[go: up one dir, main page]

EP1468455A1 - Photodetecteur refroidi - Google Patents

Photodetecteur refroidi

Info

Publication number
EP1468455A1
EP1468455A1 EP02805805A EP02805805A EP1468455A1 EP 1468455 A1 EP1468455 A1 EP 1468455A1 EP 02805805 A EP02805805 A EP 02805805A EP 02805805 A EP02805805 A EP 02805805A EP 1468455 A1 EP1468455 A1 EP 1468455A1
Authority
EP
European Patent Office
Prior art keywords
screen
cooling
cooled
photodetector
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02805805A
Other languages
German (de)
English (en)
Inventor
Joseph Loiseau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Electronics and Defense SAS
Original Assignee
Sagem SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagem SA filed Critical Sagem SA
Publication of EP1468455A1 publication Critical patent/EP1468455A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/44Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements the complete device being wholly immersed in a fluid other than air
    • H01L23/445Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements the complete device being wholly immersed in a fluid other than air the fluid being a liquefied gas, e.g. in a cryogenic vessel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/60Arrangements for cooling, heating, ventilating or compensating for temperature fluctuations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to cooled photodetectors, thermal photodetectors or quantum photodetectors.
  • the cooled photodetectors or more briefly photodetectors, generally consist of sensors mounted on a cold table, cooled by a cooler. More specifically, the table is located at the end of a well of a cryostat.
  • Most highly sensitive photodetectors typically those for collecting thermal images, for example infrared images, need to be cooled to a cryogenic temperature.
  • Joule Thomson expansion type cooler In the case of applications requiring very rapid cooling, of the order of a few seconds, a Joule Thomson expansion type cooler is used.
  • coolers are in the form of a coil ending in a nozzle and they are supplied with a neutral gas at high pressure to eject a flow which, by isenthalpic expansion at the outlet of the nozzle, causes cooling and the table and of the coil.
  • the expanded gas, flowing back on the coil of the cooler, therefore also cools the neutral gas which passes through it before it is ejected by the nozzle, and so on until liquefaction at the outlet of the nozzle.
  • the thermal equilibrium of the photodetector is not achieved.
  • the cold table has a thermal inertia which opposes it.
  • the sensors must be sheltered from stray radiation by means of a screen, integral with the cold table, also cooled, and also having a thermal inertia to overcome.
  • the entire photodetector must finally be at a temperature that is sufficiently homogeneous so as not to alter the captured image.
  • mechanical devices have already been produced which make it possible both to improve the cooling of the cold table and to homogenize the temperature of the photodetector.
  • the object of the present invention is to remedy this drawback.
  • the invention relates to a cooled photodetector comprising a cold table, sensors mounted on the table, a screen to avoid parasitic radiation on the sensors, and at least one Joule-Thomson cooler to cool the table and the screen. , characterized in that the table and the screen are cooled by convection.
  • the screen is cooled by a gas flow parallel to the one that cools the table, so without dragging.
  • the photodetector is arranged so that the table and the screen are cooled concomitantly.
  • the gas streams are ejected simultaneously on the table and on the screen. This reduces the thermal drag between the table and the screen.
  • the photodetector comprises only one cooler to cool both the table and the screen.
