EP1468455A1 - Cooled photodetector - Google Patents
Cooled photodetectorInfo
- Publication number
- EP1468455A1 EP1468455A1 EP02805805A EP02805805A EP1468455A1 EP 1468455 A1 EP1468455 A1 EP 1468455A1 EP 02805805 A EP02805805 A EP 02805805A EP 02805805 A EP02805805 A EP 02805805A EP 1468455 A1 EP1468455 A1 EP 1468455A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- screen
- cooling
- cooled
- photodetector
- cooler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000001816 cooling Methods 0.000 claims abstract description 21
- 230000005855 radiation Effects 0.000 claims abstract description 5
- 230000003071 parasitic effect Effects 0.000 claims abstract description 4
- 238000003754 machining Methods 0.000 claims description 2
- 230000004907 flux Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 13
- 230000007935 neutral effect Effects 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D19/00—Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
- F25D19/006—Thermal coupling structure or interface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/44—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements the complete device being wholly immersed in a fluid other than air
- H01L23/445—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements the complete device being wholly immersed in a fluid other than air the fluid being a liquefied gas, e.g. in a cryogenic vessel
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/60—Arrangements for cooling, heating, ventilating or compensating for temperature fluctuations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/02—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to cooled photodetectors, thermal photodetectors or quantum photodetectors.
- the cooled photodetectors or more briefly photodetectors, generally consist of sensors mounted on a cold table, cooled by a cooler. More specifically, the table is located at the end of a well of a cryostat.
- Most highly sensitive photodetectors typically those for collecting thermal images, for example infrared images, need to be cooled to a cryogenic temperature.
- Joule Thomson expansion type cooler In the case of applications requiring very rapid cooling, of the order of a few seconds, a Joule Thomson expansion type cooler is used.
- coolers are in the form of a coil ending in a nozzle and they are supplied with a neutral gas at high pressure to eject a flow which, by isenthalpic expansion at the outlet of the nozzle, causes cooling and the table and of the coil.
- the expanded gas, flowing back on the coil of the cooler, therefore also cools the neutral gas which passes through it before it is ejected by the nozzle, and so on until liquefaction at the outlet of the nozzle.
- the thermal equilibrium of the photodetector is not achieved.
- the cold table has a thermal inertia which opposes it.
- the sensors must be sheltered from stray radiation by means of a screen, integral with the cold table, also cooled, and also having a thermal inertia to overcome.
- the entire photodetector must finally be at a temperature that is sufficiently homogeneous so as not to alter the captured image.
- mechanical devices have already been produced which make it possible both to improve the cooling of the cold table and to homogenize the temperature of the photodetector.
- the object of the present invention is to remedy this drawback.
- the invention relates to a cooled photodetector comprising a cold table, sensors mounted on the table, a screen to avoid parasitic radiation on the sensors, and at least one Joule-Thomson cooler to cool the table and the screen. , characterized in that the table and the screen are cooled by convection.
- the screen is cooled by a gas flow parallel to the one that cools the table, so without dragging.
- the photodetector is arranged so that the table and the screen are cooled concomitantly.
- the gas streams are ejected simultaneously on the table and on the screen. This reduces the thermal drag between the table and the screen.
- the photodetector comprises only one cooler to cool both the table and the screen.
- a part of the gas flow cooling the table is diverted to cool the screen at the same time.
- the table is pierced with orifices for the passage of the cooling flow communicating with an annular cavity for cooling the screen and the cavity for cooling the screen. extends between two cylindrical envelopes fixed on the table.
- FIG. 1 is a schematic view of a detector of the prior art
- FIG. 3 is a schematic sectional view of a first embodiment of the detector of the invention
- - Figure 4 is a schematic top view of the detector of Figure 3;
- FIG. 5 is a schematic sectional view of a second embodiment of the detector of the invention.
- Figure 6 is a schematic top view of the detector of Figure 5.
