EP1378577B1 - Process for heat treating cold rolled formable steel strip and steel strip thus obtained - Google Patents
Process for heat treating cold rolled formable steel strip and steel strip thus obtained Download PDFInfo
- Publication number
- EP1378577B1 EP1378577B1 EP03447154A EP03447154A EP1378577B1 EP 1378577 B1 EP1378577 B1 EP 1378577B1 EP 03447154 A EP03447154 A EP 03447154A EP 03447154 A EP03447154 A EP 03447154A EP 1378577 B1 EP1378577 B1 EP 1378577B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- steel strip
- steel
- annealing
- annealing temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 97
- 239000010959 steel Substances 0.000 title claims abstract description 97
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000000137 annealing Methods 0.000 claims abstract description 52
- 238000010438 heat treatment Methods 0.000 claims abstract description 49
- 238000001816 cooling Methods 0.000 claims abstract description 28
- 230000009466 transformation Effects 0.000 claims abstract description 24
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 20
- 239000010960 cold rolled steel Substances 0.000 claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 claims abstract description 6
- 238000010791 quenching Methods 0.000 claims description 25
- 230000000171 quenching effect Effects 0.000 claims description 24
- 229910000859 α-Fe Inorganic materials 0.000 claims description 17
- 229910052799 carbon Inorganic materials 0.000 claims description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 13
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 239000011572 manganese Substances 0.000 claims description 7
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 6
- 238000005097 cold rolling Methods 0.000 claims description 5
- 230000009977 dual effect Effects 0.000 claims description 4
- 238000005098 hot rolling Methods 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 3
- 238000004804 winding Methods 0.000 claims description 2
- 230000003019 stabilising effect Effects 0.000 claims 3
- 230000006641 stabilisation Effects 0.000 abstract description 25
- 238000011105 stabilization Methods 0.000 abstract description 22
- 238000005496 tempering Methods 0.000 abstract 3
- 229910001566 austenite Inorganic materials 0.000 description 25
- 238000010586 diagram Methods 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000009434 installation Methods 0.000 description 4
- 235000019362 perlite Nutrition 0.000 description 4
- 239000010451 perlite Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910000851 Alloy steel Inorganic materials 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910001339 C alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002051 biphasic effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- QMQXDJATSGGYDR-UHFFFAOYSA-N methylidyneiron Chemical compound [C].[Fe] QMQXDJATSGGYDR-UHFFFAOYSA-N 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/185—Hardening; Quenching with or without subsequent tempering from an intercritical temperature
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0473—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0426—Hot rolling
Definitions
- the present invention relates to the manufacture of cold rolled steel strips, particularly steel strips for forming processes, for example deep drawing.
- the invention relates more particularly to a method for the heat treatment of a cold-rolled steel strip, in order to give it a high strength and high formability.
- the steel strips for forming operations are cold-rolled strips.
- This type of strip has in fact favorable properties, and in particular good ductility, for the operations envisaged. In general, these properties are the result of well-known thermal annealing and cooling treatments.
- the annealing is carried out by heating the steel strip to an annealing temperature located in the intercritical range of the equilibrium diagram of the steel, between the transformation points A1 (eutectoid temperature ) and A3 (minimum temperature at which the austenitic phase ⁇ is the only stable phase of the steel).
- the steel strip is then maintained at this annealing temperature for a time sufficient to convert the initial ferritic structure of the steel into a mixed ferrite and austenite structure.
- Quenching is then carried out by quenching the steel strip to a temperature below the transformation temperature of austenite to martensite.
- the annealing temperature located in the intercritical range between the equilibrium points A1 and A3 of the steel, is selected so as to ensure the formation of at most 20% (preferably from 10 to 15%). %) in volume of austenite in the mixed structure of ferrite and austenite, in order to give the steel a high strength without significantly affecting its ductility.
- temperatures from 725 to 825 ° C.
- the temperatures below 350 ° C. for example the temperatures of 120 to 340 ° C. or the ambient temperature, are mentioned.
- the heat treatment of the steel strips according to the method described above is preferably carried out in a continuous process, in an on-line installation. Reasons for investment and congestion on the ground make it necessary to limit the duration of the different steps of the process.
- the heating of the steel strip to the annealing temperature is carried out at a speed of at least 150 ° C./s, advantageously from 150 to 350 ° C. C / s, the maintenance of the steel strip at this temperature does not exceed 20 s and the cooling rate up to the critical quenching temperature Ms is at least 300 ° C / s (for example 300 at 1000 ° C / s).
- the document JP-A-60 100 630 discloses a process in which a steel strip containing, by weight, 0.02 to 0.15% C, 0.2 to 3.5% Mn, 0.01 to 0.15% P and not more than 0 , 10% Al and, in addition, at least one or two, selected from group A, consisting of 1-1.5% Si, 0.1 to 1% Cr and Mo respectively and 5-100 ppm B, and the group B consisting of 0.01 to 0.20% V and Ti respectively and 0.01 to 0.10% Nb, the remainder being iron, is subjected to a quench of 3-60 seconds in a temperature range from transformation point Ac3 to Ac3 + 50 ° C.
- the steel strip is then cooled in the biphasic region of ferrite and austenite in the temperature range from transformation point Ar3 to transformation point Ar1 and is maintained for at least 20 seconds at this temperature.
- the value 3.95 of equation (2) is modified in 3.40 in the case of the addition of B.
- the aim of the invention is to remedy this drawback of the known method described above, by providing a new process for the heat treatment of a cold-rolled steel strip, which confers on it reproducible mechanical strength properties, particularly high ductility and high strength, in online industrial installations of reduced size.
- the invention relates to a method for heat treating a cold-rolled steel strip, comprising heating to an annealing temperature above A3, stabilizing at said annealing temperature and quenching to a temperature below the Martensitic transformation critical temperature Ms, the method being characterized by selecting an annealing temperature higher than the austenitic transformation temperature A3 and in that between the annealing temperature stabilization and quenching the steel strip is cooled to an intermediate temperature in the intercritical range between transformation points A1 and A3 and is stabilized at said intermediate temperature.
- the temperatures A1 and A3 are well known in the iron and steel environment.
- the temperature A1 corresponds to the temperature of the eutectoid of the equilibrium diagram of the iron-carbon alloy. It is about 725 ° C but may vary depending on the alloying elements of the steel and the heating rate of the steel strip to the annealing temperature.
- the temperature A3 is the minimum temperature at which the phase ⁇ is the only stable phase of the steel. It depends on the composition of the steel, particularly its carbon content, and the heating rate up to the annealing temperature.
- the critical temperature Ms of martensitic transformation is also well known in the iron and steel industry. It is the limit temperature under which, during rapid cooling of the steel from the annealing temperature, the austenite is transformed into martensite without formation of perlite. This critical temperature and the cooling rate required for transformation to martensite depend on the steel composition and the annealing temperature.
- the annealing temperature is higher than the temperature A3 of the steel, so that the treated steel is then in the austenitic range of the phase equilibrium diagram of the steel.
- the choice of the optimum temperature of the annealing will depend on the composition of the steel, in particular its carbon content. In the case of a low alloy steel, comprising from 0.08 to 0.15% by weight of carbon, the annealing temperature is generally greater than 830 ° C and is advantageously between 850 and 880 ° C.
