektionalen Schalters für das Beheizen der Wendeln W1 und W2 und die Ansteuerung der Lampe LA näher erläutert werden.In the following, the function of the from the two field effect transistors S3 is to be described first and S4 formed bidirectional switch for heating the filaments W1 and W2 and the control of the lamp LA are explained in more detail.

Fig. 2 zeigt ein typisches Taktschema der an den drei Eingängen A1, A2 und A3 anliegenden Steuersignale sowie den sich daraus ergebenden Zustand der vier Schalter S1 bis S4 für einen bereits gezündeten und leicht gedimmten Betriebszustand der Lampe LA. Dabei werden an die Anschlüsse A1 und A2 der beiden Halbbrückenschalter S1 und S2 zwischen einem High-Pegel H und einem Low-Pegel L regelmäßig alternierende Signale angelegt, derart, daß jeweils einer der beiden Schalter S1 oder S2 geöffnet (I) und der andere geschlossen (0) ist. An dem Mittelpunkt der Halbbrücke wird auf diese Weise eine hochfrequente Wechselspannung mit der Periodenlänge τ0 bzw. der Frequenz 1/τ0 erzeugt und dem Lastkreis zugeführt. Der Dimmgrad der Gasentladungslampe wird im wesentlichen durch die Abweichung der Frequenz 1/τ0 der Wechselspannung von der Resonanzfrequenz des Lastkreises bestimmt. Eine hohe Abweichung bedeutet dabei ein hohes Dimmen.2 shows a typical timing diagram of the control signals present at the three inputs A1, A2 and A3 and the resultant state of the four switches S1 to S4 for an already ignited and slightly dimmed operating state of the lamp LA. In this case, alternating signals are regularly applied to the connections A1 and A2 of the two half-bridge switches S1 and S2 between a high level H and a low level L, such that one of the two switches S1 or S2 is opened (I) and the other is closed (0) is. In this way, a high-frequency AC voltage with the period length τ 0 or the frequency 1 / τ 0 is generated at the center of the half-bridge and fed to the load circuit. The degree of dimming of the gas discharge lamp is essentially determined by the deviation of the frequency 1 / τ 0 of the AC voltage from the resonance frequency of the load circuit. A high deviation means high dimming.

Im dargestellten Beispiel in Fig. 2 sei nun angenommen, daß die gewählte Periodenlänge τ0 tatsächlich ein gewisses Dimmen der Lampe verursacht. Um dann einem vorzeitigen Altern der Lampe entgegenzuwirken, müssen die beiden Elektroden durch einen zusätzlichen Heizstrom erwärmt werden, damit sie weiterhin auf ihrer Emissionstemperatur gehalten werden. Die Beheizung erfolgt durch ein niederfrequentes Zuschalten des primären Heizkreises an den Mittelpunkt der Halbbrücke in regelmäßigen Abständen τH und für einen vorgegebenen Zeitraum τHH. In diesen Heizphasen τHH koppelt dann der Kondensator C3 den Gleichspannungsanteil aus, so daß sich in der Primärwicklung Tp des Heiztransformators eine symmetrische Rechteckspannung mit einem Scheitelwert von UBUS/2 ergibt. Auch während einer längeren Ausphase τHL des Heiztransformators sollte der Koppelkondensator C3 nicht entladen werden, damit jederzeit ein symmetrisches Spannungssignal an der Primärwicklung Tp erzeugt werden kann. Dies ist insbesondere in solchen Fällen wichtig, in denen ein Multilampengerät gebildet wird, bei dem der Scheitelwert der Primärspannung knapp an die Querentladungsspannung der niederohmigen Wendeln gelegt werden muß. Würde der Heizkreis dem Mittelpunkt der Halbbrücke nur mit Hilfe eines einzigen Schalters (beispielsweise nur durch den unteren Transistor S4) zugeschaltet werden, würde sich der Koppelkondensator C3 allerdings über die interne Freilaufdiode D4 dieses Transistors in den Zeiträumen entladen, in denen der untere Schalter S2 der Halbbrücke geschlossen ist.In the example shown in FIG. 2, it is now assumed that the selected period length τ 0 actually causes a certain dimming of the lamp. In order to counteract premature aging of the lamp, the two electrodes must be heated by an additional heating current so that they are kept at their emission temperature. The heating takes place by a low-frequency connection of the primary heating circuit to the center of the half-bridge at regular intervals τ H and for a predetermined period τ HH . In these heating phases τ HH , capacitor C3 then decouples the DC voltage component, so that a symmetrical square-wave voltage with a peak value of U BUS / 2 results in the primary winding Tp of the heating transformer. Even during a longer phase τ HL of the heating transformer, the coupling capacitor C3 should not be discharged so that a symmetrical voltage signal can be generated at the primary winding Tp at any time. This is particularly important in those cases in which a multi-lamp device is formed in which the peak value of the primary voltage has to be placed close to the transverse discharge voltage of the low-resistance filaments. If the heating circuit were connected to the center of the half-bridge with the help of a single switch (for example only through the lower transistor S4), the coupling capacitor C3 would discharge via the internal freewheeling diode D4 of this transistor in the periods in which the lower switch S2 of the Half bridge is closed.

Daher wird in dem vorliegenden Ausführungsbeispiel aus den beiden Feldeffekttransistoren S3 und S4 ein bidirektionaler Schalter gebildet, wobei die Gates der beiden Transistoren S3 und S4 durch das gemeinsame pulsweitenmodulierte Signal A3 angesteuert werden. Die Funktionsweise dieses bidirektionalen Schalters kann ebenfalls den Kurven in Fig. 2 entnommen werden. Weist das Signal A3 einen niedrigen Pegel L auf, sind beide Schalter S3 bzw. S4 geöffnet und die Wendelheizung abgeschaltet. Wechselt das Steuersignal A3 zu Beginn eines Heizpulses τHH auf einen hohen Pegel H, schaltet der untere Transistor durch und Schalter S4 wird damit geschlossen (I). Solange allerdings auch der obere Schalter S1 der Halbbrücke geschlossen (I) ist, bleibt der Transistor S3 nach wie vor gesperrt und der zweite Schalter S3 offen (0). In dieser Phase fließt dann Strom über die interne Freilaufdiode D3 dieses Transistors S3, wodurch der Koppelkondensator C3 geladen wird. Wechselt nun der Takt der Halbbrücke, d.h. Schalter S1 schließt (0) und Schalter S2 öffnet (I), wird das Sourcepotential des Transistors S3 auf Masse gelegt und der Schalter S3 schließt (I) ebenfalls. Der Koppelkondensator C3 kann sich dann entladen und seine Energie wieder abgeben.Therefore, in the present exemplary embodiment, a bidirectional switch is formed from the two field effect transistors S3 and S4, the gates of the two transistors S3 and S4 being controlled by the common pulse-width-modulated signal A3. The mode of operation of this bidirectional switch can also be seen from the curves in FIG. 2. If the signal A3 has a low level L, both switches S3 and S4 are open and the filament heating is switched off. If the control signal A3 changes to a high level H at the beginning of a heating pulse τ HH , the lower transistor switches through and switch S4 is thus closed (I). However, as long as the upper switch S1 of the half-bridge is closed (I), the transistor S3 remains blocked and the second switch S3 is open (0). In this phase, current then flows through the internal free-wheeling diode D3 of this transistor S3, as a result of which the coupling capacitor C3 is charged. If the cycle of the half bridge now changes, ie switch S1 closes (0) and switch S2 opens (I), the source potential of transistor S3 is connected to ground and switch S3 closes (I) as well. The coupling capacitor C3 can then discharge and release its energy again.

