[go: up one dir, main page]

EP1515012B1 - Vorrichtung zur Entfernung von Russpartikeln aus einem Abgasstrom von Verbrennungsmotoren - Google Patents

Vorrichtung zur Entfernung von Russpartikeln aus einem Abgasstrom von Verbrennungsmotoren Download PDF

Info

Publication number
EP1515012B1
EP1515012B1 EP03020688A EP03020688A EP1515012B1 EP 1515012 B1 EP1515012 B1 EP 1515012B1 EP 03020688 A EP03020688 A EP 03020688A EP 03020688 A EP03020688 A EP 03020688A EP 1515012 B1 EP1515012 B1 EP 1515012B1
Authority
EP
European Patent Office
Prior art keywords
metal
coated
exhaust gas
foams
noble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03020688A
Other languages
English (en)
French (fr)
Other versions
EP1515012A1 (de
Inventor
Rolf Miebach
Wather Dr. Pelzer
Christian Dr. Kolbeck
Siegfried Figoutz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pankl Emission Control Systems GmbH
Deutz AG
Original Assignee
Pankl Emission Control Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP06021008A priority Critical patent/EP1734234A3/de
Priority to ES03020688T priority patent/ES2272867T3/es
Priority to DE50305367T priority patent/DE50305367D1/de
Priority to AT03020688T priority patent/ATE342434T1/de
Priority to DK03020688T priority patent/DK1515012T3/da
Application filed by Pankl Emission Control Systems GmbH filed Critical Pankl Emission Control Systems GmbH
Priority to EP03020688A priority patent/EP1515012B1/de
Priority to US10/938,716 priority patent/US20050056977A1/en
Publication of EP1515012A1 publication Critical patent/EP1515012A1/de
Application granted granted Critical
Publication of EP1515012B1 publication Critical patent/EP1515012B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0231Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using special exhaust apparatus upstream of the filter for producing nitrogen dioxide, e.g. for continuous filter regeneration systems [CRT]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/14Sintered material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/22Metal foam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses

Definitions

  • the invention relates to a device for removing soot particles from an exhaust gas stream of internal combustion engines in a module (1) by oxidation of the temporarily trapped soot particles with nitrogen dioxide (NO 2 ), wherein the nitrogen dioxide by oxidation of existing in the exhaust nitrogen monoxide (NO) to a catalyst in Depending on the flow rate of the exhaust gas at a temperature above about 200 ° C is formed.
  • NO 2 nitrogen dioxide
  • the lowering of the combustion temperature of the soot particles is of great importance in that the exhaust gases emitted from newly developed internal combustion engines are less and less hot.
  • the combustion temperature of the soot particles is approx. 580 ° C to 600 ° C.
  • the particular difficulty of removing the filtered ash remains.
  • the filter system is, for example, with a burner or electrically brought to the necessary for the oxidation of the soot particles temperature.
  • a burner or electrically brought to the necessary for the oxidation of the soot particles temperature is at the expense of the overall energy balance of the internal combustion engine.
  • Another possibility for the continuous removal of the filtered soot particles is to remove the particles from the filter substrate by injecting an additive which reduces the combustion temperature of the soot particles. Such an approach is also not a particularly suitable solution, because the added additives themselves contribute to the ash formation.
  • EP 341832 B1 discloses a process for the exhaust gas aftertreatment of heavy trucks.
  • the exhaust gas is first passed through a catalyst without filtering action to oxidize the nitrogen monoxide contained in the exhaust gas to nitrogen dioxide.
  • the nitrogen dioxide-containing exhaust gas is then used to burn off the soot particles collected in a downstream filter.
  • the amount of nitrogen oxide is sufficient to allow the combustion of the filtered soot particles below 400 ° C.
  • EP 835684 A2 discloses a method for the exhaust aftertreatment of vans and passenger cars. According to the specified method, the exhaust gas is passed over two catalysts arranged one behind the other. On the first catalyst, the nitrogen monoxide contained in the exhaust gas is oxidized to nitrogen dioxide. At the second downstream catalyst, which acts as a filter, the collected soot particles are then deposited and oxidized at a temperature of about 250 ° C partly according to equation (1) to carbon dioxide CO 2 and the nitrogen dioxide NO 2 reduced to nitrogen: 2NO 2 + 2C ⁇ 2CO 2 + N 2 (1)
  • the filtered soot particles are burned without the use of a burner or electric heating element, i. oxidized.
  • the first catalyst used consists of a honeycomb flow monolith coated with an oxidation catalyst.
  • EP 1 065 352 A discloses two mutually adjacent metal foams.
  • the upstream metal foam oxidizes NO to NOZ for soot oxidation in the downstream particulate filter.
  • a device for exhaust gas aftertreatment of diesel engines which contains in a housing a number of filter elements with different distances from each other. At least one filter element A has a coating which reduces the combustion temperature of soot. Furthermore, at least one filter element B is present which contains a catalyst which promotes the combustion of harmful gaseous substances.
  • JP 09079024 A discloses a series connection of a plurality of metal foams operating as particle filters, wherein the metal foams are partially spaced apart and the downstream metal foam filter has an oxidation catalyst coating to oxidize NO to NOZ.
  • WO 99/09307 a method for the reduction of soot emission from heavy trucks is known.
  • the exhaust gas for the oxidation of nitrogen monoxide to nitrogen dioxide is passed over a catalyst and then, as usual, for the oxidation of the soot collected in a soot filter.
  • New in the specified method is that a portion of the purified exhaust gas is then passed through a radiator and mixed with the intake air of the diesel engine.
  • the object of the present invention is to be seen in an operated as a permanently open system device for To provide exhaust aftertreatment of exhaust gas produced by internal combustion engine, which is constantly open as itself "on-board” regenerating system and operates essentially without the usual filter devices and thus prevents clogging of the exhaust aftertreatment system and at the same time achieves effective post-treatment of the evolved exhaust gas, especially with regard to the removal of the soot particles from the exhaust-gas engine to be treated.
  • soot particles present in the combustion engine exhaust gases are initially captured temporarily using a FeCr alloy based open-pore uncoated or coated metal foam.
  • the soot particles are then oxidized via the so-called gas catalysis according to equations (2) and (3) with the nitrogen dioxide NO 2 produced on an upstream noble metal-coated and open-pore metal foam, ie burned: NO 2 + C ⁇ CO + NO (2) 2CO + O 2 ⁇ 2CO 2 (3)
  • the nitrogen monoxide NO produced in accordance with equation (2) reacts again on at least one further noble metal-coated open-pored metal foam lying against the first uncoated or coated metal foam to form nitrogen dioxide NO 2 , which is an adjoining at least one further coated or uncoated metal foam for the oxidation of soot particles is available so that one can speak of a multiple use of nitrogen monoxide, which causes a sustained increase of the nitrogen dioxide NO 2 required for the reduction of soot particles and produced on the upstream and the other precious metal coated metal foam.
  • the metal foam is characterized by high thermal oxidation resistance, high thermal shock resistance, high corrosion resistance, especially against dilute sulfuric acid, and mechanical strength.
  • the noble metal-coated metal foam is coated at least with a noble metal from the group Ru, Rh, Pd, Os, Ir, Pt or a mixture of these noble metals.
  • coated or uncoated metal foam is advantageously coated with a compound which reduces the combustion temperature of the soot particles, with cerium orthovanadate (CeVO 4 ) preferably being used.
  • CeVO 4 cerium orthovanadate
  • coated metal foams are also not inhibited by the ash from the motor oil additives, since such ashes can pass through the metal foams and be blown out, so that the preferred device remains constantly open as a self-regenerating module.
  • the metal foam used according to the invention whose geometry can be chosen almost freely, can be produced by two different methods.
  • One method is based on the impregnation of a PU foam precursor with a so-called slurry, which contains spherical metal particles with a precisely defined particle size distribution, and a subsequent sintering process.
  • the other method is a conventional precision casting process.
  • a particular advantage of the open-pore metal foam used in contrast to wall-flow filters is particularly in the disordered Zellgedmetrie that allows within shortest distances a 3D mixing, ie a turbulent mixing of the exhaust gas. This will increases the efficiency of the catalyst device and prevents clogging.
  • the metal foam is formed with a relative density in the range of 2 to 20%, wherein the metal foam is electrically conductive.
  • the metal foam is preferably provided with a certain number of pores ranging from 3 to 80 pores per inch (pores per linear inch) or in abbreviation (ppi).
  • the noble metal coating on the metal foam is preferably used directly or by impregnation of a washcoat with a noble metal from the group Ru, Rh, Pd, Os, Ir, Pt or a mixture of these noble metals in a concentration of 1.0 g to 2.5 g Precious metal applied per liter of metal foam.
  • a catalyst formed in this way is an oxidation catalyst which, depending on the flow rate, of course also oxidizes hydrocarbons (HC), including the heavy hydrocarbons (SOF), above about 200 ° C. and carbon monoxide (CO) above about 150 ° C.
  • metal foams with a Ce (III) VO 4 (cerium orthovanadate) coating are preferably provided in the device, a catalytically active compound which reduces the combustion temperature of the soot particles, a so-called oxygen storage compound.
  • a catalytically active compound which reduces the combustion temperature of the soot particles, a so-called oxygen storage compound.
  • Such a catalyst reduces the combustion temperature of the soot particles to about 360 ° C in direct contact, so that one speaks of a so-called solid-phase catalysis.
  • the metal foam is advantageously reduced to the combustion temperature of the soot particles Compound Cer orthovanadate by a plasma method, a wash-coat method or a sol-gel method in a concentration of 1.0 g to 25 g CeVO 4 applied per liter of metal foam.
  • the arrangement of the noble metal-coated and the coated or uncoated metal foams in the catalyst module is such that at least two noble metal-coated open-cell metal foams are provided, which are each preceded by an uncoated or coated metal foam.
  • the device should preferably consist at least of a metal foam coated with a noble metal.