- the heating of the steel strip to the annealing temperature is advantageously carried out at high speed, so as to reduce the size of the annealing installation and to optimize the crystal structure of the steel. Speeds above 100 ° C / sec are recommended, with speeds of 100 to 300 ° C / sec being preferred.
- the heating of the steel to the annealing temperature can be carried out in an oven heated by any conventional heating means. This may for example include natural gas heating, oil heating or induction electric heating. Such ovens are well known in the art.
- the steel strip After heating to the annealing temperature, the steel strip is subjected to a stabilization step. During this period, the steel strip is maintained at the annealing temperature for a time sufficient to convert the steel to austenite and form a homogeneous austenite.
- the duration of this stabilization step depends on the temperature at which it is carried out and the composition of the steel. This stabilization step being performed in a thermostatically controlled oven, it is advantageous to make it as short as possible, for reasons of space and investment. In practice, it is generally maintained under 1 minute, the durations of 1 to 20 s generally suitable.
- the intercritical domain is the equilibrium domain of steel, located between the temperature A1 and the temperature A3. It corresponds to the coexistence domain of an ⁇ ferritic phase and a ⁇ austenitic phase.
- the choice of the optimum value for the intermediate temperature will depend on the desired properties for the steel strip subjected to heat treatment. In general, it is chosen so that at equilibrium there corresponds at most 20% (for example from 5 to 20%) by weight of austenite, the values of 10 to 15% by weight of austenite generally being suitable. good.
- This optimum temperature depends on the temperature A3 of the steel in question and, consequently, on the composition thereof and can easily be determined from the equilibrium diagram of the steels. In practice, temperatures of 600 to 750 ° C are suitable in most cases.
- the cooling to the intermediate temperature is generally carried out using gas cooling ("gas jet cooling"). We do it advantageously at a speed greater than 50 ° C / s, for example 100 to 150 ° C / s.
- the cooling of the steel strip to the intermediate temperature is followed by stabilization at this temperature.
- Stabilization at the intermediate temperature consists in maintaining the steel strip at the selected intermediate temperature for a time sufficient to transform a fraction of the austenite into ferrite and reach the thermodynamic equilibrium of the two phases in the presence (ferritic and austenitic).
- the duration of stabilization at the intermediate temperature is generally greater than 2 s. In practice, it is usually at least 5 s. It is not beneficial for it to exceed 25 seconds. The durations of 5 to 15 s are generally well suited.
- the stabilization phase at the intermediate temperature is preferably carried out in a low inertia furnace, also called a tunnel furnace.
- the steel strip is quenched. This consists in cooling the steel strip to a temperature below the critical temperature Ms, with a cooling rate sufficient to convert the austenitic phase to martensite without forming perlite.
- the choice of the optimum values for the quenching temperature and the cooling rate will depend in particular on the composition of the steel and the intermediate temperature. These optimum values can easily be determined by laboratory tests.
- a quenching start temperature is chosen between 600 and 750 ° C. and a cooling rate greater than 100 ° C./s.
- the quenching may for example be carried out by spraying a mist of water and compressed air or by immersion in a hot water bath (for example example at a temperature of 70 to 90 ° C).
- speeds of 300 to 1000 ° C / s are especially recommended.
- quenching is carried out by immersing the steel strip in a galvanizing bath, ideally a molten zinc bath at a temperature of 460 to 500 ° C.
- the steel strip after quenching, is subjected to an overaging operation. compatible with galvanization, intended to precipitate the soluble carbon formed during the transformation of austenite to martensite. This operation reduces the sensitivity of the steel to aging and improves its ductility.
- the method according to the invention makes it possible to give cold-rolled steel strips optimum mechanical properties, which are reproducible, in online industrial installations, which do not require a space requirement and an excessive investment.
- This advantageous result of the process according to the invention in particular the reproducibility of the desired properties, is attributable, on the one hand, to the choice of an annealing temperature which places the thermodynamic equilibrium point of the steel in the austenitic zone. and, on the other hand, to precede quenching with cooling to an intermediate temperature which places the representative point of the steel in the intercritical domain.
- the inventors have found that this advantageous result of the process according to the invention originates in the rate of transformation and diffusion of carbon in the steel during the annealing and during the intermediate cooling which follows it.
- the method according to the invention applies to all low carbon steel strips of the two-phase (or "dual phase") type defined above. It is especially suitable for 0.3 to 2 mm thick cold-rolled LC ('Low Carbon') steel strips for forming as used in the manufacture of components used in the automotive industry. More particularly, the heat treatment method according to the invention is particularly applicable to steel strips with low carbon and manganese contents, in particular to steel strips containing from 0.06 to 0.2% by weight of carbon and 0.6 to 2.0% by weight of manganese. Examples of LC steels for which the process according to the invention is well suited comprise from 0.08 to 0.15% by weight of carbon and from 0.6 to 1.5% by weight of manganese. The silicon content is preferably less than 0.5% by weight, for example between 0.01 and 0.4% by weight.
- the cold rolled steel strip used in the heat treatment process according to the invention generally comes from a slab manufactured in a hot rolling mill.
- the invention also relates to a method of manufacturing a steel strip suitable for forming, wherein a steel slab is subjected to hot rolling at a temperature in the zone. austenitic steel, the hot rolled sheet is subjected to a winding at a temperature of 680 to 750 ° C, then to a cold rolling with a reduction rate of 50 to 80% and then subject the sheet recovered from cold rolling to a heat treatment according to the invention.
- steel strips are manufactured for the automotive industry.
- the figure 1 is a diagram schematizing the different operating steps of two distinct processes for the heat treatment of a mild steel strip with a two-phase structure, intended for forming.
- the figure 2 is a diagram showing the mechanism of formation of austenite with ordinate the volume fraction indicated by P, from a homogeneous ferritic structure (curve 11) or from a homogeneous austenitic structure (curve 12).
- the abscissa represents the time and the ordinate scale represents the temperatures.
- the line designated as a whole by the reference numeral 1 represents the heat treatment process of the state of the art.
- the line designated as a whole by the reference numeral 5 represents a thermal treatment method according to the invention.
- Line 11 corresponds to the heat treatment according to the state of the art (shown schematically by line 1 to figure 1 ) and line 12 corresponds to the heat treatment according to the invention (shown schematically by line 5 to figure 1 ).
- the steel initially in the equilibrium zone of the ferrite is heated to the annealing temperature T 1 located in the intercritical zone of the equilibrium diagram (between the temperatures A1 and A3) .
- T 1 located in the intercritical zone of the equilibrium diagram (between the temperatures A1 and A3) .
- a fraction of the ferrite turns into austenite and a substantial time t 1 is required to reach equilibrium.
- the steel is first heated to the annealing temperature T 2 located in the equilibrium zone of the austenite (higher than the temperature A3 of the equilibrium diagram). The time required to obtain a transformation of all the ferrite into austenite is very short and represented by t 2 . Then, the steel is cooled to the intermediate temperature T 3 located in the intercritical zone of the equilibrium diagram and maintained at this temperature the time required to obtain a transformation of a fraction of austenite to ferrite.