- a photodetector, or detector, 1 is usually made up of sensors (photodetectors) 2 mounted on a cold table 3 cooled by a cooler, here a Joule-Thomson probe mounted in a cryostat well (cold finger) 4 and consisting of a coil 5 supplied with high pressure neutral gas and terminated by a nozzle 6 from which this gas is ejected.
- a screen 7 mounted, for example glued, on the table 3 protects, when the operating temperature ⁇ f is reached, the sensors 2 from all parasitic radiation.
- the assembly is isolated by vacuum or a neutral gas in a cryostat not shown.
- the screen 3 mounted integral with the table, initially at the same temperature ⁇ o as the table, cools later and more slowly according to a Le law, because of the fact that its cooling is ensured by thermal conduction through the mass of the table and therefore depends on its thermal inertia, which causes thermal drag ⁇ .
- the detector 10 here consists of sensors 20 mounted on the table 30 cooled by a cooler 41 and on which is mounted a screen 70 itself cooled by a cooler 42 comprising an annular duct 43 around the screen 70 which channels the convection on the screen.
- the wall of the duct 43 constitutes a cold wall and that the assembly is arranged inside a hot wall envelope comprising an inlet filter.
- the power supplies of the coolers can come from the same source 44, thus ensuring even better the concomitance of the cooling of the table and the screen.
- the circular table 50 on which the sensors 66 are mounted, is cooled by a well 51 which is connected to the table by a frustoconical portion 52.
- the table On two peripheral sectors 53, 54, diametrically opposite, the table is pierced with two pluralities of orifices or vents, 55, 56 for the passage of the cooling flow.
- the two sectors for the passage of the convection flow are offset by 90 ° with respect to two other diametrically opposed sectors 57, 58 through which run tracks 59, 60 of the detector's electrical outputs, arranged in an internal layer under the 'screen, and connected to an image processing electronics.
- the screen 80 consists of a cylindrical envelope 61, 62 inside which extends an annular cavity 63 communicating with the passage orifices 55, 56.
- An annular rim 64 partially closes the space 65 inside the internal envelope 62 of the screen 80, the central opening of the rim being able to be closed by an optical filter.
- the two envelopes 61, 62 of the screen here consist of a thin wall of conductive metal (copper / nickel for example).
- the envelopes 61, 62 are here fixed to the table 50 by gluing.
- the cold table 50 is here made up of several layers of ceramic material with high conductivity, the coefficient of expansion of which is compatible with the detector.
- the cooling cavity is integrated into the cold table and produced by machining.
- this cavity is split into two lobes. In this case, the electrical output tracks would then be reported separately to the outside, as would the screen.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Radiation Pyrometers (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
Photodétecteur refroidi Cooled photodetector
La présente invention concerne les photodétecteurs refroidis, photodétecteurs thermiques ou photodétecteurs quantiques.The present invention relates to cooled photodetectors, thermal photodetectors or quantum photodetectors.
Les photodétecteurs refroidis, ou plus brièvement photodétecteurs, sont généralement constitués de capteurs montés sur une table froide, refroidie par un refroidisseur. Plus précisément, la table se trouve à l'extrémité d'un puits d'un cryostat.The cooled photodetectors, or more briefly photodetectors, generally consist of sensors mounted on a cold table, cooled by a cooler. More specifically, the table is located at the end of a well of a cryostat.
La plupart des photodétecteurs de grande sensibilité, typiquement ceux pour recueillir des images thermiques, par exemple des images infrarouge, nécessitent d'être refroidis à une température cryogénique.Most highly sensitive photodetectors, typically those for collecting thermal images, for example infrared images, need to be cooled to a cryogenic temperature.
Dans le cas d'applications nécessitant un refroidissement très rapide, de l'ordre de quelques secondes, on utilise un refroidisseur du type à détente de Joule Thomson.In the case of applications requiring very rapid cooling, of the order of a few seconds, a Joule Thomson expansion type cooler is used.
