EP1476881A2 - Doped organic semiconductor material and method for production thereof - Google Patents
Doped organic semiconductor material and method for production thereofInfo
- Publication number
- EP1476881A2 EP1476881A2 EP03722191A EP03722191A EP1476881A2 EP 1476881 A2 EP1476881 A2 EP 1476881A2 EP 03722191 A EP03722191 A EP 03722191A EP 03722191 A EP03722191 A EP 03722191A EP 1476881 A2 EP1476881 A2 EP 1476881A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- semiconductor material
- organic semiconductor
- material according
- doped organic
- carbon atoms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 239000000463 material Substances 0.000 title claims abstract description 70
- 239000004065 semiconductor Substances 0.000 title claims abstract description 65
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 150000001875 compounds Chemical class 0.000 claims abstract description 63
- 239000002800 charge carrier Substances 0.000 claims abstract description 28
- 230000000694 effects Effects 0.000 claims abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims abstract description 6
- -1 diphenylaminyl Chemical group 0.000 claims description 50
- 239000010410 layer Substances 0.000 claims description 46
- 125000004432 carbon atom Chemical group C* 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 32
- 125000004429 atom Chemical group 0.000 claims description 29
- 239000000975 dye Substances 0.000 claims description 29
- 229910052760 oxygen Inorganic materials 0.000 claims description 28
- 150000003839 salts Chemical class 0.000 claims description 26
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 22
- 239000001301 oxygen Substances 0.000 claims description 22
- 229910052757 nitrogen Inorganic materials 0.000 claims description 21
- 125000003118 aryl group Chemical group 0.000 claims description 19
- 229910052801 chlorine Inorganic materials 0.000 claims description 19
- 239000000460 chlorine Substances 0.000 claims description 19
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 19
- 229910052739 hydrogen Inorganic materials 0.000 claims description 19
- 239000001257 hydrogen Substances 0.000 claims description 19
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 18
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims description 18
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 18
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 18
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 18
- 125000003545 alkoxy group Chemical group 0.000 claims description 18
- MDFFNEOEWAXZRQ-UHFFFAOYSA-N aminyl Chemical group [NH2] MDFFNEOEWAXZRQ-UHFFFAOYSA-N 0.000 claims description 18
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 18
- 229910052794 bromium Inorganic materials 0.000 claims description 18
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 18
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 18
- 229910052731 fluorine Inorganic materials 0.000 claims description 18
- 239000011737 fluorine Substances 0.000 claims description 18
- 229910052736 halogen Inorganic materials 0.000 claims description 18
- 150000002367 halogens Chemical class 0.000 claims description 18
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 18
- 239000011630 iodine Substances 0.000 claims description 18
- 229910052740 iodine Inorganic materials 0.000 claims description 18
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 18
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 18
- 125000001624 naphthyl group Chemical group 0.000 claims description 18
- 125000004076 pyridyl group Chemical group 0.000 claims description 18
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 17
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 claims description 17
- 229940043267 rhodamine b Drugs 0.000 claims description 16
- CXZRDVVUVDYSCQ-UHFFFAOYSA-M pyronin B Chemical compound [Cl-].C1=CC(=[N+](CC)CC)C=C2OC3=CC(N(CC)CC)=CC=C3C=C21 CXZRDVVUVDYSCQ-UHFFFAOYSA-M 0.000 claims description 11
- 239000000126 substance Substances 0.000 claims description 11
- 239000011159 matrix material Substances 0.000 claims description 10
- 150000001450 anions Chemical class 0.000 claims description 9
- 125000001931 aliphatic group Chemical group 0.000 claims description 8
- 239000002019 doping agent Substances 0.000 claims description 8
- 230000008020 evaporation Effects 0.000 claims description 8
- 238000001704 evaporation Methods 0.000 claims description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 125000000623 heterocyclic group Chemical group 0.000 claims description 7
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 4
- 150000001768 cations Chemical class 0.000 claims description 4
- 230000005669 field effect Effects 0.000 claims description 4
- FDZZZRQASAIRJF-UHFFFAOYSA-M malachite green Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC=CC=1)=C1C=CC(=[N+](C)C)C=C1 FDZZZRQASAIRJF-UHFFFAOYSA-M 0.000 claims description 4
- 239000001018 xanthene dye Substances 0.000 claims description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 3
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 claims description 3
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- WVIICGIFSIBFOG-UHFFFAOYSA-N pyrylium Chemical compound C1=CC=[O+]C=C1 WVIICGIFSIBFOG-UHFFFAOYSA-N 0.000 claims description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium Chemical compound [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 claims description 3
- 238000007740 vapor deposition Methods 0.000 claims description 3
- 238000005019 vapor deposition process Methods 0.000 claims description 3
- BCHZICNRHXRCHY-UHFFFAOYSA-N 2h-oxazine Chemical compound N1OC=CC=C1 BCHZICNRHXRCHY-UHFFFAOYSA-N 0.000 claims description 2
- QZHXKQKKEBXYRG-UHFFFAOYSA-N 4-n-(4-aminophenyl)benzene-1,4-diamine Chemical compound C1=CC(N)=CC=C1NC1=CC=C(N)C=C1 QZHXKQKKEBXYRG-UHFFFAOYSA-N 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 claims description 2
- 125000002091 cationic group Chemical group 0.000 claims description 2
- 238000000354 decomposition reaction Methods 0.000 claims description 2
- 238000009792 diffusion process Methods 0.000 claims description 2
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical compound C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 claims description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 239000001016 thiazine dye Substances 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims 10
- 229910052710 silicon Inorganic materials 0.000 claims 5
- 239000007795 chemical reaction product Substances 0.000 claims 3
- 230000005284 excitation Effects 0.000 claims 3
- 229910052732 germanium Inorganic materials 0.000 claims 3
- 229910052745 lead Inorganic materials 0.000 claims 3
- 230000003287 optical effect Effects 0.000 claims 3
- 239000000047 product Substances 0.000 claims 3
- 229910052718 tin Inorganic materials 0.000 claims 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 2
- JUQPZRLQQYSMEQ-UHFFFAOYSA-N CI Basic red 9 Chemical compound [Cl-].C1=CC(N)=CC=C1C(C=1C=CC(N)=CC=1)=C1C=CC(=[NH2+])C=C1 JUQPZRLQQYSMEQ-UHFFFAOYSA-N 0.000 claims 2
- 238000003795 desorption Methods 0.000 claims 2
- 150000002500 ions Chemical class 0.000 claims 2
- 239000012071 phase Substances 0.000 claims 2
- 238000001179 sorption measurement Methods 0.000 claims 2
- 125000003831 tetrazolyl group Chemical group 0.000 claims 2
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 claims 2
- 150000004961 triphenylmethanes Chemical class 0.000 claims 2
- KKAJSJJFBSOMGS-UHFFFAOYSA-N 3,6-diamino-10-methylacridinium chloride Chemical compound [Cl-].C1=C(N)C=C2[N+](C)=C(C=C(N)C=C3)C3=CC2=C1 KKAJSJJFBSOMGS-UHFFFAOYSA-N 0.000 claims 1
- LQVYCDPEZPBOMT-UHFFFAOYSA-N 4-[4-(diethylamino)benzenecarboximidoyl]-n,n-diethylaniline;hydrochloride Chemical compound Cl.C1=CC(N(CC)CC)=CC=C1C(=N)C1=CC=C(N(CC)CC)C=C1 LQVYCDPEZPBOMT-UHFFFAOYSA-N 0.000 claims 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 claims 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims 1
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 claims 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 1
- XWHUQXFERLNWEQ-UHFFFAOYSA-N Rosamine Natural products CCC1=CC2CN3CCC4(Nc5ccccc5C4=O)C(C2)(C13)C(=O)OC XWHUQXFERLNWEQ-UHFFFAOYSA-N 0.000 claims 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims 1
- 241000837263 Thionia Species 0.000 claims 1
- IURGIPVDZKDLIX-UHFFFAOYSA-M [7-(diethylamino)phenoxazin-3-ylidene]-diethylazanium;chloride Chemical compound [Cl-].C1=CC(=[N+](CC)CC)C=C2OC3=CC(N(CC)CC)=CC=C3N=C21 IURGIPVDZKDLIX-UHFFFAOYSA-M 0.000 claims 1
- 150000001251 acridines Chemical class 0.000 claims 1
- 229940023020 acriflavine Drugs 0.000 claims 1
- 125000000129 anionic group Chemical group 0.000 claims 1
- ZIQCCIAIROIHHR-UHFFFAOYSA-N benzene;boric acid Chemical group OB(O)O.C1=CC=CC=C1 ZIQCCIAIROIHHR-UHFFFAOYSA-N 0.000 claims 1
- 229910052796 boron Inorganic materials 0.000 claims 1
- 239000003054 catalyst Substances 0.000 claims 1
- 230000003197 catalytic effect Effects 0.000 claims 1
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 claims 1
- 230000005684 electric field Effects 0.000 claims 1
- 125000006575 electron-withdrawing group Chemical group 0.000 claims 1
- 230000008030 elimination Effects 0.000 claims 1
- 238000003379 elimination reaction Methods 0.000 claims 1
- KEUKAQNPUBYCIC-UHFFFAOYSA-N ethaneperoxoic acid;hydrogen peroxide Chemical compound OO.CC(=O)OO KEUKAQNPUBYCIC-UHFFFAOYSA-N 0.000 claims 1
- 125000005842 heteroatom Chemical group 0.000 claims 1
- OAKJQQAXSVQMHS-UHFFFAOYSA-O hydrazinium(1+) Chemical compound [NH3+]N OAKJQQAXSVQMHS-UHFFFAOYSA-O 0.000 claims 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims 1
- 230000003993 interaction Effects 0.000 claims 1
- 239000002346 layers by function Substances 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-O oxonium Chemical compound [OH3+] XLYOFNOQVPJJNP-UHFFFAOYSA-O 0.000 claims 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 claims 1
- 239000011574 phosphorus Substances 0.000 claims 1
- SOUHUMACVWVDME-UHFFFAOYSA-N safranin O Chemical compound [Cl-].C12=CC(N)=CC=C2N=C2C=CC(N)=CC2=[N+]1C1=CC=CC=C1 SOUHUMACVWVDME-UHFFFAOYSA-N 0.000 claims 1
- 229910052711 selenium Inorganic materials 0.000 claims 1
- 239000007790 solid phase Substances 0.000 claims 1
- 239000011593 sulfur Substances 0.000 claims 1
- KXVADGBQPMPMIQ-UHFFFAOYSA-M tetramethylrosamine chloride Chemical compound [Cl-].C=12C=CC(=[N+](C)C)C=C2OC2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1 KXVADGBQPMPMIQ-UHFFFAOYSA-M 0.000 claims 1
- 238000003776 cleavage reaction Methods 0.000 abstract 1
- 230000007017 scission Effects 0.000 abstract 1
- 230000007935 neutral effect Effects 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000002243 precursor Substances 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000005525 hole transport Effects 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 229940107698 malachite green Drugs 0.000 description 3
- CLYVDMAATCIVBF-UHFFFAOYSA-N pigment red 224 Chemical compound C=12C3=CC=C(C(OC4=O)=O)C2=C4C=CC=1C1=CC=C2C(=O)OC(=O)C4=CC=C3C1=C42 CLYVDMAATCIVBF-UHFFFAOYSA-N 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- FHCPAXDKURNIOZ-UHFFFAOYSA-N tetrathiafulvalene Chemical compound S1C=CSC1=C1SC=CS1 FHCPAXDKURNIOZ-UHFFFAOYSA-N 0.000 description 3
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 3
- IXHWGNYCZPISET-UHFFFAOYSA-N 2-[4-(dicyanomethylidene)-2,3,5,6-tetrafluorocyclohexa-2,5-dien-1-ylidene]propanedinitrile Chemical compound FC1=C(F)C(=C(C#N)C#N)C(F)=C(F)C1=C(C#N)C#N IXHWGNYCZPISET-UHFFFAOYSA-N 0.000 description 2
- DZNJMLVCIZGWSC-UHFFFAOYSA-N 3',6'-bis(diethylamino)spiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(N(CC)CC)C=C1OC1=CC(N(CC)CC)=CC=C21 DZNJMLVCIZGWSC-UHFFFAOYSA-N 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- KSCQDDRPFHTIRL-UHFFFAOYSA-N auramine O Chemical compound [H+].[Cl-].C1=CC(N(C)C)=CC=C1C(=N)C1=CC=C(N(C)C)C=C1 KSCQDDRPFHTIRL-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- JNGRENQDBKMCCR-UHFFFAOYSA-N 2-(3-amino-6-iminoxanthen-9-yl)benzoic acid;hydrochloride Chemical compound [Cl-].C=12C=CC(=[NH2+])C=C2OC2=CC(N)=CC=C2C=1C1=CC=CC=C1C(O)=O JNGRENQDBKMCCR-UHFFFAOYSA-N 0.000 description 1
- LZJCVNLYDXCIBG-UHFFFAOYSA-N 2-(5,6-dihydro-[1,3]dithiolo[4,5-b][1,4]dithiin-2-ylidene)-5,6-dihydro-[1,3]dithiolo[4,5-b][1,4]dithiine Chemical compound S1C(SCCS2)=C2SC1=C(S1)SC2=C1SCCS2 LZJCVNLYDXCIBG-UHFFFAOYSA-N 0.000 description 1
- MGADZUXDNSDTHW-UHFFFAOYSA-N 2H-pyran Chemical compound C1OC=CC=C1 MGADZUXDNSDTHW-UHFFFAOYSA-N 0.000 description 1
- RTMBGDBBDQKNNZ-UHFFFAOYSA-L C.I. Acid Blue 3 Chemical compound [Ca+2].C1=CC(N(CC)CC)=CC=C1C(C=1C(=CC(=C(O)C=1)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=CC(=[N+](CC)CC)C=C1.C1=CC(N(CC)CC)=CC=C1C(C=1C(=CC(=C(O)C=1)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=CC(=[N+](CC)CC)C=C1 RTMBGDBBDQKNNZ-UHFFFAOYSA-L 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 241000819038 Chichester Species 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 241000083869 Polyommatus dorylas Species 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910000071 diazene Inorganic materials 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 125000003800 germyl group Chemical group [H][Ge]([H])([H])[*] 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- MGFYSGNNHQQTJW-UHFFFAOYSA-N iodonium Chemical compound [IH2+] MGFYSGNNHQQTJW-UHFFFAOYSA-N 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- MZYHMUONCNKCHE-UHFFFAOYSA-N naphthalene-1,2,3,4-tetracarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=C(C(O)=O)C(C(O)=O)=C21 MZYHMUONCNKCHE-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 235000012736 patent blue V Nutrition 0.000 description 1
- 239000004177 patent blue V Substances 0.000 description 1
- PJQYNUFEEZFYIS-UHFFFAOYSA-N perylene maroon Chemical compound C=12C3=CC=C(C(N(C)C4=O)=O)C2=C4C=CC=1C1=CC=C2C(=O)N(C)C(=O)C4=CC=C3C1=C42 PJQYNUFEEZFYIS-UHFFFAOYSA-N 0.000 description 1
- FVDOBFPYBSDRKH-UHFFFAOYSA-N perylene-3,4,9,10-tetracarboxylic acid Chemical compound C=12C3=CC=C(C(O)=O)C2=C(C(O)=O)C=CC=1C1=CC=C(C(O)=O)C2=C1C3=CC=C2C(=O)O FVDOBFPYBSDRKH-UHFFFAOYSA-N 0.000 description 1
- 125000000382 plumbyl group Chemical group [H][Pb]([H])([H])* 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- CVAVMIODJQHEEH-UHFFFAOYSA-O rhodamine B(1+) Chemical compound C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O CVAVMIODJQHEEH-UHFFFAOYSA-O 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 125000003638 stannyl group Chemical group [H][Sn]([H])([H])* 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- PCCVSPMFGIFTHU-UHFFFAOYSA-N tetracyanoquinodimethane Chemical compound N#CC(C#N)=C1C=CC(=C(C#N)C#N)C=C1 PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- IBBLKSWSCDAPIF-UHFFFAOYSA-N thiopyran Chemical compound S1C=CC=C=C1 IBBLKSWSCDAPIF-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 125000005106 triarylsilyl group Chemical group 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- YXZRCLVVNRLPTP-UHFFFAOYSA-J turquoise blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Cu+2].NC1=NC(Cl)=NC(NC=2C=C(NS(=O)(=O)C3=CC=4C(=C5NC=4NC=4[N-]C(=C6C=CC(=CC6=4)S([O-])(=O)=O)NC=4NC(=C6C=C(C=CC6=4)S([O-])(=O)=O)NC=4[N-]C(=C6C=CC(=CC6=4)S([O-])(=O)=O)N5)C=C3)C(=CC=2)S([O-])(=O)=O)=N1 YXZRCLVVNRLPTP-UHFFFAOYSA-J 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B11/00—Diaryl- or thriarylmethane dyes
- C09B11/02—Diaryl- or thriarylmethane dyes derived from diarylmethanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B11/00—Diaryl- or thriarylmethane dyes
- C09B11/04—Diaryl- or thriarylmethane dyes derived from triarylmethanes, i.e. central C-atom is substituted by amino, cyano, alkyl
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B11/00—Diaryl- or thriarylmethane dyes
- C09B11/04—Diaryl- or thriarylmethane dyes derived from triarylmethanes, i.e. central C-atom is substituted by amino, cyano, alkyl
- C09B11/10—Amino derivatives of triarylmethanes
- C09B11/12—Amino derivatives of triarylmethanes without any OH group bound to an aryl nucleus
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B11/00—Diaryl- or thriarylmethane dyes
- C09B11/28—Pyronines ; Xanthon, thioxanthon, selenoxanthan, telluroxanthon dyes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B15/00—Acridine dyes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B17/00—Azine dyes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B19/00—Oxazine dyes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B21/00—Thiazine dyes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/30—Doping active layers, e.g. electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
- H10K50/155—Hole transporting layers comprising dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
- H10K50/165—Electron transporting layers comprising dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/114—Poly-phenylenevinylene; Derivatives thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/40—Organosilicon compounds, e.g. TIPS pentacene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention relates to doped organic semiconductor material with increased charge carrier density and effective charge carrier mobility according to claim 1, a method for producing the doped organic semiconductor material according to claim 48 and the use of the semiconductor material.