  • a part of the gas flow cooling the table is diverted to cool the screen at the same time.
  • the table is pierced with orifices for the passage of the cooling flow communicating with an annular cavity for cooling the screen and the cavity for cooling the screen. extends between two cylindrical envelopes fixed on the table.
  • FIG. 1 is a schematic view of a detector of the prior art
  • FIG. 3 is a schematic sectional view of a first embodiment of the detector of the invention
  • - Figure 4 is a schematic top view of the detector of Figure 3;
  • FIG. 5 is a schematic sectional view of a second embodiment of the detector of the invention.
  • Figure 6 is a schematic top view of the detector of Figure 5.
  • a photodetector, or detector, 1 is usually made up of sensors (photodetectors) 2 mounted on a cold table 3 cooled by a cooler, here a Joule-Thomson probe mounted in a cryostat well (cold finger) 4 and consisting of a coil 5 supplied with high pressure neutral gas and terminated by a nozzle 6 from which this gas is ejected.
  • a screen 7 mounted, for example glued, on the table 3 protects, when the operating temperature ⁇ f is reached, the sensors 2 from all parasitic radiation.
  • the assembly is isolated by vacuum or a neutral gas in a cryostat not shown.
  • the screen 3 mounted integral with the table, initially at the same temperature ⁇ o as the table, cools later and more slowly according to a Le law, because of the fact that its cooling is ensured by thermal conduction through the mass of the table and therefore depends on its thermal inertia, which causes thermal drag ⁇ .
  • the detector 10 here consists of sensors 20 mounted on the table 30 cooled by a cooler 41 and on which is mounted a screen 70 itself cooled by a cooler 42 comprising an annular duct 43 around the screen 70 which channels the convection on the screen.
  • the wall of the duct 43 constitutes a cold wall and that the assembly is arranged inside a hot wall envelope comprising an inlet filter.
  • the power supplies of the coolers can come from the same source 44, thus ensuring even better the concomitance of the cooling of the table and the screen.
  • the circular table 50 on which the sensors 66 are mounted, is cooled by a well 51 which is connected to the table by a frustoconical portion 52.
  • the table On two peripheral sectors 53, 54, diametrically opposite, the table is pierced with two pluralities of orifices or vents, 55, 56 for the passage of the cooling flow.
  • the two sectors for the passage of the convection flow are offset by 90 ° with respect to two other diametrically opposed sectors 57, 58 through which run tracks 59, 60 of the detector's electrical outputs, arranged in an internal layer under the 'screen, and connected to an image processing electronics.
  • the screen 80 consists of a cylindrical envelope 61, 62 inside which extends an annular cavity 63 communicating with the passage orifices 55, 56.
  • An annular rim 64 partially closes the space 65 inside the internal envelope 62 of the screen 80, the central opening of the rim being able to be closed by an optical filter.
  • the two envelopes 61, 62 of the screen here consist of a thin wall of conductive metal (copper / nickel for example).
  • the envelopes 61, 62 are here fixed to the table 50 by gluing.
  • the cold table 50 is here made up of several layers of ceramic material with high conductivity, the coefficient of expansion of which is compatible with the detector.
  • the cooling cavity is integrated into the cold table and produced by machining.
  • this cavity is split into two lobes. In this case, the electrical output tracks would then be reported separately to the outside, as would the screen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Radiation Pyrometers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