  • the number of pores of the metal foams in the direction of the exhaust gas flow is variable. However, the number of pores of the metal foams preferably increases downstream. There is no gap between the individual or all metal foams, they are arranged adjacent to one another.
  • the metal foams can be introduced particularly advantageously cohesively into a metallic housing, preferably by soldering, since it is the metal foams used, as already mentioned, is a metallic compound.
  • the metal foams used is a metallic compound.
  • a particular embodiment of the device according to the invention is that the metal foams are introduced with a bearing mat in the metallic module.
  • a module can be constructed in an advantageous manner, which is composed of a plurality of identically designed modules or modules of different design.
  • the modules are preferably arranged parallel to the exhaust gas flow, depending on the requirements of two identical or different modules or three identical or different modules and the like.
  • a flowed through by the exhaust module 1 is shown, are arranged in the metal foams 2, 3 alternately one behind the other.
  • the metal foams are alternately coated or uncoated with a noble metal from the group Ru, Rh, Pd, Os, Ir, Pt or a mixture of these noble metals.
  • the coated metal foams 2 are each arranged upstream of the uncoated metal foams 3 in the exhaust gas flow, which capture each of the soot particles temporarily.
  • Fig. 2 not the subject of the invention, shows the module 1, are arranged in the only coated with precious metal foams 2, which capture even soot particles temporarily.
  • FIG. 3 shows the module 1, in which metal foams coated alternately with precious metal 2 and with a metal foams 4 coated with the combustion temperature of soot particles are arranged.
  • the respective noble metal-coated metal foams 2 upstream of the coated with a combustion temperature of soot particles reducing compound metal foams 4 are mounted in the exhaust gas flow, each capture the soot particles temporarily.
  • the trapped soot is additionally oxidized by direct contact with the superficially applied coating acting as a catalyst.
  • the applied coating consists of an oxygen storage compound, such as cerium orthovanadate Ce (III) VO 4 .
  • FIG. 4 shows a further exemplary embodiment with an overall module 5, which is constructed from two parallel modules 1 'according to the exemplary embodiment according to FIG. 1, but in which the conically tapered inlet region for the exhaust gas and the conically tapered outlet region for the exhaust gas
  • the exhaust gas flows through the modules 1 'arranged in parallel, as indicated in connection with FIG. 1.
  • the metal foams 2, 3 are alternately coated or uncoated with a noble metal from the group Ru, Rh, Pd, Os, Ir, Pt or a mixture of these noble metals.
  • the coated metal foams 2 are each arranged upstream of the uncoated metal foams 3 in exhaust gas flow.
  • FIG. 5 shows a cross section through the total module 5 shown in FIG. 4 along the section line A-B, wherein in each case a module 1 'is arranged parallel to the exhaust gas flow and flows through the exhaust gas.
  • the parallel arrangement and the number of modules 1 'in the overall module 5 can be adapted almost arbitrarily to the respective engine power.
  • the required efficiency with regard to the removal of soot particles from the combustion engine generated exhaust gas flow advantageously be taken into account, by the type of precious metal coating or precious metal loading, the geometric surface of the metal foam and the number of coated metal foams.
  • emissions reductions for soot particles of approx. 85% to 90% could be achieved without exceeding the required permissible nitrogen dioxide limit values.
  • the efficiency for the reduction of the soot particle emission by a thermally induced regeneration can be further increased, as can be achieved for example with a burner or an electrical energy input by a resistance heating.
  • the thermally induced regeneration can also take place by oxidation of late injected into the internal combustion engine fuel, a so-called post-injection, through which the exhaust gas temperature can first be raised from about 150 to 200 ° C to about 400 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zur Entfernung von Rußpartikeln aus einem Abgasstrom von Verbrennungsmotoren in einem Modul (1) durch Oxidation der temporär eingefangenen Rußpartikel mit Stickstoffdioxid (NO2), wobei das Stickstoffdioxid durch Oxidation des im Abgas vorhandenen Stickstoffmonoxids (NO) an einem Katalysator in Abhängigkeit von der Strömungsgeschwindigkeit des Abgases bei einer Temperatur oberhalb von etwa 200°C entsteht.
  • Zur Absenkung der Rußpartikelemission könnten rein motorseitige Maßnahmen zur Einhaltung der weltweit immer strengeren Emissions-Grenzwerte, wie beispielsweise EURO IV / EURO V oder ULEV / SULEV, für kraftstoffbetriebene Verbrennungsmotoren lediglich mit einem wirtschaftlich nicht vertretbaren Aufwand erzielt werden. Daher kommen heute wie auch zukünftig so genannte Abgasnachbehandlungsanlagen zum Einsatz.
  • Grundsätzlich wird dabei zwischen zwei Verfahren zur Abgasnachbehandlung unterschieden, die sich einerseits auf die Minimierung der NOx-Emissionen, die hier lediglich am Rande erwähnt seien, wie beispielsweise SCR-Katalysatorsysteme und NOx-Speicherkatälysatoren, und andererseits auf die Minimierung der Rußpartikelemission konzentrieren.
  • Durch den Einsatz einer geeigneten Abgasnachbehandlungsanlage für Kraftfahrzeuge in Kombination mit motorseitigen Maßnahmen ist es demnach möglich, die strengen Vorschriften hinsichtlich der Rußpartikelemission und der NOx-Emissionen einzuhalten.
  • So können heute beispielsweise mit klassischen Filteranlagen, wie z. B. keramischen Wall-Flow-Filtern, hinsichtlich der hier interessierenden Rußpartikel bereits Abscheidegrade von >95 % erzielt werden. Durch die Ansammlung von Rußpartikeln und von Asche aus den Motoröladditiven kommt es jedoch bei solchen Anlagen mit der Zeit zu einem unerwünschten Anstieg des Motorgegendruckes, der wiederum zu einem erhöhten Treibstoffverbrauch führt. Aus dem Grund sind derartige Filteranlagen in regelmäßigen Zeitabständen komplett zu demontieren und zu reinigen.
  • Weiterentwickelte Varianten derartiger Filteranlagen tragen den erwähnten Nachteilen der im Einsatz befindlichen Filteranlagen insofern Rechnung, als solche Anlagen auf der Filteroberfläche eine katalytische Beschichtung aufweisen. Durch eine derartige Beschichtung als Aktivkomponente wird die Verbrennungstemperatur der Rußpartikel merklich herabgesetzt.
  • Die Herabsetzung der Verbrennungstemperatur der Rußpartikel ist insofern von großer Bedeutung, als die Abgase, die von neu entwickelten Verbrennungsmotoren ausgestoßen werden, immer weniger heiß sind. Bei Filteranlagen ohne katalytische Beschichtung der Filteroberfläche liegt die Verbrennungstemperatur der Rußpartikel bei ca. 580°C bis 600°C. Allerdings bleibt auch bei den Varianten derartiger Filteranlagen noch die besondere Schwierigkeit der Entfernung der gefilterten Asche bestehen.
  • Einen weiteren Lösungsansatz zur Entfernung des im Filter angesammelten Rußes stellt die thermisch induzierte Regeneration dar. Dabei wird die Filteranlage beispielsweise mit einem Brenner oder elektrisch auf die für die Oxidation der Rußpartikel nötige Temperatur gebracht. Ein solches Verfahren geht selbstverständlich auf Kosten der Gesamtenergiebilanz des Verbrennungsmotors.
  • Eine andere Möglichkeit zur kontinuierlichen Entfernung der gefilterten Rußpartikel besteht darin, die Partikel durch Eindüsen eines die Verbrennungstemperatur der Rußpartikel herabsetzenden Additives aus dem Filtersubstrat zu entfernen. Ein solcher Lösungsansatz stellt ebenfalls keine besonders geeignete Lösung dar, weil die zugeführten Additive selbst zur Aschebildung beitragen.
  • Andere Lösungsansätze beschäftigen sich wiederum mit der Oxidation der gefilterten Rußpartikel mit NO2.
  • Aus der EP 341832 B1 geht ein Verfahren für die Abgasnachbehandlung von schweren Lastkraftwagen hervor. Bei dem Verfahren wird das Abgas zuerst über einen Katalysator ohne Filterwirkung geleitet, um das im Abgas enthaltene Stickstoffmonoxid zu Stickstoffdioxid zu oxidieren. Das Stickstoffdioxid enthaltende Abgas wird dann zum Abbrand der in einem stromabwärts angeordneten Filter gesammelten Rußpartikel verwendet. Dabei reicht die Stickstoffoxidmenge aus, um die Verbrennung der gefilterten Rußpartikel bei unter 400°C zu ermöglichen.
  • Weiter ist aus der EP 835684 A2 ein Verfahren zur Abgasnachbehandlung von Lieferwagen und Personenkraftwagen bekannt. Entsprechend dem angegebenen Verfahren wird das Abgas über zwei hintereinander angeordnete Katalysatoren geleitet. Am ersten Katalysator wird das im Abgas enthaltene Stickstoffmonoxid zu Stickstoffdioxid oxidiert. Am zweiten stromabwärts angeordneten Katalysator, der als Filter wirkt, werden dann die gesammelten Rußpartikel abgelagert und bei einer Temperatur von ca. 250°C teilweise entsprechend der Gleichung (1) zu Kohlendioxid CO2 oxidiert und das Stickstoffdioxid NO2 zu Stickstoff reduziert:

            2NO2 +2C → 2CO2 + N2     (1)

  • Demnach werden bei dem bekannten Verfahren die gefilterten Rußpartikel ohne die Verwendung eines Brenners oder elektrischen Heizelementes verbrannt, d.h. oxidiert. Dabei besteht der verwendete erste Katalysator aus einem Waben-Durchfluss-Monolithen, der mit einem Oxidationskatalysator beschichtet ist.
  • EP 1 065 352 A offenbart zwei aneinander anliegende Metallschäume. Der stromaufwärtige Metallschaum oxidiert NO zu NOZ zur Rußoxidation im dahinter liegenden Partikel Filter.
  • Aus der DE 3407172 C2 ist eine Vorrichtung zur Abgasnachbehandlung von Dieselmotoren bekannt, die in einem Gehäuse eine Reihe von Filterelementen mit unterschiedlichem Abstand voneinander enthält. Dabei weist zumindest ein Filterelement A eine die Verbrennungstemperatur von Ruß herabsetzende Beschichtung auf. Weiter ist zumindest ein Filterelement B vorhanden, das einen die Verbrennung von schädlichen gasförmigen Substanzen unterstützenden Katalysator enthält.
  • JP 09079024 A offenbart eine Reihenschaltung mehrerer, als Partikel Filter arbeitende, Metallschäume, wobei die Metallschäume teilweise voneinander beabstandet sind und der stromabwärtige Metallschaum Filter eine Oxidationskatalysatorbeschichtung aufweist, um NO zu NOZ aufzuoxidieren.
  • Aus der WO 99/09307 ist ein Verfahren für die Reduktion der Rußemission von schweren Lastkraftwagen bekannt. Bei dem angegebenen Verfahren wird das Abgas zur Oxidation von Stickstoffmonoxid zu Stickstoffdioxid über einen Katalysator und danach wie üblich zur Oxidation des in einem Rußfilter gesammelten Rußes geleitet. Neu bei dem angegebenen Verfahren ist, dass ein Teil des gereinigten Abgases danach über einen Kühler geleitet und mit der Ansaugluft des Dieselmotors vermischt wird.
  • Die bekannten Verfahren zur Abgasnachbehandlung von verbrennungsmotorisch erzeugten Abgasen weisen noch den Nachteil auf, dass jeweils Filtervorrichtungen verwendet werden, die trotz aller weiteren vorgesehenen Hilfsmaßnahmen die Gefahr mit sich bringen, irgendwann zu verstopfen.
  • Die Aufgabe der vorliegenden Erfindung ist darin zu sehen, eine als ständig offenes System betriebene Vorrichtung zur Abgasnachbehandlung von verbrennungsmotorisch erzeugtem Abgas zu schaffen, die als sich selbst "On-Board" regenerierende Anlage ständig offen ist und im wesentlichen ohne die sonst üblichen Filtervorrichtungen arbeitet und damit ein Verstopfen der Abgasnachbehandlungsanlage verhindert sowie gleichzeitig eine wirkungsvolle Nachbehandlung des hervorgerufenen Abgases erzielt, vor allem hinsichtlich der Entfernung der Rußpartikel aus dem zu behandelnden verbrennungsmotorisch erzeugtem Abgas.
  • Nach der Erfindung wird die Aufgabe bei einer gattungsgemäßen Vorrichtung durch die Merkmale des unabhängigen Anspruchs 1 gelöst. Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
  • Dabei hat sich als besonders vorteilhaft erwiesen, dass die in den verbrennungsmotorisch erzeugten Abgasen vorhandenen Rußpartikel mit Hilfe eines auf einer FeCr-Legierung basierenden offenporigen unbeschichteten oder beschichteten Metallschaumes zunächst temporär eingefangen werden. Die Rußpartikel werden dann über die so genannte Gaskatalyse entsprechend den Gleichungen (2) und (3) mit dem an einem vorgeschalteten edelmetallbeschichteten und offenporigen Metallschaum erzeugten Stickstoffdioxid NO2 oxidiert, d.h. verbrannt:

            NO2 + C → CO + NO     (2)

            2CO + O2 → 2CO2     (3)