- organic light-emitting diodes and solar cells Since the demonstration of organic light-emitting diodes and solar cells in 1989 [C.W. Tang et al., Appl. Phys. Lett. 51 (12), 913 (1987)] are components of organic thin films which are the subject of intensive research. Such layers have advantageous properties for the applications mentioned, such as efficient electroluminescence for organic light-emitting diodes, high absorption coefficients in the range of visible light for organic solar cells, inexpensive manufacture of materials and manufacture of components for the simplest electronic circuits, among others The use of organic light-emitting diodes for display applications is already of commercial importance.
- the performance characteristics of (opto) electronic multilayer components are determined, among other things, by the ability of the layers to transport the charge carriers.
- the ohmic losses in the charge transport layers during operation are related to the conductivity, which on the one hand has a direct influence on the required operating voltage, but on the other hand also determines the thermal load on the component.
- the charge carrier concentration of the organic layers there is a band bending in the vicinity of a metal contact, which facilitates the injection of charge carriers and can thus reduce the contact resistance. Similar considerations for organic solar cells lead to the conclusion that their efficiency is also determined by the transport properties for charge carriers.
- Doped organic charge transport layers have already been successfully used to improve organic light-emitting diodes.
- the hole transport layer By doping the hole transport layer with the acceptor material F4TCNQ, the operating voltage of the light-emitting diode is drastically reduced (X. Zhou et al, Appl. Phys. Lett., 78 (4), 410 (2001).).
- a similar success can be achieved by doping the electron-transporting layer with Cs or Li (J. Kido et al., Appl. Phys. Lett., 73 (20), 2866 (1998); J.-S. Huang et al. , Appl. Phys. Lett., 80, 139 (2002)).
- the electrical doping with inorganic materials suffers from the lack that the atoms or molecules used are easy in the component due to their small size can diffuse and thus complicate a defined production, for example, sharp transitions from p-doped to n-doped regions. In contrast, diffusion plays a subordinate role when large organic molecules are used as dopants. However, their use is impaired by the fact that potential doping molecules must be characterized by extreme values of the electron affinity for the p-doping or the ionization potential for the n-doping. This is accompanied by a decreasing chemical stability of the molecules.
- the object of the invention is now to provide a solution for overcoming the chemical instability of efficient doping molecules mentioned and the production of layers doped therewith.
- organic molecules are used which, although unstable in the neutral state, are stable as a charged cation or anion or in connection with a covalent connecting partner.
- These charged molecules are made in situ from a precursor compound that is converted into the desired charged molecule before, during, or after the vapor deposition process.
- a connection may e.g. an organic salt or a metal complex.
- the unstable dopant can also be generated in situ from a stable precursor.
- the doping molecule used has been introduced into the layer to be doped in the neutral state, in order to then be present as an anion or cation after a charge transfer to the matrix.
- the use of the neutral molecule is therefore only an intermediate step in bringing about the charge transfer.
- the associated stability problems already described can be avoided according to the invention by using an already ionized, stable molecule as dopant.
- An advantageous solution according to the invention is, for example, the use of a laser for the evaporation of rhodamine B chloride, which leads to the predominant production of rhodamine B cations.
- the purpose of the invention can also be achieved if a neutral radical is first generated from the compound according to claim 1, which is sufficiently stable in situ to be able to Layer to be installed, and this in the layer is subject to a transfer of the radical electron to the matrix or a recording of another electron from the matrix.
- No. 5,811,833 describes an electron transport layer consisting of free radicals, in particular pentaphenylcyclopentadienyl, for use in organic light-emitting diodes.
- US Pat. No. 5,922,396 shows that such a layer can be produced from organometallic compounds, in particular from decaphenylgermanocen or decaphenylplumbocen (see also M. L Heeg, J. Organometallic Chem., 346, 321 (1988)).
- 5,922,396 lead to layers with increased microscopic charge carrier mobility (or the transfer rates in the hopping process), since a negatively charged pentaphenylcylclopentadienyl molecule has an aromatic character, and thus the electron transfer to an adjacent neutral pentaphenylcyclopentadienyl molecule due to the electron overlap of the pi orbitals the phenyl groups of the molecules involved is improved.
- the increase in conductivity is achieved by increasing the microscopic mobility of the charge carriers (or the transfer rates in the hopping process).
- the equilibrium charge carrier density is increased according to the invention in order to increase the conductivity. Discrimination is possible, for example, through time-of-flight (measurement of charge carrier mobility), the Seebeck effect or the field effect (measurement of charge carrier density).
- the invention further relates to the use of the doping molecules in mixed layers which additionally contain materials in order to achieve a further purpose.
- These purposes can, for example, change the layer growth, the production of interpenetrating Networks (CJ Brabec et al., Adv. Mater., 11 (1), 15 (2001)), or in organic light-emitting diodes to improve the quantum efficiency of light emission or change the color of the emitted light by adding a luminescent dye substance.
- cationic dyes such as rhodamine B often have a high luminescence quantum yield, which enables use as luminescence dyes in organic LEDs.
- this invention also encompasses the use of molecules from claim 1 for doping polymer layers.
- Such layers are typically produced by a spin coating process by deposition from the solution.
- the present invention enables the polymer layers to be doped with large, non-mobile molecules.
- An exemplary embodiment to illustrate the invention consists in the use of the dye molecule rhodamine B chloride as dopant. If a mixed layer of naphthalene tetracarboxylic acid dianhydride (NTCDA) and rhodamine B in the ratio (150: 1) is produced, the conductivity is le-5 S / cm at room temperature, which corresponds to an increase of 4 orders of magnitude compared to a pure NTCDA layer.
- NTCDA naphthalene tetracarboxylic acid dianhydride
- Rhodamine B chloride molecules disintegrate into positively charged Rhodamine B molecules and negatively charged chloride ions during heating in the cuvette. The charged rhodamine B molecules are built into the mixed layer.
- the electrons required to maintain the charge neutrality of the entire layer remain on the NTCDA molecules, since the electron affinity of NTCDA is higher than that of rhodamine B (3.2 eV, H. Meier, "Organic Semiconductors", Verlag Chemie Weinheim, 1974, p. These electrons fill the lowest unoccupied orbitals of the NTCDA and thus increase the conductivity.
- the increased density of the charge carriers can be determined, for example, by measurements of the Seebeck coefficient and the field effect. Field effect measurements on a sample made of NTCDA doped with pyronin B (50: 1 ) confirms the presence of electrons as majority carriers with a concentration of 10 17 cm "3 .
- rhodamine B The doping effect of rhodamine B was also used for matrices made of MePTCDI (perylene-3,4,9,10-tetracarboxylic acid-N, N'-dimethyl-diimide) and PTCDA (3,4,9,10-
- TTF tetrathiafulvalene
- SCE oxidation potential
- Stronger donors i.e. Dopants with a lower oxidation potential are unstable in air (GC Papavassiliou, A. Terzis, P. Delhaes, in: HS Nalwa (Ed.) Handbook of conductive molecules and polymers, Vol. 1: charge-transfer salts, fillers and photoconductors, John Wiley & Sons, Chichester, 1997).
- Rhodamine B has a reduction potential of -0.545 V versus NHE (M. S. Chan, J. R.
- the reduction potential of the organic salt rhodamine B is determined by the reduction potential of the rhodamine B cation. This value is equal to the oxidation potential of the neutral Rhodamine B radical.
- the rhodamine B radical is a stronger donor than TTF.
- this strong donor rhodamine B is stable. So far it has been possible to use donors with an oxidation potential greater than +0.35 V against SCE, but the invention described here allows doping with donors whose oxidation potential is less than +0.35 V against SCE.
- Chemically stable compounds within the meaning of claim 1 are, for example, ionic dyes. These are used in photography to sensitize AgBr, for example.
- the electron affinity of AgBr is 3.5eV.
- Dyes which can sensitize AgBr by electron transfer are also suitable as chemically stable compounds for use in doping organic semiconductor materials within the meaning of claim 1.
- a subclass of the ionic dyes are the di- and triphenylmethane dyes and their known analogues of the general structure T 2 and T 2
- X CR 4 , SiR 4 , GeR 4 , SnR 4 , PbR 4 , N, P and Rl, R2, R3 and R 4 are suitable, known substituents, for example in each case one or more: hydrogen; Oxygen; Halogens, for example fluorine, chlorine, bromine or iodine; hydroxyl; Aminyl, for example diphenylaminyl, diethylaminyl; Aliphatics with 1 to 20 carbon atoms, for example methyl, ethyl, carboxyl; Alkoxyl, for example: methoxy; cyano; nitro; Sulfonic acid and its salts; Aryl having 3 to 25 carbon atoms, for example phenyl, pyridyl or naphthyl or those atoms which form a condensed ring. One or more p-position substitutions of the phenyl groups can often be found (M 3 to M 6).
- X CR8, SiR8, GeR8, SnR8, PbR8, N, P and Rl to R7 and R8 are suitable known substituents, e.g. one or more each: hydrogen; Oxygen; Halogens, e.g. Fluorine, chlorine, bromine or iodine; hydroxyl; Aminyl, e.g. Diphenylaminyl, diethylaminyl; Aliphates with 1 to 20 carbon atoms, e.g. Methyl, ethyl, carboxyl; Alkoxyl e.g. methoxy; cyano; nitro; Sulfonic acid and its salts; Aryl of 3 to 25 carbon atoms, e.g.
- diphenylmethane dyes are Auramin O (CI 655) or Auramin G (CI 656).
- triphenylmethane dyes are malachite green (CI 657), turquoise blue (CI 661), fluorescein (CI 45350) or patent blue V (CI 712).
- the representative of the triphenylmethane dyes malachite green chloride produces a conductivity of 4-10 "4 S / cm in an NTCDA matrix with a doping ratio of 1: 122.
- Malachite green is therefore a compound in the sense of claim 11 and in particular in the sense of subclaims 12 to 22 This property is brought about by the valence structure of the central carbon atom (main group 4), and other known compounds of this type of structure with atoms of the main group 4 as central atom (triarylsilyl, germyl, stannyl, plumbyl) are accordingly likewise suitable as a compound in the sense of claims 1, 12 to 22.
- Compounds in which there is a direct bond between 2 carbon atoms of each phenyl ring of the di- or triphenylamine are contained in claims 23 to 25.