Ces refroidisseurs se présentent sous la forme d'un serpentin se terminant par un gicleur et ils sont alimentées par un gaz neutre à haute pression pour en éjecter un flux qui, par détente isenthalpique au sortir du gicleur, provoque le refroidissement et de la table et du serpentin. Le gaz détendu, refluant sur le serpentin du refroidisseur, refroidit donc aussi le gaz neutre qui le traverse avant son éjection par le gicleur, et ainsi de suite jusqu'à liquéfaction en sortie du gicleur.These coolers are in the form of a coil ending in a nozzle and they are supplied with a neutral gas at high pressure to eject a flow which, by isenthalpic expansion at the outlet of the nozzle, causes cooling and the table and of the coil. The expanded gas, flowing back on the coil of the cooler, therefore also cools the neutral gas which passes through it before it is ejected by the nozzle, and so on until liquefaction at the outlet of the nozzle.
A l'équilibre des deux phases liquide et gazeuse en sortie de gicleur, la température minimale est atteinte, la température à atteindre déterminant le choix du gaz neutre.At equilibrium between the two liquid and gaseous phases at the nozzle outlet, the minimum temperature is reached, the temperature to be reached determining the choice of neutral gas.
L'équilibre thermique du photodétecteur n'est pas pour autant atteint. En effet, la table froide présente une inertie thermique qui s'y oppose.However, the thermal equilibrium of the photodetector is not achieved. Indeed, the cold table has a thermal inertia which opposes it.
De plus, les capteurs doivent être mis à l'abri des rayonnement parasites au moyen d'un écran, solidaire de la table froide, également refroidi, et présentant aussi une inertie thermique à vaincre.In addition, the sensors must be sheltered from stray radiation by means of a screen, integral with the cold table, also cooled, and also having a thermal inertia to overcome.
L'ensemble du photodétecteur doit enfin être à une température suffisamment homogène pour ne pas altérer l'image captée. Actuellement, on a déjà réalisé des dispositifs mécaniques qui permettent à la fois d'améliorer le refroidissement de la table froide et d'homogénéiser la température du photodétecteur.The entire photodetector must finally be at a temperature that is sufficiently homogeneous so as not to alter the captured image. Currently, mechanical devices have already been produced which make it possible both to improve the cooling of the cold table and to homogenize the temperature of the photodetector.
Ces dispositifs sont décrits dans FR2671230 et FR2671431. Ils proposent de refroidir l'écran, solidaire de la table froide, par conduction. Malheureusement ces dispositifs ne sont plus assez rapides lorsqu'on augmente le nombre de capteurs ou de photosites (barrettes ou matrices). En effet, la dimension du détecteur est plus importante, ce qui augmente d'autant l'inertie thermique et 1 ' hétérogénéité de température.These devices are described in FR2671230 and FR2671431. They propose to cool the screen, integral with the cold table, by conduction. Unfortunately, these devices are no longer fast enough when the number of sensors or photosites (bars or arrays) is increased. Indeed, the size of the detector is larger, which increases the thermal inertia and the temperature heterogeneity.
La présente invention a pour but de remédier à cet inconvénient.The object of the present invention is to remedy this drawback.
A cet effet, l'invention concerne un photodétecteur refroidi comportant une table froide, des capteurs montés sur la table, un écran pour éviter les rayonnements parasites sur les capteurs, et au moins un refroidisseur Joule-Thomson pour refroidir la table et l'écran, caractérisé par le fait que la table et l'écran sont refroidis par convexion.To this end, the invention relates to a cooled photodetector comprising a cold table, sensors mounted on the table, a screen to avoid parasitic radiation on the sensors, and at least one Joule-Thomson cooler to cool the table and the screen. , characterized in that the table and the screen are cooled by convection.