Zum Ausschalten der Heizphase τHH wird das PWM-Signal A3 auf einen niedrigen Pegel geschaltet und der Transistor S4 damit gesperrt. Auch das Gate des Transistors S3 wird dann nicht mehr über die Diode D1 angesteuert und der Transistor S3 wird nun über den Widerstand R4 passiv gesperrt gehalten. Der zusätzliche Kondensator C4 stellt sicher, daß es während der Aus-Phase τHL durch die Miller-Kapazität zu keinem ungewollten Einschalten des Transistors S3 kommt. In diesem Zeitraum τHL sind somit beide Schalter S3 und S4 offen und ein Entladen des Koppelkondensators C3 über eine der beiden Freilaufdioden D3 oder D4 wird ebenfalls ausgeschlossen. Auf diese Weise wird somit in regelmäßigen Abständen τH bzw. mit der Frequenz 1/τH für einen vorgegebenen Zeitraum τHH in der Primärwicklung Tp des Heiztransformators und in den sekundären Heizkreisen der beiden Lampenwendeln W 1 und W2 eine Wechselspannung mit der von dem Wechselrichter abgegebenen Frequenz 1/τ0 erzeugt.To switch off the heating phase τ HH , the PWM signal A3 is switched to a low level and the transistor S4 is thus blocked. The gate of transistor S3 is then no longer controlled via diode D1, and transistor S3 is now kept passively blocked via resistor R4. The additional capacitor C4 ensures that there is no unwanted switching on of the transistor S3 during the off phase τ HL due to the Miller capacitance. During this period τ HL , both switches S3 and S4 are thus open and discharging of the coupling capacitor C3 via one of the two freewheeling diodes D3 or D4 is also excluded. In this way, at regular intervals τ H or with the frequency 1 / τ H for a predetermined period τ HH in the primary winding Tp of the heating transformer and in the secondary heating circuits of the two lamp filaments W 1 and W2, an alternating voltage with that of the inverter output frequency 1 / τ 0 generated.

Die Periodenlänge τH des Signals A3 ist dabei wesentlich länger als die Periodenlänge τ0 der hochfrequenten Taktsignale A1 und A2. Die Wahl der Niederfrequenz 1/τH ist von mehreren Überlegungen abhängig. Zum einen sollte keine zu hohe Frequenz 1/τH bzw. keine zu kurze Periodendauer τH gewählt werden, da es sonst zu einer groben Abstufung der Heizleistung kommt. Da das Zuschalten des Heizkreises Einfluß auf die Lichtleistung der Lampe hat, kann es dann zu Flackererscheinungen kommen. Andererseits darf die Frequenz 1/τH aber auch nicht zu niedrig gewählt werden, da sich die zwei Wendeln W1 und W2 sonst während der Aus-Phase τHL zu stark abkühlen, was sich negativ auf die Lebensdauer der Lampe LA auswirken kann. Die Frequenz 1/τH des pulsweitenmodulierten Signals A3 sollte daher in jedem Fall so gewählt werden, daß sich eine im wesentlichen konstante Elektrodentemperatur einstellt.The period length τ H of the signal A3 is significantly longer than the period length τ 0 of the high-frequency clock signals A1 and A2. The choice of low frequency 1 / τ H depends on several considerations. On the one hand, a frequency 1 / τ H that is too high or a period τ H that is too short should not be selected, since otherwise the heating power is roughly graded. Since switching on the heating circuit influences the light output of the lamp, flickering can occur. On the other hand, the frequency 1 / τ H must not be chosen too low, since the two filaments W1 and W2 otherwise cool down too much during the off phase τ HL , which can have a negative effect on the life of the lamp LA. The frequency 1 / τ H of the pulse width modulated signal A3 should therefore be chosen in any case so that an essentially constant electrode temperature is established.

Der Effektivwert der Heizspannung und somit der Grad der Heizleistung wird durch das Tastverhältnis des pulsweitenmodulierten Signals A3 bzw. durch das zeitliche Verhältnis zwischen High-Phase τHH und Low-Phase τHL bestimmt. Vorzugsweise wird er dem Dimmgrad und dem Typ der Lampe LA entsprechend eingestellt. Das entsprechende Verfahren zum Einstellen der Heizleistung wird anschließend noch erläutert werden. Wird die bereits gezündete Lampe LA in der Nähe der Resonanzfrequenz des Lastkreises und damit mit nahezu maximaler Leistung betrieben, kann die Wendelheizung vollständig abgeschaltet werden, um Verlustleistungen zu reduzieren. Die Lebensdauer der Lampe LA wird dadurch nicht wesentlich beeinträchtigt, da in diesem Fall die Betriebstemperatur der Elektroden ausreichend ist. Im Gegensatz dazu wird während des Vorheizens der Wendeln W1 bzw. W2 eine relativ hohe Heizleistung gewählt, um eine kurze Vorheizzeit und ein schnelles Zünden der Lampe LA zu ermöglichen. Während dem Vorheizen wird die Halbbrücke ferner mit einer sehr hohen Frequenz 1/τ0 von nahezu 120kHz betrieben. Da diese Frequenz weit über der Resonanzfrequenz des Lastkreises liegt, wird ein vorzeitiges und ungewolltes Zünden vermieden.The effective value of the heating voltage and thus the degree of heating power is determined by the pulse duty factor of the pulse-width-modulated signal A3 or by the temporal relationship between high-phase τ HH and low-phase τ HL . It is preferably set in accordance with the degree of dimming and the type of lamp LA. The corresponding procedure for setting the heating output will be explained later. If the already lit lamp LA is operated in the vicinity of the resonance frequency of the load circuit and thus with almost maximum power, the filament heating can be switched off completely in order to reduce power losses. This does not significantly affect the life of the lamp LA, since in this case the operating temperature of the electrodes is sufficient. In contrast, a relatively high heating power is selected during the preheating of the filaments W1 or W2 in order to enable a short preheating time and a quick ignition of the lamp LA. During the preheating, the half-bridge is also operated at a very high frequency 1 / τ 0 of almost 120 kHz. Since this frequency is far above the resonance frequency of the load circuit, premature and unwanted ignition is avoided.

Der Zündvorgang der Lampe LA erfolgt in bekannter Weise. Falls bei der noch näher zu erläuternden Erfassung des Lampenzustands und der Lampenerkennung keine Fehlfunktionen erkannt wurden, wird nach Ablauf einer vorgegebenen Heizzeit die Frequenz der von der Halbbrücke abgegebenen Wechselspannung abgesenkt und der Resonanzfrequenz des Lastkreises angenähert. Dadurch erhöht sich die an der Lampe LA anliegende Spannung, bis schließlich eine Zündung erfolgt.The lamp LA is ignited in a known manner. If closer to that for explanatory recording of the lamp status and the lamp detection none Malfunctions are detected, the after a predetermined heating time Frequency of the alternating voltage emitted by the half-bridge is reduced and the Approximate resonance frequency of the load circuit. This increases the lamp LA applied voltage until finally ignition occurs.

Ein einfaches Verfahren um die Heizleistung in Abhängigkeit von dem Dimmgrad der Lampe LA zu regeln, soll nun kurz erläutert werden. Dieses Verfahren besteht darin, den von der unteren Wendel W1 abfließenden Strom zu steuern. Dieser sog. Stiftstrom setzt sich aus zwei Anteilen zusammen, zum einem aus dem über die gezündete Lampe LA fließenden Lampenstrom und zum anderen aus dem von dem Heiztransformator erzeugten mittleren Heizstrom. Ziel ist es nun, diesen Stiftstrom in etwa auf einem vorgegeben Sollwert oder innerhalb eines vorgegeben Bereichs zu halten. Wird nämlich die Lampe LA durch eine Veränderung des Wechselspannungsfrequenz gedimmt, verringert sich dadurch der Lampenstrom und die Elektrodentemperatur. Ein Maß für die zusätzliche Beheizung der Elektroden kann nun beispielsweise so gewählt werden, daß die durch das Dimmen hervorgerufene Stromreduzierung durch den Heizstrom wieder ausgeglichen werden soll. Die Steuer-/Auswerteschaltung ist daher vorzugsweise so ausgebildet, daß sie den Stiftstrom mißt und die Pulsweite des Steuersignals am Anschluß A3 dementsprechend moduliert. Die Strommessung erfolgt dabei durch eine kurze Messung des Spannungsabfalls über den Meßwiderstand R3 durch einen an die Ausgänge A5 und A6 angeschlossenen (nicht dargestellten) Spannungsmesser, der ein Bestandteil der Steuer-/Auswerteschaltung ist oder das Meßergebnis an diese weiterleitet.A simple procedure to adjust the heating output depending on the degree of dimming Regulating lamp LA will now be briefly explained. This procedure is to control the current flowing from the lower coil W1. This so-called pen stream is made up of two parts, one of which is from the ignited lamp LA flowing lamp current and on the other hand from that of the heating transformer generated average heating current. The goal now is to have this pen flow roughly on one to keep the specified setpoint or within a specified range. Because namely the lamp LA is dimmed by changing the AC voltage frequency, this reduces the lamp current and the electrode temperature. A measure of the additional heating of the electrodes can now be selected, for example, that the current reduction caused by the dimming by the heating current should be balanced again. The control / evaluation circuit is therefore preferred formed so that it measures the pin current and the pulse width of the control signal on Port A3 modulated accordingly. The current is measured by a Brief measurement of the voltage drop across the measuring resistor R3 by one to the Outputs A5 and A6 connected (not shown) voltmeter, the one Part of the control / evaluation circuit or the measurement result to it forwards.