- a strip of low alloy steel (0.1% by weight of carbon and 1.25% by weight of manganese) 0.7 mm thick, from a cold rolling mill, was used.
- the steel strip has been subjected to a heat treatment, in order to give it a two-phase structure (or "dual phase") comprising martensite grains dispersed in a ferrite matrix.
- the steel strip has been subjected to a heat treatment according to the state of the art, shown schematically by the line 1 to the figure 1 .
- This heat treatment consisted of rapid heating for a few seconds up to an annealing temperature of 800 ° C, stabilization at that temperature for 3 minutes and quenching to room temperature.
- the steel strip has been subjected to a heat treatment according to the state of the art, shown schematically by the line 1 to the figure 1 .
- This heat treatment consisted of rapid heating for a few seconds up to an annealing temperature of 800 ° C, stabilization at this temperature for 3 minutes followed cooling in boiling water (2 seconds) to a temperature of 641 ° C and quenching to room temperature.
- the steel strip has been subjected to a heat treatment according to the state of the art, shown schematically by the line 1 to the figure 1 .
- This heat treatment consisted of rapid heating for a few seconds up to an annealing temperature of 800 ° C, stabilization at this temperature for 3 minutes followed by cooling in air (14 seconds) to a temperature of 516 ° C and quenched to room temperature.
- the steel strip has been subjected to a heat treatment according to the invention, schematically represented by the line 5 to the figure 1 .
- This heat treatment consisted of rapid heating for a few seconds up to an annealing temperature of 865 ° C., stabilization at this temperature for 40 seconds, rapid intermediate cooling at a speed of greater than 100 ° C./s up to at a temperature of 650 ° C., stabilization at 650 ° C. for 10 seconds and quenching to room temperature.
- a comparison of the results of Examples 1 to 3 shows that in the method of the prior art a stable two-phase structure of ferrite and martensite requires a long-time stabilization at the annealing temperature (3 minutes), followed by a preliminary cooling slow (14 seconds) before quenching. In the absence of this slow preliminary cooling, the structure obtained is not stable or reproducible or contains an undesirable perlite phase, detrimental to the mechanical properties of the steel strip.
- the method of the invention makes it possible to obtain the desired characteristics in terms of stability of the microstructure and mechanical properties, without requiring a long annealing period or slow cooling before quenching.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
La présente invention a pour objet la fabrication de bandes d'acier par laminage à froid, particulièrement les bandes d'acier destinées à des traitements de formage, par exemple l'emboutissage profond.The present invention relates to the manufacture of cold rolled steel strips, particularly steel strips for forming processes, for example deep drawing.
L'invention concerne plus particulièrement un procédé pour le traitement thermique d'une bande d'acier laminée à froid, dans le but de lui conférer une haute résistance et une grande formabilité.The invention relates more particularly to a method for the heat treatment of a cold-rolled steel strip, in order to give it a high strength and high formability.
D'une manière générale, les bandes d'acier destinées à des opérations de formage, notamment de haute formabilité, sont des bandes laminées à froid. Ce type de bande présente en effet des propriétés favorables, et en particulier une bonne ductilité, pour les opérations envisagées. D'une manière générale, ces propriétés sont le résultat de traitements thermiques de recuit et de refroidissement bien connus.In general, the steel strips for forming operations, in particular of high formability, are cold-rolled strips. This type of strip has in fact favorable properties, and in particular good ductility, for the operations envisaged. In general, these properties are the result of well-known thermal annealing and cooling treatments.
On sait par ailleurs qu'il est possible de produire des aciers présentant d'une part une haute résistance et d'autre part une ductilité élevée en leur conférant une structure biphasée (appelée aussi, en anglais, structure « dual phase »). Cette structure biphasée est essentiellement constituée par une matrice ferritique douce, dans laquelle sont dispersées de fines particules de martensite. En schématisant, on considère que la matrice ferritique assure la ductilité de l'acier, tandis que la résistance est donnée par la martensite, qui est une phase de dureté élevée, obtenue par une opération de trempe.It is also known that it is possible to produce steels having on the one hand a high strength and on the other hand a high ductility by giving them a two-phase structure (also called, in English, "dual phase" structure). This structure biphase consists essentially of a soft ferritic matrix, in which are dispersed fine particles of martensite. In schematizing, it is considered that the ferritic matrix ensures the ductility of the steel, while the resistance is given by martensite, which is a phase of high hardness, obtained by a quenching operation.
D'un point de vue métallurgique, on forme la structure biphasée définie ci-dessus dans une bande d'acier en soumettant celle-ci à un traitement thermique adéquat en plusieurs étapes comportant un recuit et une trempe. Selon un procédé connu, le recuit est opéré en chauffant la bande d'acier jusqu'à une température de recuit située dans le domaine intercritique du diagramme d'équilibre de l'acier, entre les points de transformation A1 (température de l'eutectoïde) et A3 (température minimum à laquelle la phase austénitique γ est la seule phase stable de l'acier). La bande d'acier est ensuite maintenue à cette température de 'recuit pendant un temps suffisant pour convertir la structure ferritique initiale de l'acier en une structure mixte de ferrite et d'austénite. On exécute ensuite la trempe en refroidissant brutalement la bande d'acier jusqu'à une température inférieure à la température Ms de transformation de l'austénite en martensite.From a metallurgical point of view, forming the two-phase structure defined above in a steel strip by subjecting it to a suitable heat treatment in several stages including annealing and quenching. According to a known method, the annealing is carried out by heating the steel strip to an annealing temperature located in the intercritical range of the equilibrium diagram of the steel, between the transformation points A1 (eutectoid temperature ) and A3 (minimum temperature at which the austenitic phase γ is the only stable phase of the steel). The steel strip is then maintained at this annealing temperature for a time sufficient to convert the initial ferritic structure of the steel into a mixed ferrite and austenite structure. Quenching is then carried out by quenching the steel strip to a temperature below the transformation temperature of austenite to martensite.
Un procédé de ce type est notamment décrit et revendiqué dans le document
Le traitement thermique des bandes d'acier selon le procédé décrit ci-dessus est de préférence effectué selon un processus continu, dans une installation en ligne. Des raisons d'investissement et d'encombrement au sol imposent de limiter la durée des différentes étapes du procédé. Ainsi, dans le procédé connu décrit dans la demande de brevet susdite, le chauffage de la bande d'acier jusqu'à la température de recuit est effectué à une vitesse d'au moins 150°C/s, avantageusement de 150 à 350°C/s, le maintien de la bande d'acier à cette température n'excède pas 20 s et la vitesse de refroidissement jusqu'à la température critique de trempe Ms est d'au moins 300°C/s (par exemple de 300 à 1000°C/s).The heat treatment of the steel strips according to the method described above is preferably carried out in a continuous process, in an on-line installation. Reasons for investment and congestion on the ground make it necessary to limit the duration of the different steps of the process. Thus, in the known process described in the aforementioned patent application, the heating of the steel strip to the annealing temperature is carried out at a speed of at least 150 ° C./s, advantageously from 150 to 350 ° C. C / s, the maintenance of the steel strip at this temperature does not exceed 20 s and the cooling rate up to the critical quenching temperature Ms is at least 300 ° C / s (for example 300 at 1000 ° C / s).