En plus de la conduction thermique entre la table et l'écran, qui permet à l'écran de se refroidir par conduction mais avec un traînage dû à l'inertie thermique de la table, on refroidit l'écran par un flux gazeux parallèlement à celui qui refroidit la table, donc sans traînage.In addition to the thermal conduction between the table and the screen, which allows the screen to cool by conduction but with a drag due to the thermal inertia of the table, the screen is cooled by a gas flow parallel to the one that cools the table, so without dragging.
Avantageusement, le photodétecteur est agencé pour que la table et l'écran soient refroidis de façon concomitante.Advantageously, the photodetector is arranged so that the table and the screen are cooled concomitantly.
Les flux gazeux sont éjectés simultanément sur la table et sur l'écran. On réduit ainsi le traînage thermique entre la table et l'écran.The gas streams are ejected simultaneously on the table and on the screen. This reduces the thermal drag between the table and the screen.
Avantageusement encore, le photodétecteur ne comporte qu'un refroidisseur pour refroidir à la fois la table et l'écran.Advantageously also, the photodetector comprises only one cooler to cool both the table and the screen.
On détourne une partie du flux gazeux refroidissant la table pour en même temps refroidir l'écran.A part of the gas flow cooling the table is diverted to cool the screen at the same time.
Dans la forme de réalisation préférée du photodétecteur de l'invention, la table est percée d'orifices de passage du flux de refroidissement communiquant avec une cavité annulaire de mise en froid de l'écran et la cavité de mise en froid de l'écran s'étend entre deux enveloppes cylindriques fixées sur la table. L'invention sera mieux comprise à l'aide de la description suivante de plusieurs formes de réalisation du détecteur, en référence au dessin annexé sur lequel :In the preferred embodiment of the photodetector of the invention, the table is pierced with orifices for the passage of the cooling flow communicating with an annular cavity for cooling the screen and the cavity for cooling the screen. extends between two cylindrical envelopes fixed on the table. The invention will be better understood with the aid of the following description of several embodiments of the detector, with reference to the appended drawing in which:
- la figure 1 est une vue schématique d'un détecteur de l'art antérieur;- Figure 1 is a schematic view of a detector of the prior art;
- la figure 2 montre les courbes d'abaissement de température de la table et de l'écran du détecteur de la figure 1 ;- Figure 2 shows the temperature lowering curves of the table and the screen of the detector of Figure 1;
- la figure 3 est une vue schématique en coupe d'une première forme de réalisation du détecteur de l'invention; - la figure 4 est une vue schématique de dessus du détecteur de la figure 3;- Figure 3 is a schematic sectional view of a first embodiment of the detector of the invention; - Figure 4 is a schematic top view of the detector of Figure 3;
- la figure 5 est une vue schématique en coupe d'une deuxième forme de réalisation du détecteur de l'invention ;- Figure 5 is a schematic sectional view of a second embodiment of the detector of the invention;
- la figure 6 est une vue schématique de dessus du détecteur de la figure 5.- Figure 6 is a schematic top view of the detector of Figure 5.
En référence à la figure 1, un photodétecteur, ou détecteur, 1 est ordinairement constitué de capteurs (photodétecteurs) 2 montés sur une table froide 3 refroidie par un refroidisseur, ici une sonde Joule-Thomson montée dans un puits de cryostat (doigt froid) 4 et constituée d'un serpentin 5 alimenté en gaz neutre à haute pression et terminé par un gicleur 6 d'où ce gaz est éjecté.Referring to Figure 1, a photodetector, or detector, 1 is usually made up of sensors (photodetectors) 2 mounted on a cold table 3 cooled by a cooler, here a Joule-Thomson probe mounted in a cryostat well (cold finger) 4 and consisting of a coil 5 supplied with high pressure neutral gas and terminated by a nozzle 6 from which this gas is ejected.
Un écran 7 monté, par exemple collé, sur la table 3 protège, quand la température de fonctionnement θf est atteinte, les capteurs 2 de tous rayonnements parasites.A screen 7 mounted, for example glued, on the table 3 protects, when the operating temperature θf is reached, the sensors 2 from all parasitic radiation.