Der für den Stiftstrom vorgegebene Wert richtet sich unter anderem nach dem Typ und der Leistungsaufnahme der Lampe LA. Dabei ist das elektronische Vorschaltgerät so ausgebildet, daß es den Lampentyp mit seinen speziellen elektrischen Parametern (z.B. The value specified for the pin current depends, among other things, on the type and the power consumption of the LA lamp. The electronic ballast is like this trained that the lamp type with its special electrical parameters (e.g.

Vorheizstrom, Lampenstrom, Lampenleistung) selbständig erkennt und die Ansteuerung der Lampe LA und der Wendelheizung über die Signale A1, A2 und A3 dann dementsprechend erfolgt. Da Lampen mit unterschiedlichen Parametern sich äußerlich oftmals nur sehr wenig oder gar nicht unterscheiden, kann durch eine automatische Lampenerkennung auch gleichzeitig ein falsches Ansteuern, was zu einer unbefriedigenden Lichtausbeute oder sogar zu Schäden führen kann, vermieden werden.Preheating current, lamp current, lamp power) automatically detects and the control then the lamp LA and the filament heating via the signals A1, A2 and A3 accordingly. Because lamps with different parameters are external can often distinguish very little or not at all, can by an automatic Lamp detection also incorrect control at the same time, resulting in a unsatisfactory light output or even damage can be avoided.

Bei dem erfindungsgemäßen Vorschaltgerät erfolgt die Lampenerkennung durch eine Messung des Widerstands einer der beiden Wendeln. Dieser Wendelwiderstand ist ein hinreichendes Merkmal um Lampen, die in eine gemeinsame Fassung passen aber unterschiedliche Leistungsparameter aufweisen, zu unterscheiden. Bei Kenntnis der dem Wechselrichter zugeführten Versorgungsspannung ist die einfachste Möglichkeit, den Wendelwiderstand zu bestimmen, eine Messung des Scheitelwerts des Stiftstroms, der bei der in Fig. 1 dargestellten Schaltung ebenfalls durch den Spannungsabfall am Meßwiderstand R3 über die Ausgänge A5 und A6 erfaßt wird. Vorzugsweise erfolgt die Messung des Wendelwiderstands zu Beginn und am Ende der Vorheizphase. Da während des Vorheizens - also vor dem Zünden der Lampe LA - noch kein Lampenstrom fließt, kann in diesem Fall der Spannungsabfall auch zwischen dem Anschluß A6 und Masse gemessen werden. Während der Lampenerkennung wird eine relativ niedrige Heizleistung (ca. 5% Tastverhältnis) eingestellt, um ein zu starkes Erwärmen der Wendeln W1, W2 zu vermeiden. Die Halbbrücke läuft zu dieser Zeit auf einer Hochfrequenz von ungefähr 120kHz.In the ballast according to the invention, the lamp is recognized by a Measure the resistance of one of the two coils. This spiral resistance is a sufficient feature around lamps that fit in a common socket have different performance parameters. With knowledge of the Supply voltage supplied to the inverter is the easiest option To determine coil resistance, a measurement of the peak value of the pin current, the in the circuit shown in Fig. 1 also by the voltage drop on Measuring resistor R3 is detected via outputs A5 and A6. This is preferably done Measurement of the coil resistance at the beginning and at the end of the preheating phase. There during preheating - before lighting the LA lamp - none yet Lamp current flows, in this case the voltage drop between the Connection A6 and mass are measured. During lamp detection, a relatively low heating output (approx. 5% duty cycle) set to a too strong Avoid heating the coils W1, W2. The half-bridge opens at this time a high frequency of about 120kHz.

Der Stiftstrom wird vorzugsweise jeweils am Ende der Einschaltphase des oberen Schalters S 1 der Halbbrücke gemessen und eventuell ausgemittelt. Die gemessenen Scheitelwerte werden dann jeweils mit einem gespeicherten Referenzwert verglichen und anhand des Vergleichsergebnisses wird der Lampentyp festgestellt. Für jeden Lampentyp werden somit zwei Widerstands-Referenzwerte benötigt, einer für die kalten Wendeln W1, W2 und einer für die vorgeheizten Wendeln W1, W2. Es ist dabei zu beachten, daß der Stiftstrom nicht nur vom Wendelwiderstand, sondern auch von der Wendelspannung und somit von der dem Wechselrichter zugeführten Busspannung UBUS abhängt. Um eventuelle Schwankungen und Fehlmessungen zu vermeiden, wird die Wendelerkennung daher erst nach dem Einschwingen des Systems und einer Stabilisierung der Busspannung UBUS durchgeführt. Alternativ dazu könnte aber auch die Busspannung UBUS in einer separaten Messung bestimmt werden und der Spannungsabfall am Meßwiderstand R3 in Relation dazu gesetzt werden, beispielsweise durch Bildung der Differenzspannung. Auf diese Weise wäre es sogar möglich, die Lampenerkennung unabhängig von derartigen Schwankungen durchzuführen. The pin current is preferably measured at the end of the switch-on phase of the upper switch S 1 of the half bridge and possibly averaged. The measured peak values are then compared in each case with a stored reference value and the lamp type is determined on the basis of the comparison result. Two resistance reference values are therefore required for each lamp type, one for the cold filaments W1, W2 and one for the preheated filaments W1, W2. It should be noted that the pin current depends not only on the coil resistance, but also on the coil voltage and thus on the bus voltage U BUS supplied to the inverter. In order to avoid possible fluctuations and incorrect measurements, the coil detection is therefore only carried out after the system has settled and the bus voltage U BUS has stabilized. Alternatively, however, the bus voltage U BUS could also be determined in a separate measurement and the voltage drop across the measuring resistor R3 could be set in relation thereto, for example by forming the differential voltage. In this way it would even be possible to carry out the lamp detection independently of such fluctuations.

Eine weitere Fehlinterpretation bei der Lampenbestimmung kann dann erfolgen, wenn die das elektronische Vorschaltgerät versorgende Netzspannung kurzfristig ausfällt oder kurz aus- und wieder eingeschaltet wird. Dies wird von einem Vorschaltgerät in jedem Fall als Neustart der Lampe LA interpretiert und somit wird ein weiteres mal eine Vorheizung und Lampenerkennung durchgeführt. Allerdings sind die Wendeln W1, W2 in diesem Fall noch nicht abgekühlt und haben demnach einen anderen Widerstand. Die Lampenerkennung führt dann zu einem falschen Ergebnis. Um diese Möglichkeit zu berücksichtigen, wird vor der Widerstandsbestimmung überprüft, ob die Wendel W1, W2 kalt oder heiß ist. Ist die Wendel W1, W2 tatsächlich noch heiß, wird die Lampe LA bewußt mit einer etwas geringeren Heizleistung vorgeheizt und eine Lampenerkennung nur auf Basis der Widerstandsmessung am Ende der Vorheizphase durchgeführt. Die etwas unterschiedliche Vorheizung kann dabei in Kauf genommen werden, die dieser Fall nur selten auftritt. Die Unterscheidung zwischen einer heißen und einer kalten Wendel W1, W2 erfolgt über eine Messung der Änderung des Wendelwiderstands innerhalb einer vorgegebenen kurzen Zeitspanne von beispielsweise 10ms. Ist die Änderung negativ, wird von einer heißen bzw. warmen Wendel W1, W2 ausgegangen und die reduzierte Vorheizung durchgeführt. Ist hingegen keine Änderung feststellbar, wird dies als Vorliegen einer kalten Wendel W1, W2 aufgefaßt und daher die übliche Vorheizung und Lampenbestimmung durchgeführt. Auch diese Kontrollmessung wird durch zwei kurze Abtastungen des Stiftstroms bzw. des Spannungsabfalls über den Meßwiderstand R3 durchgeführt, wobei die Höhe der Widerstandsänderung beispielsweise mit Hilfe eines Schmitt-Triggers beurteilt werden kann. Da auch bei diesen der Wendelwiderstand gemessen wird, stellen die beiden Kontrollmessungen gleichzeitig auch die erste Widerstandsmessung für die Lampenerkennung dar.A further misinterpretation when determining the lamp can occur if the mains voltage supplying the electronic ballast briefly fails or is briefly switched off and on again. This is done by a ballast in each Case interpreted as restarting the lamp LA and thus one more time Preheating and lamp detection performed. However, the coils are W1, W2 in this case not yet cooled and therefore have a different resistance. The Lamp detection then leads to an incorrect result. To this possibility before the resistance is determined, it is checked whether the coil W1, W2 is cold or hot. If the filament W1, W2 is actually still hot, the lamp turns on LA deliberately preheated with a slightly lower heating output and one Lamp detection only based on the resistance measurement at the end of the preheating phase carried out. The slightly different preheating can be accepted that this case rarely occurs. The distinction between a hot one and a cold coil W1, W2 is carried out by measuring the change in Helix resistance within a predetermined short period of time, for example 10ms. If the change is negative, a hot or warm coil W1, W2 assumed and the reduced preheating performed. However, is not a change Ascertainable, this is interpreted as the presence of a cold coil W1, W2 and therefore the usual preheating and lamp determination performed. This too Control measurement is carried out by two short samples of the pen current and the Voltage drop across the measuring resistor R3, the height of the Changes in resistance, for example, can be assessed using a Schmitt trigger can. Since the coil resistance is also measured in these, the two represent Control measurements also the first resistance measurement for the Lamp detection.