Dans le procédé connu qui vient d'être décrit, il s'est révélé particulièrement difficile, voire impossible, d'atteindre l'équilibre thermodynamique de la structure mixte de ferrite et d'austénite à l'issue du recuit, ce qui rend le procédé instable. En pratique, il est en effet apparu que cet équilibre ne pouvait être atteint qu'à la suite d'une très longue durée de maintien de la bande d'acier à la température de recuit. Cette longue durée nécessite la construction d'une ligne très longue, représentant des investissements importants d'exploitation industrielle.In the known process which has just been described, it has proved particularly difficult, if not impossible, to reach the thermodynamic equilibrium of the mixed ferrite and austenite structure at the end of the annealing, which makes the unstable process. In practice, it has indeed appeared that this equilibrium could be reached only after a very long period of maintenance of the steel strip at the annealing temperature. This long duration requires the construction of a very long line, representing significant investments in industrial exploitation.
Le document
ou au-delà en vitesse moyenne dans un intervalle de température de 600-300°C et à la vitesse de l'équation :
ou au-delà, dans le cas d'ajout de Si, etc. Cependant, la valeur 3,95 de l'équation (2) est modifiée en 3,40 dans le cas d'ajout de B.The document
or above in average velocity in a temperature range of 600-300 ° C and at the speed of the equation:
or beyond, in the case of adding Si, etc. However, the value 3.95 of equation (2) is modified in 3.40 in the case of the addition of B.
L'invention vise à remédier à cet inconvénient du procédé connu décrit plus haut, en fournissant un procédé nouveau pour le traitement thermique d'une bande d'acier laminée à froid, qui confère à celle-ci des propriétés de résistance mécanique reproductibles, particulièrement une grande ductilité et une haute résistance, dans des installations industrielles en ligne d'encombrement réduit.The aim of the invention is to remedy this drawback of the known method described above, by providing a new process for the heat treatment of a cold-rolled steel strip, which confers on it reproducible mechanical strength properties, particularly high ductility and high strength, in online industrial installations of reduced size.
L'invention concerne un procédé pour le traitement thermique d'une bande d'acier laminée à froid, comprenant un chauffage jusqu'à une température de recuit supérieure à la température A3, une stabilisation à ladite température de recuit et une trempe jusqu'à une température inférieure à la température critique Ms de transformation martensitique, le procédé étant caractérisé en ce qu'on sélectionne une température de recuit supérieure à la température A3 de transformation austénitique et en ce qu'entre la stabilisation à la température de recuit et la trempe, on soumet la bande d'acier à un refroidissement jusqu'à une température intermédiaire située dans le domaine intercritique entre les points de transformation A1 et A3, et on la stabilise à ladite température intermédiaire.The invention relates to a method for heat treating a cold-rolled steel strip, comprising heating to an annealing temperature above A3, stabilizing at said annealing temperature and quenching to a temperature below the Martensitic transformation critical temperature Ms, the method being characterized by selecting an annealing temperature higher than the austenitic transformation temperature A3 and in that between the annealing temperature stabilization and quenching the steel strip is cooled to an intermediate temperature in the intercritical range between transformation points A1 and A3 and is stabilized at said intermediate temperature.
Dans le procédé selon l'invention, les températures A1 et A3 sont bien connues du milieu sidérurgique. La température A1 correspond à la température de l'eutectoïde du diagramme d'équilibre de l'alliage fer-carbone. Il est d'environ 725°C mais peut varier en fonction des éléments d'alliage de l'acier et de la vitesse de chauffage de la bande d'acier jusqu'à la température de recuit. La température A3 est la température minimum à laquelle la phase γ est la seule phase stable de l'acier. Elle dépend de la composition de l'acier, particulièrement de sa teneur en carbone, et de la vitesse de chauffage jusqu'à la température du recuit.In the process according to the invention, the temperatures A1 and A3 are well known in the iron and steel environment. The temperature A1 corresponds to the temperature of the eutectoid of the equilibrium diagram of the iron-carbon alloy. It is about 725 ° C but may vary depending on the alloying elements of the steel and the heating rate of the steel strip to the annealing temperature. The temperature A3 is the minimum temperature at which the phase γ is the only stable phase of the steel. It depends on the composition of the steel, particularly its carbon content, and the heating rate up to the annealing temperature.
La température critique Ms de transformation martensitique est également bien connue dans le milieu sidérurgique. Elle est la température limite sous laquelle, lors d'un refroidissement rapide de l'acier depuis la température du recuit, l'austénite est transformée en martensite sans formation de perlite. Cette température critique et la vitesse de refroidissement nécessaire à la transformation en martensite dépendent de la composition de l'acier et de la température de recuit.The critical temperature Ms of martensitic transformation is also well known in the iron and steel industry. It is the limit temperature under which, during rapid cooling of the steel from the annealing temperature, the austenite is transformed into martensite without formation of perlite. This critical temperature and the cooling rate required for transformation to martensite depend on the steel composition and the annealing temperature.
Selon l'invention, la température du recuit est supérieure à la température A3 de l'acier, de sorte que l'acier traité se trouve alors dans le domaine austénitique du diagramme d'équilibre des phases de l'acier. Le choix de la température optimum du recuit va dépendre de la composition de l'acier, notamment de sa teneur en carbone. Dans le cas d'un acier faiblement allié, comprenant de 0,08 à 0,15% en poids de carbone, la température du recuit est généralement supérieure à 830°C et se situe avantageusement entre 850 et 880°C.According to the invention, the annealing temperature is higher than the temperature A3 of the steel, so that the treated steel is then in the austenitic range of the phase equilibrium diagram of the steel. The choice of the optimum temperature of the annealing will depend on the composition of the steel, in particular its carbon content. In the case of a low alloy steel, comprising from 0.08 to 0.15% by weight of carbon, the annealing temperature is generally greater than 830 ° C and is advantageously between 850 and 880 ° C.
Le chauffage de la bande d'acier jusqu'à la température de recuit est avantageusement effectué à grande vitesse, de manière à réduire l'encombrement de l'installation de recuit et à optimiser la structure cristalline de l'acier. Des vitesses supérieures à 100°C/s sont recommandées, les vitesses de 100 à 300°C/s étant préférées. Le chauffage de l'acier jusqu'à la température de recuit peut être effectué dans un four chauffé par tout moyen de chauffage classique. Celui-ci peut par exemple comprendre un chauffage au gaz naturel, un chauffage au mazout ou un chauffage électrique par induction. De tels fours sont bien connus en technique.The heating of the steel strip to the annealing temperature is advantageously carried out at high speed, so as to reduce the size of the annealing installation and to optimize the crystal structure of the steel. Speeds above 100 ° C / sec are recommended, with speeds of 100 to 300 ° C / sec being preferred. The heating of the steel to the annealing temperature can be carried out in an oven heated by any conventional heating means. This may for example include natural gas heating, oil heating or induction electric heating. Such ovens are well known in the art.