L'ensemble est isolé par le vide ou un gaz neutre dans un cryostat non représenté.The assembly is isolated by vacuum or a neutral gas in a cryostat not shown.
En sortant du gicleur 6, le gaz se détend dans le doigt froid 4 et est refoulé par la table froide 3 sur le serpentin 5, qu'il refroidit en même temps que la table, provoquant ainsi l'abaissement progressif de la température de la table jusqu'à la température θf selon une loi temporelle Le qualitativement représentée sur la figure 2.Leaving the nozzle 6, the gas expands in the cold finger 4 and is discharged by the cold table 3 on the coil 5, which it cools at the same time as the table, thus causing the progressive lowering of the temperature of the table up to the temperature θf according to a time law Le qualitatively represented in figure 2.
Corrélativement, l'écran 3, monté solidaire de la table, initialement à la même température θo que la table, se refroidit plus tardivement et plus lentement selon une loi Le, à cause du fait que son refroidissement est assuré par conduction thermique à travers la masse de la table et donc dépend de son inertie thermique, ce qui provoque un traînage thermique Δθ.Correlatively, the screen 3, mounted integral with the table, initially at the same temperature θo as the table, cools later and more slowly according to a Le law, because of the fact that its cooling is ensured by thermal conduction through the mass of the table and therefore depends on its thermal inertia, which causes thermal drag Δθ.
L'effet de ce traînage thermique, qui certes diminue dans le temps et même se stabilise à t , se traduit donc par une différence de température entre la table et l'écran qui nuit à l'homogénéité thermique de l'ensemble durant l'intervalle de temps tf - 10. C'est cet intervalle de temps que l'invention permet de réduire.The effect of this thermal drag, which certainly decreases over time and even stabilizes at t, therefore results in a temperature difference between the table and the screen which harms the thermal homogeneity of the assembly during the time interval t f - 1 0 . It is this time interval that the invention makes it possible to reduce.
Pour cela, en référence à la figure 3, il est proposé de refroidir l'écran 70 en même temps que la table 30, par convexion.For this, with reference to FIG. 3, it is proposed to cool the screen 70 at the same time as the table 30, by convection.
Le détecteur 10 se compose ici de capteurs 20 montés sur la table 30 refroidie par un refroidisseur 41 et sur laquelle est monté un écran 70 lui-même refroidi par un refroidisseur 42 comportant un conduit annulaire 43 autour de l'écran 70 qui canalise la convexion sur l'écran.The detector 10 here consists of sensors 20 mounted on the table 30 cooled by a cooler 41 and on which is mounted a screen 70 itself cooled by a cooler 42 comprising an annular duct 43 around the screen 70 which channels the convection on the screen.
Ainsi, la table et l'écran sont refroidis simultanément par les mêmes moyens.Thus, the table and the screen are cooled simultaneously by the same means.
On notera que la paroi du conduit 43 constitue une paroi froide et que l'ensemble est disposé à l'intérieur d'une enveloppe à paroi chaude comportant un filtre d'entrée.It will be noted that the wall of the duct 43 constitutes a cold wall and that the assembly is arranged inside a hot wall envelope comprising an inlet filter.
Les alimentations des refroidisseurs peuvent être issues de la même source 44, assurant ainsi encore mieux la concomitance des refroidissements de la table et de l'écran.The power supplies of the coolers can come from the same source 44, thus ensuring even better the concomitance of the cooling of the table and the screen.