- Rhodamine B base has a doping effect on a PTCDA matrix, for example a conductivity of 7 * 10-5 S / cm for a 1:70 doping.
- xanthene dyes Another group of ionic dyes are the xanthene dyes.
- the Rhodamine B listed above is a representative of this class. Pyronin B, Rhodamine 110 and Rhodamine 3B as further representatives of this class of materials also have a doping effect.
- the xanthene dyes are similar the pyran, thiopyran, indamine, acridine, azine, oxazine and thiazine dyes, which differ in substitutions in the multinuclear heterocycle. Because of the otherwise identical structure, these dye classes (T 9) are also suitable compounds in the sense of claims 1, 23 to 26.
- N, N'-diethyl-cyanine and N.N'-diethyl-thiacarbocyanine increase the conductivity to 3-10 "5 S / cm (1:11 doping ratio) or 5-10 " 5 S / cm (1:47 doping ratio).
- These two dyes are each a representative of the polymethm dyes with a specific choice of X and Z.
- the leuco bases of ionic dyes are also suitable compounds in the sense of claims 1, 12 to 26.
- rhodamine B base in NTCDA gives a conductivity of 3-10 "5 S / cm (1:70 doping ratio).
- Organic salts are often based on suitable heterocycles (e.g. pyridinium, pyrrolium, pyrylium, thiazolium , Diazininium, thininium, diazolium, thiadiazolium or dithiolium etc. individually or as part of a multinuclear heterocycle) or suitable groups (eg ammonium, sulfonium, phosphonium, iodonium etc.).
- suitable heterocycles e.g. pyridinium, pyrrolium, pyrylium, thiazolium , Diazininium, thininium, diazolium, thiadiazolium or dithiolium etc. individually or as part of a multinuclear heterocycle
- suitable groups eg ammonium, sulfonium, phosphonium, iodonium etc.
- the vaporized substance is oxidized under the influence of oxygen. This process also takes place in a mixed layer of matrix and dopant. Evaporation mixed layers of pyronine B chloride and tetracyanoquinodimethane are immediately colored red, and the presence of tetracyanoquinodimethane anions can be detected by UV / VIS and FTIR spectroscopy.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Electroluminescent Light Sources (AREA)
- Thin Film Transistor (AREA)
- Hybrid Cells (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
Dotiertes organisches Halbleitermaterial sowie Verfahren zu dessen HerstellungDoped organic semiconductor material and process for its production
Beschreibungdescription
Die Erfindung betrifft dotiertes organisches Halbleitermaterial mit erhöhter Ladungsträgerdichte und effektiver Ladungsträgerbeweglichkeit nach Anspruch 1, ein Nerfahren zur Herstellung des dotierten organischen Halbleitermaterials nach Anspruch 48 sowie die Verwendung des Halbleitermaterials.The invention relates to doped organic semiconductor material with increased charge carrier density and effective charge carrier mobility according to claim 1, a method for producing the doped organic semiconductor material according to claim 48 and the use of the semiconductor material.
Seit der Demonstration von organischen Leuchtdioden und Solarzellen 1989 [C.W. Tang et al., Appl. Phys. Lett. 51 (12), 913 (1987)] sind aus organischen Dünnschichten aufgebaute Bauelemente Gegenstand intensiver Forschung. Derartige Schichten besitzen vorteilhafte Eigenschaften für die genannten Anwendungen, wie z.B. effiziente Elektrolumineszenz für organische Leuchtdioden, hohe Absorptionskoeffizienten im Bereich des sichtbaren Lichtes für organische Solarzellen, preisgünstige Herstellung der Materialien und Fertigung der Bauelemente für einfachste elektronische Schaltungen, u.a. Kommerzielle Bedeutung hat bereits der Einsatz organischer Leuchtdioden für Displayanwendungen.Since the demonstration of organic light-emitting diodes and solar cells in 1989 [C.W. Tang et al., Appl. Phys. Lett. 51 (12), 913 (1987)] are components of organic thin films which are the subject of intensive research. Such layers have advantageous properties for the applications mentioned, such as efficient electroluminescence for organic light-emitting diodes, high absorption coefficients in the range of visible light for organic solar cells, inexpensive manufacture of materials and manufacture of components for the simplest electronic circuits, among others The use of organic light-emitting diodes for display applications is already of commercial importance.
Die Leistungsmerkmale (opto-) elektronischer mehrschichtiger Bauelemente werden unter anderem von der Fähigkeit der Schichten zum Transport der Ladungsträger bestimmt. Im Falle von Leuchtdioden hängen die ohmschen Verluste in den Ladungstransportschichten beim Betrieb mit der Leitfähigkeit zusammen, was einerseits direkten Einfluss auf die benötigte Betriebsspannung hat, andererseits aber auch die thermische Belastung des Bauelements bestimmt. Weiterhin kommt es in Abhängigkeit von der Ladungsträgerkonzentration der organischen Schichten zu einer Bandverbiegung in der Nähe eines Metallkontakts, die die Injektion von Ladungsträgern erleichtert und damit den Kontaktwiderstand verringern kann. Ähnliche Überlegungen führen auch für organische Solarzellen zu dem Schluss, dass deren Effizienz auch durch die Transporteigenschaften für Ladungsträger bestimmt ist.The performance characteristics of (opto) electronic multilayer components are determined, among other things, by the ability of the layers to transport the charge carriers. In the case of light-emitting diodes, the ohmic losses in the charge transport layers during operation are related to the conductivity, which on the one hand has a direct influence on the required operating voltage, but on the other hand also determines the thermal load on the component. Furthermore, depending on the charge carrier concentration of the organic layers, there is a band bending in the vicinity of a metal contact, which facilitates the injection of charge carriers and can thus reduce the contact resistance. Similar considerations for organic solar cells lead to the conclusion that their efficiency is also determined by the transport properties for charge carriers.
Durch Dotierung von Löchertransportschichten mit einem geeigneten Akzeptormaterial (p- Dotierung) bzw. von Elektronentransportschichten mit einem Donatormaterial (n-Dotierung) kann die Ladungsträgerdichte in organischen Festkörpern (und damit die Leitfähigkeit) beträchtlich erhöht werden. Darüber hinaus sind in Analogie zur Erfahrung mit anorganischen Halbleitern Anwendungen zu erwarten, die gerade auf Verwendung von p- und n-dotierten Schichten in einem Bauelement beruhen und anders nicht denkbar wären. In US 5,093,698 ist die Verwendung von dotierten Ladungsträgertransportschichten (p-Dotierung der Löchertransportschicht durch Beimischung von akzeptorartigen Molekülen, n-Dotierung der Elektronentransportschicht durch Beimischung von donatorartigen Molekülen) in organischen Leuchtdioden beschrieben.By doping hole transport layers with a suitable acceptor material (p-doping) or electron transport layers with a donor material (n-doping), the charge carrier density in organic solids (and thus the conductivity) can be increased considerably. In addition, in analogy to the experience with inorganic semiconductors, applications are expected that are based on the use of p- and n-doped Layers are based in a component and would not otherwise be conceivable. US Pat. No. 5,093,698 describes the use of doped charge carrier transport layers (p-doping of the hole transport layer by admixing acceptor-like molecules, n-doping of the electron transport layer by admixing donor-like molecules) in organic light-emitting diodes.
Folgende Ansätze sind bisher für die Verbesserung der Leitfähigkeit von organischen aufgedampften Schichten bekannt:The following approaches are known for improving the conductivity of organic vapor-deposited layers:
1. Erhöhung der Ladungsträgerbeweglichkeit durch a) Verwendung von Elektronentransportschichten bestehend aus organischen Radikalen (US 5,811,833), b) Erzeugung hochgeordneter Schichten, die eine optimale Überlappung der pi-Orbitale der Moleküle erlauben,1. Increasing the mobility of the charge carriers through a) use of electron transport layers consisting of organic radicals (US Pat. No. 5,811,833), b) generation of highly ordered layers which allow an optimal overlap of the pi orbitals of the molecules,
2. Erhöhung der Dichte der beweglichen Ladungsträger durch a) Reinigung und schonende Behandlung der Materialien, um die Ausbildung von Ladungsträgerhaftstellen zu vermeiden, b) Dotierung organischer Schichten mittels aa) anorganischer Materialien (Gase, Alkaliatome Patent US 6,013,384 (J. Kido et al.); J. Kido et al., Appl. Phys. Lett. 73, 2866 (1998)), bb) organische Materialien (TNCQ (M. Maitrot et al., J. Appl. Phys., 60 (7), 2396-2400 (1986)), F4TCNQ (M. Pfeiffer et al., Appl. Phys. Lett., 73 (22), 3202 (1998)), BEDT- TTF (A. Nollau et al., J. Appl. Phys., 87 (9), 434Ö (2000)))2. Increasing the density of the mobile charge carriers by a) cleaning and careful treatment of the materials in order to avoid the formation of charge carrier traps, b) doping of organic layers by means of aa) inorganic materials (gases, alkali atoms patent US Pat. No. 6,013,384 (J. Kido et al. ); J. Kido et al., Appl. Phys. Lett. 73, 2866 (1998)), bb) organic materials (TNCQ (M. Maitrot et al., J. Appl. Phys., 60 (7), 2396 -2400 (1986)), F4TCNQ (M. Pfeiffer et al., Appl. Phys. Lett., 73 (22), 3202 (1998)), BEDT-TTF (A. Nollau et al., J. Appl. Phys ., 87 (9), 434Ö (2000)))
Dotierte organische Ladungstransportschichten wurden bereits erfolgreich zur Verbesserung von organischen Leuchtdioden eingesetzt. Durch Dotierung der Löchertransportschicht mit dem Akzeptormaterial F4TCNQ erzielt man eine drastische Reduzierung der Betriebsspannung der Leuchtdiode (X. Zhou et al, Appl. Phys. Lett., 78 (4), 410 (2001).). Ein ähnlicher Erfolg ist durch die Dotierung der elektronentransportierenden Schicht mit Cs oder Li zu erzielen (J. Kido et al., Appl. Phys. Lett., 73 (20), 2866 (1998); J.-S. Huang et al., Appl. Phys. Lett., 80, 139 (2002)).Doped organic charge transport layers have already been successfully used to improve organic light-emitting diodes. By doping the hole transport layer with the acceptor material F4TCNQ, the operating voltage of the light-emitting diode is drastically reduced (X. Zhou et al, Appl. Phys. Lett., 78 (4), 410 (2001).). A similar success can be achieved by doping the electron-transporting layer with Cs or Li (J. Kido et al., Appl. Phys. Lett., 73 (20), 2866 (1998); J.-S. Huang et al. , Appl. Phys. Lett., 80, 139 (2002)).
Die elektrische Dotierung mit anorganischen Materialien .leidet an dem Mangel, dass die verwendeten Atome bzw. Moleküle aufgrund ihrer geringen Größe leicht im Bauelement diffundieren können und somit eine definierte Herstellung z.B. scharfer Übergänge von p- dotierten zu n-dotierten Gebieten erschweren. Diffusion spielt demgegenüber bei Verwendung großer organischer Moleküle als Dotanden eine untergeordnete Rolle. Beeinträchtigt wird deren Einsatz jedoch durch den Umstand, dass potentielle Dotiermoleküle sich durch extreme Werte der Elektronenaffinität für die p-Dotierung bzw. des Ionisationspotentials für die n-Dotierung auszeichnen müssen. Damit geht eine abnehmende chemische Stabilität der Moleküle einher.The electrical doping with inorganic materials suffers from the lack that the atoms or molecules used are easy in the component due to their small size can diffuse and thus complicate a defined production, for example, sharp transitions from p-doped to n-doped regions. In contrast, diffusion plays a subordinate role when large organic molecules are used as dopants. However, their use is impaired by the fact that potential doping molecules must be characterized by extreme values of the electron affinity for the p-doping or the ionization potential for the n-doping. This is accompanied by a decreasing chemical stability of the molecules.
Die Aufgabe der Erfindung besteht nun darin, eine Lösung zur Überwindung der erwähnten chemischen Instabilität von effizienten Dotiermolekülen und die Herstellung damit dotierter Schichten anzugeben.The object of the invention is now to provide a solution for overcoming the chemical instability of efficient doping molecules mentioned and the production of layers doped therewith.
Erfindungsgemäß wird die Aufgabe durch die im Anspruch 1 genannten Merkmale gelöst. Vorteilhafte Ausgestaltungen sind Gegenstand von Unteransprüchen.According to the invention the object is achieved by the features mentioned in claim 1. Advantageous refinements are the subject of dependent claims.
Die Aufgabe wird weiterhin durch ein Verfahren mit den im Anspruch 48 genannten Merkmalen gelöst. Vorteilhafte Varianten des Verfahrens sind Gegenstand von Unteransprüchen.The object is further achieved by a method with the features mentioned in claim 48. Advantageous variants of the method are the subject of dependent claims.
Bei der Erfindung werden organische Moleküle verwendet, die, im neutralen Zustand zwar instabil, jedoch als geladenes Kation oder Anion oder in Verbindung mit einem kovalenten Verbindungspartner stabil vorliegen. Diese geladenen Moleküle werden in situ aus einer Vorläuferverbindung hergestellt, die vor, während oder nach dem Aufdampfprozess in das gewünschte geladene Molekül umgewandelt wird. Ohne Beschränkung darauf kann eine solche Verbindung z.B. ein organisches Salz oder ein Metallkomplex sein. Auch der instabile Dotand kann in situ aus einer stabilen Vorläufersubstanz erzeugt werden.In the invention, organic molecules are used which, although unstable in the neutral state, are stable as a charged cation or anion or in connection with a covalent connecting partner. These charged molecules are made in situ from a precursor compound that is converted into the desired charged molecule before, during, or after the vapor deposition process. Without limitation, such a connection may e.g. an organic salt or a metal complex. The unstable dopant can also be generated in situ from a stable precursor.
Bisher wurde das verwendete Dotiermolekül im neutralen Zustand in die zu dotierende Schicht eingebracht, um dann nach einem Ladungsübertrag auf die Matrix als Anion oder Kation vorzuliegen. Die Verwendung des neutralen Moleküls ist damit nur ein Zwischenschritt zur Herbeiführung des Ladungsübergangs. Die damit verbundenen, schon beschriebenen Stabilitätsprobleme lassen sich erfindungsgemäß durch die Verwendung eines bereits ionisierten, stabilen Moleküls als Dotand vermeiden.So far, the doping molecule used has been introduced into the layer to be doped in the neutral state, in order to then be present as an anion or cation after a charge transfer to the matrix. The use of the neutral molecule is therefore only an intermediate step in bringing about the charge transfer. The associated stability problems already described can be avoided according to the invention by using an already ionized, stable molecule as dopant.