Photodétecteur refroidi 80 comportant une table 50, des capteurs 66 montés sur la table, un écran 80 pour éviter les rayonnements parasites sur les capteurs, et au moins un refroidisseur Joule-Thomson 41, 42 pour refroidir la table et l'écran. La table 50 et l'écran 80 sont refroidis par convexion, la table 50 étant percée d'orifices 55 de passage du flux de refroidissement communiquant avec une cavité annulaire 63 de mise en froid de l'écran 80.

Description

Photodétecteur refroidi
La présente invention concerne les photodétecteurs refroidis, photodétecteurs thermiques ou photodétecteurs quantiques.
Les photodétecteurs refroidis, ou plus brièvement photodétecteurs, sont généralement constitués de capteurs montés sur une table froide, refroidie par un refroidisseur. Plus précisément, la table se trouve à l'extrémité d'un puits d'un cryostat.
La plupart des photodétecteurs de grande sensibilité, typiquement ceux pour recueillir des images thermiques, par exemple des images infrarouge, nécessitent d'être refroidis à une température cryogénique.
Dans le cas d'applications nécessitant un refroidissement très rapide, de l'ordre de quelques secondes, on utilise un refroidisseur du type à détente de Joule Thomson.
Ces refroidisseurs se présentent sous la forme d'un serpentin se terminant par un gicleur et ils sont alimentées par un gaz neutre à haute pression pour en éjecter un flux qui, par détente isenthalpique au sortir du gicleur, provoque le refroidissement et de la table et du serpentin. Le gaz détendu, refluant sur le serpentin du refroidisseur, refroidit donc aussi le gaz neutre qui le traverse avant son éjection par le gicleur, et ainsi de suite jusqu'à liquéfaction en sortie du gicleur.
A l'équilibre des deux phases liquide et gazeuse en sortie de gicleur, la température minimale est atteinte, la température à atteindre déterminant le choix du gaz neutre.
L'équilibre thermique du photodétecteur n'est pas pour autant atteint. En effet, la table froide présente une inertie thermique qui s'y oppose.
De plus, les capteurs doivent être mis à l'abri des rayonnement parasites au moyen d'un écran, solidaire de la table froide, également refroidi, et présentant aussi une inertie thermique à vaincre.
L'ensemble du photodétecteur doit enfin être à une température suffisamment homogène pour ne pas altérer l'image captée. Actuellement, on a déjà réalisé des dispositifs mécaniques qui permettent à la fois d'améliorer le refroidissement de la table froide et d'homogénéiser la température du photodétecteur.
Ces dispositifs sont décrits dans FR2671230 et FR2671431. Ils proposent de refroidir l'écran, solidaire de la table froide, par conduction. Malheureusement ces dispositifs ne sont plus assez rapides lorsqu'on augmente le nombre de capteurs ou de photosites (barrettes ou matrices). En effet, la dimension du détecteur est plus importante, ce qui augmente d'autant l'inertie thermique et 1 ' hétérogénéité de température.
La présente invention a pour but de remédier à cet inconvénient.
A cet effet, l'invention concerne un photodétecteur refroidi comportant une table froide, des capteurs montés sur la table, un écran pour éviter les rayonnements parasites sur les capteurs, et au moins un refroidisseur Joule-Thomson pour refroidir la table et l'écran, caractérisé par le fait que la table et l'écran sont refroidis par convexion.
En plus de la conduction thermique entre la table et l'écran, qui permet à l'écran de se refroidir par conduction mais avec un traînage dû à l'inertie thermique de la table, on refroidit l'écran par un flux gazeux parallèlement à celui qui refroidit la table, donc sans traînage.
Avantageusement, le photodétecteur est agencé pour que la table et l'écran soient refroidis de façon concomitante.
Les flux gazeux sont éjectés simultanément sur la table et sur l'écran. On réduit ainsi le traînage thermique entre la table et l'écran.
Avantageusement encore, le photodétecteur ne comporte qu'un refroidisseur pour refroidir à la fois la table et l'écran.
On détourne une partie du flux gazeux refroidissant la table pour en même temps refroidir l'écran.
Dans la forme de réalisation préférée du photodétecteur de l'invention, la table est percée d'orifices de passage du flux de refroidissement communiquant avec une cavité annulaire de mise en froid de l'écran et la cavité de mise en froid de l'écran s'étend entre deux enveloppes cylindriques fixées sur la table. L'invention sera mieux comprise à l'aide de la description suivante de plusieurs formes de réalisation du détecteur, en référence au dessin annexé sur lequel :
- la figure 1 est une vue schématique d'un détecteur de l'art antérieur;
- la figure 2 montre les courbes d'abaissement de température de la table et de l'écran du détecteur de la figure 1 ;
- la figure 3 est une vue schématique en coupe d'une première forme de réalisation du détecteur de l'invention; - la figure 4 est une vue schématique de dessus du détecteur de la figure 3;
- la figure 5 est une vue schématique en coupe d'une deuxième forme de réalisation du détecteur de l'invention ;
- la figure 6 est une vue schématique de dessus du détecteur de la figure 5.