Bevor die Lampenerkennung und das damit verbundene Vorheizen der Wendeln W1 und W2 durchgeführt wird, wird allerdings noch überprüft, ob sich in dem System überhaupt eine Lampe LA befindet und ob diese auch intakt ist. Hierzu wird der Scheitelwert des Stiftstromes gemessen und mit dem Scheitelwert des Primärstroms des Heiztransformators verglichen. Der Stiftstrom wird ebenso wie bei der Steuerung der Wendelheizung und wie bei der Lampenerkennung über den Spannungsabfall am Meßwiderstand R3 bestimmt. Der durch die Primärwicklung Tp des Heiztransformators tließende Strom wird hingegen durch den Spannungsabfall an dem Widerstand R2 bestimmt. Aus diesem Grund ist zwischen dem Schalter S4 und dem Meßwiderstand R2 der mit der Steuer-/Auswerteschaltung verbundene Ausgang A4 vorgesehen. Wie auch bei der Lampenerkennung wird während dieser Messung die Halbbrücke mit einer möglichst hohen Frequenz von ungefähr 120kHz betrieben, um die der Lampe LA zugeführte Spannung möglichst gering zu halten und ein vorzeitiges Zünden zu vermeiden. Ebenso wird ein niedriges Tastverhältnis des pulsweitenmodulierten Steuersignals am Anschluß A3 eingestellt, damit die beiden Wendeln W1 und W2 nicht zu stark erwärmt werden. Da ein über die Primärwicklung Tp fließender Strom gemessen werden soll, wird ein Meßzeitpunkt gewählt, zu dem an dem Anschluß A3 ein hoher Pegel H anliegt und der Koppelkondensator C3 geladen wird. Wie bei der Lampenerkennung wird daher auch diese Messung kurz vor Ende der Einschaltphase des oberen Schalters S1 der Halbbrücke durchgeführt.Before the lamp detection and the associated preheating of the filaments W1 and W2 is performed, it is still checked whether there is in the system there is a lamp LA at all and whether it is also intact. For this, the Peak value of the pen current measured and with the peak value of the primary current of the Heating transformer compared. The pen current is used just like when controlling the Filament heating and as with lamp detection via the voltage drop on Measuring resistor R3 determined. The through the primary winding Tp of the heating transformer current, however, is due to the voltage drop across resistor R2 certainly. For this reason, between the switch S4 and the measuring resistor R2 the output A4 connected to the control / evaluation circuit is provided. As well as when the lamp is detected, the half-bridge with a as high a frequency as possible of about 120 kHz, around that of the lamp LA to keep the supplied voltage as low as possible and to ignite it prematurely avoid. Likewise, a low duty cycle of the pulse width modulated Control signal set at terminal A3 so that the two coils W1 and W2 are not to be heated too much. Since a current flowing through the primary winding Tp is to be measured, a measurement time is selected at which at the connection A3 a high level H is present and the coupling capacitor C3 is charged. As with the Lamp detection is therefore also carried out shortly before the end of the switch-on phase of the upper switch S1 of the half bridge.

Sind beide Wendeln W1 und W2 der Lampe LA intakt, so gilt für die Scheitelwerte zwei gemessenen Ströme die Beziehung: IR2=IR3·n·1/ü ü bezeichnet dabei das Übersetzungsverhältnis und n die Anzahl der intakten Wendeln W1, W2. Das Übersetzungsverhältnis ü des Heiztransformators ergibt sich aus der maximalen Wendelspannung. Es sollte darauf geachtet werden, daß dieses Verhältnis ü nicht zu groß wird, da sonst die kapazitiven Ströme bei ausgeschalteter Vorheizung zu große Wendelverluste während des Betriebs verursachen. Zur Bewertung des Lampenzustands wird dann der Primärstrom IR2 zu dem Stiftstrom geteilt durch das Übersetzungsverhältnis IR3·1/ü ins Verhältnis gesetzt und das Ergebnis, daß theoretisch die Anzahl der Wendeln n ergibt, bewertet. In einfachster Weise erfolgt dies dadurch, daß das Resultat mit einem Referenzwert verglichen wird. Ergibt sich beispielsweise ein Wert kleiner als 1,3, so liegt mit hoher Wahrscheinlichkeit ein Wendelbruch vor. Da immer noch Strom durch den unteren sekundären Heizkreis der Wendel W1 fließt, muß demnach die obere Wendel W2 defekt sein. Fließt andererseits durch den Meßwiderstand R3 gar kein Strom, so ist entweder die untere Wendel W1 defekt oder gar keine Lampe LA vorhanden. Auf diese Weise können somit in einfacher und schneller Weise die möglichen Lampenzustände erfaßt werden.If both filaments W1 and W2 of lamp LA are intact, the relationship applies to the peak values of two measured currents: I R2 = I R3 * N * 1 / u ü denotes the gear ratio and n the number of intact filaments W1, W2. The transformation ratio ü of the heating transformer results from the maximum filament voltage. Care should be taken to ensure that this ratio ü does not become too large, since otherwise the capacitive currents when the preheating is switched off cause excessive coil losses during operation. To evaluate the lamp status, the primary current I R2 is then related to the pin current divided by the transformation ratio I R3 · 1 / ü and the result that theoretically results in the number of filaments n is evaluated. The simplest way to do this is to compare the result with a reference value. If, for example, a value of less than 1.3 results, there is a high probability of a spiral break. Since current still flows through the lower secondary heating circuit of coil W1, the upper coil W2 must therefore be defective. On the other hand, if no current flows through the measuring resistor R3, either the lower filament W1 is defective or there is no lamp LA at all. In this way, the possible lamp states can thus be detected in a simple and quick manner.