Wenn nötig, finden zur Unterstützung der Dissoziation der Vorläuferverbindung weitere Verfahren Anwendung. Diese führen die notwendige Energie zur Aufspaltung der Verbindung zu, oder bewirken eine chemische Reaktion mit dem unerwünschten Rest der Vorläuferverbindung, so dass er nicht in die Schicht gelangt, oder sich aus dieser leichter entfernen lässt, oder die elektrischen Eigenschaften dieser Schicht nicht beeinträchtigt. Eine erfindungsgemäße vorteilhafte Lösung ist beispielsweise die Verwendung eines Lasers zur Verdampfung von Rhodamin B Chlorid, was zur überwiegenden Produktion von Rhodamin B Kationen führt.If necessary, other methods are used to support the dissociation of the precursor compound. These conduct the necessary energy to split the connection to, or cause a chemical reaction with the undesirable remainder of the precursor compound so that it does not get into the layer or is easier to remove from it, or does not impair the electrical properties of this layer. An advantageous solution according to the invention is, for example, the use of a laser for the evaporation of rhodamine B chloride, which leads to the predominant production of rhodamine B cations.
Auch wenn die bisherige Beschreibung darauf abstellt, gemäß Anspruch 1 eine bereits geladene molekulare Gruppe abzuspalten, kann der Erfmdungszweck auch dann erreicht werden, wenn zunächst ein neutrales Radikal aus der Verbindung gemäß Anspruch 1 erzeugt wird, das in situ hinreichend stabil ist, um in die Schicht eingebaut zu werden, und dieses in der Schicht einem Transfer des Radikalelektrons auf die Matrix bzw. einer Aufnahme eines weiteren Elektrons aus der Matrix unterliegt.Even if the previous description is based on splitting off an already charged molecular group according to claim 1, the purpose of the invention can also be achieved if a neutral radical is first generated from the compound according to claim 1, which is sufficiently stable in situ to be able to Layer to be installed, and this in the layer is subject to a transfer of the radical electron to the matrix or a recording of another electron from the matrix.
In US 5,811,833 wird eine Elektronentransportschicht, bestehend aus freien Radikalen, insbesondere Pentaphenylcyclopentadienyl, zum Einsatz in organischen Leuchtdioden beschrieben. In US 5,922,396 wird gezeigt, dass sich eine solche Schicht aus metallorganischen Verbindungen, insbesondere aus Dekaphenylgermanocen oder Dekaphenylplumbocen herstellen lässt (s.a. M. L Heeg, J. Organometallic Chem., 346, 321 (1988)). US 5,811,833 und US 5,922,396 führen zu Schichten mit erhöhter mikroskopischer Ladungsträgerbeweglichkeit (bzw. der Transferraten im Hoppingprozess), da ein negativ geladenes Pentaphenylcylclopentadienyl- Molekül aromatischen Charakter hat, und so der Elektronentransfer auf ein benachbartes neutrales Pentaphenylcyclopentadienyl-Molekül durch die Überlappung der Pi- Elektronenorbitale der Phenylgruppen der beteiligten Moleküle verbessert wird. Die Erhöhung der Leitfähigkeit wird durch eine Erhöhung der mikroskopischen Ladungsträgerbeweglichkeit (bzw. der Transferraten im Hoppingprozess) erzielt. Im Gegensatz dazu wird erfmdungsgemäß die Gleichgewichtsladungsträgerdichte erhöht, um die Leitfähigkeit zu erhöhen. Eine Diskriminierung ist beispielsweise durch Time-of-Flight (Messung der Ladungsträgerbeweglichkeit), durch den Seebeck-Effekt oder den Feldeffekt (Messung der Ladungsträgerdichte) möglich.No. 5,811,833 describes an electron transport layer consisting of free radicals, in particular pentaphenylcyclopentadienyl, for use in organic light-emitting diodes. US Pat. No. 5,922,396 shows that such a layer can be produced from organometallic compounds, in particular from decaphenylgermanocen or decaphenylplumbocen (see also M. L Heeg, J. Organometallic Chem., 346, 321 (1988)). US Pat. No. 5,811,833 and US Pat. No. 5,922,396 lead to layers with increased microscopic charge carrier mobility (or the transfer rates in the hopping process), since a negatively charged pentaphenylcylclopentadienyl molecule has an aromatic character, and thus the electron transfer to an adjacent neutral pentaphenylcyclopentadienyl molecule due to the electron overlap of the pi orbitals the phenyl groups of the molecules involved is improved. The increase in conductivity is achieved by increasing the microscopic mobility of the charge carriers (or the transfer rates in the hopping process). In contrast, the equilibrium charge carrier density is increased according to the invention in order to increase the conductivity. Discrimination is possible, for example, through time-of-flight (measurement of charge carrier mobility), the Seebeck effect or the field effect (measurement of charge carrier density).
Die Erfindung betrifft weiterhin den Einsatz der Dotiermoleküle in Mischschichten, die zusätzlich Materialien enthalten, um einen weiteren Zweck zu erreichen. Diese Zwecke können z.B. die Veränderung des Schichtwachstums, die Herstellung von interpenetrierenden Netzwerken (C. J. Brabec et al., Adv. Mater., 11 (1), 15 (2001)), oder in organischen Leuchtdioden die Verbesserung der Quanteneffizienz der Lichtemission oder Veränderung der Farbe des emittierten Lichtes durch Hinzufügen eines Lumineszenzfarb Stoffes betreffen.The invention further relates to the use of the doping molecules in mixed layers which additionally contain materials in order to achieve a further purpose. These purposes can, for example, change the layer growth, the production of interpenetrating Networks (CJ Brabec et al., Adv. Mater., 11 (1), 15 (2001)), or in organic light-emitting diodes to improve the quantum efficiency of light emission or change the color of the emitted light by adding a luminescent dye substance.
Weiterhin ist es im Sinne der Erfindung, dass durch geeignete Auswahl des verwendeten Dotiermoleküls solche Zwecke schon durch Hinzufügen der Dotiermoleküle in die Schicht erreicht werden. Beispielsweise haben kationische Farbstoffe wie Rhodamin B oft eine hohe Lumineszenzquantenausbeute, die einen Einsatz als Lumineszenzfarbstoffe in organischen LED ermöglichen.Furthermore, it is within the meaning of the invention that, by suitable selection of the doping molecule used, such purposes can be achieved by adding the doping molecules to the layer. For example, cationic dyes such as rhodamine B often have a high luminescence quantum yield, which enables use as luminescence dyes in organic LEDs.
Schließlich umfasst diese Erfindung auch den Einsatz von Molekülen aus Anspruch 1 zur Dotierung von Polymerschichten. Solche Schichten werden typischerweise durch ein Spincoating Verfahren durch Abscheidung aus der Lösung hergestellt. Im Gegensatz zur bereits bekannten elektrochemischen Dotierung, bei der die Anionen und Kationen eines Salzes durch die angelegte Spannung zu den jeweiligen Kontakten gezogen werden und mithin beweglich sind, ermöglicht die vorliegende Erfindung entsprechend Anspruch 1 die Dotierung der Polymerschichten mit großen, nicht mobilen Molekülen.Finally, this invention also encompasses the use of molecules from claim 1 for doping polymer layers. Such layers are typically produced by a spin coating process by deposition from the solution. In contrast to the already known electrochemical doping, in which the anions and cations of a salt are drawn to the respective contacts by the applied voltage and are therefore movable, the present invention enables the polymer layers to be doped with large, non-mobile molecules.
Ein Ausfuhrungsbeispiel zur Veranschaulichung der Erfindung besteht im Einsatz des Farbstoffmoleküls Rhodamin B Chlorid als Dotand. Stellt man eine Mischschicht aus Naphthalentetracarbonsäuredianhydrid (NTCDA) und Rhodamin B im Verhältnis (150:1) her, ergibt sich eine Leitfähigkeit von le-5 S/cm bei Raumtemperatur, was einer Zunahme um 4 Größenordnung gegenüber einer reinen NTCDA-Schicht entspricht. Die physikalische Erklärung dafür ist, dass Rhodamin B Chlorid- Moleküle während des Erhitzens in der Küvette in positiv geladene Rhodamin B Moleküle und negativ geladene Chlorid - Ionen zerfallen. Die geladenen Rhodamin B Moleküle werden in die Mischschicht eingebaut. Die zur Erhaltung der Ladungsneutralität der gesamten Schicht benötigten Elektronen verbleiben auf den NTCDA- Molekülen, da die Elektronenaffinität von NTCDA höher ist als die des Rhodamin B (3.2 eV, H. Meier, „Organic Semiconductors", Verlag Chemie Weinheim, 1974, S. 425). Diese Elektronen füllen die niedrigsten nicht besetzten Orbitale des NTCDA und erhöhen so die Leitfähigkeit. Die erhöhte Dichte der Ladungsträger lässt sich beispielsweise durch Messungen des Seebeckkoeffizienten und des Feldeffekts feststellen. Feldeffektmessungen an einer Probe aus NTCDA dotiert mit Pyronin B (50: 1) bestätigt die Präsenz von Elektronen als Majoritätsladungsträger mit einer Konzentration von 1017 cm"3. Aus Seebeckmessungen an diesem System folgt ebenfalls n-Leitung, mit einem Seebeckkoeffizienten von -1,1 mN/K und damit einer höheren Ladungsträgerkonzentration als bisher mit dotiertem NTCDA erreichbar war (A. Nollau et al, J. Appl. Phys., 87 (9), 4340 (2000)).An exemplary embodiment to illustrate the invention consists in the use of the dye molecule rhodamine B chloride as dopant. If a mixed layer of naphthalene tetracarboxylic acid dianhydride (NTCDA) and rhodamine B in the ratio (150: 1) is produced, the conductivity is le-5 S / cm at room temperature, which corresponds to an increase of 4 orders of magnitude compared to a pure NTCDA layer. The physical explanation for this is that Rhodamine B chloride molecules disintegrate into positively charged Rhodamine B molecules and negatively charged chloride ions during heating in the cuvette. The charged rhodamine B molecules are built into the mixed layer. The electrons required to maintain the charge neutrality of the entire layer remain on the NTCDA molecules, since the electron affinity of NTCDA is higher than that of rhodamine B (3.2 eV, H. Meier, "Organic Semiconductors", Verlag Chemie Weinheim, 1974, p. These electrons fill the lowest unoccupied orbitals of the NTCDA and thus increase the conductivity. The increased density of the charge carriers can be determined, for example, by measurements of the Seebeck coefficient and the field effect. Field effect measurements on a sample made of NTCDA doped with pyronin B (50: 1 ) confirms the presence of electrons as majority carriers with a concentration of 10 17 cm "3 . From Seebeck measurements This system also follows an n-line, with a Seebeck coefficient of -1.1 mN / K and thus a higher charge carrier concentration than was previously possible with doped NTCDA (A. Nollau et al, J. Appl. Phys., 87 (9), 4340 (2000)).
Präpariert man eine mit Rhodamin B dotierte Schicht aus C60 (Fulleren) (50:1) mit erhöhter Substrattemperatur, ergibt sich eine Leitfähigkeit von 6e-3 S/cm. Dies ist zwei Größenordnungen größer als bei einer bei Raumtemperatur hergestellten Probe (5e-5S/cm). Die während des Aufdampfens zugefuhrte Wärme führt zu einer verstärkten Aufspaltung des Rhodamin B.If a layer of C60 (fullerene) (50: 1) doped with Rhodamine B is prepared with an increased substrate temperature, the conductivity is 6e-3 S / cm. This is two orders of magnitude larger than a sample produced at room temperature (5e-5S / cm). The heat supplied during the vapor deposition leads to an increased breakdown of the rhodamine B.
Die Dotierwirkung von Rhodamin B wurde auch für Matrizen aus MePTCDI (Perylen-3,4,9,10- Tetracarbonsäure-N,N'-Dimethyl-Diimid) und PTCDA (3,4,9,10-The doping effect of rhodamine B was also used for matrices made of MePTCDI (perylene-3,4,9,10-tetracarboxylic acid-N, N'-dimethyl-diimide) and PTCDA (3,4,9,10-
Perylentetracarbonsäuredianhydrid) nachgewiesen und ist somit unabhängig von der konkreten chemischen Struktur der Matrix.Perylenetetracarboxylic acid dianhydride) and is therefore independent of the concrete chemical structure of the matrix.
Ein starker bekannter organischer Donor, Tetrathiafulvalene (TTF), hat ein Oxidationspotential von +0.35 V gegen SCE (Y. Misaki et al., Adv. Mater. 8, 804 (1996)). Stärkere Donoren, d.h. Dotanden mit einem geringeren Oxidationspotential, sind instabil in Luft (G. C. Papavassiliou, A. Terzis, P. Delhaes, in: H. S. Nalwa (Ed.) Handbook of conductive molecules and polymers, Vol. 1: charge-transfer salts, füllerenes and photoconductors, John Wiley & Sons, Chichester, 1997). Rhodamin B hat ein Reduktionspotential von -0.545 V gegen NHE (M. S. Chan, J. R. Bolton, Solar Energy, 24, 561 (1980)), d.h. -0.79 V gegen SCE. Das Reduktionspotential des organischen Salzes Rhodamin B ist bestimmt durch das Reduktionspotential des Rhodamin B Kations. Dieser Wert ist gleich dem Oxidationspotential des neutralen Rhodamin B-Radikals. Folglich ist das Rhodamin B-Radikal ein stärkerer Donor als TTF. In der chemischen Verbindung Rhodamin B Chlorid ist dieser starke Donor Rhodamin B aber stabil. Während es also bisher möglich ist, Donoren mit einem Oxidationspotential größer +0.35 V gegen SCE einzusetzen, erlaubt die hier beschriebene Erfindung die Dotierung mit Donoren, deren Oxidationspotential kleiner als +0.35 V gegen SCE ist.A strong known organic donor, tetrathiafulvalene (TTF), has an oxidation potential of +0.35 V against SCE (Y. Misaki et al., Adv. Mater. 8, 804 (1996)). Stronger donors, i.e. Dopants with a lower oxidation potential are unstable in air (GC Papavassiliou, A. Terzis, P. Delhaes, in: HS Nalwa (Ed.) Handbook of conductive molecules and polymers, Vol. 1: charge-transfer salts, fillers and photoconductors, John Wiley & Sons, Chichester, 1997). Rhodamine B has a reduction potential of -0.545 V versus NHE (M. S. Chan, J. R. Bolton, Solar Energy, 24, 561 (1980)), i.e. -0.79 V against SCE. The reduction potential of the organic salt rhodamine B is determined by the reduction potential of the rhodamine B cation. This value is equal to the oxidation potential of the neutral Rhodamine B radical. As a result, the rhodamine B radical is a stronger donor than TTF. In the chemical compound rhodamine B chloride, however, this strong donor rhodamine B is stable. So far it has been possible to use donors with an oxidation potential greater than +0.35 V against SCE, but the invention described here allows doping with donors whose oxidation potential is less than +0.35 V against SCE.