Dans la forme de réalisation des figures 5 et 6, la table circulaire 50, sur laquelle sont montés les capteurs 66, est refroidie par un puits 51 qui se raccorde à la table par une portion tronconique 52. Sur deux secteurs périphériques 53, 54, diamétralement opposés, la table est percée de deux pluralités d'orifices ou évents, 55, 56 de passage du flux de refroidissement. On notera que les deux secteurs de passage du flux de convection sont décalés de 90° par rapport à deux autres secteurs 57, 58 diamétralement opposés par lesquels s'étendent des pistes 59, 60 de sorties électriques du détecteur, disposées en couche interne sous l'écran, et reliées à une électronique de traitement d'image. L'écran 80 est constitué d'une enveloppe cylindrique 61, 62 à l'intérieur de laquelle s'étend une cavité annulaire 63 communiquant avec les orifices de passage 55, 56. Un rebord annulaire 64 ferme en partie l'espace 65 intérieur à l'enveloppe interne 62 de l'écran 80, l'ouverture centrale du rebord pouvant être obturée par un filtre optique. Les deux enveloppes 61, 62 de l'écran sont constituées ici d'une paroi mince en métal conducteur (cuivre/nickel par exemple). Les enveloppes 61, 62 sont ici fixées à la table 50 par collage. La table froide 50 est ici constituée de plusieurs couches de matériau céramique à grande conductivité dont le coefficient de dilatation est compatible avec le détecteur. Ainsi, par les orifices de passage 55, 56, la cavité 63 de l'écran 80 communique avec le volume de détente du refroidisseur Joule-Thomson 51, 52 sous la table froide 50.In the embodiment of FIGS. 5 and 6, the circular table 50, on which the sensors 66 are mounted, is cooled by a well 51 which is connected to the table by a frustoconical portion 52. On two peripheral sectors 53, 54, diametrically opposite, the table is pierced with two pluralities of orifices or vents, 55, 56 for the passage of the cooling flow. It will be noted that the two sectors for the passage of the convection flow are offset by 90 ° with respect to two other diametrically opposed sectors 57, 58 through which run tracks 59, 60 of the detector's electrical outputs, arranged in an internal layer under the 'screen, and connected to an image processing electronics. The screen 80 consists of a cylindrical envelope 61, 62 inside which extends an annular cavity 63 communicating with the passage orifices 55, 56. An annular rim 64 partially closes the space 65 inside the internal envelope 62 of the screen 80, the central opening of the rim being able to be closed by an optical filter. The two envelopes 61, 62 of the screen here consist of a thin wall of conductive metal (copper / nickel for example). The envelopes 61, 62 are here fixed to the table 50 by gluing. The cold table 50 is here made up of several layers of ceramic material with high conductivity, the coefficient of expansion of which is compatible with the detector. Thus, through the passage orifices 55, 56, the cavity 63 of the screen 80 communicates with the expansion volume of the Joule-Thomson cooler 51, 52 under the cold table 50.
Ainsi encore, a été créé un volume de détente distribué à la fois à l'extrémité du refroidisseur 51, 52 et dans la cavité intérieure 63 de l'écran 80. Il en résulte une homogénéisation rapide et concomittante du détecteur et de l'écran.Thus again, an expansion volume was created distributed both at the end of the cooler 51, 52 and in the interior cavity 63 of the screen 80. This results in rapid and concomitant homogenization of the detector and the screen. .
Dans le détecteur des figures 3 et 4, les fonctions de refroidissement de la table froide et de l'écran sont dissociées, mais avec une source de gaz frigorigène commune. Si les réserves de gaz le permettent, on peut même utiliser deux lignes cryogéniques séparées, avec un refroidisseur Joule-Thomson classique pour la mise en froid de la table et un second refroidisseur pour l'écran.In the detector of Figures 3 and 4, the cooling functions of the cold table and the screen are separated, but with a common source of refrigerant gas. If the gas reserves allow it, we can even use two separate cryogenic lines, with a classic Joule-Thomson cooler for cooling the table and a second cooler for the screen.
De même, et inversement, on pourrait imaginer mettre en froid la table et l'écran par une seule ligne cryogénique à un seul refroidisseur d'une structure adaptée en conséquence.Likewise, and conversely, one could imagine cooling the table and the screen by a single cryogenic line with a single cooler of a structure adapted accordingly.