A l'issue du chauffage jusqu'à la température de recuit, la bande d'acier est soumise à une étape de stabilisation. Au cours de celle-ci, la bande d'acier est maintenue à la température du recuit pendant un temps suffisant pour transformer l'acier en austénite et former une austénite homogène. .La durée de cette étape de stabilisation dépend de la température à laquelle on l'effectue et de la composition de l'acier. Cette étape de stabilisation étant réalisée dans un four thermostatisé, on a intérêt à la rendre aussi courte que possible, pour des considérations d'encombrement et d'investissement. En pratique, on la maintient généralement sous 1 minute, les durées de 1 à 20 s convenant généralement bien.After heating to the annealing temperature, the steel strip is subjected to a stabilization step. During this period, the steel strip is maintained at the annealing temperature for a time sufficient to convert the steel to austenite and form a homogeneous austenite. The duration of this stabilization step depends on the temperature at which it is carried out and the composition of the steel. This stabilization step being performed in a thermostatically controlled oven, it is advantageous to make it as short as possible, for reasons of space and investment. In practice, it is generally maintained under 1 minute, the durations of 1 to 20 s generally suitable.
Selon l'invention, la stabilisation à la température de recuit est suivie d'un refroidissement jusqu'à une température intermédiaire située dans le domaine intercritique. Par définition, le domaine intercritique est le domaine d'équilibre de l'acier, situé entre la température A1 et la température A3. Il correspond au domaine de coexistence d'une phase ferritique α et d'une phase austénitique γ. Le choix de la valeur optimum pour la température intermédiaire va dépendre des propriétés recherchées pour la bande d'acier soumise au traitement thermique. En général, on la choisit de manière qu'à l'équilibre il y corresponde au maximum 20% (par exemple de 5 à 20%) en poids d'austénite, les valeurs de 10 à 15% en poids d'austénite convenant généralement bien. Cette température optimum dépend de la température A3 de l'acier concerné et, par conséquent, de la composition de celui-ci et peut aisément être déterminée au départ du diagramme d'équilibre des aciers. En pratique, des températures de 600 à 750°C conviennent bien dans la majorité des cas.According to the invention, stabilization at the annealing temperature is followed by cooling to an intermediate temperature in the intercritical range. By definition, the intercritical domain is the equilibrium domain of steel, located between the temperature A1 and the temperature A3. It corresponds to the coexistence domain of an α ferritic phase and a γ austenitic phase. The choice of the optimum value for the intermediate temperature will depend on the desired properties for the steel strip subjected to heat treatment. In general, it is chosen so that at equilibrium there corresponds at most 20% (for example from 5 to 20%) by weight of austenite, the values of 10 to 15% by weight of austenite generally being suitable. good. This optimum temperature depends on the temperature A3 of the steel in question and, consequently, on the composition thereof and can easily be determined from the equilibrium diagram of the steels. In practice, temperatures of 600 to 750 ° C are suitable in most cases.
Le refroidissement jusqu'à la température intermédiaire est généralement effectué à l'aide d'un refroidissement au gaz (« gas jet cooling »). On l'effectue avantageusement à une vitesse supérieure à 50°C/s, par exemple de 100 à 150°C/s.The cooling to the intermediate temperature is generally carried out using gas cooling ("gas jet cooling"). We do it advantageously at a speed greater than 50 ° C / s, for example 100 to 150 ° C / s.
Le refroidissement -de la bande d'acier jusqu'à la température intermédiaire est suivi d'une stabilisation à cette température. La stabilisation à la température intermédiaire consiste à maintenir la bande d'acier à la température intermédiaire sélectionnée pendant un temps suffisant pour transformer une fraction de l'austénite en ferrite et atteindre l'équilibre thermodynamique des deux phases en présence (ferritique et austénitique) . La durée de la stabilisation à la température intermédiaire est généralement supérieure à 2 s. En pratique, elle est habituellement d'au moins 5 s. On n'a pas intérêt à ce qu'elle dépasse 25 s. Les durées de 5 à 15 s conviennent généralement bien. La phase de stabilisation à la température intermédiaire est effectué de préférence dans un four à faible inertie, aussi nommé un four tunnel.The cooling of the steel strip to the intermediate temperature is followed by stabilization at this temperature. Stabilization at the intermediate temperature consists in maintaining the steel strip at the selected intermediate temperature for a time sufficient to transform a fraction of the austenite into ferrite and reach the thermodynamic equilibrium of the two phases in the presence (ferritic and austenitic). The duration of stabilization at the intermediate temperature is generally greater than 2 s. In practice, it is usually at least 5 s. It is not beneficial for it to exceed 25 seconds. The durations of 5 to 15 s are generally well suited. The stabilization phase at the intermediate temperature is preferably carried out in a low inertia furnace, also called a tunnel furnace.
A l'issue de la stabilisation à la température intermédiaire, la bande d'acier est soumise à une trempe. Celle-ci consiste à refroidir la bande d'acier jusqu'à une température inférieure à la température critique Ms, avec une vitesse de refroidissement suffisante pour transformer la phase austénitique en martensite sans formation de perlite. Le choix des valeurs optimum pour la température de trempe et la vitesse de refroidissement va dépendre notamment de la composition de l'acier et de la température intermédiaire. Ces valeurs optimum peuvent être déterminées aisément par des essais au laboratoire. En pratique, on choisit une température de début de trempe entre 600 et 750°C et une vitesse de refroidissement supérieure à 100°C/s. La trempe peut par exemple être effectuée par pulvérisation d'un brouillard d'eau et air comprimé ou par immersion dans un bain d'eau chaude (par exemple à une température de 70 à 90°C). Pour le refroidissement jusqu'à la température de trempe, des vitesses de 300 à 1000°C/s sont spécialement recommandées.After stabilization at the intermediate temperature, the steel strip is quenched. This consists in cooling the steel strip to a temperature below the critical temperature Ms, with a cooling rate sufficient to convert the austenitic phase to martensite without forming perlite. The choice of the optimum values for the quenching temperature and the cooling rate will depend in particular on the composition of the steel and the intermediate temperature. These optimum values can easily be determined by laboratory tests. In practice, a quenching start temperature is chosen between 600 and 750 ° C. and a cooling rate greater than 100 ° C./s. The quenching may for example be carried out by spraying a mist of water and compressed air or by immersion in a hot water bath (for example example at a temperature of 70 to 90 ° C). For cooling to the quenching temperature, speeds of 300 to 1000 ° C / s are especially recommended.
Dans une forme de réalisation du procédé selon l'invention, on effectue la trempe en immergeant la bande d'acier dans un bain de galvanisation, idéalement un bain de zinc fondu à une température de 460 à 500°C.In one embodiment of the process according to the invention, quenching is carried out by immersing the steel strip in a galvanizing bath, ideally a molten zinc bath at a temperature of 460 to 500 ° C.
Dans une autre forme de réalisation particulière du procédé selon l'invention, à l'issue de la trempe, on soumet la bande d'acier à une opération de survieillissement compatible avec la galvanisation, destinée à précipiter le carbone soluble formé lors de la transformation de l'austénite en martensite. Par cette opération, on réduit la sensibilité de l'acier au vieillissement et on améliore sa ductilité.In another particular embodiment of the process according to the invention, after quenching, the steel strip is subjected to an overaging operation. compatible with galvanization, intended to precipitate the soluble carbon formed during the transformation of austenite to martensite. This operation reduces the sensitivity of the steel to aging and improves its ductility.