Chemisch stabile Verbindungen im Sinne des Anspruchs 1 sind zum Beispiel ionische Farbstoffe. Diese werden in der Photographie zur Sensibilisierung von z.B. AgBr verwendet. Die Elektronenaffinität von AgBr ist 3.5eV. Farbstoffe, die AgBr durch Elektronenübertragung sensibilisieren können, sind ebenfalls als chemisch stabilie Verbindunngen zum Einsatz für Dotierung von organischen Halbleitermaterialien im Sinne des Anspruchs 1 geeignet. Eine Unterklasse der ionischen Farbstoffe sind die Di- und Triphenylmethanfarbstoffe und deren bekannte Analogua der allgemeinen Struktur T 2 bzw. T 2Chemically stable compounds within the meaning of claim 1 are, for example, ionic dyes. These are used in photography to sensitize AgBr, for example. The electron affinity of AgBr is 3.5eV. Dyes which can sensitize AgBr by electron transfer are also suitable as chemically stable compounds for use in doping organic semiconductor materials within the meaning of claim 1. A subclass of the ionic dyes are the di- and triphenylmethane dyes and their known analogues of the general structure T 2 and T 2
+ oder -+ or -
T l T 2 wobei X CR4, SiR4, GeR4, SnR4, PbR4, N, P undRl, R2, R3 und R4 geeignete, bekannte Substituenten sind, z.B. jeweils ein oder mehrere: Wasserstoff; Sauerstoff; Halogene, z.B. Fluor, Chlor, Brom oder Iod; Hydroxyl; Aminyl, z.B. Diphenylaminyl, Diethylaminyl; Aliphate mit 1 bis 20 Kohlenstoffatomen, z.B. Methyl, Ethyl, Carboxyl; Alkoxyl, z.B: Methoxy; Cyan; Nitro; Sulfonsäure und ihre Salze; Aryl mit 3 bis 25 Kohlenstoffatomen, z.B. Phenyl, Pyridyl oder Naphtyl oder diejenigen Atome sind, die einen kondensierten Ring bilden. Häufig sind eine oder mehrere p-ständige Subsitutionen der Phenylgruppen anzutreffen (T 3 bis T 6).T l T 2 where X CR 4 , SiR 4 , GeR 4 , SnR 4 , PbR 4 , N, P and Rl, R2, R3 and R 4 are suitable, known substituents, for example in each case one or more: hydrogen; Oxygen; Halogens, for example fluorine, chlorine, bromine or iodine; hydroxyl; Aminyl, for example diphenylaminyl, diethylaminyl; Aliphatics with 1 to 20 carbon atoms, for example methyl, ethyl, carboxyl; Alkoxyl, for example: methoxy; cyano; nitro; Sulfonic acid and its salts; Aryl having 3 to 25 carbon atoms, for example phenyl, pyridyl or naphthyl or those atoms which form a condensed ring. One or more p-position substitutions of the phenyl groups can often be found (M 3 to M 6).
T 3 T 4 T 3 T 4
T 5 T 6 wobei X CR8, SiR8, GeR8, SnR8, PbR8, N, P und Rl bis R7 und R8 geeignete, bekannte Substituenten sind, z.B. jeweils ein oder mehrere: Wasserstoff; Sauerstoff; Halogene, z.B. Fluor, Chlor, Brom oder Iod; Hydroxyl; Aminyl, z.B. Diphenylaminyl, Diethylaminyl; Aliphate mit 1 bis 20 Kohlenstoffatomen, z.B. Methyl, Ethyl, Carboxyl; Alkoxyl, z.B: Methoxy; Cyan; Nitro; Sulfonsäure und ihre Salze; Aryl mit 3 bis 25 Kohlenstoffatomen, z.B. Phenyl, Pyridyl oder Naphtyl oder diejenigen Atome sind, die einen kondensierten Ring bilden. Beispiele für Diphenylmethan-Farbstoffe sind Auramin O (CI 655), oder Auramin G (CI 656). Beispiele für Triphenylmethan-Farbstoffe sind Malachitgrün (CI 657), Türkisblau (CI 661), Fluorescein (CI 45350) oder Patentblau V (CI 712).T 5 T 6 where X CR8, SiR8, GeR8, SnR8, PbR8, N, P and Rl to R7 and R8 are suitable known substituents, e.g. one or more each: hydrogen; Oxygen; Halogens, e.g. Fluorine, chlorine, bromine or iodine; hydroxyl; Aminyl, e.g. Diphenylaminyl, diethylaminyl; Aliphates with 1 to 20 carbon atoms, e.g. Methyl, ethyl, carboxyl; Alkoxyl e.g. methoxy; cyano; nitro; Sulfonic acid and its salts; Aryl of 3 to 25 carbon atoms, e.g. Are phenyl, pyridyl or naphthyl or those atoms which form a condensed ring. Examples of diphenylmethane dyes are Auramin O (CI 655) or Auramin G (CI 656). Examples of triphenylmethane dyes are malachite green (CI 657), turquoise blue (CI 661), fluorescein (CI 45350) or patent blue V (CI 712).
Der Vertreter der Triphenylmethan Farbstoffe Malachitgrün Chlorid erzeugt in einer NTCDA Matrix bei einem Dotierverhältnis von 1:122 eine Leitfähigkeit von 4-10"4 S/cm. Malachitgrün ist also als Verbindung im Sinne des Anspruches 11 und insbesondere im Sinne der Unteransprüche 12 bis 22 geeignet, einen Dotiermolekül in situ zu erzeugen. Diese Eigenschaft wird durch die Valenzstruktur des zentralen Kohlenstoffatoms (4. Hauptgruppe) hervorgerufen. Andere bekannte Verbindungen dieses Strukturtyps mit Atomen der 4. Hauptgruppe als Zentralatom (Triarylsilyl, germyl, stannyl, plumbyl) sind demgemäß ebenfalls als Verbindung im Sinne der Ansprüche 1, 12 bis 22 geeignet. Verbindungen, in denen eine direkte Bindung zwischen 2 Kohlenstoffatomen jeweils eines Phenylrings der Di- oder Triphenylamine besteht, sind in den Ansprüchen 23 bis 25 enthalten.The representative of the triphenylmethane dyes malachite green chloride produces a conductivity of 4-10 "4 S / cm in an NTCDA matrix with a doping ratio of 1: 122. Malachite green is therefore a compound in the sense of claim 11 and in particular in the sense of subclaims 12 to 22 This property is brought about by the valence structure of the central carbon atom (main group 4), and other known compounds of this type of structure with atoms of the main group 4 as central atom (triarylsilyl, germyl, stannyl, plumbyl) are accordingly likewise suitable as a compound in the sense of claims 1, 12 to 22. Compounds in which there is a direct bond between 2 carbon atoms of each phenyl ring of the di- or triphenylamine are contained in claims 23 to 25.
Die Dotierwirkung tritt auch bei Verwendung der Leukoformen (T 7 T 8) der ionischen Farbstoffe ein. Rhodamine B base wirkt auf eine PTCDA Matrix dotierend, zB kann eine Leitfähigkeit von 7*10-5 S/cm für eine 1:70 Dotierung. The doping effect also occurs when using the leuco forms (T 7 T 8) of the ionic dyes. Rhodamine B base has a doping effect on a PTCDA matrix, for example a conductivity of 7 * 10-5 S / cm for a 1:70 doping.
T 7 T 8M 7 M 8
Eine weitere Gruppe von ionischen Farbstoffen sind die Xanthenfarbstoffe. Das oben aufgeführte Rhodamin B ist ein Vertreter dieser Klasse. Pyronin B, Rhodamine 110 und Rhodamine 3B als weitere Vertreter dieser Materialklasse haben ebenfalls eine Dotierwirkung. Den Xanthenfarbstoffen ähnlich sind u.a. die Pyran-, Thiopyran-, Indamin-, Acridin-, Azin-, Oxazin- und Thiazinfarbstoffe, die sich durch Substitutionen im mehrkernigen Heterozyklus unterscheiden. Aufgrund der ansonsten gleichen Struktur sind diese Farbstoffklassen (T 9) ebenfalls geeignete Verbindungen im Sinne der Ansprüche 1, 23 bis 26.Another group of ionic dyes are the xanthene dyes. The Rhodamine B listed above is a representative of this class. Pyronin B, Rhodamine 110 and Rhodamine 3B as further representatives of this class of materials also have a doping effect. The xanthene dyes are similar the pyran, thiopyran, indamine, acridine, azine, oxazine and thiazine dyes, which differ in substitutions in the multinuclear heterocycle. Because of the otherwise identical structure, these dye classes (T 9) are also suitable compounds in the sense of claims 1, 23 to 26.
T 9M 9
Farbstoffe, die auf einer Polymethin-StrukturDyes on a polymethine structure
+ oder+ or
basieren, wirken ebenfalls als Dotand. based also act as dopants.
N, N'-Diethyl-cyanine und N.N'-Diethyl-thiacarbocyanine bewirken in einer NTCDA Matrix eine Erhöhung der Leitfähigkeit auf 3-10"5 S/cm (1:114 Dotierverhältnis) bzw. 5-10"5 S/cm (1:47 Dotierverhältnis). Diese beiden Farbstoffe sind jeweils ein Vertreter der Polymethm-Farbstoffe mit einer bestimmten Wahl von X und Z. Die Leukobasen von ionischen Farbstoffen sind ebenfalls geeignete Verbindungen im Sinne der Ansprüche 1, 12 bis 26. Zum Beispiel ergibt Rhodamin B base in NTCDA eine Leitfähigkeit von 3-10"5 S/cm (1:70 Dotierverhältnis).In an NTCDA matrix, N, N'-diethyl-cyanine and N.N'-diethyl-thiacarbocyanine increase the conductivity to 3-10 "5 S / cm (1:11 doping ratio) or 5-10 " 5 S / cm (1:47 doping ratio). These two dyes are each a representative of the polymethm dyes with a specific choice of X and Z. The leuco bases of ionic dyes are also suitable compounds in the sense of claims 1, 12 to 26. For example, rhodamine B base in NTCDA gives a conductivity of 3-10 "5 S / cm (1:70 doping ratio).
Da die Dotierwirkung nicht an die Farbstoffeigenschaft der ionischen Farbstoffe anknüpft, sondern vielmehr an ihrem Charakter als organisches Salz, wirken andere organische Salze ebenfalls als Verbindung im Sinne des Anspruchs 11. Organische Salze beruhen häufig auf geeigneten Heterocyclen (z.B. Pyridinium, Pyrrolium, Pyrylium, Thiazolium, Diazininium, Thininium, Diazolium, Thiadiazolium oder Dithiolium usw. einzeln oder als Teil eines mehrkernigen Heterozyklus) oder geeigneten Gruppen (z.B. Ammonium, Sulfonium, Phosphonium, Iodonium usw.).Since the doping effect does not depend on the dye property of the ionic dyes, but rather on their character as an organic salt, other organic salts also act as a compound within the meaning of claim 11. Organic salts are often based on suitable heterocycles (e.g. pyridinium, pyrrolium, pyrylium, thiazolium , Diazininium, thininium, diazolium, thiadiazolium or dithiolium etc. individually or as part of a multinuclear heterocycle) or suitable groups (eg ammonium, sulfonium, phosphonium, iodonium etc.).
Massenspektrometrische Untersuchungen im Falle von Pyronin B Chlorid zeigen, daß beim Verdampfen von Pyronin B unter anderem HCl und eine protonierte Form von Pyronin B mit der Massenzahl 324 entsteht. Offenbar werden die bei der Aufspaltung von Pyronin B Chlorid erzeugten Chlorradikale und neutrale Pyronin B - Radikale durch ein Proton abgesättigt. Diese Protonen werden von anderen Pyronin B Molekülen in der verdampfenden Substanz geliefert. Eine aufgedampfte Schicht von Pyronin B Chlorid ist zunächst farblos. Dies beweist die Bildung des neutralen Pyronin B. Unter Sauerstoffeinfluss färbt sich die Aufdampfschicht wieder rot, was der Bildung des Pyronin B Kation entspricht, d.h. die verdampfte Substanz wird unter Sauerstoff einfluß oxidiert. Dieser Prozess findet in einer Mischschicht von Matrix und Dotanden ebenfalls statt. Aufdampfmischschichten aus Pyronin B chlorid und Tetracyanoquinodimethan sind sofort rot gefärbt, und die Präsenz von Tetracyanoquinodimethane Anionen ist durch UV/VIS und FTIR Spektroskopie nachweisbar. Mass spectrometric studies in the case of pyronine B chloride show that evaporation of pyronine B produces, inter alia, HCl and a protonated form of pyronine B with a mass number of 324. Apparently, the chlorine radicals and neutral pyronin B radicals generated during the decomposition of pyronine B chloride are saturated by a proton. These protons are supplied by other pyronin B molecules in the vaporising substance. An evaporated layer of pyronine B chloride is initially colorless. This proves the formation of the neutral pyronine B. Under the influence of oxygen, the vapor deposition layer turns red again, which corresponds to the formation of the pyronine B cation, i.e. the vaporized substance is oxidized under the influence of oxygen. This process also takes place in a mixed layer of matrix and dopant. Evaporation mixed layers of pyronine B chloride and tetracyanoquinodimethane are immediately colored red, and the presence of tetracyanoquinodimethane anions can be detected by UV / VIS and FTIR spectroscopy.
