[go: up one dir, main page]

EP1358120B1 - Kreuzwickelspule - Google Patents

Kreuzwickelspule Download PDF

Info

Publication number
EP1358120B1
EP1358120B1 EP02701234A EP02701234A EP1358120B1 EP 1358120 B1 EP1358120 B1 EP 1358120B1 EP 02701234 A EP02701234 A EP 02701234A EP 02701234 A EP02701234 A EP 02701234A EP 1358120 B1 EP1358120 B1 EP 1358120B1
Authority
EP
European Patent Office
Prior art keywords
cross
wound bobbin
yarn
cheese
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02701234A
Other languages
English (en)
French (fr)
Other versions
EP1358120A1 (de
Inventor
Heinrich Planck
Christoph RIETHMÜLLER
Helmut WEINSDÖRFER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Institute fuer Textil und Faserforschung Denkendorf DITF
Original Assignee
Deutsche Institute fuer Textil und Faserforschung Denkendorf DITF
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Institute fuer Textil und Faserforschung Denkendorf DITF filed Critical Deutsche Institute fuer Textil und Faserforschung Denkendorf DITF
Publication of EP1358120A1 publication Critical patent/EP1358120A1/de
Application granted granted Critical
Publication of EP1358120B1 publication Critical patent/EP1358120B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H55/00Wound packages of filamentary material
    • B65H55/04Wound packages of filamentary material characterised by method of winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/06Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers for making cross-wound packages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • Cross-wound bobbins are supply bobbins from which a yarn is withdrawn which is fed to a yarn-consuming machine, for example a loom or a knitting machine.
  • the cross-wound cheese of the cross-wound bobbin is self-supporting and does not require any end disks at the ends.
  • the hold within the cross-wrap is achieved by winding the yarn at relatively high pitch helically, rather than close to tightness, as with a disk coil having end walls.
  • the pitch of the helices is large, so that the thread crosses several times in the individual yarn layers and thus stabilizes the underlying layer. It forms, as it were, an enveloping surface for the underlying layer.
  • the pitch angle or crossing angle with which the threads cross in the individual layers prevents that the threads between the individual turns of the underlying layer stipulatenge, as would be the case with a parallel winding.
  • the thread forms at a turning point the transition from one to another position, or a helix to another.
  • the reversal points at the two ends constantly change their position within the cross-wound to stabilize the front ends.
  • the free accessibility of at least one front end of the cross-wound bobbin is needed to pull off the yarn overhead.
  • the yarn is withdrawn from the top of the stationary cross-wound bobbin through a loop of thread.
  • the thread eyelet is located at a distance from the withdrawal side of the cross-wound bobbin and lies on the axis of symmetry of the cross-wound bobbin.
  • US-A-2,764,368 shows a cross-wound bobbin in which the yarn has a different pitch in the superposed winding layers.
  • the bobbin is wound such that when over-the-head, which in the present case corresponds to peeling over the smaller diameter end, comparatively more yarn is obtained as the release point moves from the down side of the foot compared to the direction of movement of the release point from the foot side to the head side.
  • Modern textile machines in particular weaving machines, have reached a speed that is limited by the feeding speed of the yarn.
  • Fig. 1 illustrates schematically the deduction ratios of a known cross-wound bobbin 1.
  • the cross-wound bobbin 1 consists of a cross-wound bobbin 2, which is wound on a tubular bobbin tube 3.
  • the cross-winding 2 forms a thread or yarn 4.
  • the yarn 4 is wound in layers by means of a known traversing device in turns. Two of these layers are shown schematically in partial detail. In one layer, the yarn 4 is denoted by 5 and in the other layer by 6. For example, be the layer 5, the radially inner layer or winding, while the layer 6 or winding is located radially further out.
  • the one layer for example the layer 5, form the turns of the yarn 4 a left-hand screw, while the turns of the yarn in the layer 6 produce a right-hand screw.
  • the pitch angles, with which the yarn 4 is wound, are measured in terms of magnitude relatively large compared to a plane 7, which is perpendicular to the longitudinal axis of the bobbin tube 3. That is the pitch height
  • the screws forming the layers 5 and 6 are many times larger than the thickness of the yarn 4. In this way it is prevented that the turns of the one layer can constrain between the turns of the other layer and the turns of this layer press apart.
  • the cross-wound bobbin 1 thus obtained forms a withdrawal side 8, which is a substantially flat annular surface.
  • a withdrawal side 8 which is a substantially flat annular surface.
  • the reversal points 9 are distributed as randomly as possible in the region of the withdrawal side, namely randomly distributed both in the circumferential direction and with a certain scattering width in the axial direction.
  • the yarn 4 is withdrawn from the outer circumferential surface of the cross-wound bobbin 1 by an eyelet 11 which is axially spaced from the cross-wound bobbin 1 and lies on the axis of symmetry.
  • the eyelet 11 is fixed in space.
  • the cross-wound bobbin 1 also does not move during yarn withdrawal.