Par comparaison avec le procédé connu décrit plus haut, le procédé selon l'invention permet de conférer à des bandes d'acier laminées à froid des propriétés mécaniques optimum, qui sont reproductibles, dans des installations industrielles en ligne, ne nécessitant pas un encombrement et un investissement excessifs. Ce résultat avantageux du procédé selon l'invention, en particulier la reproductibilité des propriétés recherchées, est imputable, d'une part, au choix d'une température de recuit qui place le point d'équilibre thermodynamique de l'acier dans la zone austénitique et, d'autre part, à faire précéder la trempe d'un refroidissement jusqu'à une température intermédiaire qui place le point représentatif de l'acier dans le domaine intercritique. Les inventeurs ont trouvé que ce résultat avantageux du procédé selon l'invention trouve son origine dans la vitesse de transformation et de diffusion de carbone dans l'acier au cours du recuit et au cours du refroidissement intermédiaire qui suit celui-ci. Les inventeurs ont notamment trouvé que dans le procédé selon l'invention, la transformation directe d'une phase ferritique unitaire en une phase austénitique unitaire, par chauffage, suivie d'une transformation de ladite. phase austénitique unitaire en une phase mixte de ferrite et d'austénite par refroidissement requiert moins de temps qu'une transformation directe d'une phase ferritique unitaire en une phase mixte de ferrite et d'austénite par chauffage (procédé connu décrit dans le document
Le procédé selon l'invention s'applique à toutes les bandes d'acier à basse teneur en carbone du type biphasé (ou « dual phase ») défini plus haut. Il convient spécialement bien aux bandes d'acier LC ('Low Carbon') laminées à froid de 0,3 à 2 mm d'épaisseur, destinées à un formage tel qu'appliqué dans la fabrication de composants utilisés dans l'industrie automobile. Plus particulièrement, le procédé de traitement thermique selon l'invention s'applique spécialement bien aux bandes d'acier à basses teneurs en carbone et en manganèse, notamment aux bandes d'acier contenant de 0,06 à 0,2% en poids de carbone et de 0,6 à 2,0% en poids de manganèse. Des exemples d'aciers LC pour lesquels le procédé selon l'invention convient bien comprennent de 0,08 à 0,15% en poids de carbone et de 0,6 à 1,5% en poids de manganèse. La teneur en silicium est de préférence inférieure à 0,5% en poids, par exemple située entre 0,01 et 0,4% en poids.The method according to the invention applies to all low carbon steel strips of the two-phase (or "dual phase") type defined above. It is especially suitable for 0.3 to 2 mm thick cold-rolled LC ('Low Carbon') steel strips for forming as used in the manufacture of components used in the automotive industry. More particularly, the heat treatment method according to the invention is particularly applicable to steel strips with low carbon and manganese contents, in particular to steel strips containing from 0.06 to 0.2% by weight of carbon and 0.6 to 2.0% by weight of manganese. Examples of LC steels for which the process according to the invention is well suited comprise from 0.08 to 0.15% by weight of carbon and from 0.6 to 1.5% by weight of manganese. The silicon content is preferably less than 0.5% by weight, for example between 0.01 and 0.4% by weight.
La bande d'acier laminée à froid mise en oeuvre dans le procédé de traitement thermique selon l'invention provient généralement d'une brame fabriquée dans un laminoir à chaud.The cold rolled steel strip used in the heat treatment process according to the invention generally comes from a slab manufactured in a hot rolling mill.
En conséquence, l'invention concerne également un procédé de fabrication d'une bande d'acier adapté au formage, selon lequel on soumet une brame d'acier à un laminage à chaud à une température située dans la zone austénitique de l'acier, on soumet la tôle recueillie du laminage à chaud à un bobinage à une température de 680 à 750°C, puis à un laminage à froid avec un taux de réduction de 50 à 80% et on soumet ensuite la tôle recueillie du laminage à froid à un traitement thermique conforme à l'invention.Accordingly, the invention also relates to a method of manufacturing a steel strip suitable for forming, wherein a steel slab is subjected to hot rolling at a temperature in the zone. austenitic steel, the hot rolled sheet is subjected to a winding at a temperature of 680 to 750 ° C, then to a cold rolling with a reduction rate of 50 to 80% and then subject the sheet recovered from cold rolling to a heat treatment according to the invention.
Selon le procédé de fabrication de bandes d'acier adapté au formage selon l'invention, on fabrique des bandes d'acier destinées à l'industrie automobile.According to the method of manufacturing steel strips suitable for forming according to the invention, steel strips are manufactured for the automotive industry.
La
La
Dans ces figures, des mêmes notations de référence ont des significations identiques.In these figures, the same reference notations have identical meanings.
A la
Le procédé selon l'état de la technique, schématisé par la ligne 1 à la
un chauffage 2 de la bande d'acier jusqu'à une température de recuit T1 située dans la zone intercritique (entre les températures A1 et A3) de l'acier traité;une stabilisation 3 de l'acier à la température de recuit T1;une trempe 4 jusqu'à la température ambiante, à une vitesse supérieure à la vitesse critique de transformation de l'austénite en martensite.
-
heating 2 of the steel strip to an annealing temperature T 1 located in the intercritical zone (between the temperatures A1 and A3) of the treated steel; - a
stabilization 3 of the steel at the annealing temperature T 1 ; - quenching 4 to room temperature, at a rate above the critical transformation rate of austenite to martensite.
Le procédé selon l'invention, schématisé par la ligne 5 à la
un chauffage 6 de la bande d'acier jusqu'à une température de recuit T2 située dans la phase austénitique (au-dessus de la température A3) de l'acier traité ;une stabilisation 7 de l'acier à la température de recuit T2;un refroidissement 8 jusqu'à une température T3 située dans la zone intercritique (entre les températures A1 et A3) de l'acier traité;une stabilisation 9 de l'acier à la température T3;une trempe 10 jusqu'à la température ambiante, à une vitesse supérieure à la vitesse critique de transformation de l'austénite en martensite.
- heating the steel strip to an annealing temperature T 2 in the austenitic phase (above the temperature A3) of the treated steel;
- a
stabilization 7 of the steel at the annealing temperature T 2 ; - a
cooling 8 to a temperature T 3 located in the intercritical zone (between the temperatures A1 and A3) of the treated steel; - a
stabilization 9 of the steel at the temperature T 3 ; - quenching to room temperature, at a rate above the critical transformation rate of austenite to martensite.