Ein weiterer Vorteil dieses Verfahrens ist darin zu sehen, daß damit eine von möglichen Schwankungen in der Versorgungsspannung UBUS unabhängige Aussage über den Lampenzustand erhalten wird. Zwar beeinflußt eine Schwankung in UBUS das Meßergebnis des Stiftstroms, ebenso wird aber auch der primäre Heizstrom verändert. Es muß als nicht unbedingt abgewartet werden, bis das System eingeschwungen ist und sich die Versorgungsspannung UBUS stabilisiert hat. Ferner wird auch der Einfluß möglicher Wendelwiderstandstoleranzen verringert. Auf die gleiche Weise kann dann auch während des Normalbetriebs der Lampe LA in regelmäßigen Abständen der Lampenzustand kontrolliert werden, um einen währenddessen auftretenden Wendelbruch zu erfassen. Dazu sollte allerdings der Lampenstrom den Heizstrom nicht zu stark beeinflussen, beispielsweise sollte er nicht mehr als 10% des Stiftstroms betragen. Tritt während des laufenden Betriebs der Lampe ein Wendelbruch auf oder wird die Lampe entfernt, kann diese Kontrollmessung so lange wiederholt durchgeführt werden, bis wieder eine intakte Lampe in dem System erkannt wird. Es kann dann automatisch ein Neustart eingeleitet werden.Another advantage of this method is that it provides a statement about the lamp state that is independent of possible fluctuations in the supply voltage U BUS . A fluctuation in the U BUS influences the measurement result of the pin current, but the primary heating current is also changed. It is not necessary to wait until the system has settled and the supply voltage U BUS has stabilized. Furthermore, the influence of possible spiral resistance tolerances is reduced. In the same way, the lamp state can then be checked at regular intervals during normal operation of the lamp LA in order to detect a filament break occurring during this time. For this purpose, however, the lamp current should not influence the heating current too strongly, for example it should not be more than 10% of the pen current. If a filament break occurs during operation of the lamp or if the lamp is removed, this control measurement can be carried out repeatedly until an intact lamp is recognized in the system again. A restart can then be initiated automatically.

Ein möglicher zeitlicher Ablauf dieser eben beschriebenen Messungen zur Lampenerkennung und zum Erfassen des Lampenzustands ist in dem Taktschema in Fig. 3 dargestellt. Der Lampenstart erfolgt zum Zeitpunkt T0. Es sei hier vorausgesetzt, daß zu diesem Zeitpunkt T0 das System bereits eingeschwungen ist und sich die Versorgungsspannung UBUS stabilisiert hat. Unmittelbar nach dem Lampenstart erfolgt dann zuerst die Kontrollmessung, ob eine intakte Lampe eingesetzt ist oder ob eventuell ein Wendelbruch vorliegt. Da hier der Stiftstrom am Widerstand R3 mit dem Primärstrom der Wendelheizung am Widerstand R2 verglichen wird, muß diese Messung zu einem Zeitpunkt TW erfolgen, zu dem die Steuersignale an den Anschlüssen A1 und A3 auf einem hohen Pegel H liegen. Wie bereits gesagt wurde, werden alle Messungen vorzugsweise kurz vor dem Wechsel der Signale A1 und A2 durchgeführt. Ferner wird eine Frequenz von nahezu 120kHz für diese Signale gewählt.A possible chronological sequence of these measurements for lamp detection and for detecting the lamp state just described is shown in the timing diagram in FIG. 3. The lamp starts at time T 0 . It is assumed here that at this point in time T 0 the system has already settled in and the supply voltage U BUS has stabilized. Immediately after the lamp has started, the control measurement is first carried out to determine whether an intact lamp is inserted or whether there is a broken filament. Since the pin current at resistor R3 is compared here with the primary current of the filament heater at resistor R2, this measurement must be carried out at a time T W at which the control signals at terminals A1 and A3 are at a high level H. As has already been said, all measurements are preferably carried out shortly before the signals A1 and A2 change. Furthermore, a frequency of almost 120 kHz is chosen for these signals.

Wurde eine intakte Lampe erkannt, werden anschließend zwei kurz aufeinanderfolgende Messungen des Wendelwiderstands zu den Zeitpunkten TL1 und TL1' durchgeführt, um festzustellen, ob die Wendeln W1, W2 warm oder kalt sind. Da dabei Temperaturveränderungen bzw. Widerstandsänderungen beobachtet werden sollen wird während dieser Zeit ein niedriges Tastverhältnis für das Steuersignal am Anschluß A3 gewählt. Der Abstand zwischen TL1 und TL1' beträgt ca. 10ms.If an intact lamp was detected, two shortly consecutive measurements of the filament resistance at times T L1 and T L1 'are then carried out in order to determine whether the filaments W1, W2 are warm or cold. Since temperature changes or changes in resistance are to be observed, a low duty cycle is selected for the control signal at connection A3 during this time. The distance between T L1 and T L1 ' is approx. 10 ms.

Anschließend werden in dem Zeitraum τVH die Wendeln W1, W2 vorgeheizt, wobei die Heizleistung entsprechend dem Zustand der Wendeln W1, W2 erfolgt, also beispielsweise eine höhere Heizleistung eingestellt wird, falls der zum späteren Zeitpunkt TL1' gemessene Widerstand nicht niedriger ist als der zum Zeitpunkt TL1 gemessene Widerstandswert. Nach der Vorheizzeit wird zum Zeitpunkt TL2 nochmals eine Messung des Wendelwiderstands durchgeführt und dann anhand der Messergebnisse zur Zeit TL1, TL1' und TL2 der Lampentyp bestimmt. Falls die Wendeln W1, W2 warm waren, wird nur das Ergebnis der dritten Messung berücksichtigt, falls die Wendeln kalt waren, können alle drei Messungen für die Lampenbestimmung verwendet werden. Anschließend wird dann die nicht weiter dargestellte Zündung der Lampe LA eingeleitet. Subsequently, the coils W1, W2 are preheated in the period τ VH , the heating output taking place in accordance with the state of the coils W1, W2, that is to say a higher heating output is set, for example, if the resistance measured at the later time T L1 'is not lower than that resistance value measured at time T L1 . After the preheating time, a measurement of the filament resistance is carried out again at time T L2 and the lamp type is then determined on the basis of the measurement results at times T L1 , T L1 ' and T L2 . If the filaments W1, W2 were warm, only the result of the third measurement is taken into account. If the filaments were cold, all three measurements can be used for the lamp determination. The ignition of the lamp LA, which is not shown, is then initiated.

Eine Zusammenfassung der geschilderten Funktionen des erfindungsgemäßen elektronischen Vorschaltgeräts ist in Fig. 4 dargestellt. Diese zeigt ein vereinfachtes Flußdiagramm der einzelnen Phasen während des Betriebs der Lampe. Nach dem Einschalten 100 der Netzspannung bzw. einem kurzen Netzausfall, wird zuerst in der eben beschriebenen Weise die Abfrage 101 durchgeführt, ob ein Wendelbruch vorliegt. Ist dies der Fall oder befindet sich überhaupt keine Lampe im System, wird die Abfrage 101 laufend wiederholt, bis schließlich eine intakte Lampe erkannt wird.A summary of the described functions of the invention Electronic ballast is shown in Fig. 4. This shows a simplified one Flow diagram of the individual phases during lamp operation. After this Switching on 100 of the mains voltage or a short mains failure is first in the Query 101 just carried out described whether there is a spiral break. If this is the case or if there is no lamp at all in the system, the query is asked 101 continuously repeated until an intact lamp is finally recognized.

Wurde eine intakte Lampe erkannt, wird im nächsten Schritt 102 durch die zwei kurz aufeinanderfolgenden Stiftstrommessungen kontrolliert, ob die Wendeln kalt sind. Sind die Wendeln tatsächlich kalt, wird die Lampe normal vorgeheizt und die Lampenerkennung auf Basis der Messergebnisse vor und nach der Vorheizphase 103 durchgeführt. Wurde statt dessen eine warme Wendel erkannt, wird nur eine reduzierte Vorheizung 104 durchgeführt und der Lampentyp am Ende bestimmt. Nach dem Vorheizen 103 bzw. 104 wird schließlich die Zündung 105 der Lampe durchgeführt, wobei die Ansteuerung der vier Schalter in Abhängigkeit von dem erkannten Lampentyp erfolgt.If an intact lamp was recognized, the next step 102 will make it short successive pin current measurements checked whether the filaments are cold. are the filaments are actually cold, the lamp is preheated normally and the Lamp detection based on the measurement results before and after the preheating phase 103 carried out. If a warm coil was recognized instead, only a reduced one Preheating 104 performed and the lamp type determined at the end. After this Preheating 103 and 104, finally, ignition 105 of the lamp is carried out, the control of the four switches depending on the detected Lamp type is done.