En référence à la figure 1, un photodétecteur, ou détecteur, 1 est ordinairement constitué de capteurs (photodétecteurs) 2 montés sur une table froide 3 refroidie par un refroidisseur, ici une sonde Joule-Thomson montée dans un puits de cryostat (doigt froid) 4 et constituée d'un serpentin 5 alimenté en gaz neutre à haute pression et terminé par un gicleur 6 d'où ce gaz est éjecté.
Un écran 7 monté, par exemple collé, sur la table 3 protège, quand la température de fonctionnement θf est atteinte, les capteurs 2 de tous rayonnements parasites.
L'ensemble est isolé par le vide ou un gaz neutre dans un cryostat non représenté.
En sortant du gicleur 6, le gaz se détend dans le doigt froid 4 et est refoulé par la table froide 3 sur le serpentin 5, qu'il refroidit en même temps que la table, provoquant ainsi l'abaissement progressif de la température de la table jusqu'à la température θf selon une loi temporelle Le qualitativement représentée sur la figure 2.
Corrélativement, l'écran 3, monté solidaire de la table, initialement à la même température θo que la table, se refroidit plus tardivement et plus lentement selon une loi Le, à cause du fait que son refroidissement est assuré par conduction thermique à travers la masse de la table et donc dépend de son inertie thermique, ce qui provoque un traînage thermique Δθ.
L'effet de ce traînage thermique, qui certes diminue dans le temps et même se stabilise à t , se traduit donc par une différence de température entre la table et l'écran qui nuit à l'homogénéité thermique de l'ensemble durant l'intervalle de temps tf - 10. C'est cet intervalle de temps que l'invention permet de réduire.
Pour cela, en référence à la figure 3, il est proposé de refroidir l'écran 70 en même temps que la table 30, par convexion.
Le détecteur 10 se compose ici de capteurs 20 montés sur la table 30 refroidie par un refroidisseur 41 et sur laquelle est monté un écran 70 lui-même refroidi par un refroidisseur 42 comportant un conduit annulaire 43 autour de l'écran 70 qui canalise la convexion sur l'écran.
Ainsi, la table et l'écran sont refroidis simultanément par les mêmes moyens.
On notera que la paroi du conduit 43 constitue une paroi froide et que l'ensemble est disposé à l'intérieur d'une enveloppe à paroi chaude comportant un filtre d'entrée.
Les alimentations des refroidisseurs peuvent être issues de la même source 44, assurant ainsi encore mieux la concomitance des refroidissements de la table et de l'écran.
Dans la forme de réalisation des figures 5 et 6, la table circulaire 50, sur laquelle sont montés les capteurs 66, est refroidie par un puits 51 qui se raccorde à la table par une portion tronconique 52. Sur deux secteurs périphériques 53, 54, diamétralement opposés, la table est percée de deux pluralités d'orifices ou évents, 55, 56 de passage du flux de refroidissement. On notera que les deux secteurs de passage du flux de convection sont décalés de 90° par rapport à deux autres secteurs 57, 58 diamétralement opposés par lesquels s'étendent des pistes 59, 60 de sorties électriques du détecteur, disposées en couche interne sous l'écran, et reliées à une électronique de traitement d'image. L'écran 80 est constitué d'une enveloppe cylindrique 61, 62 à l'intérieur de laquelle s'étend une cavité annulaire 63 communiquant avec les orifices de passage 55, 56. Un rebord annulaire 64 ferme en partie l'espace 65 intérieur à l'enveloppe interne 62 de l'écran 80, l'ouverture centrale du rebord pouvant être obturée par un filtre optique. Les deux enveloppes 61, 62 de l'écran sont constituées ici d'une paroi mince en métal conducteur (cuivre/nickel par exemple). Les enveloppes 61, 62 sont ici fixées à la table 50 par collage. La table froide 50 est ici constituée de plusieurs couches de matériau céramique à grande conductivité dont le coefficient de dilatation est compatible avec le détecteur. Ainsi, par les orifices de passage 55, 56, la cavité 63 de l'écran 80 communique avec le volume de détente du refroidisseur Joule-Thomson 51, 52 sous la table froide 50.
Ainsi encore, a été créé un volume de détente distribué à la fois à l'extrémité du refroidisseur 51, 52 et dans la cavité intérieure 63 de l'écran 80. Il en résulte une homogénéisation rapide et concomittante du détecteur et de l'écran.
Dans le détecteur des figures 3 et 4, les fonctions de refroidissement de la table froide et de l'écran sont dissociées, mais avec une source de gaz frigorigène commune. Si les réserves de gaz le permettent, on peut même utiliser deux lignes cryogéniques séparées, avec un refroidisseur Joule-Thomson classique pour la mise en froid de la table et un second refroidisseur pour l'écran.
De même, et inversement, on pourrait imaginer mettre en froid la table et l'écran par une seule ligne cryogénique à un seul refroidisseur d'une structure adaptée en conséquence.
En référence aux figures 5 et 6, on pourrait concevoir que la cavité de mise en froid soit intégrée à la table froide et réalisée par usinage. On pourrait aussi imaginer que cette cavité soit scindée en deux lobes. Dans ce cas, les pistes de sorties électriques seraient alors rapportées séparément à l'extérieur, de même que l'écran.