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10207859A DE10207859A1 (en) | 2002-02-20 | 2002-02-20 | Doped organic semiconductor material and process for its production |
DE10207859 | 2002-02-20 | ||
PCT/DE2003/000558 WO2003070822A2 (en) | 2002-02-20 | 2003-02-20 | Doped organic semiconductor material and method for production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1476881A2 true EP1476881A2 (en) | 2004-11-17 |
Family
ID=27674914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03722191A Ceased EP1476881A2 (en) | 2002-02-20 | 2003-02-20 | Doped organic semiconductor material and method for production thereof |
Country Status (9)
Country | Link |
---|---|
US (1) | US7858967B2 (en) |
EP (1) | EP1476881A2 (en) |
JP (1) | JP2005525696A (en) |
KR (1) | KR100679384B1 (en) |
CN (1) | CN1698137B (en) |
AU (1) | AU2003229476A1 (en) |
CA (1) | CA2463377C (en) |
DE (2) | DE10207859A1 (en) |
WO (1) | WO2003070822A2 (en) |
Cited By (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007022845A1 (en) | 2005-08-26 | 2007-03-01 | Merck Patent Gmbh | Novel materials for organic electroluminescent devices |
WO2008006449A1 (en) | 2006-07-11 | 2008-01-17 | Merck Patent Gmbh | Novel materials for organic electroluminescent devices |
DE102007002714A1 (en) | 2007-01-18 | 2008-07-31 | Merck Patent Gmbh | New materials for organic electroluminescent devices |
DE102007024850A1 (en) | 2007-05-29 | 2008-12-04 | Merck Patent Gmbh | New materials for organic electroluminescent devices |
US7507649B2 (en) | 2004-10-07 | 2009-03-24 | Novaled Ag | Method for electrical doping a semiconductor material with Cesium |
US7598519B2 (en) | 2005-05-27 | 2009-10-06 | Novaled Ag | Transparent light-emitting component |
DE102008017591A1 (en) | 2008-04-07 | 2009-10-08 | Merck Patent Gmbh | New materials for organic electroluminescent devices |
DE102008018670A1 (en) | 2008-04-14 | 2009-10-15 | Merck Patent Gmbh | New materials for organic electroluminescent devices |
DE102008024182A1 (en) | 2008-05-19 | 2009-11-26 | Merck Patent Gmbh | Connections for organic electronic device |
DE102008033943A1 (en) | 2008-07-18 | 2010-01-21 | Merck Patent Gmbh | New materials for organic electroluminescent devices |
DE102008050841A1 (en) | 2008-10-08 | 2010-04-15 | Merck Patent Gmbh | New materials for organic electroluminescent devices |
DE102009005288A1 (en) | 2009-01-20 | 2010-07-22 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
DE102009005290A1 (en) | 2009-01-20 | 2010-07-22 | Merck Patent Gmbh | Connections for electronic devices |
DE102009005289A1 (en) | 2009-01-20 | 2010-07-22 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
DE102009005746A1 (en) | 2009-01-23 | 2010-07-29 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
EP2248869A2 (en) | 2005-09-12 | 2010-11-10 | Merck Patent GmbH | Compounds for organic electronic devices |
DE102009023155A1 (en) | 2009-05-29 | 2010-12-02 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2010149259A2 (en) | 2009-06-22 | 2010-12-29 | Merck Patent Gmbh | Conducting formulation |
DE102009032922A1 (en) | 2009-07-14 | 2011-01-20 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2011009522A2 (en) | 2009-07-22 | 2011-01-27 | Merck Patent Gmbh | Materials for electronic devices |
WO2011012212A1 (en) | 2009-07-27 | 2011-02-03 | Merck Patent Gmbh | Novel materials for organic electroluminescent devices |
WO2011054442A2 (en) | 2009-11-06 | 2011-05-12 | Merck Patent Gmbh | Materials for electronic devices |
DE102009053644A1 (en) | 2009-11-17 | 2011-05-19 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2011076325A1 (en) | 2009-12-23 | 2011-06-30 | Merck Patent Gmbh | Compositions comprising polymeric binders |
WO2011076324A1 (en) | 2009-12-23 | 2011-06-30 | Merck Patent Gmbh | Compositions comprising organic semiconducting compounds |
WO2011088877A1 (en) | 2010-01-25 | 2011-07-28 | Merck Patent Gmbh | Compounds for electronic devices |
DE102010009903A1 (en) | 2010-03-02 | 2011-09-08 | Merck Patent Gmbh | Connections for electronic devices |
WO2011116869A1 (en) | 2010-03-26 | 2011-09-29 | Merck Patent Gmbh | Compounds for electronic devices |
WO2011128034A1 (en) | 2010-04-12 | 2011-10-20 | Merck Patent Gmbh | Composition having improved performance |
DE102010014933A1 (en) | 2010-04-14 | 2011-10-20 | Merck Patent Gmbh | Materials for electronic devices |
WO2011128035A1 (en) | 2010-04-12 | 2011-10-20 | Merck Patent Gmbh | Composition and method for preparation of organic electronic devices |
WO2011147523A1 (en) | 2010-05-27 | 2011-12-01 | Merck Patent Gmbh | Formulation and method for preparation of organic electronic devices |
DE102010024335A1 (en) | 2010-06-18 | 2011-12-22 | Merck Patent Gmbh | Connections for electronic devices |
DE102010024542A1 (en) | 2010-06-22 | 2011-12-22 | Merck Patent Gmbh | Materials for electronic devices |
DE102010033548A1 (en) | 2010-08-05 | 2012-02-09 | Merck Patent Gmbh | Materials for electronic devices |
DE102010048607A1 (en) | 2010-10-15 | 2012-04-19 | Merck Patent Gmbh | Connections for electronic devices |
WO2012150001A1 (en) | 2011-05-05 | 2012-11-08 | Merck Patent Gmbh | Compounds for electronic devices |
WO2013007348A1 (en) | 2011-07-11 | 2013-01-17 | Merck Patent Gmbh | Compositions for organic electroluminescent devices |
WO2013017192A1 (en) | 2011-08-03 | 2013-02-07 | Merck Patent Gmbh | Materials for electronic devices |
WO2013060418A1 (en) | 2011-10-27 | 2013-05-02 | Merck Patent Gmbh | Materials for electronic devices |
WO2013083216A1 (en) | 2011-11-17 | 2013-06-13 | Merck Patent Gmbh | Spiro dihydroacridine derivatives and the use thereof as materials for organic electroluminescence devices |
WO2013124029A2 (en) | 2012-02-22 | 2013-08-29 | Merck Patent Gmbh | Polymers containing dibenzocycloheptene structural units |
WO2013182263A1 (en) | 2012-06-06 | 2013-12-12 | Merck Patent Gmbh | Phenanthrene compounds for organic electronic devices |
WO2014000860A1 (en) | 2012-06-29 | 2014-01-03 | Merck Patent Gmbh | Polymers containing 2,7-pyrene structure units |
WO2014008967A2 (en) | 2012-07-10 | 2014-01-16 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2014015937A1 (en) | 2012-07-23 | 2014-01-30 | Merck Patent Gmbh | Compounds and organic electroluminescent devices |
WO2014015938A1 (en) | 2012-07-23 | 2014-01-30 | Merck Patent Gmbh | Derivatives of 2-diarylaminofluorene and organic electronic compounds containing them |
WO2014015935A2 (en) | 2012-07-23 | 2014-01-30 | Merck Patent Gmbh | Compounds and organic electronic devices |
WO2015082037A1 (en) | 2013-12-06 | 2015-06-11 | Merck Patent Gmbh | Compositions containing a polymeric binder which comprises acrylic and/or methacrylic acid ester units |
WO2015086108A1 (en) | 2013-12-12 | 2015-06-18 | Merck Patent Gmbh | Materials for electronic devices |
WO2016120007A1 (en) | 2015-01-30 | 2016-08-04 | Merck Patent Gmbh | Formulations with a low particle content |
WO2016184540A1 (en) | 2015-05-18 | 2016-11-24 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2017008883A1 (en) | 2015-07-15 | 2017-01-19 | Merck Patent Gmbh | Composition comprising organic semiconducting compounds |
EP3345984A1 (en) | 2013-12-06 | 2018-07-11 | Merck Patent GmbH | Connections and organic electronic devices |
WO2019007823A1 (en) | 2017-07-03 | 2019-01-10 | Merck Patent Gmbh | Formulations with a low content of phenol type impurities |
Families Citing this family (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100721656B1 (en) * | 2005-11-01 | 2007-05-23 | 주식회사 엘지화학 | Organic electrical devices |
US7560175B2 (en) * | 1999-12-31 | 2009-07-14 | Lg Chem, Ltd. | Electroluminescent devices with low work function anode |
KR100377321B1 (en) * | 1999-12-31 | 2003-03-26 | 주식회사 엘지화학 | Electronic device comprising organic compound having p-type semiconducting characteristics |
DE10215210B4 (en) * | 2002-03-28 | 2006-07-13 | Novaled Gmbh | Transparent, thermally stable light-emitting component with organic layers |
US20100026176A1 (en) * | 2002-03-28 | 2010-02-04 | Jan Blochwitz-Nomith | Transparent, Thermally Stable Light-Emitting Component Having Organic Layers |
DE10338406A1 (en) * | 2003-08-18 | 2005-03-24 | Novaled Gmbh | Doped organic semiconductor materials and process for their preparation |
JP2007507863A (en) * | 2003-10-02 | 2007-03-29 | ナショナル リサーチ カウンシル オブ カナダ | 2,7-Carbazolenvinylene derivatives as novel materials in the fabrication of organic-based electronic devices |
JP4731865B2 (en) * | 2003-10-03 | 2011-07-27 | 株式会社半導体エネルギー研究所 | Light emitting device |
US7541734B2 (en) | 2003-10-03 | 2009-06-02 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device having a layer with a metal oxide and a benzoxazole derivative |
DE10347856B8 (en) * | 2003-10-10 | 2006-10-19 | Colorado State University Research Foundation, Fort Collins | Semiconductor doping |
DE102004002587B4 (en) * | 2004-01-16 | 2006-06-01 | Novaled Gmbh | Image element for an active matrix display |
DE102004003030A1 (en) * | 2004-01-21 | 2005-09-01 | Shuajp Kraja | Composition containing a dihydroanthracene-disulfonic acid derivative, useful for treating inflammation of internal organs, e.g. ulcers, and cancer |
DE102004007399B4 (en) * | 2004-02-16 | 2007-12-27 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Polymer system with defined adjustable carrier mobility and its use |
JP5064034B2 (en) | 2004-05-11 | 2012-10-31 | エルジー・ケム・リミテッド | Organic electrical element |
US7540978B2 (en) | 2004-08-05 | 2009-06-02 | Novaled Ag | Use of an organic matrix material for producing an organic semiconductor material, organic semiconductor material and electronic component |
WO2006015567A1 (en) | 2004-08-13 | 2006-02-16 | Novaled Ag | Layer arrangement for a light-emitting component |
CN101006159B (en) * | 2004-08-19 | 2011-11-09 | Lg化学株式会社 | Organic light-emitting device comprising buffer layer and method for fabricating the same |
WO2006022194A1 (en) * | 2004-08-23 | 2006-03-02 | Semiconductor Energy Laboratory Co., Ltd. | Electron injecting composition, and light emitting element and light emitting device using the electron injecting composition |
JP5041267B2 (en) * | 2005-01-20 | 2012-10-03 | 富士電機株式会社 | Thin film field effect transistor and method for manufacturing the same |
EP1684365A3 (en) * | 2005-01-20 | 2008-08-13 | Fuji Electric Holdings Co., Ltd. | Transistor |
DE502005002342D1 (en) * | 2005-03-15 | 2008-02-07 | Novaled Ag | Light-emitting component |
EP1818996A1 (en) | 2005-04-13 | 2007-08-15 | Novaled AG | Assembly for an organic pin-type LED and manufacturing method |
EP2045843B1 (en) * | 2005-06-01 | 2012-08-01 | Novaled AG | Light-emitting component with an electrode assembly |
EP1739765A1 (en) * | 2005-07-01 | 2007-01-03 | Novaled AG | Organic light-emitting diode and stack of organic light emitting diodes |
CN101268565A (en) | 2005-09-05 | 2008-09-17 | 奥斯兰姆奥普托半导体有限责任公司 | Novel materials for n-type doping of the electron transporting layers in organic electronic devices |
US7446234B2 (en) * | 2005-09-27 | 2008-11-04 | Council Of Scientific And Industrial Research | Bisphenol compound and process for preparation thereof |
EP1780816B1 (en) | 2005-11-01 | 2020-07-01 | Novaled GmbH | A method for producing an electronic device with a layer structure and an electronic device |
KR100890862B1 (en) * | 2005-11-07 | 2009-03-27 | 주식회사 엘지화학 | Organic electroluminescent device and method for preparing the same |
EP1786050B1 (en) * | 2005-11-10 | 2010-06-23 | Novaled AG | Doped organic semiconductor material |
EP1939320B1 (en) * | 2005-12-07 | 2013-08-21 | Novaled AG | Method of vapour deposition |
DE502005004675D1 (en) * | 2005-12-21 | 2008-08-21 | Novaled Ag | Organic component |
US7919010B2 (en) | 2005-12-22 | 2011-04-05 | Novaled Ag | Doped organic semiconductor material |
DE602006001930D1 (en) * | 2005-12-23 | 2008-09-04 | Novaled Ag | of organic layers |
EP1808909A1 (en) | 2006-01-11 | 2007-07-18 | Novaled AG | Electroluminescent light-emitting device |
JP2009524189A (en) * | 2006-01-18 | 2009-06-25 | エルジー・ケム・リミテッド | Multilayer organic light emitting device |
EP1837926B1 (en) * | 2006-03-21 | 2008-05-07 | Novaled AG | Heterocyclic radicals or diradicals and their dimers, oligomers, polymers, di-spiro and polycyclic derivatives as well as their use in organic semiconductor materials and electronic devices. |
DE102007014048B4 (en) | 2006-03-21 | 2013-02-21 | Novaled Ag | Mixture of matrix material and doping material, and method for producing a layer of doped organic material |
EP1837927A1 (en) * | 2006-03-22 | 2007-09-26 | Novaled AG | Use of heterocyclic radicals for doping of organic semiconductors |