A la
Dans le traitement thermique schématisé par la ligne 11, l'acier initialement dans la zone d'équilibre de la ferrite est chauffé à la température de recuit T1 située dans la zone intercritique du diagramme d'équilibre (entre les températures A1 et A3). Une fraction de la ferrite se transforme en austénite et un temps substantiel t1 est nécessaire pour atteindre l'équilibre.In the heat treatment schematized by
Dans le traitement thermique schématisé par la ligne 12, l'acier est d'abord chauffé à la température de recuit T2 située dans la zone d'équilibre de l'austénite (supérieure à la température A3 du diagramme d'équilibre). Le temps nécessaire pour obtenir une transformation de la totalité de la ferrite en austénite est très court et représenté par t2. Ensuite, l'acier est refroidi jusqu'à la température intermédiaire T3 située dans la zone intercritique du diagramme d'équilibre et maintenu à cette température le temps nécessaire pour obtenir une transformation d'une fraction d'austénite en ferrite.In the heat treatment schematized by
On observe sur le diagramme de la
Les exemples décrits ci-après vont faire apparaître l'intérêt du procédé selon l'invention.The examples described below will show the interest of the process according to the invention.
Dans chacun des exemples on a mis en oeuvre une bande en acier faiblement allié (0,1% en poids de carbone et 1,25% en poids de manganèse) de 0,7 mm d'épaisseur, provenant d'un laminoir à froid. La bande d'acier a été soumise à un traitement thermique, dans le but de lui conférer une structure biphasée (ou « dual phase ») comprenant des grains de martensite dispersées dans une matrice de ferrite.In each of the examples, a strip of low alloy steel (0.1% by weight of carbon and 1.25% by weight of manganese) 0.7 mm thick, from a cold rolling mill, was used. . The steel strip has been subjected to a heat treatment, in order to give it a two-phase structure (or "dual phase") comprising martensite grains dispersed in a ferrite matrix.
La bande d'acier a été soumise à un traitement thermique conforme à l'état de la technique, représenté schématiquement par la ligne 1 à la
A l'issue de l'essai, on a mesuré les propriétés mécaniques de la bande d'acier et on a analysé la structure cristalline de l'acier. Les résultats sont consignés dans le tableau 1 ci-dessous, dans lequel
- YS désigne la limite élastique exprimée en mégapascal (MPa) ;
- TS désigne la charge de rupture à la traction, exprimée en mégapascal (MPa) ;
- Eltot désigne l'allongement total à la rupture par traction, exprimé en % de la longueur initiale de l'éprouvette ;
- F désigne une phase de ferrite ;
- M désigne une phase de martensite ;
- P désigne une phase de perlite.
- YS is the elastic limit expressed in megapascal (MPa);
- TS is tensile tensile strength, expressed in megapascals (MPa);
- Eltot denotes the total tensile elongation, expressed as a% of the initial length of the specimen;
- F denotes a ferrite phase;
- M denotes a martensite phase;
- P denotes a phase of pearlite.
La bande d'acier a été soumise à un traitement thermique conforme à l'état de la technique, représenté schématiquement par la ligne 1 à la
Les propriétés mécaniques et la structure de l'acier à l'issue de l'essai sont consignés dans le tableau 1 ci-dessous.The mechanical properties and structure of the steel at the end of the test are shown in Table 1 below.
La bande d'acier a été soumise à un traitement thermique conforme à l'état de la technique, représenté schématiquement par la ligne 1 à la
Les propriétés mécaniques et la structure de l'acier à l'issue de l'essai sont consignés dans le tableau 1 ci-dessous.The mechanical properties and structure of the steel at the end of the test are shown in Table 1 below.
La bande d'acier a été soumise à un traitement thermique conforme à l'invention, représenté schématiquement par la ligne 5 à la
Les propriétés mécaniques et la structure de l'acier à l'issue de l'essai sont consignés dans le tableau 1 ci-dessous.
Une comparaison des résultats des exemples 1 à 3 montre que dans le procédé de l'art antérieur une structure biphasée stable de ferrite et de martensite nécessite une stabilisation de longue durée à la température de recuit (3 minutes), suivie d'un refroidissement préliminaire lent (14 secondes) avant la trempe. En l'absence de ce refroidissement préliminaire lent, la structure obtenue n'est pas stable ni reproductible ou contient une phase de perlite inopportune, préjudiciable aux propriétés mécaniques de la bande d'acier. Le procédé de l'invention permet d'obtenir les caractéristiques souhaitées en terme de stabilité de la microstructure et propriétés mécaniques, sans nécessiter une longue période de recuit, ni un refroidissement lent avant la trempe.A comparison of the results of Examples 1 to 3 shows that in the method of the prior art a stable two-phase structure of ferrite and martensite requires a long-time stabilization at the annealing temperature (3 minutes), followed by a preliminary cooling slow (14 seconds) before quenching. In the absence of this slow preliminary cooling, the structure obtained is not stable or reproducible or contains an undesirable perlite phase, detrimental to the mechanical properties of the steel strip. The method of the invention makes it possible to obtain the desired characteristics in terms of stability of the microstructure and mechanical properties, without requiring a long annealing period or slow cooling before quenching.
Claims (10)
- Method for heat-treating a cold-rolled steel strip with low carbon content in order to give it a dual phase structure with martensite grains dispersed in a ferrite matrix, comprising, by weight, from 0.06 to 0.2% carbon, from 0.6 to 2% manganese and less than 0.5% silicon, preferably between 0.1 and 0.4% silicon, said strip having a thickness of between 0.3 and 2 mm, said method comprising:- heating up to an annealing temperature higher than the temperature A3 and stabilising at said annealing temperature for a period of less than one minute;- cooling at a speed greater than 50°C/s to an intermediate temperature located in the intercritical range between the transformation points A1 and A3, and stabilising at said intermediate temperature for a period of 5 to 15 seconds; and- quenching to a temperature below the critical temperature Ms of martensite transformation in such a way that, during the quenching process of the steel strip, it is immersed in a galvanisation bath maintained at a temperature of between 460 and 500°C.
- Method according to Claim 1, characterised in that a temperature of between 600 and 750°C, preferably 650°C, is selected as intermediate temperature.
- Method according to Claim 1 or 2, characterised in that an annealing temperature higher than 830°C is selected.
- Method according to Claim 3, characterised in that an annealing temperature of between 850 and 880°C is selected.
- Method according to any one of Claims 1 to 4, characterised in that heating up to the annealing temperature is achieved at a speed greater than 100°C/s.
- Method according to Claim 5, characterised in that heating up to the annealing temperature is achieved at a speed of between 100 and 300°C/s.
- Method according to Claim 1, characterised in that stabilising at the annealing temperature takes from 1 to 20 s.
- Method according to Claim 1, characterised in that cooling from the annealing temperature to the intermediate temperature is achieved at a speed of between 100 and 150°C/s.
- Method according to any one of Claims 1 to 8, characterised in that an LC steel strip with from 0.08 to 0.15% by weight of carbon and 0.6 to 1.5% by weight of manganese is implemented.