Nach dem Zünden 105 befindet sich das System im Normal- bzw. Dimmbetrieb 106 indem eine dem Lampentyp und dem gewünschten Dimmgrad entsprechende Wechselspannungsfrequenz und Heizleistung von der Steuer-/Auswerteschaltung eingestellt wird. Während dieser Phase wird zusätzlich in regelmäßigen Abständen noch einmal eine Abfrage 107 durchgeführt, ob eventuell ein Wendelbruch aufgetreten ist oder ob die Lampe entfernt wurde. Ist dies der Fall, wird der Normal-/Dimmbetrieb beendet und das System in den Zustand der ursprünglichen Wendelbruchabfrage 101 zurückversetzt. Denkbar wäre allerdings auch, den Wechselrichter beim Erkennen eines Wendelbruchs oder eines anderen Defekts der Lampe abzuschalten. Mit Hilfe einer geeigneten Schaltung könnte dann überwacht werden, ob die defekte Lampe durch eine neue ersetzt worden ist. Wird schließlich wieder eine intakte Lampe in dem System erkannt, kann automatisch ein Neustart eingeleitet werden. Wird in der Kontrollmessung 107 keine Veränderung des Lampenzustands festgestellt, wird die Lampe solange im Normal-/Dimmbetrieb angesteuert, bis sie schließlich ausgeschaltet wird. Dabei zeigt das Flußdiagramm in Fig. 4 nur eine Möglichkeit des Ablaufs der verschiedenen Kontrollmessungen und Phasen der Lampe. Denkbar wären natürlich auch sehr viele andere Steuerverfahren, in denen die verschiedenen Messungen zu anderen Zeitpunkten stattfinden.After ignition 105, the system is in normal or dimming operation 106 by one corresponding to the lamp type and the desired degree of dimming AC voltage frequency and heating power from the control / evaluation circuit is set. During this phase, in addition, at regular intervals once a query 107 is carried out as to whether a spiral break has possibly occurred or whether the lamp was removed. If this is the case, the normal / dimming operation ended and the system in the state of the original spiral break query 101 set back. However, it would also be conceivable for the inverter to recognize one Turn off the filament break or another defect in the lamp. With the help of a suitable circuit could then be monitored whether the defective lamp by a new one has been replaced. Finally, an intact lamp in the system detected, a restart can be initiated automatically. Will in the Control measurement 107 no change in the lamp state is found, the The lamp is controlled in normal / dimming mode until it is finally switched off becomes. The flowchart in FIG. 4 shows only one possibility of the process of the various control measurements and phases of the lamp. Of course, would be conceivable also very many other control procedures in which the different measurements are made too take place at other times.

Es werden somit insgesamt zur Steuerung der Lampe in der eben beschriebenen Weise Strommessungen an zwei verschiedenen Stellen der Schaltung (in einem der beiden sekundären Wendelheizkreise und im Primärheizkreis) sowie eine steuerbare Schaltervorrichtung zum Zuschalten des primären Heizkreises benötigt. Der Materialaufwand für eine derartige Erweiterung ist dabei relativ niedrig. Aus den Beschreibungen der verschiedenen Erfassungsmessungen ergibt sich, daß anstellte der Spannungsmessungen an den beiden Meßwiderständen R2 und R3 auch andere strommessende Verfahren eingesetzt werden können, da zur Lampenerkennung und zur Erfassung eines Wendelbruchs nur die jeweiligen Stromstärken bestimmt werden müssen. Außerdem sind die dargestellten Anordnungen für die Meßwiderstände R2 und R3 nicht zwingend vorgeschrieben. Beispielsweise kann sich der Meßwiderstand R2 auch zwischen den beiden Schaltern S3 und S4 befinden. Ebenso kann der Stiftstrom auch in dem Heizkreis der oberen Wendel W2 und somit der Wendelwiderstand der oberen Wendel W2 gemessen werden.It is thus used to control the lamp as a whole in the manner just described Current measurements at two different points in the circuit (in one of the two secondary spiral heating circuits and in the primary heating circuit) as well as a controllable one Switch device required to switch on the primary heating circuit. The The cost of materials for such an expansion is relatively low. From the Descriptions of the various acquisition measurements show that the Voltage measurements on the two measuring resistors R2 and R3 also others current measuring methods can be used, as for lamp detection and Detection of a spiral break only the respective current strengths can be determined have to. In addition, the arrangements shown for the measuring resistors R2 and R3 not mandatory. For example, the measuring resistor R2 are also located between the two switches S3 and S4. Likewise, the pen stream also in the heating circuit of the upper coil W2 and thus the coil resistance of the upper coil W2 can be measured.

Claims (22)

  1. Electronic ballast for at least one low-pressure discharge lamp (LA), having an inverter that is fed with direct voltage (UBUS) and the output of which is connected to a load circuit containing terminal contacts for the lamp (LA), having a heating transformer that has a primary winding (Tp), which is connected to the output of the inverter, and a respective secondary winding (Ts1, Ts2), which is located in a heating circuit with a coil (W1, W2), for heating each of the two electrodes of the lamp (LA), having a series circuit arrangement that is connected in parallel with the load circuit and which contains the primary winding (Tp) of the heating transformer and an electronic switch arrangement (S3, S4), and having an evaluating circuit arrangement that measures the current flowing through the series circuit arrangement with the primary winding (Tp) and the electronic switch arrangement (S3, S4), characterised in that the evaluating circuit arrangement, additionally to the current through the said series circuit arrangement, at the same time also measures the current flowing through at least one of the two heating circuits and evaluates the amplitudes or the time characteristic of the two measured currents in order to identify the type of lamp and the state of the lamp.
  2. Electronic ballast according to claim 1, characterised in that for the purpose of measuring the current through the series circuit arrangement with the primary winding (Tp) and the electronic switch arrangement (S3, S4), connected in series with the latter there is a first measuring resistor (R2), and in that the evaluating circuit arrangement evaluates the voltage which is generated at the first measuring resistor (R2) by the current (IR2) which flows through the latter.
  3. Electronic ballast according to claim 1 or 2, characterised in that for the purpose of measuring the current through one of the two heating circuits this heating circuit contains a second measuring resistor (R3), and in that the voltage that drops across this second measuring resistor (R3) and which is generated by the current (IR3) flowing through the latter is fed to the evaluating circuit arrangement.
  4. Electronic ballast according to claim 3, characterised in that the second measuring resistor (R3) is arranged in one of the two heating circuits in such a way that a lamp current flowing through the lamp (LA) after the lamp (LA) has been ignited flows in the same direction in which a heating current that is generated by the heating transformer flows through the second measuring resistor (R3).
  5. Electronic ballast according to any of claims 1 to 4, characterised in that the electronic switch arrangement (S3, S4) is formed by two field-effect transistors (S3, S4) which are orientated in opposition to each other, and in that the primary winding (Tp) of the heating transformer and also a coupling capacitor (C3), which is connected in series with the latter, are arranged between the two field-effect transistors (S3, S4).
  6. Electronic ballast according to claim 5, characterised in that the gates of the two field-effect transistors (S3, S4) are activated by way of a common pulse-width modulated signal (A3).
  7. Electronic ballast according to claim 4 and claim 6, characterised in that after the lamp (LA) has been ignited a pulse duty factor is set for the pulse-width modulated signal (A3) in such a way that the current (IR3) flowing through the second measuring resistor (R3) is substantially equal to a rated value.
  8. Electronic ballast according to claim 7, characterised in that the rated value is established by the type of lamp detected by the evaluating circuit arrangement.
  9. Electronic ballast according to any of claims 1 to 8, characterised in that the inverter contains a half-bridge consisting of two electronic switches (S1, S2) that are connected in series and which are alternately opened and closed, and in that the load circuit, which contains the lamp (LA), and the series circuit arrangement with the primary winding (Tp) and the electronic switch arrangement (S3, S4) are connected in parallel with one of the two electronic switches (S1, S2).
  10. Electronic ballast according to claim 9 and any of claims 5 to 8, characterised in that a diode (D1) is arranged between the two gates of the field-effect transistors (S3, S4), and in that the gate of one of the two field-effect transistors (S3, S4) is connected to the output of the inverter by way of a resistor (R4).
  11. Electronic ballast according to claim 10, characterised in that a further capacitor (C4) is connected in parallel with the resistor (R4).
  12. Electronic ballast according to any of the preceding claims, characterised in that it contains a rectifier that is connected to the mains and which generates the direct voltage (UBUS) that is to be fed to the inverter.
  13. Electronic ballast according to any of the preceding claims, characterised in that the load circuit contains a choke coil (L1) which is connected in series with the lamp (LA), and a resonant capacitor (C2) which is connected in parallel with the lamp (LA).
  14. Electronic ballast according to any of the preceding claims, characterised in that for the purpose of identifying the type of the lamp (LA) the current (IR3) that flows through one of the two heating circuits and which is dependent upon the respective coil resistance is measured and evaluated by the evaluating circuit arrangement.
  15. Electronic ballast according to claim 14, characterised in that for the purpose of identifying the type of the lamp (LA) the evaluating circuit arrangement compares the peak value of the current (IR3), measured in one of the two heating circuits, with reference values.
  16. Electronic ballast according to claim 14 or 15, characterised in that measurements for the purpose of identifying the lamp type are carried out in each case at the beginning and at the end of a preheating phase of the lamp (LA).
  17. Electronic ballast according to claim 16, characterised in that in a check measurement for distinguishing between a warm and a cold coil (W1, W2) before the preheating phase of the lamp (LA) the evaluating circuit arrangement compares the amplitudes or the peak values of two currents (IR3), measured shortly one after the other, through one of the two heating circuits.
  18. Electronic ballast according to claim 16 and 17, characterised in that only the result of the measurement at the end of the preheating phase of the lamp (LA) is used in order to identify the type of lamp if a warm coil (W1, W2) has been identified in the check measurement.
  19. Electronic ballast according to any of the preceding claims, characterised in that for the purpose of identifying a change of lamp or lamp defect the evaluating circuit arrangement evaluates simultaneously measured peak values of the currents (IR2, IR3) through the series circuit arrangement with the primary winding (Tp) and the electronic switch arrangement (S3, S4) and also through one of the two heating circuits.
  20. Electronic ballast according to claim 19, characterised in that the evaluating circuit arrangement sets the simultaneously measured peak values in relation to each other and evaluates the result.
  21. Electronic ballast according to claim 19 or 20, characterised in that a measurement is effected in order to identify a change of lamp or lamp defect immediately after the ballast has been switched on.
  22. Electronic ballast according to any of claims 19 to 21, characterised in that after the lamp (LA) has been ignited a measurement is carried out at regular intervals to identify a change of lamp or lamp defect.
EP00927003A 1999-05-25 2000-04-19 Electronic ballast for at least one low-pressure discharge lamp Expired - Lifetime EP1103165B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19923945A DE19923945A1 (en) 1999-05-25 1999-05-25 Electronic ballast for at least one low-pressure discharge lamp
DE19923945 1999-05-25
PCT/EP2000/003573 WO2000072640A1 (en) 1999-05-25 2000-04-19 Electronic ballast for at least one low-pressure discharge lamp