  • a defined separation point is formed 12, viewed from the direction of the yarn 4 when deduction, the course of the yarn no longer corresponds to the course of the yarn within the cross-wound bobbin 1.
  • the Abatesspünkt 12 runs in accordance with the helix, which forms the yarn 4 on the respective outer side of the cross-winding 2 in the circumferential direction, and at the same time moves the separation point 12 in the longitudinal direction of the cross-wound bobbin first
  • the speed at which the separation point 12 rotates in the circumferential direction ie the angular velocity
  • the angular velocity increases when, at a constant take-off speed, the winding diameter has decreased as a result of increasing yarn consumption.
  • the yarn section rotates between the eyelet 11 and the separation point 12 about the imaginary axis formed by the eyelet 11 and the axis of symmetry of the cheese 2. Due to the rotation creates a centrifugal force, which tends to urge the withdrawn yarn piece radially outward.
  • the free-flying yarn defines a space of revolution in the space, the point of which lies at the thread eye 11.
  • the generatrix of this surface of revolution is the respective exposed part of the yarn 4, which describes a complicated space curve. Both the centrifugal force and the air resistance act on this free-flowing piece of yarn so that the yarn course does not form a simple line lying in one plane.
  • the bounded by the free-flying piece of yarn space is referred to as a thread balloon.
  • the outer diameter of the cross-wound bobbin 2 decreases. Since the thread withdrawal speed remains constant, the detachment point 12 must rotate faster to compensate for the reduction in length of thread along the circumference resulting from the reduction in diameter.
  • the centrifugal force will be large enough to lift the yarn 4 from the top of the cheese 2 immediately following the separation point 12.
  • Air resistance effects at the top of the cheese 2 will also have a corresponding influence here.
  • the progressive thread consumption causes the diameter of the cross-wound package 2 to shrink progressively and the angular velocity of the detachment point 12 to continue to increase.
  • the higher speed of the thread in the air causes the initially forming simple balloon to a so-called double balloon with two clearly recognizable voluminous balloon sections which are interconnected via a constriction.
  • the associated course of the flying Garn flirts is shown in Fig. 2.
  • the strength of a yarn obeys a bell-shaped distribution distributed around an average tensile strength value. Due to the scattering of the strength values, there are sections in the yarn which have a significantly higher breaking strength and vice versa but also sections which tear even at significantly smaller forces.
  • the thread-consuming device by no means generates only a single constant force, but also here the force is distributed according to a bell curve be.
  • Yarn breaks are to be expected in the region in which the Gaussian curve of the actually occurring force coincides with the strength distribution of the yarn, ie the region in which the two Gaussian curves form an intersection. The larger this area is, the greater the likelihood that the yarn will break on the side of yarn consumption, resulting in corresponding machine downtime.
  • a very critical route that must pass through the yarn from the cross-wound bobbin to the finished textile structure is the withdrawal from the cross-wound bobbin 1 itself.
  • Fig. 4 shows the course of the thread tension plotted against the winding diameter of the cross-wound bobbin 1.
  • the unit of measure of the winding diameter are millimeters and the unit of measure of tensile force cN (grams).
  • a strongly jagged upper curve 13 shows the progression of the maximum force occurring, in each case per 100 measured values.
  • Below this is a dark-colored, tubular or band-shaped region 14, which illustrates the statistical standard deviation of the measured tensile force values. Approximately in the middle of this band is the statistical average of the tensile force occurring.
  • the diagram is divided into zones numbered 1 to 6.
  • the withdrawal of the yarn 4 from the cross-wound bobbin 1 starts at the maximum diameter of the cross-wound bobbin of about 280 mm. At this diameter, the angular velocity of the separation point 12 is too small for the centrifugal force to detach the yarn directly to the release point 12 from the top of the cross-wound bobbin 1.
  • the yarn 4 grinds over the surface in this operating situation and produces relatively very high strain maxima, although the mean is relatively low, and also the standard deviation is not too large as band 14 indicates.
  • the high tensile maxima are mainly due to the fact that the yarn 4 sliding on the surface gets entangled with the yarn layer over which it slides because the yarn surface is not smooth. It consists of individual fibers.
  • zone 3 To the right of zone 3 is a clear increase in the maximum tension and also in the mean value.
  • the balloon assumes even larger dimensions, which lead to higher tensile stresses due to greater centrifugal force.
  • a randomized change occurs between the single balloon and the double balloon.
  • zone 4 the situation finally reverses in favor of the double balloon, which suddenly reduces the centrifugal forces and thus also the tensile stresses that occur.
  • Both the standard deviation and the occurring maximum stresses, ie the outliers of the voltage in the direction of very large values decrease abruptly.
  • zone 5 With a diameter of less than 60 mm, a change to a triple balloon can be observed.