- Method for manufacturing a steel strip that is suitable for forming, according to which a steel slab is subjected to hot rolling at a temperature located in the austenitic zone of steel, the sheet obtained from hot rolling is subjected to winding at a temperature of 680 to 750°C, then to cold rolling with a reduction rate of 50 to 80% and the bar obtained from cold rolling is then subjected to a heat treatment according to any one of Claims 1 to 9.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE200200421 | 2002-07-02 | ||
BE2002/0421A BE1015018A3 (en) | 2002-07-02 | 2002-07-02 | PROCESS FOR THE THERMAL TREATMENT OF A COLD ROLLED STEEL STRIP, PROCESS FOR MANUFACTURING A STEEL STRIP SUITABLE FOR CHEESE AND STEEL STRIP THUS OBTAINED. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1378577A1 EP1378577A1 (en) | 2004-01-07 |
EP1378577B1 true EP1378577B1 (en) | 2008-12-03 |
Family
ID=29718746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03447154A Expired - Lifetime EP1378577B1 (en) | 2002-07-02 | 2003-06-17 | Process for heat treating cold rolled formable steel strip and steel strip thus obtained |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1378577B1 (en) |
AT (1) | ATE416265T1 (en) |
BE (1) | BE1015018A3 (en) |
DE (1) | DE60324989D1 (en) |
ES (1) | ES2316713T3 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8460800B2 (en) | 2009-03-31 | 2013-06-11 | Kobe Steel, Ltd. | High-strength cold-rolled steel sheet excellent in bending workability |
GB2477664B (en) * | 2009-03-31 | 2012-01-18 | Kobe Steel Ltd | High-strength cold-rolled steel sheet excellent in bending workability |
DE102011056847B4 (en) | 2011-12-22 | 2014-04-10 | Thyssenkrupp Rasselstein Gmbh | Steel sheet for use as a packaging steel and process for the production of a packaging steel |
DE102011056846B4 (en) | 2011-12-22 | 2014-05-28 | Thyssenkrupp Rasselstein Gmbh | Method for producing a tear-open lid and use of a steel sheet provided with a protective layer for producing a tear-open lid |
CN113373388B (en) * | 2021-04-29 | 2022-08-05 | 宝鸡文理学院 | A method for improving the ductility and toughness of boron-containing eutectic alloys by using dual structure |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5684443A (en) * | 1979-12-14 | 1981-07-09 | Nippon Kokan Kk <Nkk> | High tensile cold rolled steel plate excellent in press moldability and denting resistance and its manufacture |
JPS5773132A (en) * | 1980-10-24 | 1982-05-07 | Nippon Kokan Kk <Nkk> | Production of cold rolled mild steel plate of superior deep drawability and aging resistance by continuous annealing |
CA1182387A (en) * | 1980-12-04 | 1985-02-12 | Uss Engineers And Consultants, Inc. | Method for producing high-strength deep drawable dual phase steel sheets |
JPS60100630A (en) * | 1983-11-07 | 1985-06-04 | Kawasaki Steel Corp | Production of high-strength light-gage steel sheet having good ductility and bending workability |
GB9608108D0 (en) * | 1996-04-19 | 1996-06-26 | Naco Inc | Steel Castings |
JP4691240B2 (en) * | 1999-12-17 | 2011-06-01 | Jfeスチール株式会社 | Structure control method for duplex structure steel |
BE1013580A3 (en) * | 2000-06-29 | 2002-04-02 | Centre Rech Metallurgique | Method for producing a steel strip cold rolled high strength and high formability. |
-
2002
- 2002-07-02 BE BE2002/0421A patent/BE1015018A3/en not_active IP Right Cessation
-
2003
- 2003-06-17 EP EP03447154A patent/EP1378577B1/en not_active Expired - Lifetime
- 2003-06-17 ES ES03447154T patent/ES2316713T3/en not_active Expired - Lifetime
- 2003-06-17 AT AT03447154T patent/ATE416265T1/en not_active IP Right Cessation
- 2003-06-17 DE DE60324989T patent/DE60324989D1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
BE1015018A3 (en) | 2004-08-03 |
EP1378577A1 (en) | 2004-01-07 |
ES2316713T3 (en) | 2009-04-16 |
DE60324989D1 (en) | 2009-01-15 |
ATE416265T1 (en) | 2008-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6359155B2 (en) | Method for producing press-hardened coated steel parts and pre-coated steel sheets enabling the production of the parts | |
EP1819461B1 (en) | Method of producing austentic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity | |
EP1592816B1 (en) | Method of producing a cold-rolled band of dual-phase steel with a ferritic/martensitic structure and band thus obtained | |
EP2155915B2 (en) | Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced | |
JP5315790B2 (en) | High strength PC steel wire with excellent delayed fracture resistance | |
EP2580359B1 (en) | Method of producing an austenitic steel | |
EP1156126B1 (en) | Process for manufacturing an Fe-Ni alloy strip and strips produced thereby | |
FR2536765A1 (en) | PROCESS FOR MANUFACTURING STEEL PLATES HAVING HIGH TENSILE STRENGTH | |
RU2707769C2 (en) | High-strength air-quenched multiphase steel, having excellent process characteristics, and method of making strips of said steel | |
RU2743570C2 (en) | Steel, product made of said steel and method for production thereof | |
JP2018516313A (en) | Steel, product manufactured from the steel, and manufacturing method thereof | |
US20170226609A1 (en) | Method for production of a nitrided packaging steel | |
FR2472022A1 (en) | PROCESS FOR THE PRODUCTION OF A TWO PHASE LAMINATED STEEL SHEET WHICH IS FORMED BY RAPID COOLING AFTER A CONTINUOUS NOISE | |
LU83825A1 (en) | IMPROVED PROCESS FOR THERMAL TREATMENT OF STEELS USING DIRECT ELECTRIC HEATER HEATING AND STEEL PRODUCTS OBTAINED THEREBY | |
TWI548755B (en) | Steel sheet for nitriding treatment and method for producing same | |
WO2004104254A1 (en) | High-resistant sheet metal which is cold rolled and aluminized in dual phase steel for an anti-implosion belt for a television and method for the manufacture thereof | |
EP1378577B1 (en) | Process for heat treating cold rolled formable steel strip and steel strip thus obtained | |
EP2006398A1 (en) | Process for producing steel material | |
JP4306497B2 (en) | High-strength cold-rolled steel sheet with excellent workability and post-coating corrosion resistance and method for producing the same | |
EP3020841A1 (en) | Coil spring, and method for manufacturing same | |
CA2314177C (en) | Low-aluminum steel sheet for packaging | |
WO2001027340A1 (en) | Method for making a cold rolled steel strip for deep-drawing | |
EP3214189B1 (en) | Method for manufacturing a quenched and tempered seamless pipe for a high-strength hollow spring | |
EP3168314A1 (en) | Method for heat treating metallic work pieces | |
WO2022242859A1 (en) | Method for manufacturing a high strength steel plate and high strength steel plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20040309 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: CENTRE DE RECHERCHES METALLURGIQUES - CENTRUM VOOR |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20061124 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REF | Corresponds to: |
Ref document number: 60324989 Country of ref document: DE Date of ref document: 20090115 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2316713 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081203 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081203 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090303 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081203 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081203 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090303 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081203 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090504 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081203 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081203 |
|
26N | No opposition filed |
Effective date: 20090904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090630 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090604 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081203 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20170524 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20170526 Year of fee payment: 15 Ref country code: DE Payment date: 20170522 Year of fee payment: 15 Ref country code: FR Payment date: 20170523 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20170524 Year of fee payment: 15 Ref country code: IT Payment date: 20170522 Year of fee payment: 15 Ref country code: LU Payment date: 20170524 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20170703 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60324989 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20180701 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180617 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180701 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180630 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190101 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180617 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180630 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20190916 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180618 |