DE102006013802A1 (en) * | 2006-03-24 | 2007-09-27 | Merck Patent Gmbh | New anthracene compounds useful in organic electronic devices, preferably organic electroluminescent device e.g. integrated organic electroluminescent devices and organic field-effect-transistors |
EP1848049B1 (en) * | 2006-04-19 | 2009-12-09 | Novaled AG | Light emitting device |
JP5361719B2 (en) * | 2006-07-19 | 2013-12-04 | コーニンクレッカ フィリップス エヌ ヴェ | Highly doped electro-optic active organic diode with short-circuit protective layer |
KR100830976B1 (en) * | 2006-11-21 | 2008-05-20 | 삼성에스디아이 주식회사 | Organic light emitting device and organic light emitting display device having same |
DE102007012794B3 (en) | 2007-03-16 | 2008-06-19 | Novaled Ag | Pyrido [3,2-h] quinazolines and / or their 5,6-dihydro derivatives, their method of preparation and doped organic semiconductor material containing them |
US7875881B2 (en) * | 2007-04-03 | 2011-01-25 | Semiconductor Energy Laboratory Co., Ltd. | Memory device and semiconductor device |
DE102007019260B4 (en) | 2007-04-17 | 2020-01-16 | Novaled Gmbh | Non-volatile organic storage element |
DE102007018456B4 (en) * | 2007-04-19 | 2022-02-24 | Novaled Gmbh | Use of main group element halides and/or pseudohalides, organic semiconducting matrix material, electronic and optoelectronic components |
EP3457451B1 (en) | 2007-04-30 | 2019-07-17 | Novaled GmbH | The use of oxocarbon, pseudooxocarbon and radialene compounds |
EP1990847B1 (en) * | 2007-05-10 | 2018-06-20 | Novaled GmbH | Use of quinoid bisimidazoles and their derivatives as dopant for doping an organic semi-conductor matrix material |
EP2009014B1 (en) * | 2007-06-22 | 2018-10-24 | Novaled GmbH | Application of a precursor of an n-dopant for doping an organic semi-conducting material, precursor and electronic or optoelectronic component |
DE102007030499A1 (en) * | 2007-06-30 | 2009-01-08 | Aixtron Ag | Apparatus and method for depositing in particular doped layers by means of OVPD or the like |
DE102007031220B4 (en) * | 2007-07-04 | 2022-04-28 | Novaled Gmbh | Quinoid compounds and their use in semiconducting matrix materials, electronic and optoelectronic components |
DE102007037905B4 (en) | 2007-08-10 | 2011-02-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Doped semiconductor material and its use |
DE102007059887B4 (en) * | 2007-09-26 | 2024-10-31 | Pictiva Displays International Limited | Light-emitting organic component and method for its production |
US20090091242A1 (en) * | 2007-10-05 | 2009-04-09 | Liang-Sheng Liao | Hole-injecting layer in oleds |
EP2201622B1 (en) * | 2007-10-18 | 2021-05-12 | Raynergy Tek Inc. | Conducting formulation |
US8057712B2 (en) * | 2008-04-29 | 2011-11-15 | Novaled Ag | Radialene compounds and their use |
DE102008036062B4 (en) | 2008-08-04 | 2015-11-12 | Novaled Ag | Organic field effect transistor |
DE102008036063B4 (en) * | 2008-08-04 | 2017-08-31 | Novaled Gmbh | Organic field effect transistor |
EP2194055B1 (en) | 2008-12-03 | 2012-04-04 | Novaled AG | Bridged pyridoquinazoline or phenanthroline compounds and organic semiconducting material comprising that compound |
DE102009013685B4 (en) | 2009-03-20 | 2013-01-31 | Novaled Ag | Use of an organic diode as organic Zener diode and method of operation |
EP2246862A1 (en) | 2009-04-27 | 2010-11-03 | Novaled AG | Organic electronic device comprising an organic semiconducting material |
US8603642B2 (en) | 2009-05-13 | 2013-12-10 | Global Oled Technology Llc | Internal connector for organic electronic devices |
DE102010031829B4 (en) | 2009-07-21 | 2021-11-11 | Novaled Gmbh | Thermoelectric components with thin layers |
KR20120093921A (en) | 2009-10-13 | 2012-08-23 | 바스프 에스이 | Mixtures for producing photoactive layers for organic solar cells and organic photodetectors |
WO2011044867A2 (en) | 2009-10-14 | 2011-04-21 | Novaled Ag | Electro-optical, organic semiconductor component and method for the production thereof |
EP2312663B1 (en) | 2009-10-19 | 2014-10-15 | Novaled AG | Organic electronic device comprising an organic semiconducting material |
CN104326968B (en) * | 2009-10-20 | 2017-04-12 | 东曹株式会社 | Carbazole compound and use thereof |
EP2504871B1 (en) | 2009-11-24 | 2017-03-22 | Novaled GmbH | Organic electronic device comprising an organic semiconducting material |
DE102010004453A1 (en) | 2010-01-12 | 2011-07-14 | Novaled AG, 01307 | Organic light emitting component has connection units formed with p-doped and n-doped hole transport layers and n-type and p-type dot layers formed with organic n-dopant and p-dopant materials respectively |
JP5601019B2 (en) * | 2010-05-19 | 2014-10-08 | コニカミノルタ株式会社 | Organic electronics element, organic electroluminescence element, display device, lighting device, organic photoelectric conversion element, solar cell, photosensor array, and organic electronics element material |
EP2395571B1 (en) | 2010-06-10 | 2013-12-04 | Novaled AG | Organic electronic device comprising an organic semiconducting material |
DE102010031979B4 (en) | 2010-07-22 | 2014-10-30 | Novaled Ag | Semiconductor device, method for its production, use of the semiconductor device and inverter with two semiconductor devices |
WO2012031735A1 (en) | 2010-09-10 | 2012-03-15 | Novaled Ag | Compounds for organic photovoltaic devices |
US9006712B2 (en) | 2011-03-16 | 2015-04-14 | Novaled Ag | Organic memory element |
US9142781B2 (en) | 2011-06-09 | 2015-09-22 | Novaled Ag | Compound for organic electronic device |
TWI584513B (en) | 2011-11-30 | 2017-05-21 | 諾瓦發光二極體有限公司 | Display |
DE102012100642B4 (en) | 2012-01-26 | 2015-09-10 | Novaled Ag | Arrangement with a plurality of organic semiconductor components and method for producing and using the arrangement |
JP6045049B2 (en) | 2012-04-05 | 2016-12-14 | ノヴァレッド ゲーエムベーハー | Organic field effect transistor and manufacturing method thereof |
EP2658006B1 (en) | 2012-04-27 | 2015-05-20 | Novaled GmbH | Organic field effect transistor |
EP2648239B1 (en) | 2012-04-05 | 2014-07-23 | Novaled AG | A method for producing a vertical organic field effect transistor and a vertical organic field effect transistor |
US9882109B2 (en) | 2012-11-06 | 2018-01-30 | Empire Technology Development Llc | Bi-polar organic semiconductors for thermoelectric power generation |
EP2790238B1 (en) | 2013-04-10 | 2018-08-22 | Novaled GmbH | Organic field effect transistor and method for production |
EP2797133B1 (en) | 2013-04-23 | 2017-01-11 | Novaled GmbH | A method for producing an organic field effect transistor and an organic field effect transistor |
WO2015001691A1 (en) * | 2013-07-05 | 2015-01-08 | エイソンテクノロジー株式会社 | Organic electroluminescent element |
EP2840622B1 (en) | 2013-08-19 | 2019-02-13 | Novaled GmbH | Electronic or optoelectronic device comprising an anchored thin molecular layer, process for its preparation and compound used therein |
EP2924753B1 (en) | 2014-03-25 | 2017-04-19 | Novaled GmbH | Polychromatic light emitting devices and versatile hole transporting matrix for them |
EP2924754B1 (en) | 2014-03-28 | 2021-10-20 | Novaled GmbH | Method for producing an organic transistor and organic transistor |
EP2933852B2 (en) | 2014-04-17 | 2023-09-06 | Novaled GmbH | Phosphorescent OLED and hole transporting materials for phosphorescent OLEDs |
KR102345977B1 (en) * | 2014-08-26 | 2021-12-30 | 삼성전자주식회사 | Organic photoelectronic device and image sensor |
US10680184B2 (en) | 2016-07-11 | 2020-06-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
JP2019175918A (en) * | 2018-03-27 | 2019-10-10 | 三菱ケミカル株式会社 | Photoelectric conversion element and solar cell module |
EP3591725A1 (en) * | 2018-07-02 | 2020-01-08 | Novaled GmbH | Electronic device, method for preparing the same and a display device comprising the same |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE13109T1 (en) * | 1980-03-11 | 1985-05-15 | University Patents Inc | SECONDARY BATTERIES BASED ON REVERSIBLE ELECTROCHEMICAL DOPING OF CONJUGATED POLYMERS. |
JPS5718757A (en) * | 1980-07-09 | 1982-01-30 | Showa Denko Kk | Preparation of high polymer semiconductor |
JPS59217729A (en) * | 1983-05-25 | 1984-12-07 | Agency Of Ind Science & Technol | Production of polyvinylene selenide |
JPS61195157A (en) * | 1985-02-25 | 1986-08-29 | Toshiba Corp | Organic semiconductor |
DE3634281A1 (en) * | 1986-10-08 | 1988-04-21 | Basf Ag | Electrically conductive polysilanes |
JPS63199727A (en) * | 1987-02-16 | 1988-08-18 | Agency Of Ind Science & Technol | organic semiconductor |
WO1991005018A1 (en) * | 1989-09-27 | 1991-04-18 | Canon Kabushiki Kaisha | Novel polysilane composition |
JPH03222477A (en) * | 1990-01-29 | 1991-10-01 | Matsushita Electric Ind Co Ltd | Electronic polymer |
US5093698A (en) * | 1991-02-12 | 1992-03-03 | Kabushiki Kaisha Toshiba | Organic electroluminescent device |
JP3249297B2 (en) * | 1994-07-14 | 2002-01-21 | 三洋電機株式会社 | Organic electroluminescent device |
EP0844062A1 (en) | 1996-11-21 | 1998-05-27 | The Procter & Gamble Company | Thermal joining of webs |
CN1245581A (en) | 1996-12-23 | 2000-02-23 | 普林斯顿大学理事会 | Organic light emitting device containing protection layer |
US5811833A (en) * | 1996-12-23 | 1998-09-22 | University Of So. Ca | Electron transporting and light emitting layers based on organic free radicals |
JPH10270171A (en) * | 1997-01-27 | 1998-10-09 | Junji Kido | Organic electroluminescent device |
US5882829A (en) * | 1997-06-30 | 1999-03-16 | Xerox Corporation | Photoreceptor containing improved charge transporting small molecule |
KR20010040510A (en) * | 1998-02-02 | 2001-05-15 | 유니액스 코포레이션 | Organic Diodes with Switchable Photosensitivity |
JP3287344B2 (en) * | 1998-10-09 | 2002-06-04 | 株式会社デンソー | Organic EL device |
GB2356738B (en) | 1999-09-15 | 2004-03-17 | Ibm | Ionic salt dyes as amorphous, thermally stable emitting and charge transport layers in organic light emitting diodes |
JP4385503B2 (en) * | 2000-07-10 | 2009-12-16 | 富士ゼロックス株式会社 | Organic electroluminescence device |
JP4154138B2 (en) * | 2000-09-26 | 2008-09-24 | キヤノン株式会社 | Light emitting element, display device and metal coordination compound |
DE10116876B4 (en) * | 2001-04-04 | 2004-09-23 | Infineon Technologies Ag | Process for doping electrically conductive organic compounds, organic field effect transistor and process for its production |
-
2002
- 2002-02-20 DE DE10207859A patent/DE10207859A1/en not_active Withdrawn
-
2003
- 2003-02-18 DE DE10307125.3A patent/DE10307125B4/en not_active Expired - Lifetime
- 2003-02-20 JP JP2003569726A patent/JP2005525696A/en active Pending
- 2003-02-20 CN CN038009951A patent/CN1698137B/en not_active Expired - Lifetime
- 2003-02-20 WO PCT/DE2003/000558 patent/WO2003070822A2/en active Application Filing
- 2003-02-20 US US10/489,131 patent/US7858967B2/en not_active Expired - Lifetime
- 2003-02-20 AU AU2003229476A patent/AU2003229476A1/en not_active Abandoned
- 2003-02-20 CA CA2463377A patent/CA2463377C/en not_active Expired - Lifetime
- 2003-02-20 KR KR1020047002549A patent/KR100679384B1/en not_active Expired - Lifetime
- 2003-02-20 EP EP03722191A patent/EP1476881A2/en not_active Ceased
Non-Patent Citations (1)
Title |
---|
See references of WO03070822A2 * |
Cited By (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7507649B2 (en) | 2004-10-07 | 2009-03-24 | Novaled Ag | Method for electrical doping a semiconductor material with Cesium |
US7598519B2 (en) | 2005-05-27 | 2009-10-06 | Novaled Ag | Transparent light-emitting component |
WO2007022845A1 (en) | 2005-08-26 | 2007-03-01 | Merck Patent Gmbh | Novel materials for organic electroluminescent devices |
EP3211058A1 (en) | 2005-08-26 | 2017-08-30 | Merck Patent GmbH | New materials for organic electroluminescent devices |
EP2248869A2 (en) | 2005-09-12 | 2010-11-10 | Merck Patent GmbH | Compounds for organic electronic devices |
WO2008006449A1 (en) | 2006-07-11 | 2008-01-17 | Merck Patent Gmbh | Novel materials for organic electroluminescent devices |
DE102007002714A1 (en) | 2007-01-18 | 2008-07-31 | Merck Patent Gmbh | New materials for organic electroluminescent devices |
US8343637B2 (en) | 2007-01-18 | 2013-01-01 | Merck Patent Gmbh | Carbazole derivatives for organic electroluminescent devices |
DE102007024850A1 (en) | 2007-05-29 | 2008-12-04 | Merck Patent Gmbh | New materials for organic electroluminescent devices |
DE102008017591A1 (en) | 2008-04-07 | 2009-10-08 | Merck Patent Gmbh | New materials for organic electroluminescent devices |
DE102008018670A1 (en) | 2008-04-14 | 2009-10-15 | Merck Patent Gmbh | New materials for organic electroluminescent devices |
US8766001B2 (en) | 2008-05-19 | 2014-07-01 | Merck Patent Gmbh | Compounds for electronic devices |
DE102008024182A1 (en) | 2008-05-19 | 2009-11-26 | Merck Patent Gmbh | Connections for organic electronic device |
DE102008033943A1 (en) | 2008-07-18 | 2010-01-21 | Merck Patent Gmbh | New materials for organic electroluminescent devices |