  • Das gemäß der Gleichung (2) entstehende Stickstoffmonoxid NO reagiert an zumindest einem weiteren, am ersten unbeschichteten oder beschichteten Metallschaum anliegend angeordneten edelmetallbeschichteten offenporigen Metallschaum wieder zu Stickstoffdioxid NO2, welches einem daran anliegend angeordneten mindestens einem weiteren beschichteten oder unbeschichteten Metallschaum zur Oxidation von Rußpartikeln wieder zur Verfügung steht so dass von einer Mehrfachnutzung des Stickstoffmonoxids gesprochen werden kann, die eine nachhaltige Steigerung des für die Reduktion von Rußpartikeln erforderlichen und an dem vorgeschalteten und dem weiteren edelmetallbeschichteten Metallschaum erzeugten Stickstoffdioxids NO2 hervorruft.
  • Der Metallschaum zeichnet sich durch hohe thermische Oxidationsbeständigkeit, hohe Temperaturwechselbeständigkeit, hohe Korrosionsbeständigkeit, insbesondere gegenüber verdünnter Schwefelsäure, und mechanische Festigkeit aus.
  • Dabei ist der edelmetallbeschichtete Metallschaum zumindest mit einem Edelmetall aus der Gruppe Ru, Rh, Pd, Os, Ir, Pt oder einem Gemisch dieser Edelmetalle beschichtet.
  • Weiter ist der beschichtete oder unbeschichtete Metallschaum vorteilhafter Weise mit einer die Verbrennungstemperatur der Rußpartikel herabsetzenden Verbindung beschichtet, wobei vorzugsweise Cer-orthovanadat (CeVO4) verwendet wird.
  • Als besonders vorteilhaft hat sich erwiesen, dass die beschichteten Metallschäume auch nicht von der Asche aus den Motoröladditiven inhibiert werden, da solche Asche die Metallschäume passieren kann und ausgeblasen wird, so dass die bevorzugte Vorrichtung als sich selbst regenerierendes Modul ständig offen bleibt.
  • Der erfindungsgemäß zum Einsatz kommende Metallschaum, dessen Geometrie nahezu frei wählbar ist, kann mit zwei unterschiedlichen Verfahren hergestellt werden. Ein Verfahren beruht auf der Imprägnierung eines PU-Schaum-Precursors mit einem so genannten Slurry, der sphärische Metallpartikel mit exakt definierter Partikelgrößenverteilung enthält, und einem anschließendem Sinterprozess. Bei dem anderen Verfahren handelt es sich um ein herkömmliches Feingussverfahren.
  • Ein besonderer Vorteil des verwendeten offenporigen Metallschaumes im Gegensatz zu Wall-Flow-Filtern besteht insbesondere in der ungeordneten Zellgedmetrie, die innerhalb kürzester Wegstrecken eine 3D-Durchmischung, d.h. eine turbulente Durchmischung, des Abgases ermöglicht. Dadurch wird der Wirkungsgrad der Katalysatorvorrichtung erhöht und ein Verstopfen verhindert.
  • Vorzugsweise ist der Metallschaum mit einer relativen Dichte im Bereich von 2 bis 20 % ausgebildet, wobei der Metallschaum elektrisch leitend ist.
  • Weiterhin ist der Metallschaum bevorzugter Weise mit einer gewissen Porenanzahl ausgestattet, die sich in einem Bereich von 3 bis 80 Poren pro inch (pores per (linear) inch) oder in der Abkürzung (ppi) befindet.
  • Die Edelmetallbeschichtung auf dem Metallschaum wird vorzugsweise direkt oder durch Imprägnierung eines Wash-coats mit einem Edelmetall aus der Gruppe Ru, Rh, Pd, Os, Ir, Pt oder einem Gemisch dieser Edelmetalle in einer Konzentration von 1,0 g bis 2,5 g Edelmetall pro Liter Metallschaum aufgebracht. Bei einem so ausgebildeten Katalysator handelt es sich um einen Oxidationskatalysator, der in Abhängigkeit von der Strömungsgeschwindigkeit selbstverständlich auch Kohlenwasserstoffe (HC) einschließlich der schweren Kohlenwasserstoffe (SOF) ab ca. 200°C und Kohlenmonoxid (CO) ab ca. 150°C oxidiert.
  • Weiterhin sind bei der Vorrichtung vorzugsweise Metallschäume mit einer Ce(III)VO4(Cer-orthovanadat)-Beschichtung vorgesehen, einer die Verbrennungstemperatur der Rußpartikel herabsetzenden katalytisch aktiven Verbindung, einer so genannten Sauerstoffspeicherverbindung. Ein solcher Katalysator setzt bei direktem Kontakt die Verbrennungstemperatur der Rußpartikel auf ca. 360°C herab, so dass man von einer so genannten Festphasenkatalyse spricht.
  • Dabei ist auf den Metallschaum vorteilhafter Weise die für die Verbrennungstemperatur der Rußpartikel herabsetzende Verbindung Cer-orthovanadat mit einem Plasma-Verfahren, einem Wash-coat-Verfahren oder einem Sol-Gel-Verfahren in einer Konzentration von 1,0 g bis 25 g CeVO4 pro Liter Metallschaum aufgebracht.
  • Die Anordnung der edelmetallbeschichteten sowie der beschichteten bzw. unbeschichteten Metallschäume in dem Katalysatormodul ist dabei so, daß mindestens zwei edelmetallbeschichtete offenporige Metallschäume vorgesehen sind, welche jeweils einem unbeschichteten oder beschichteten Metallschaum vorgeschaltet sind. Vorzugsweise sollte die Vorrichtung jedoch zumindest aus einem mit einem Edelmetall beschichteten Metallschaum bestehen. Durch Variation der Porenanzahl und/oder der relativen Dichte des Metallschaumes gelingt es in vorteilhafter Weise, eine über die Länge des Katalysatormodules kontinuierliche Regeneration des zu behandelnden Abgases zu erzielen.
  • Dabei ist die Porenanzahl der Metallschäume in Richtung des Abgasstromes variabel gestaltet. Die Porenanzahl der Metallschäume nimmt jedoch vorzugsweise stromabwärts zu. Zwischen den einzelnen oder allen Metallschäumen besteht kein Abstand, sie sind aneinander anliegend angeordnet.
  • Darüber hinaus können die Metallschäume besonders vorteilhaft stoffschlüssig in ein metallisches Gehäuse eingebracht werden, und zwar vorzugsweise durch Einlöten, da es sich bei den verwendeten Metallschäumen, wie bereits erwähnt, um eine metallische Verbindung handelt. Dadurch kann bei Verwendung einer stoffschlüssigen Verbindung auf den Einsatz toxikologisch äußerst bedenklicher Quellmatten verzichtet werden, die beispielsweise bei Keramikfiltern standardmäßig verwendet werden.
  • Eine besondere Ausgestaltung der erfindungsgemäßen Vorrichtung besteht darin, dass die Metallschäume mit einer Lagermatte in das metallische Modul eingebracht sind.
  • Weiterhin kann in vorteilhafter Weise ein Modul aufgebaut werden, dass aus mehreren gleichartig ausgebildeten Modulen oder verschiedenartig ausgebildeten Modulen zusammengesetzt ist. Dabei sind die Module bevorzugter Weise parallel zur Abgasströmung angeordnet, und zwar je nach Anforderung zu zwei gleichen oder unterschiedlichen Modulen oder zu drei gleichen oder unterschiedlichen Modulen und dergleichen.