Claims

REVENDICATIONS
1.- Photodétecteur refroidi (10 ; 80) comportant une table (30 ; 50), des capteurs (20 ; 66) montés sur la table, un écran (70 ; 80) pour éviter les rayonnements parasites sur les capteurs, et au moins un refroidisseur Joule- Thomson (41, 42) pour refroidir la table et l'écran, caractérisé par le fait que la table (30 ; 50) et l'écran (70; 80) sont refroidis par convexion.
2.- Photodétecteur selon la revendication 1, dans lequel la table (30; 50) et l'écran (70 ; 80) sont refroidis de façon concomitante.
3.- Photodétecteur selon l'une des revendications 1 et 2, dans lequel il est prévu un seul refroidisseur (40) pour refroidir à la fois la table (50) et l'écran (80).
4.- Photodétecteur selon la revendication 3, dans lequel la table (50) est percée d'orifices (55) de passage du flux de refroidissement communiquant avec une cavité annulaire (63) de mise en froid de l'écran (80).
5.- Photodétecteur selon la revendication 4, dans lequel la cavité (63) de mise en froid de l'écran (80) s'étend entre deux enveloppes cylindriques (61, 62) fixées sur la table (50).
6.- Photodétecteur selon l'une des revendications 3 à 5, dans lequel le refroidisseur comporte un puits (51) de refroidissement de la table (50) raccordé à la table par une portion tronconique (52).
7.- Photodétecteur selon la revendication 4, dans lequel la cavité de mise à froid est intégrée à la table et réalisée par usinage.
EP02805805A 2001-12-26 2002-12-23 Photodetecteur refroidi Withdrawn EP1468455A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0116863 2001-12-26
FR0116863A FR2834127B1 (fr) 2001-12-26 2001-12-26 Photodetecteur refroidi
PCT/FR2002/004528 WO2003056632A1 (fr) 2001-12-26 2002-12-23 Photodetecteur refroidi

Publications (1)

Publication Number Publication Date
EP1468455A1 true EP1468455A1 (fr) 2004-10-20

Family

ID=8870985

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02805805A Withdrawn EP1468455A1 (fr) 2001-12-26 2002-12-23 Photodetecteur refroidi

Country Status (6)

Country Link
US (1) US7253396B2 (fr)
EP (1) EP1468455A1 (fr)
AU (1) AU2002365024A1 (fr)
FR (1) FR2834127B1 (fr)
IL (2) IL162672A0 (fr)
WO (1) WO2003056632A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8637824B2 (en) * 2011-01-20 2014-01-28 Raytheon Company Cold shield for a cold stage
US20140110579A1 (en) * 2012-10-23 2014-04-24 Advanced Measurement Technology Inc. Handheld Spectrometer
US9234693B2 (en) 2012-11-02 2016-01-12 L-3 Communications Cincinnati Electronics Corporation Cryogenic cooling apparatuses and systems
US11079281B2 (en) * 2019-01-17 2021-08-03 Uvia Group Llc Cold stage actuation of optical elements including an optical light shield and a lenslet array connected to a cold finger