  • the maximum force increases again relatively strong to collapse abruptly when the triple balloon has formed stationary.
  • the individual layers are wound with different pitches of the helices. They are wound so that the withdrawn thread length is greater as the separation point moves from the head side to the foot side compared to the thread length which is withdrawn as the separation point moves from the foot side to the head side.
  • the screw along which the separation point moves from the head side to the foot side has a much smaller pitch than the helix along which the separation point moves from the foot side toward the head side.
  • the cross-wound bobbin according to the invention will clearly show the transition to the double balloon, which, as illustrated above, is more favorable with regard to the maximum stress occurring.
  • the diameter range, over which a back and forth occurs between the single and the double balloon. be significantly reduced. Smaller areas correspondingly reduce the likelihood of yarn breakage.
  • the constant sway between the sliding thread take-off and the free-running thread take-off in the cross-wound bobbin according to the invention is reduced to a much smaller diameter range.
  • a stationary flying balloon will be formed even at much larger outer diameters of the cheese, starting at the separation point.
  • the invention allows a higher take-off speed.
  • pitches of the helices within the cross-wound can be controlled within certain limits, when the folding into the other type of withdrawal or conformation of the balloon occurs, i. when irreversibly takes place the change from the sliding detachment to the free-floating detachment after the separation point, or the double balloon or the triple balloon.
  • Fig. 5 the cross-wound bobbin 1 according to the invention is shown very schematically.
  • the cross-wound bobbin 1 shows the same basic structure as cross-wound bobbin 1 according to the prior art. It has a bobbin tube 3, on which the cross-wound bobbin 2 is applied.
  • the course of the yarn 4 on the top of the cross-winding 2 is illustrated schematically.
  • deducting the indicated flow point 12 moves in the upper visible yarn layer in the direction of an arrow 15 from the foot 16 to the trigger or head 8.
  • the situation forms a right-hand screw.
  • the detachment point 12 changes to the position underneath, where the detachment point 12 '(provided with an apostrophe because it is in the next position) is moved in the direction of the arrow 17.
  • This layer contains the yarn 4 in a left-hand screw.
  • the detachment point 12 'performs 2.5 turns as it moves from the head or withdrawal side 8 to the foot side 16 and only approximately one movement during the movement from the foot 16 to the withdrawal side 8
  • the turns ratio would be 1 to 2.5.
  • other turns ratios up to 1:10, preferably 1: 5 are conceivable and, depending on the thread ratios, provide improved values of the peel force compared to a cross-wound bobbin in which the turn ratio in the successive layers is 1: 1.
  • Winding ratio is here understood to be the number of turns in which the yarn is wound on the way from the foot side to the head side, compared with the number of turns which describes the yarn in the opposite way.
  • the amount of angle ⁇ that yarn 4 is capable of with the right-hand screw with the plane 7 is greater than the amount of angle .beta. Which the yarn 4 is able to engage with the level-7 left-hand screw.
  • the cross-wound bobbin 1 according to FIG. 5 is manufactured according to the same criteria as usual. It is desirable to avoid accumulation of material due to the reversal point 9 on both the withdrawal side 8 and the base 16. It is also desirable to align the thread path, based on the next layer with the same sense of winding, as random as possible in order to avoid Moiré Strukturen or regularities, which leads to disturbances.
  • the cross-wound bobbin 1 can also be designed by suitable winding so that its cone angle varies depending on the diameter or, for example, towards the end, i. at small diameters turns into a cylindrical shape. It would also be conceivable to produce a cross-wound bobbin 1, in which the cross-wound bobbin 2 is initially cylindrical following the withdrawal side 8 and then merges into a frusto-conical region. It is thus approximated hyperboloid.
  • the cross-winding can also be cylindrical over the entire length and all diameters, as is customary today.
  • gear ratio 1 1 prior art 1: 2 1: 2.5 1: 3 maximum strength 25 cN 18 cN 11 cN 17 cn standard deviation ⁇ 5 cN ⁇ 4 cN ⁇ 3 cN ⁇ 4 cN Average 6 cN 5 cN 3 cN 5 cN
  • gear ratio 1 1 prior art 1: 2 1: 2.5 1: 3 maximum strength 35 cN 18 cN 15 cN 12 cN standard deviation ⁇ 6 cN ⁇ 4 cN ⁇ 3 cN ⁇ 2 cN Average 7 cN 4 cN 4 cN 2 cN
  • the pitch angles ⁇ and ⁇ may be constant except for the edge areas on the take-off side 8 and the foot 6 side. You can also talk about the axial length On the other hand, they can also be dependent on the radial distance. Finally, it is conceivable to produce a conical angle which increases towards the full coil by providing windings in the interior of the cross-wound, with respect to the radial extent, which do not have the full axial length, ie windings are produced which, for example, proceed from the foot 16 only to about half the length of the cross-winding 2 rich.
  • the helices in which the yarn is wound have different pitch in adjacent layers.
  • the winding ratios are selected such that the amount withdrawn is greater when the release point moves from the withdrawal side to the base side as compared to the withdrawn amount as the separation point moves from the foot side to the withdrawal side.