Publications (2)

Publication Number Publication Date
EP1103165A1 EP1103165A1 (en) 2001-05-30
EP1103165B1 true EP1103165B1 (en) 2003-07-16

Family

ID=7909138

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00927003A Expired - Lifetime EP1103165B1 (en) 1999-05-25 2000-04-19 Electronic ballast for at least one low-pressure discharge lamp

Country Status (8)

Country Link
US (1) US6366031B2 (en)
EP (1) EP1103165B1 (en)
AT (1) ATE245336T1 (en)
AU (1) AU761194B2 (en)
BR (1) BR0006149A (en)
DE (2) DE19923945A1 (en)
NZ (1) NZ509309A (en)
WO (1) WO2000072640A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007047142A1 (en) 2007-10-02 2009-04-09 Tridonicatco Gmbh & Co. Kg Gas discharge lamp type detecting method, involves detecting spiral coil current, measuring spiral coil voltage directly or indirectly, and comparing measured coil voltage or calculated resistance of spiral coil with standard values
DE102008012453A1 (en) 2008-03-04 2009-09-10 Tridonicatco Gmbh & Co. Kg Method for checking that at least two gas discharge lamps to be operated with an electronic ballast are of the same type
DE102008012454A1 (en) 2008-03-04 2009-09-10 Tridonicatco Gmbh & Co. Kg Method for determining operational parameters of gas discharge lamp operated with electronic ballast, involves determining cold resistance and hot resistance of helices at two different times during preheating phase
DE102008022198A1 (en) 2008-03-04 2009-09-10 Tridonicatco Gmbh & Co. Kg Type recognition of a gas discharge lamp to be operated with an electronic ballast
DE102008012452A1 (en) * 2008-03-04 2009-09-10 Tridonicatco Gmbh & Co. Kg Circuit for heating and monitoring the heating coils of at least one operated with an electronic ballast gas discharge lamp on spiral breakage