  • Weitere Vorteile der Erfindung sind nachstehend anhand von in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:
    • Fig. 1 eine schematische Darstellung in verkleinertem Maßstab eines Ausführungsbeispiels einer Vorrichtung zur Entfernung von verbrennungsmotorisch erzeugten Rußpartikeln nach der Erfindung;
    • Fig. 2, nicht Gegenstand der Erfindung, eine schematische Darstellung in verkleinertem Maßstab eines weiteren Ausführungsbeispiels einer Vorrichtung zur Entfernung von verbrennungsmotorisch erzeugten Rußpartikeln nach der Erfindung;
    • Fig. 3 eine schematische Darstellung in verkleinertem Maßstab eines anderen Ausführungsbeispiels einer Vorrichtung zur Entfernung von verbrennungsmotorisch erzeugten Rußpartikeln nach der Erfindung;
    • Fig. 4 eine schematische Darstellung in verkleinertem Maßstab einer Ausführung aus zwei parallel angeordneten Modulen gemäß dem Ausführungsbeispiel nach Fig. 1 einer Vorrichtung zur Entfernung von verbrennungsmotorisch erzeugten Rußpartikeln nach der Erfindung und
    • Fig. 5 einen Querschnitt in verkleinertem Maßstab entlang dem Schnitt A-B entsprechend der Fig. 4.
  • In Fig. 1 ist ein vom Abgas durchströmtes Modul 1 dargestellt, bei dem Metallschäume 2, 3 abwechselnd hintereinander angeordnet sind. Dabei sind die Metallschäume abwechselnd mit einem Edelmetall aus der Gruppe Ru, Rh, Pd, Os, Ir, Pt oder einem Gemisch dieser Edelmetalle beschichtet oder unbeschichtet. Die beschichteten Metallschäume 2 sind jeweils stromaufwärts vor den unbeschichteten Metallschäumen 3 in Abgasströmung angeordnet, die jeweils Rußpartikel temporär einfangen.
  • Eine andere Anordnung der Metallschäume 2, 3, d.h. die Einfügung der unbeschichteten Metallschäume 3 jeweils stromaufwärts vor den beschichteten Metallschäumen 2 in Abgasströmung ist nicht Gegenstand der Erfindung.
  • Fig. 2, nicht Gegenstand der Erfindung, zeigt das Modul 1, bei dem lediglich mit Edelmetall beschichtete Metallschäume 2 angeordnet sind, die selbst Rußpartikel temporär einfangen.
  • Das Ausführungsbeispiel gemäß Fig. 3 zeigt das Modul 1, bei dem abwechselnd mit Edelmetall beschichtete Metallschäume 2 und mit einer die Verbrennungstemperatur von Rußpartikeln herabsetzenden Verbindung beschichtete Metallschäume 4 angeordnet sind. Dabei sind die jeweiligen mit Edelmetall beschichteten Metallschäume 2 stromaufwärts vor den mit einer die Verbrennungstemperatur von Rußpartikeln herabsetzenden Verbindung beschichteten Metallschäume 4 in Abgasströmung angebracht, die jeweils Rußpartikel temporär einfangen.
  • Eine andere Anordnung der Metallschäume 2, 4, d.h. die Einfügung der mit einer die Verbrennungstemperatur von Rußpartikeln herabsetzenden Verbindung beschichteten Metallschäume 4 jeweils stromaufwärts vor den edelmetallbeschichteten Metallschäumen 2 in Abgasströmung ist nicht Gegenstand der Erfindung.
  • Bei der so ausgebildeten Ausführung wird der eingefangene Ruß zusätzlich durch direkten Kontakt mit der oberflächlich aufgebrachten als Katalysator wirkenden Beschichtung oxidiert. Die aufgebrachte Beschichtung besteht dabei aus einer Sauerstoffspeicherverbindung, wie beispielsweise Cer-orthovanadat Ce(III)VO4.
  • In Fig. 4 ist ein weiteres Ausführungsbeispiel mit einem Gesamtmodul 5 dargestellt, das aus zwei parallel angeordneten Modulen 1' gemäß dem Ausführungsbeispiel nach Fig. 1 aufgebaut ist, bei dem allerdings der konisch auslaufende Einlassbereich für das Abgas und der konisch zulaufende Auslassbereich für das Abgas entfallen sind.. Bei einer solchen Ausführung durchströmt das Abgas jeweils die parallel angeordneten Module 1' wie im Zusammenhang mit Fig. 1 angegeben. Dabei sind die Metallschäume 2, 3 abwechselnd mit einem Edelmetall aus der Gruppe Ru, Rh, Pd, Os, Ir, Pt oder einem Gemisch dieser Edelmetalle beschichtet oder unbeschichtet. Vorteilhafterweise sind die beschichteten Metallschäume 2 jeweils stromaufwärts vor den unbeschichteten Metallschäumen 3 in Abgasströmung angeordnet.
  • Eine andere Anordnung der Metallschäume 2, 3, d.h. die Einfügung der unbeschichteten Metallschäume 3 jeweils stromaufwärts vor den beschichteten Metallschäumen 2 in Abgasströmung ist nicht Gegenstand der Erfindung.
  • Weiterhin sind nicht lediglich zwei parallel angeordnete Module 1' in dem Gesamten modul 5 vorzusehen, sondern entsprechend den gestellten Anforderungen sind auch mehrere Module 1' in dem Gesamtmodul 5 zur Steigerung des Wirkungsgrades in vorteilhafter Weise unterzubringen.
  • Die Fig. 5 zeigt einen Querschnitt durch das in Fig. 4 dargestellte Gesamtmodul 5 entlang der Schnittlinie A-B, wobei jeweils ein Modul 1' parallel zur Abgasströmung angeordnet und vom Abgas durchströmt wird.
  • Die parallele Anordnung und die Anzahl der Module 1' in dem Gesamtmodul 5 kann nahezu beliebig an die jeweilige Motorleistung angepasst werden. Dabei kann dem erforderlichen Wirkungsgrad hinsichtlich der Entfernung von Rußpartikeln aus dem verbrennungsmotorisch erzeugten Abgasstrom vorteilhaft Rechnung getragen werden, und zwar durch die Art der Edelmetallbeschichtung oder Edelmetallbeladung, die geometrische Oberfläche des Metallschaumes und die Anzahl der beschichteten Metallschäume.
  • So konnten beispielsweise Emissionsreduktionen für Rußpartikel von ca. 85 % bis 90 % erzielt werden, ohne dabei die geforderten zulässigen Stickstoffdioxid-Grenzwerte zu überschreiten.
  • Darüber hinaus kann der Wirkungsgrad für die Reduktion der Rußpartikelemission durch eine thermisch induzierte Regeneration noch weiter erhöht werden, wie diese beispielsweise mit einem Brenner oder einer elektrischen Energieeinkopplung durch eine Widerstandsheizung erreicht werden kann.
  • Die thermisch induzierte Regeneration kann auch durch Oxidation von spät in den Verbrennungsmotor eingespritztem Kraftstoff erfolgen, einer so genannten Nacheinspritzung, durch welche die Abgastemperatur zunächst von ca. 150 bis 200°C auf ca. 400°C angehoben werden kann.
  • Zusätzlich gelingt es durch Oxidation von motorisch nachhaltig erzeugten Kohlenwasserstoffen (CH) am edelmetallbeschichteten Metallschaum oder Oxidationskatalysator die Temperatur im Modul um weitere ca. 200°C auf letztendlich die für die Rußpartikelverbrennung erforderliche Temperatur von ca. 600°C zu erhöhen.