Landscapes

  • Filamentary Materials, Packages, And Safety Devices Therefor (AREA)
  • Storage Of Web-Like Or Filamentary Materials (AREA)

Abstract

Bei einer Kreuzwickelspule (1) haben die Schraubenlinien, in denen das Garn (4) aufgewickelt ist, in benachbarten Lagen unterschiedliche Steigung. Die Wicklungsverhältnisse sind so gewählt, dass die abgezogene Menge grösser ist, wenn sich der Abzugspunkt von der Abzugsseite zur Fussseite bewegt, verglichen mit der abgezogenen Menge, wenn sich der Abzugspunkt von der Fussseite zur Abzugsseite bewegt.

Description

  • Kreuzwickelspulen sind Vorratsspulen, von denen ein Garn abgezogen wird, das einer garnverbrauchenden Maschine, beispielsweise einer Webmaschine oder einer Strickmaschine zugeführt wird. Der Kreuzwickel der Kreuzwickelspule ist in sich selbsttragend und benötig an den Stirnenden keine Endscheiben. Der Halt innerhalb des Kreuzwickels wird erreicht, indem das Garn bzw. der Faden mit relativ großer Ganghöhe schraubenlinienförmig aufgewickelt wird und nicht etwa dicht an dicht wie bei einer Scheibenspule mit endseitigen Wänden. Die Ganghöhe der Schraubenlinien ist groß, damit sich der Faden in den einzelnen Garnlagen mehrfach überkreuzt und somit die darunter liegende Lage stabilisiert. Er bildet gleichsam eine einhüllende Fläche für die darunter liegende Lage.
  • Der Steigungswinkel bzw. Kreuzungswinkel, mit dem sich die Fäden in den einzelnen Lagen überkreuzen, verhindert, dass sich die Fäden zwischen die einzelnen Windungen der darunter liegenden Lage einzwängen, wie dies bei einem Parallelwickel der Fall wäre. An den Stirnenden des Kreuzwickels, bildet der Faden an einem Umkehrpunkt den Übergang von der einen zur anderen Lage, bzw. der einen Schraubenlinie zu anderen. Die Umkehrpunkte an den beiden Stirnenden ändern ständig ihre Lage innerhalb des Kreuzwickels, um die Stirnenden zu stabilisieren.
  • Die freie Zugänglichkeit wenigstens eines Stirnendes der Kreuzwickelspule wird benötigt, um das Garn über Kopf abziehen zu können. Beim Überkopfabzug bleibt die Kreuzwickelspule selbst in Ruhe. Das Garn wird von der Oberseite der stillstehenden Kreuzwickelspule durch eine Fadenöse hindurch abgezogen. Die Fadenöse befindet sich im Abstand von der Abzugsseite der Kreuzwickelspule und liegt auf der Symmetrieachse der Kreuzwickelspule.
  • Die US-A-2,764,368 zeigt eine Kreuzwickelspule, bei der das Garn in den unmittelbar aufeinander liegenden Wicklungsschichten eine unterschiedliche Steigung aufweist. Die Spule wird derart gewickelt, dass beim Abziehen über Kopf, was im vorliegenden Fall dem Abziehen über das Ende mit dem kleineren Durchmesser entspricht, vergleichsweise mehr Garn erhalten wird, wenn sich der Ablösepunkt von der Abzugsseite der Fußseite bewegt, verglichen mit der Bewegungsrichtung des Ablösepunktes von der Fußseite zur Kopfseite.
  • Hierdurch soll gemäß dieser Druckschrift einerseits ein zu hoher Kantenaufbau im Bereich der Enden der Spule vermieden werden und andererseits ein Verrutschen des Fadens bei der Umkehrbewegung des Changierhubs.