DE102008050841A1 (en) | 2008-10-08 | 2010-04-15 | Merck Patent Gmbh | New materials for organic electroluminescent devices |
US8637168B2 (en) | 2008-10-08 | 2014-01-28 | Merck Patent Gmbh | Materials for organic electroluminescence devices |
DE102008050841B4 (en) | 2008-10-08 | 2019-08-01 | Merck Patent Gmbh | New materials for organic electroluminescent devices |
DE102009005289B4 (en) | 2009-01-20 | 2023-06-22 | Merck Patent Gmbh | Materials for organic electroluminescent devices, methods for their production and electronic devices containing them |
WO2010083872A2 (en) | 2009-01-20 | 2010-07-29 | Merck Patent Gmbh | Materials for organic electroluminescence devices |
WO2010083873A1 (en) | 2009-01-20 | 2010-07-29 | Merck Patent Gmbh | Materials for organic electroluminescence devices |
US9475792B2 (en) | 2009-01-20 | 2016-10-25 | Merck Patent Gmbh | Materials for organic electroluminescence devices |
US9034485B2 (en) | 2009-01-20 | 2015-05-19 | Merck Patent Gmbh | Compounds for electronic devices |
DE102009005289A1 (en) | 2009-01-20 | 2010-07-22 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
DE102009005290A1 (en) | 2009-01-20 | 2010-07-22 | Merck Patent Gmbh | Connections for electronic devices |
WO2010083871A1 (en) | 2009-01-20 | 2010-07-29 | Merck Patent Gmbh | Compounds for electronic devices |
DE102009005288A1 (en) | 2009-01-20 | 2010-07-22 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
US8710284B2 (en) | 2009-01-23 | 2014-04-29 | Merck Patent Gmbh | Materials for organic electroluminescent devices containing substituted 10-benzo[c]phenanthrenes |
US9006503B2 (en) | 2009-01-23 | 2015-04-14 | Merck Patent Gmbh | Organic electroluminescence devices containing substituted benzo[C]phenanthrenes |
DE102009005746A1 (en) | 2009-01-23 | 2010-07-29 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2010083869A2 (en) | 2009-01-23 | 2010-07-29 | Merck Patent Gmbh | Materials for organic electroluminescence devices |
DE102009023155A1 (en) | 2009-05-29 | 2010-12-02 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2010149259A2 (en) | 2009-06-22 | 2010-12-29 | Merck Patent Gmbh | Conducting formulation |
WO2011006574A1 (en) | 2009-07-14 | 2011-01-20 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
DE102009032922A1 (en) | 2009-07-14 | 2011-01-20 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
DE102009032922B4 (en) | 2009-07-14 | 2024-04-25 | Merck Patent Gmbh | Materials for organic electroluminescent devices, processes for their preparation, their use and electronic device |
WO2011009522A2 (en) | 2009-07-22 | 2011-01-27 | Merck Patent Gmbh | Materials for electronic devices |
DE102009034194A1 (en) | 2009-07-22 | 2011-01-27 | Merck Patent Gmbh | Materials for electronic devices |
DE102009034625A1 (en) | 2009-07-27 | 2011-02-03 | Merck Patent Gmbh | New materials for organic electroluminescent devices |
WO2011012212A1 (en) | 2009-07-27 | 2011-02-03 | Merck Patent Gmbh | Novel materials for organic electroluminescent devices |
DE102009053191A1 (en) | 2009-11-06 | 2011-05-12 | Merck Patent Gmbh | Materials for electronic devices |
WO2011054442A2 (en) | 2009-11-06 | 2011-05-12 | Merck Patent Gmbh | Materials for electronic devices |
DE102009053644B4 (en) | 2009-11-17 | 2019-07-04 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2011060859A1 (en) | 2009-11-17 | 2011-05-26 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
DE102009053644A1 (en) | 2009-11-17 | 2011-05-19 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
EP2725632A1 (en) | 2009-12-23 | 2014-04-30 | Merck Patent GmbH | Use of compositions comprising polymeric inert binders for the fabricaiton of light-emitting diode |
WO2011076325A1 (en) | 2009-12-23 | 2011-06-30 | Merck Patent Gmbh | Compositions comprising polymeric binders |
WO2011076324A1 (en) | 2009-12-23 | 2011-06-30 | Merck Patent Gmbh | Compositions comprising organic semiconducting compounds |
WO2011076380A1 (en) | 2009-12-23 | 2011-06-30 | Merck Patent Gmbh | Composition for the preparation of organic electronic (oe) devices |
DE102010005697A1 (en) | 2010-01-25 | 2011-07-28 | Merck Patent GmbH, 64293 | Connections for electronic devices |
WO2011088877A1 (en) | 2010-01-25 | 2011-07-28 | Merck Patent Gmbh | Compounds for electronic devices |
WO2011107186A2 (en) | 2010-03-02 | 2011-09-09 | Merck Patent Gmbh | Compounds for electronic devices |
DE102010009903A1 (en) | 2010-03-02 | 2011-09-08 | Merck Patent Gmbh | Connections for electronic devices |
DE102010013068A1 (en) | 2010-03-26 | 2011-09-29 | Merck Patent Gmbh | Connections for electronic devices |
WO2011116869A1 (en) | 2010-03-26 | 2011-09-29 | Merck Patent Gmbh | Compounds for electronic devices |
WO2011128034A1 (en) | 2010-04-12 | 2011-10-20 | Merck Patent Gmbh | Composition having improved performance |
WO2011128035A1 (en) | 2010-04-12 | 2011-10-20 | Merck Patent Gmbh | Composition and method for preparation of organic electronic devices |
WO2011128017A1 (en) | 2010-04-14 | 2011-10-20 | Merck Patent Gmbh | Bridged triarylamines and -phosphines as materials for electronic devices |
DE102010014933A1 (en) | 2010-04-14 | 2011-10-20 | Merck Patent Gmbh | Materials for electronic devices |
WO2011147523A1 (en) | 2010-05-27 | 2011-12-01 | Merck Patent Gmbh | Formulation and method for preparation of organic electronic devices |
WO2011157346A1 (en) | 2010-06-18 | 2011-12-22 | Merck Patent Gmbh | Compounds for electronic devices |
DE102010024335A1 (en) | 2010-06-18 | 2011-12-22 | Merck Patent Gmbh | Connections for electronic devices |
WO2011160757A1 (en) | 2010-06-22 | 2011-12-29 | Merck Patent Gmbh | Materials for electronic devices |
DE102010024542A1 (en) | 2010-06-22 | 2011-12-22 | Merck Patent Gmbh | Materials for electronic devices |
WO2012016630A1 (en) | 2010-08-05 | 2012-02-09 | Merck Patent Gmbh | Materials for electronic devices |
DE102010033548A1 (en) | 2010-08-05 | 2012-02-09 | Merck Patent Gmbh | Materials for electronic devices |
WO2012048780A1 (en) | 2010-10-15 | 2012-04-19 | Merck Patent Gmbh | Compounds for electronic devices |
DE102010048607A1 (en) | 2010-10-15 | 2012-04-19 | Merck Patent Gmbh | Connections for electronic devices |
WO2012150001A1 (en) | 2011-05-05 | 2012-11-08 | Merck Patent Gmbh | Compounds for electronic devices |
WO2013007348A1 (en) | 2011-07-11 | 2013-01-17 | Merck Patent Gmbh | Compositions for organic electroluminescent devices |
US9583717B2 (en) | 2011-07-11 | 2017-02-28 | Merck Patent Gmbh | Compounds for organic electroluminescent devices |
WO2013017192A1 (en) | 2011-08-03 | 2013-02-07 | Merck Patent Gmbh | Materials for electronic devices |
EP3439065A1 (en) | 2011-08-03 | 2019-02-06 | Merck Patent GmbH | Materials for electronic devices |
WO2013060418A1 (en) | 2011-10-27 | 2013-05-02 | Merck Patent Gmbh | Materials for electronic devices |
WO2013083216A1 (en) | 2011-11-17 | 2013-06-13 | Merck Patent Gmbh | Spiro dihydroacridine derivatives and the use thereof as materials for organic electroluminescence devices |
WO2013124029A2 (en) | 2012-02-22 | 2013-08-29 | Merck Patent Gmbh | Polymers containing dibenzocycloheptene structural units |
DE102012011335A1 (en) | 2012-06-06 | 2013-12-12 | Merck Patent Gmbh | Connections for Organic Electronic Devices |
WO2013182263A1 (en) | 2012-06-06 | 2013-12-12 | Merck Patent Gmbh | Phenanthrene compounds for organic electronic devices |
WO2014000860A1 (en) | 2012-06-29 | 2014-01-03 | Merck Patent Gmbh | Polymers containing 2,7-pyrene structure units |
WO2014008967A2 (en) | 2012-07-10 | 2014-01-16 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2014015935A2 (en) | 2012-07-23 | 2014-01-30 | Merck Patent Gmbh | Compounds and organic electronic devices |
DE202013012401U1 (en) | 2012-07-23 | 2016-10-12 | Merck Patent Gmbh | Connections and Organic Electronic Devices |
EP3424907A2 (en) | 2012-07-23 | 2019-01-09 | Merck Patent GmbH | Connections and organic electronic devices |
WO2014015937A1 (en) | 2012-07-23 | 2014-01-30 | Merck Patent Gmbh | Compounds and organic electroluminescent devices |
WO2014015938A1 (en) | 2012-07-23 | 2014-01-30 | Merck Patent Gmbh | Derivatives of 2-diarylaminofluorene and organic electronic compounds containing them |
WO2015082037A1 (en) | 2013-12-06 | 2015-06-11 | Merck Patent Gmbh | Compositions containing a polymeric binder which comprises acrylic and/or methacrylic acid ester units |
EP3345984A1 (en) | 2013-12-06 | 2018-07-11 | Merck Patent GmbH | Connections and organic electronic devices |
EP3693437A1 (en) | 2013-12-06 | 2020-08-12 | Merck Patent GmbH | Compounds and organic electronic devices |
WO2015086108A1 (en) | 2013-12-12 | 2015-06-18 | Merck Patent Gmbh | Materials for electronic devices |
WO2016120007A1 (en) | 2015-01-30 | 2016-08-04 | Merck Patent Gmbh | Formulations with a low particle content |
WO2016184540A1 (en) | 2015-05-18 | 2016-11-24 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2017008883A1 (en) | 2015-07-15 | 2017-01-19 | Merck Patent Gmbh | Composition comprising organic semiconducting compounds |
WO2019007823A1 (en) | 2017-07-03 | 2019-01-10 | Merck Patent Gmbh | Formulations with a low content of phenol type impurities |
Also Published As
Publication number | Publication date |
---|---|
AU2003229476A8 (en) | 2003-09-09 |
US20050040390A1 (en) | 2005-02-24 |
WO2003070822A2 (en) | 2003-08-28 |
US7858967B2 (en) | 2010-12-28 |
CN1698137A (en) | 2005-11-16 |
KR100679384B1 (en) | 2007-02-05 |
KR20050004768A (en) | 2005-01-12 |
CA2463377C (en) | 2015-01-06 |
JP2005525696A (en) | 2005-08-25 |
DE10307125B4 (en) | 2017-06-22 |
DE10307125A1 (en) | 2004-01-08 |
WO2003070822A3 (en) | 2004-06-10 |
CN1698137B (en) | 2012-09-05 |
AU2003229476A1 (en) | 2003-09-09 |
CA2463377A1 (en) | 2003-08-28 |
DE10207859A1 (en) | 2003-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10307125B4 (en) | An organic semiconductor material doped electrically with a donor, process for its preparation and use | |
EP1538684B1 (en) | Process for doping organic semiconductors with derivatives of dioxaborine | |
EP1988587B1 (en) | Oxocarbon, pseudo oxocarbon and radialene compounds and their use | |
EP2009014B1 (en) | Application of a precursor of an n-dopant for doping an organic semi-conducting material, precursor and electronic or optoelectronic component | |
EP2002492B1 (en) | Use of heterocyclic radicals for doping organic semiconductors | |
DE102006054523B4 (en) | Dithiolene transition metal complexes and selenium-analogous compounds, their use as dopant, organic semiconductive material containing the complexes, and electronic or optoelectronic device containing a complex | |
WO2007054345A1 (en) | Doped organic semiconductor material | |
WO2008058525A2 (en) | Use of a coordination compound for the doping of organic semiconductors | |
EP2229699B1 (en) | Dithiol transition metal complexes, and electronic or optoelectronic components | |
DE102007031220A1 (en) | Chinoid compounds and their use in semiconducting matrix materials, electronic and optoelectronic devices | |
WO2006081780A1 (en) | Dopants for organic semiconductors | |
DE102011003192B4 (en) | Semiconductor component and method for its production | |
WO2008061517A2 (en) | Use of dithiol transition metal complexes and compounds analogous to selenium as dopants | |
DE102007014048A1 (en) | Mixture, useful in a procedure for forming a doped organic material layer on a substrate, comprises a matrix material and a doping material | |
EP2659529B1 (en) | Optoelectronic component having doped layers | |
EP3201959A1 (en) | Method for producing an organic electronic component, and organic electronic component | |
WO2008043515A2 (en) | Method for spatially structuring the light emitting diode of light emitting organic semiconductor components, semiconductor component produced according to said method, and use thereof | |
WO2010057471A1 (en) | Chinoxaline compounds and semiconductor materials | |
WO2017194435A1 (en) | Compositions for electrochemical cells | |
DE102013205093A1 (en) | New substituted tetraheterocyclic compounds useful in optoelectronic or electronic components, preferably e.g. organic light-emitting diodes, organic solar cells, dye-sensitized solar cells, batteries and accumulators, and organic diodes | |
DE102008058230B4 (en) | Quinoxaline compound, organic light emitting diode, organic thin film transistor and solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040129 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: NOVALED GMBH |
|
17Q | First examination report despatched |
Effective date: 20050923 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: NOVALED AG |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20081220 |