Claims (18)

  1. Vorrichtung zur Entfernung von Rußpartikeln aus einem Abgasstrom eines Verbrennungsmotors in einem Modul (1) durch Oxidation der temporär in einem unbeschichteten Metallschaum (3) oder beschichteten Metallschaum (4) eingefangenen RuBpartikel mit Stickstoffdioxid NO2, wobei das Stickstoffdioxid durch Oxidation des im Abgas vorhandenen Stickstoffmonoxids NO an einem vorgeschalteten edelmetallbeschichteten und offenporigen Metallschaum (2) in Abhängigkeit von der Strömungsgeschwindigkeit des Abgases bei einer Temperatur oberhalb von ca. 200°C entsteht, dadurch gekennzeichnet, dass mindestens zwei edelmetallbeschichtete offenporige Metallschäume (2) vorgesehen sind, welche jeweils einem unbeschichteten Metallschaum (3) oder jeweils einem beschichteten Metallschaum (4) vorgeschalten sind, wobei die Metallschäume (2, 3, 4) aneinander anliegend angeordnet sind.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Metallschäume (2, 3, 4) aus einer FeCr-Legierung bestehen.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der edelmetallbeschichtete offenporige Metallschaum (2) zumindest mit einem Edelmetall aus der Gruppe Ru, Rh, Pd, Os, I r, Pt oder einem Gemisch dieser Edelmetalle beschichtet ist.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der beschichtete Metallschaum (4) mit einer die Verbrennungstemperatur der Rußpartikel herabsetzenden Verbindung beschichtet ist.
  5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass der beschichtete Metallschaum (4) mit der die Verbrennungstemperatur der Rußpartikel herabsetzenden Verbindung aus Cer-orthovanadat (CeVO4) beschichtet ist.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Modul (1) als offenes, sich selbst regenerierendes Modul ausgebildet ist.
  7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Metallschäume (2, 3, 4) mit einem Pulversinterverfahren oder einem Feingussverfahren hergestellt sind.
  8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Metallschäume (2, 3, 4) mit einer eine 3D-Durchströmung hervorrufenden unregelmäßigen Zellgeometrie mit einer Mischerfunktion ausgebildet sind.
  9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Metallschäume (2, 3, 4) mit einer relativen Dichte im Bereich von 2 bis 20 % ausgebildet sind.
  10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Metallschäume (2, 3, 4) mit einer Porenanzahl in einem Bereich von 3 bis 80 ppi ausgebildet sind.
  11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der edelmetallbeschichtete offenporige Metallschaum (2) direkt oder durch Imprägnierung eines Wash-coats mit einem Edelmetall aus der Gruppe Ru, Rh, Pd, Os, Ir, Pt oder einem Gemisch dieser Edelmetalle in einer Konzentration von 1,0 g - 2,5 g Edelmetall pro Liter Metallschaum beschichtet ist.
  12. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass auf den beschichteten Metallschaum (4) die für die Verbrennungstemperatur der Rußpartikel herabsetzende Verbindung Cer-orthovanadat mit einem Plasma-Verfahren, einem Wash-coat-Verfahren oder einem Sol-Gel-Verfahren in einer Konzentration von 1,0 g - 25 g CeVO4/Liter Metallschaum aufgebracht ist.
  13. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Porenanzahl der Metallschäume (2, 3, 4) in Richtung des Abgasstromes variiert gestaltet ist.
  14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass die Porenanzahl der Metallschäume (2, 3, 4) in Richtung des Abgasstromes zunimmt.
  15. Vorrichtung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Metallschäume (2, 3, 4) mit einem Lötprozess stoffschlüssig in das metallische Modul (1) eingebracht sind.
  16. Vorrichtung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die Metallschäume (2, 3, 4) mit einer Lagermatte in das metallische Modul (1) eingebettet sind.
  17. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass ein Gesamt modul (5) aus mehreren gleichartig aufgebauten Modulen (1) oder verschiedenartig aufgebauten Modulen ausgebildet ist.
  18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass die mehreren gleichartig aufgebauten Module (1) oder verschiedenartig aufgebauten Module in dem Gesamt modul (5) parallel zur Abgasströmung angeordnet sind.
EP03020688A 2003-09-11 2003-09-11 Vorrichtung zur Entfernung von Russpartikeln aus einem Abgasstrom von Verbrennungsmotoren Expired - Lifetime EP1515012B1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES03020688T ES2272867T3 (es) 2003-09-11 2003-09-11 Dispositivo para la eliminacion de las particulas de hollin de una corriente del gas de escape de motores de combustion interna.
DE50305367T DE50305367D1 (de) 2003-09-11 2003-09-11 Vorrichtung zur Entfernung von Russpartikeln aus einem Abgasstrom von Verbrennungsmotoren
AT03020688T ATE342434T1 (de) 2003-09-11 2003-09-11 Vorrichtung zur entfernung von russpartikeln aus einem abgasstrom von verbrennungsmotoren
DK03020688T DK1515012T3 (da) 2003-09-11 2003-09-11 Anordning til fjernelse af sodpartikler fra en udstödningsgasström i forbrændingsmotorer
EP06021008A EP1734234A3 (de) 2003-09-11 2003-09-11 Verfahren zum Entfernen von Rußpartikeln aus einem Abgasstrom eines Verbrennungsmotors
EP03020688A EP1515012B1 (de) 2003-09-11 2003-09-11 Vorrichtung zur Entfernung von Russpartikeln aus einem Abgasstrom von Verbrennungsmotoren
US10/938,716 US20050056977A1 (en) 2003-09-11 2004-09-10 Apparatus for removing carbon particles from an exhaust gas stream of internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03020688A EP1515012B1 (de) 2003-09-11 2003-09-11 Vorrichtung zur Entfernung von Russpartikeln aus einem Abgasstrom von Verbrennungsmotoren

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP06021008A Division EP1734234A3 (de) 2003-09-11 2003-09-11 Verfahren zum Entfernen von Rußpartikeln aus einem Abgasstrom eines Verbrennungsmotors

Publications (2)

Publication Number Publication Date
EP1515012A1 EP1515012A1 (de) 2005-03-16
EP1515012B1 true EP1515012B1 (de) 2006-10-11

Family

ID=34130191

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06021008A Withdrawn EP1734234A3 (de) 2003-09-11 2003-09-11 Verfahren zum Entfernen von Rußpartikeln aus einem Abgasstrom eines Verbrennungsmotors
EP03020688A Expired - Lifetime EP1515012B1 (de) 2003-09-11 2003-09-11 Vorrichtung zur Entfernung von Russpartikeln aus einem Abgasstrom von Verbrennungsmotoren

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP06021008A Withdrawn EP1734234A3 (de) 2003-09-11 2003-09-11 Verfahren zum Entfernen von Rußpartikeln aus einem Abgasstrom eines Verbrennungsmotors

Country Status (6)

Country Link
US (1) US20050056977A1 (de)
EP (2) EP1734234A3 (de)
AT (1) ATE342434T1 (de)
DE (1) DE50305367D1 (de)
DK (1) DK1515012T3 (de)
ES (1) ES2272867T3 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7521033B2 (en) * 2005-12-22 2009-04-21 Basf Catalysts Llc Exhaust inlet metallic foam trap coupled to a downstream monolithic precious metal catalyst
DE102006009164B4 (de) * 2006-02-20 2011-06-09 Alantum Corporation, Seongnam Vorrichtung zur Separation von in Abgasen von Verbrennungskraftmaschinen enthaltenen Partikeln
US9700825B2 (en) * 2006-09-21 2017-07-11 Acs Industries, Inc. Expanded metal filters
US10717032B2 (en) * 2006-09-21 2020-07-21 Acs Industries, Inc. Expanded metal filters
AT504391B1 (de) * 2006-11-13 2008-12-15 Pankl Emission Control Systems Kombiniertes abgasreinigungssystem
DE102009025136A1 (de) * 2009-06-17 2010-12-23 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung und Verfahren zur Behandlung eines Partikel aufweisenden Abgases
CN102410066A (zh) * 2011-09-28 2012-04-11 虞跃平 机动车尾气多级净滤装置
EP3296015A1 (de) 2016-09-15 2018-03-21 Treibacher Industrie AG Verwendung von vanadaten in oxidationskatalysatoren