En référence aux figures 5 et 6, on pourrait concevoir que la cavité de mise en froid soit intégrée à la table froide et réalisée par usinage. On pourrait aussi imaginer que cette cavité soit scindée en deux lobes. Dans ce cas, les pistes de sorties électriques seraient alors rapportées séparément à l'extérieur, de même que l'écran. With reference to FIGS. 5 and 6, it could be conceived that the cooling cavity is integrated into the cold table and produced by machining. One could also imagine that this cavity is split into two lobes. In this case, the electrical output tracks would then be reported separately to the outside, as would the screen.
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0116863 | 2001-12-26 | ||
FR0116863A FR2834127B1 (en) | 2001-12-26 | 2001-12-26 | COOLED PHOTODETECTOR |
PCT/FR2002/004528 WO2003056632A1 (en) | 2001-12-26 | 2002-12-23 | Cooled photodetector |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1468455A1 true EP1468455A1 (en) | 2004-10-20 |
Family
ID=8870985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02805805A Withdrawn EP1468455A1 (en) | 2001-12-26 | 2002-12-23 | Cooled photodetector |
Country Status (6)
Country | Link |
---|---|
US (1) | US7253396B2 (en) |
EP (1) | EP1468455A1 (en) |
AU (1) | AU2002365024A1 (en) |
FR (1) | FR2834127B1 (en) |
IL (2) | IL162672A0 (en) |
WO (1) | WO2003056632A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8637824B2 (en) * | 2011-01-20 | 2014-01-28 | Raytheon Company | Cold shield for a cold stage |
US20140110579A1 (en) * | 2012-10-23 | 2014-04-24 | Advanced Measurement Technology Inc. | Handheld Spectrometer |
US9234693B2 (en) | 2012-11-02 | 2016-01-12 | L-3 Communications Cincinnati Electronics Corporation | Cryogenic cooling apparatuses and systems |
US11079281B2 (en) * | 2019-01-17 | 2021-08-03 | Uvia Group Llc | Cold stage actuation of optical elements including an optical light shield and a lenslet array connected to a cold finger |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2541818C3 (en) * | 1975-09-19 | 1981-09-10 | Bodenseewerk Gerätetechnik GmbH, 7770 Überlingen | Infrared radiation detector for target seeker heads |
EP0213421A3 (en) * | 1985-08-07 | 1989-02-22 | Honeywell Inc. | Infrared detector assembly having vacuum chambers |
GB2186740B (en) * | 1986-02-14 | 1989-11-08 | Philips Electronic Associated | Infrared detectors |
JPS6370127A (en) * | 1986-09-11 | 1988-03-30 | Nec Corp | Cooling type infrared ray detector |
DE3823006C2 (en) * | 1988-07-07 | 1994-09-08 | Licentia Gmbh | Housing for infrared sensitive components |
FR2638023B1 (en) * | 1988-10-13 | 1992-07-31 | Telecommunications Sa | CRYOSTATIC DEVICE FOR RADIATION DETECTOR |
US5382797A (en) * | 1990-12-21 | 1995-01-17 | Santa Barbara Research Center | Fast cooldown cryostat for large infrared focal plane arrays |
FR2671230B1 (en) * | 1990-12-28 | 1993-04-16 | Telecommunications Sa | COOLING FINGER OF A SEMICONDUCTOR CIRCUIT AND CRYOGENIC DEVICE PROVIDED WITH SUCH A FINGER. |
US5598711A (en) * | 1995-12-20 | 1997-02-04 | Lockheed Martin Corporation | Fluid deflection method using a skirt |
IL132035A0 (en) * | 1999-09-23 | 2001-03-19 | Israel State | Infrared detector |
-
2001
- 2001-12-26 FR FR0116863A patent/FR2834127B1/en not_active Expired - Fee Related
-
2002
- 2002-12-23 US US10/499,960 patent/US7253396B2/en not_active Expired - Fee Related