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501235B2 (en) * 2001-02-27 2002-12-31 Stmicroelectronics Inc. Microcontrolled ballast compatible with different types of gas discharge lamps and associated methods
US6577076B2 (en) * 2001-09-04 2003-06-10 Koninklijke Philips Electronics N.V. Adaptive control for half-bridge universal lamp drivers
DE10200053A1 (en) * 2002-01-02 2003-07-17 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Operating device for discharge lamps with preheating device
DE10206731B4 (en) * 2002-02-18 2016-12-22 Tridonic Gmbh & Co Kg Lamp sensor for a ballast for operating a gas discharge lamp
US6909248B2 (en) * 2002-08-26 2005-06-21 Heraeus Holding Gmbh Deuterium arc lamp assembly with an elapsed time indicator system and a method thereof
AU2002368295A1 (en) * 2002-10-14 2004-05-04 B And S Elektronische Gerate Gmbh Method and device for establishing a connection between a lamp and an electronic apparatus that is disposed upstream therefrom
DE10345610A1 (en) * 2003-09-29 2005-05-12 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Method for operating at least one low-pressure discharge lamp
DE102004025774A1 (en) * 2004-05-26 2005-12-22 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Ballast for discharge lamp with continuous operation control circuit
US7193368B2 (en) * 2004-11-12 2007-03-20 General Electric Company Parallel lamps with instant program start electronic ballast
CN101120619A (en) * 2005-02-14 2008-02-06 皇家飞利浦电子股份有限公司 A method and a circuit arrangement for operating a high intensity discharge lamp
DE102005013564A1 (en) * 2005-03-23 2006-09-28 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Circuit arrangement and method for operating at least one lamp
US7414369B2 (en) * 2005-04-18 2008-08-19 Marvell World Trade Ltd. Control system for fluorescent light fixture
CN1856207B (en) * 2005-04-18 2011-06-29 马维尔国际贸易有限公司 Improved control system for fluorescent light fixture
US7560866B2 (en) * 2005-04-18 2009-07-14 Marvell World Trade Ltd. Control system for fluorescent light fixture
DE102005018761A1 (en) 2005-04-22 2006-10-26 Tridonicatco Gmbh & Co. Kg Intelligent flyback heater
DE102005030115A1 (en) * 2005-06-28 2007-01-18 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Circuit arrangement and method for operating at least one LED and at least one electric lamp
DE102005052525A1 (en) * 2005-11-03 2007-05-10 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Control circuit for a switchable heating transformer of an electronic ballast and corresponding method
US7586268B2 (en) * 2005-12-09 2009-09-08 Lutron Electronics Co., Inc. Apparatus and method for controlling the filament voltage in an electronic dimming ballast
US7969100B2 (en) * 2007-05-17 2011-06-28 Liberty Hardware Manufacturing Corp. Bulb type detector for dimmer circuit and inventive resistance and short circuit detection
US7855518B2 (en) * 2007-06-19 2010-12-21 Masco Corporation Dimming algorithms based upon light bulb type
US7728525B2 (en) * 2007-07-27 2010-06-01 Osram Sylvania Inc. Relamping circuit for battery powered ballast
US7626344B2 (en) * 2007-08-03 2009-12-01 Osram Sylvania Inc. Programmed ballast with resonant inverter and method for discharge lamps
US7446488B1 (en) 2007-08-29 2008-11-04 Osram Sylvania Metal halide lamp ballast controlled by remote enable switched bias supply
DE102008016752A1 (en) * 2008-03-31 2009-10-01 Tridonicatco Schweiz Ag Detection of the occupation of a connection of a control gear for lamps
DE102008021351A1 (en) * 2008-04-29 2009-11-05 Osram Gesellschaft mit beschränkter Haftung Method for operating a discharge lamp and lighting system with a discharge lamp
US7880391B2 (en) * 2008-06-30 2011-02-01 Osram Sylvania, Inc. False failure prevention circuit in emergency ballast
PL2364572T3 (en) * 2008-12-04 2013-03-29 Osram Ag Method for operating a lamp and electronic ballast
DE102009007159A1 (en) * 2009-02-03 2010-10-07 Osram Gesellschaft mit beschränkter Haftung Circuit arrangement for operating a converter
US8232727B1 (en) 2009-03-05 2012-07-31 Universal Lighting Technologies, Inc. Ballast circuit for a gas-discharge lamp having a filament drive circuit with monostable control
US20100327759A1 (en) * 2009-06-24 2010-12-30 Koninklijke Philips Electronics N.V. Electronic ballast for a fluorescent lamp
US8324813B1 (en) * 2010-07-30 2012-12-04 Universal Lighting Technologies, Inc. Electronic ballast with frequency independent filament voltage control
DE102010063933A1 (en) * 2010-12-22 2012-06-28 Tridonic Gmbh & Co Kg Operating device and method for operating gas discharge lamps
CN103563490B (en) 2011-05-09 2015-09-16 通用电气公司 Modified form for ballast can program start-up circuit
DE102011085659A1 (en) 2011-11-03 2013-05-08 Tridonic Gmbh & Co. Kg Clocked heating circuit for control gear for lamps
CN102595747B (en) * 2012-02-05 2014-03-12 浙江大学 Fluorescent lamp type identification method based on digital control electronic ballast and digital general electronic ballast
US8723429B2 (en) * 2012-04-05 2014-05-13 General Electric Company Fluorescent ballast end of life protection
CN106654817A (en) * 2017-03-17 2017-05-10 京东方科技集团股份有限公司 Excimer laser generator and excimer laser annealing equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172034A (en) * 1990-03-30 1992-12-15 The Softube Corporation Wide range dimmable fluorescent lamp ballast system
US5656891A (en) * 1994-10-13 1997-08-12 Tridonic Bauelemente Gmbh Gas discharge lamp ballast with heating control circuit and method of operating same
DE59506306D1 (en) * 1995-01-13 1999-08-05 Siemens Ag Circuit arrangement for filament preheating of fluorescent lamps
DE19520999A1 (en) 1995-06-08 1996-12-12 Siemens Ag Circuit arrangement for filament preheating of fluorescent lamps
DE29514817U1 (en) 1995-09-15 1995-11-16 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 81543 München Circuit arrangement for operating at least one low-pressure discharge lamp
JP2972691B2 (en) * 1997-02-12 1999-11-08 インターナショナル・レクチファイヤー・コーポレーション Phase control circuit for electronic ballast
DE19708792A1 (en) * 1997-03-04 1998-09-10 Tridonic Bauelemente Method and device for detecting the rectification effect occurring in a gas discharge lamp
EP0889675A1 (en) * 1997-07-02 1999-01-07 MAGNETEK S.p.A. Electronic ballast with lamp tyre recognition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007047142A1 (en) 2007-10-02 2009-04-09 Tridonicatco Gmbh & Co. Kg Gas discharge lamp type detecting method, involves detecting spiral coil current, measuring spiral coil voltage directly or indirectly, and comparing measured coil voltage or calculated resistance of spiral coil with standard values
DE102008012453A1 (en) 2008-03-04 2009-09-10 Tridonicatco Gmbh & Co. Kg Method for checking that at least two gas discharge lamps to be operated with an electronic ballast are of the same type
DE102008012454A1 (en) 2008-03-04 2009-09-10 Tridonicatco Gmbh & Co. Kg Method for determining operational parameters of gas discharge lamp operated with electronic ballast, involves determining cold resistance and hot resistance of helices at two different times during preheating phase
DE102008022198A1 (en) 2008-03-04 2009-09-10 Tridonicatco Gmbh & Co. Kg Type recognition of a gas discharge lamp to be operated with an electronic ballast
DE102008012452A1 (en) * 2008-03-04 2009-09-10 Tridonicatco Gmbh & Co. Kg Circuit for heating and monitoring the heating coils of at least one operated with an electronic ballast gas discharge lamp on spiral breakage
WO2009109325A1 (en) * 2008-03-04 2009-09-11 Tridonicatco Gmbh & Co. Kg Type recognition of a gas discharge lamp to be operated with an electronic ballast
CN102027809A (en) * 2008-03-04 2011-04-20 三多尼克两合股份有限公司 Lighting system and method for testing whether at least two gas discharge lamps to be operated by an evg are the same type
EP2355626A2 (en) 2008-03-04 2011-08-10 Tridonic GmbH & Co KG Lighting system and method for testing whether at least two gas discharge lamps to be operated with a ballast are of the same type
CN102027809B (en) * 2008-03-04 2014-10-01 三多尼克两合股份有限公司 Lighting system and method for testing whether at least two gas discharge lamps to be operated by an evg are the same type

Also Published As

Publication number Publication date
DE19923945A1 (en) 2000-12-28
EP1103165A1 (en) 2001-05-30
US6366031B2 (en) 2002-04-02
ATE245336T1 (en) 2003-08-15
AU4553600A (en) 2000-12-12
BR0006149A (en) 2001-04-17
AU761194B2 (en) 2003-05-29
DE50002900D1 (en) 2003-08-21
US20010002780A1 (en) 2001-06-07
WO2000072640A1 (en) 2000-11-30
NZ509309A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
EP1103165B1 (en) Electronic ballast for at least one low-pressure discharge lamp
EP1519638B1 (en) Method for operating a low pressure discharge lamp
EP1066739B1 (en) Method and device for detecting the rectification effect occurring in a gas-discharge lamp
EP0779768B1 (en) Circuit for operating a discharge lamp
EP0707438A2 (en) Ballast for at least one discharge lamp
EP1103166B1 (en) Electronic ballast for at least one low-pressure discharge lamp
EP1425943B1 (en) Method and device for operating a fluorescent tube in an energy saving manner
DE102009009915A1 (en) Procedure, control gear and lighting system
DE3338464C2 (en) Circuit arrangement for operating at least one fluorescent lamp with adjustable brightness on a self-oscillating inverter
DE102009030496A1 (en) Discharge lamp lighting device and lighting
EP2208403B1 (en) Operating device for controlling the warm-up time of a lamp
EP1901591B1 (en) Ignition of gas discharge lamps in variable ambient conditions
EP1276355B1 (en) Circuit arrangement to determine the pre-heating power
EP1040733B1 (en) Electronic lamp ballast
EP2274960B1 (en) Method and circuit arrangement for operating at least one discharge lamp
EP1048190B1 (en) Electronic lamp ballast
EP1860925B1 (en) Electronic lamp cut-in unit with heater switch
EP2796012B1 (en) Method, operating device and lighting system with integrated lamp rectifier effect detection
EP1040732B1 (en) Method for detecting a lamp change and electronic lamp ballast for operating gas-discharge lamps using such a method for detecting a lamp change
DE10127135B4 (en) Dimmable electronic ballast
DE19501695B4 (en) Ballast for at least one gas discharge lamp with preheatable lamp filaments
EP2468078B1 (en) Electronic ballast and method for operating at least one discharge lamp
DE19934687A1 (en) Electronic ballast for at least one low-pressure discharge lamp
DE102007027179A1 (en) Integrated control circuit i.e. hardware-controlled application-specific integrated circuit, for electronic ballast of e.g. low pressure-gas discharge lamp, has heating current detector detecting availability of heating circuit switch
EP2445319A2 (en) Method and device for fixing at least one dimming parameter for a high pressure HID discharge lamp connecting to a multi-lamp operating device with pre-defined nominal output

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20020125

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TRIDONICATCO GMBH & CO. KG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030716

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030716

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030716

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: A. BRAUN, BRAUN, HERITIER, ESCHMANN AG PATENTANWAE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50002900

Country of ref document: DE

Date of ref document: 20030821

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031016

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031016

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031027

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031216

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20030716

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040419

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040419

BERE Be: lapsed

Owner name: *TRIDONICATCO G.M.B.H. & CO. K.G.

Effective date: 20040430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: TRIDONICATCO GMBH & CO. KG

Free format text: TRIDONICATCO GMBH & CO. KG#FAERBERGASSE 15#6851 DORNBIRN (AT) -TRANSFER TO- TRIDONICATCO GMBH & CO. KG#FAERBERGASSE 15#6851 DORNBIRN (AT)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080424

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080422

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090423

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20091101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110427

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110422

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120419

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140430

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150630

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50002900

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161101