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979024A (ja) * 1995-09-12 1997-03-25 Toyota Motor Corp ディーゼル機関の排気浄化装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3407172C2 (de) 1984-02-28 1986-09-04 Degussa Ag, 6000 Frankfurt Einrichtung zur Reinigung der Abgase von Dieselmotoren
DE3731889A1 (de) * 1987-09-01 1989-06-29 Mototech Motoren Umweltschutz Dieselruss-partikelfilter und verfahren zu seiner herstellung
DE3729126A1 (de) * 1987-09-01 1989-04-06 Mototech Motoren Umweltschutz Dieselruss-partikelfilter und verfahren zu seiner herstellung
DE3729683A1 (de) * 1987-09-04 1989-03-30 Mototech Motoren Umweltschutz Einrichtung zur nachbehandlung der abgase von kleinvolumigen zweitaktottomotoren sowie verfahren zu ihrer herstellung
US4902487A (en) 1988-05-13 1990-02-20 Johnson Matthey, Inc. Treatment of diesel exhaust gases
AU6710594A (en) * 1993-04-22 1994-11-08 Carborundum Company, The Mounting mat for fragile structures such as catalytic converters
JPH07132212A (ja) * 1993-09-16 1995-05-23 Toyota Central Res & Dev Lab Inc 排気ガス浄化方法及びその触媒コンバータ
CA2190238A1 (en) * 1996-07-15 1998-01-15 Ryutaro Motoki Sintered metal filters
GB9621215D0 (en) 1996-10-11 1996-11-27 Johnson Matthey Plc Emission control
GB9717034D0 (en) 1997-08-13 1997-10-15 Johnson Matthey Plc Improvements in emissions control
DE19923781C2 (de) * 1999-05-22 2001-04-26 Degussa Verfahren und Vorrichtung zur Entfernung von Ruß aus dem Abgas eines Dieselmotors
JP2001073742A (ja) * 1999-06-29 2001-03-21 Sumitomo Electric Ind Ltd ディーゼルエンジン用パティキュレートトラップ
DE10020555A1 (de) * 2000-04-27 2001-10-31 Bosch Gmbh Robert Verfahren und Vorrichtung zur Reinigung von Abgasen eines Verbrennungsmotors
DE10027404A1 (de) * 2000-06-02 2001-12-06 Emitec Emissionstechnologie Mantelrohr mit thermisch isolierenden Sicken
US6759016B2 (en) * 2000-11-30 2004-07-06 Ballard Power Systems Inc. Compact multiple tube steam reformer
EP1251248A1 (de) * 2001-04-18 2002-10-23 OMG AG & Co. KG Verfahren und Vorrichtung zur Entfernung von Russpartikeln aus dem Abgas eines Dieselmotors
JP2002336627A (ja) * 2001-05-15 2002-11-26 Mitsui & Co Ltd 炭素粒子の減少装置
JP2003097261A (ja) * 2001-09-25 2003-04-03 Aisin Takaoka Ltd 排気ガス浄化装置
US7214350B2 (en) * 2002-03-13 2007-05-08 Capital Technology, S.A. Device for the continuous burning of carbon particles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979024A (ja) * 1995-09-12 1997-03-25 Toyota Motor Corp ディーゼル機関の排気浄化装置

Also Published As

Publication number Publication date
EP1734234A3 (de) 2007-01-03
ATE342434T1 (de) 2006-11-15
DE50305367D1 (de) 2006-11-23
EP1734234A2 (de) 2006-12-20
US20050056977A1 (en) 2005-03-17
DK1515012T3 (da) 2007-02-19
ES2272867T3 (es) 2007-05-01
EP1515012A1 (de) 2005-03-16

Similar Documents

Publication Publication Date Title
EP1892396B1 (de) Abgasnachbehandlungssystem
DE60035734T3 (de) Abgasreiningungssystem für einen Dieselmotor
EP1567247B1 (de) Partikelfalle mit beschichteter faserlage
DE112013000180T5 (de) Katalysiertes Russfilter
EP2826971A1 (de) Verfahren zur Verminderung von Stickoxiden in dieselmotorischen Abgasen und Abgasnachbehandlungssystem zur Durchführung des Verfahrens
DE102012006448B4 (de) Verfahren zur Anwendung in Verbindung mit einer Abgasnachbehandlungsanlage
EP1900916A2 (de) Abgasnachbehandlungssystem
EP3134622B1 (de) Baukastensystem für die baugruppe, und verfahren zur herstellung der baugruppe
EP2674584B1 (de) Verfahren zur Verhinderung der Kontamination eines SCR-Katalysators mit Platin
WO2014072067A1 (de) Katalysatorsystem zur behandlung von nox- und partikelhaltigem dieselabgas
EP2653681B2 (de) Verwendung eines Beschichteten Dieselpartikelfilters zum Verhindern der Kontamination eines SCR-Katalysators
EP2597279B1 (de) Vorrichtung und Verfahren zur Reinigung von Dieselmotorenabgasen
WO2000070202A1 (de) Vorrichtung zum reduzieren von schädlichen bestandteilen im abgas einer brennkraftmaschine, insbesondere einer diesel-brennkraftmaschine
EP1515012B1 (de) Vorrichtung zur Entfernung von Russpartikeln aus einem Abgasstrom von Verbrennungsmotoren
EP2166203B1 (de) Vorrichtung zur Reinigung eines Abgasstroms einer Brennkraftmaschine eines Kraftfahrzeuges, insbesondere eines Nutzfahrzeuges
EP1251248A1 (de) Verfahren und Vorrichtung zur Entfernung von Russpartikeln aus dem Abgas eines Dieselmotors
EP2659950B1 (de) Abgasnachbehandlungssystem
AT504391B1 (de) Kombiniertes abgasreinigungssystem
EP2335809A1 (de) Verfahren zum Reinigen eines Dieselabgases
EP2335808B1 (de) NO2 Sperrkatalysator
WO2013160472A1 (de) Beschichteter partikelfilter, katalysator und einrichtung mit denselben
EP2699770A1 (de) Partikelfilter mit katalytischer beschichtung
DE10323385B4 (de) Abgasreinigungsanlage für eine Brennkraftmaschine
DE202007009729U1 (de) Vorrichtung zum Reinigen der Abgase von Dieselmotoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041009

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PANKL EMISSION CONTROL SYSTEMS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20061011

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061011

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061011

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061011

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061011

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061011

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061011

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50305367

Country of ref document: DE

Date of ref document: 20061123

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070111

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HEPP, WENGER & RYFFEL AG

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070319

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2272867

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20070914

Year of fee payment: 5

26N No opposition filed

Effective date: 20070712

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070914

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070914

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070913

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070914

Year of fee payment: 5

NLS Nl: assignments of ep-patents

Owner name: DEUTZ AKTIENGESELLSCHAFT

Effective date: 20080813

Owner name: PANKL EMISSION CONTROL SYSTEMS GMBH

Effective date: 20080813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061011

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080911

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061011

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080912

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20100924

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100923

Year of fee payment: 8

Ref country code: TR

Payment date: 20100824

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100916

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100913

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20110824

Year of fee payment: 9

BERE Be: lapsed

Owner name: *PANKL EMISSION CONTROL SYSTEMS G.M.B.H

Effective date: 20110930

Owner name: *DEUTZ A.G.

Effective date: 20110930

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110912

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 342434

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110911

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141002

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50305367

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160401