- 2002-12-23 AU AU2002365024A patent/AU2002365024A1/en not_active Abandoned
- 2002-12-23 IL IL16267202A patent/IL162672A0/en unknown
- 2002-12-23 WO PCT/FR2002/004528 patent/WO2003056632A1/en not_active Application Discontinuation
- 2002-12-23 EP EP02805805A patent/EP1468455A1/en not_active Withdrawn
-
2004
- 2004-06-22 IL IL162672A patent/IL162672A/en not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
See references of WO03056632A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2003056632A1 (en) | 2003-07-10 |
IL162672A (en) | 2009-08-03 |
AU2002365024A1 (en) | 2003-07-15 |
FR2834127B1 (en) | 2005-01-14 |
US20050218316A1 (en) | 2005-10-06 |
IL162672A0 (en) | 2005-11-20 |
US7253396B2 (en) | 2007-08-07 |
FR2834127A1 (en) | 2003-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0614059B1 (en) | Cooler with a cold finger of pulse tube type | |
EP1532428A1 (en) | De-iced total air temperature sensor | |
FR2925254A1 (en) | DEVICE FOR COOLING AN ELECTRONIC CARD BY CONDUCTION USING CALODUCES, AND METHOD OF MANUFACTURING THE SAME. | |
EP1630531B1 (en) | Component for the detection of electromagnetic radiation, in particular infrared, optical block for infrared imaging integrating said component and fabrication procedure thereof | |
EP1468455A1 (en) | Cooled photodetector | |
EP0388277B1 (en) | Joule-thomson cooling device | |
FR2776762A1 (en) | THERMAL BINDING DEVICE FOR CRYOGENIC MACHINE | |
FR2630050A1 (en) | VEHICLE HAVING AN AIR CONDITIONING SYSTEM AND AN INTEGRATED BEVERAGE COOLING SYSTEM | |
FR3052245B1 (en) | CRYOGENIC DEVICE WITH COMPACT EXCHANGER | |
FR2914050A1 (en) | Low/very low temperature refrigerator e.g. dilution type refrigerator, for use in research laboratory, has exchanger in contact with helium of regenerator, and component system or copper part thermally coupled between exchanger and coolant | |
EP0493208B1 (en) | Cold finger for semiconductor circuit and cryogenic device having such finger | |
FR3082562A1 (en) | DISCHARGE DOOR CONTROL RING FOR AN AIRCRAFT TURBOMACHINE AND TURBOMACHINE COMPRISING SAME | |
EP0258093B1 (en) | Joule-thomson cooler and cryostat provided with this cooler | |
EP3814694B1 (en) | Part for joule-thomson cooler and method for manufacturing such a part | |
FR2500581A1 (en) | CRYOGENIC COOLER WITH IMPROVED THERMAL CONNECTION | |
EP3217137A1 (en) | Device for thermally cooling an object from a cold source such as a cryogenic fluid bath | |
EP1489665B1 (en) | Cooled Photodetector | |
EP0177416A1 (en) | Cryostatic apparatus for radiation detectors | |
EP2032933A1 (en) | Gas thermal switch having a movable heat-exchange element | |
FR2723435A1 (en) | CRYOGENIC COOLED COOLANT SYSTEM WITH WELDED SQUEEGEE | |
EP0285491B1 (en) | Cryogenic refrigerator | |
FR3083034A1 (en) | SELF-CONDUCTING ROTATING MACHINE | |
FR2883365A1 (en) | Cryogenic cooling apparatus for self-director of self-guided projectile, is based on Dewar vessel and Joule-Thomson cooler and has gaseous fluid evacuating line with primary and secondart openings | |
FR3097077A1 (en) | Electronic module | |
FR2682178A1 (en) | Cryogenic cooling apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040726 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SAGEM DEFENSE SECURITE |
|
17Q | First examination report despatched |
Effective date: 20100226 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150908 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20160119 |