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2541818C3 (de) * 1975-09-19 1981-09-10 Bodenseewerk Gerätetechnik GmbH, 7770 Überlingen Infrarot-Strahlungsdetektor für Zielsuchköpfe
EP0213421A3 (fr) * 1985-08-07 1989-02-22 Honeywell Inc. Détecteur infrarouge comprenant des cavités sous vide
GB2186740B (en) * 1986-02-14 1989-11-08 Philips Electronic Associated Infrared detectors
JPS6370127A (ja) * 1986-09-11 1988-03-30 Nec Corp 冷却型赤外線検知器
DE3823006C2 (de) * 1988-07-07 1994-09-08 Licentia Gmbh Gehäuse für infrarotempfindliche Bauelemente
FR2638023B1 (fr) * 1988-10-13 1992-07-31 Telecommunications Sa Dispositif cryostatique pour detecteur de rayonnements
US5382797A (en) * 1990-12-21 1995-01-17 Santa Barbara Research Center Fast cooldown cryostat for large infrared focal plane arrays
FR2671230B1 (fr) * 1990-12-28 1993-04-16 Telecommunications Sa Doigt de refroidissement d'un circuit semi-conducteur et dispositif cryogenique pourvu d'un tel doigt.
US5598711A (en) * 1995-12-20 1997-02-04 Lockheed Martin Corporation Fluid deflection method using a skirt
IL132035A0 (en) * 1999-09-23 2001-03-19 Israel State Infrared detector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03056632A1 *

Also Published As

Publication number Publication date
WO2003056632A1 (fr) 2003-07-10
IL162672A (en) 2009-08-03
AU2002365024A1 (en) 2003-07-15
FR2834127B1 (fr) 2005-01-14
US20050218316A1 (en) 2005-10-06
IL162672A0 (en) 2005-11-20
US7253396B2 (en) 2007-08-07
FR2834127A1 (fr) 2003-06-27

Similar Documents

Publication Publication Date Title
EP0614059B1 (fr) Refroidisseur muni d'un doigt froid du type tube pulsé
EP1532428A1 (fr) Capteur degivre de temperature totale d air
FR2925254A1 (fr) Dispositif de refroidissement d'une carte electronique par conduction a l'aide de caloducs,et procede de fabrication correspondant.
EP1630531B1 (fr) Composant de détection de rayonnements électromagnétiques, et notamment infrarouge, bloc optique d'imagerie infrarouge intégrant un tel composant et procédé pour sa réalisation
EP1468455A1 (fr) Photodetecteur refroidi
EP0388277B1 (fr) Refroidisseur Joule-Thomson
FR2776762A1 (fr) Dispositif de liaison thermique pour machine cryogenique
FR2630050A1 (fr) Vehicule ayant un systeme de conditionnement d'air et un systeme de refroidissement de boissons integres
FR3052245B1 (fr) Dispositif cryogenique a echangeur compact
FR2914050A1 (fr) Refrigerateur a basse ou tres basse temperature et procede de refrigeration
EP0493208B1 (fr) Doigt de refroidissement d'un circuit semi-conducteur et dispositif cryogénique pourvu d'un tel doigt
FR3082562A1 (fr) Anneau de commande de portes de decharge pour une turbomachine d'aeronef et turbomachine le comportant
EP0258093B1 (fr) Réfroidisseur Joule-Thomson et crystat comprenant ce réfroidisseur
EP3814694B1 (fr) Pièce pour refroidisseur joule-thomson et procédé de fabrication d'une telle pièce
FR2500581A1 (fr) Refroidisseur cryogenique a liaison thermique perfectionnee
EP3217137A1 (fr) Dispositif de refroidissement thermique d'un objet à partir d'une source froide telle qu'un bain de fluide cryogénique
EP1489665B1 (fr) Photodétecteur refroidi
EP0177416A1 (fr) Dispositif cryostatique pour détecteurs de rayonnements
EP2032933A1 (fr) Interrupteur thermique a gaz a element d'echange thermique mobile
FR2723435A1 (fr) Systeme de refroidisseur cryogenique a bout froid soude
EP0285491B1 (fr) Refroidisseur cryogénique
FR3083034A1 (fr) Machine tournante supraconductrice
FR2883365A1 (fr) Appareil de refroidissement cryogenique pour un autodirecteur de projectile autoguide
FR3097077A1 (fr) Module électronique
FR2682178A1 (fr) Appareil de froidissement par cryogenie.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040726

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAGEM DEFENSE SECURITE

17Q First examination report despatched

Effective date: 20100226

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150908

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160119