  • Um die bekannte Kreuzwickelspule zu erhalten, wird eine Nockenkurve verwendet, die mit unverändertem Übersetzungsverhältnis gegenüber der Spule beim Aufspulen umläuft. Hierdurch bleibt über den gesamten Durchmesserbereich der Kreuzwickelspule das Verhältnis der jeweils erhaltenen Garnlängen, abhängig von der Bewegungsrichtung des Ablösepunktes, konstant.
  • Moderne Textilmaschinen, insbesondere Webmaschinen, haben eine Geschwindigkeit erreicht, die durch die Zufuhrgeschwindigkeit des Garns begrenzt wird.
  • Fig. 1 veranschaulicht schematisiert die Abzugsverhältnisse an einer bekannten Kreuzwickelspule 1. Die Kreuzwickelspule 1 besteht aus einem Kreuzwickel 2, der auf einer rohrförmigen Spulenhülse 3 aufgewickelt ist. Den Kreuzwickel 2 bildet ein Faden oder Garn 4. Das Garn 4 ist mit Hilfe einer bekannten Changiereinrichtung lagenweise in Windungen aufgewickelt. Zwei dieser Lagen sind schematisch ausschnittsweise gezeigt. In der einen Lage ist das Garn 4 mit 5 und in der anderen Lage mit 6 bezeichnet. Beispielsweise sei die Lage 5, die radial weiter innen liegende Lage oder Wicklung, während die Lage 6 oder Wicklung radial weiter außen liegt. Die eine Lage, beispielsweise die Lage 5, bilden die Windungen des Garns 4 eine Linksschraube, während die Windungen des Garns in der Lage 6 eine Rechtsschraube erzeugen. Die Steigungswinkel, mit denen das Garn 4 gewickelt ist, sind betragsmäßig verhältnismäßig groß gemessen gegenüber einer Ebene 7, die rechtwinklig zu der Längsachse der Spulenhülse 3 liegt. D.h. die Steigungshöhe der Schrauben, die die Lagen 5 und 6 bilden, ist um ein Vielfaches größer als es der Stärke des Garns 4 entspricht. Auf diese Weise wird verhindert, dass sich die Windungen der einen Lage zwischen die Windungen der anderen Lage einzwängen können und die Windungen dieser Lage auseinander drücken.
  • Die auf diese Weise erhaltene Kreuzwickelspule 1 bildet eine Abzugsseite 8, die eine im Wesentlichen ebene Ringfläche ist. Im Bereich der Abzugsseite 8 befinden sich Umkehrpunkte 9, an denen der Garnverlauf von der einen in die andere Lage und somit von der einen Schraubenlinie in die gegensinnige Schraubenlinie wechselt. Die Umkehrpunkte 9 liegen im Bereich der Abzugsseite möglichst zufällig verteilt und zwar zufällig verteilt sowohl in Umfangsrichtung als auch mit einer gewissen Streuungsbreite in axialer Richtung. Durch diese Maßnahmen soll einerseits eine wirksame Stabilisierung der Abzugsseite erreicht werden und andererseits eine Materialanhäufung vermieden werden.
  • Am anderen axialen Ende der Kreuzwickelspule 1 befindet sich die Fußseite, die in der gleichen Weise aufgebaut ist, wie die in Fig. 1 erkennbare Abzugsseite 8.
  • Das Garn 4 wird von der Außenumfangsfläche der Kreuzwickelspule 1 durch eine Öse 11 abgezogen, die sich axial im Abstand zu der Kreuzwickelspule 1 befindet und auf der Symmetrieachse liegt. Die Fadenöse 11 ist im Raum feststehend. Die Kreuzwickelspule 1 bewegt sich während des Garnabzugs ebenfalls nicht.
  • Aufgrund der Haftung des Garns auf der effektiven Oberfläche der Spule bildet sich ein definierter Ablösepunkt 12, ab dem in Laufrichtung des Garns 4 beim Abzug gesehen, der Verlauf des Garns nicht mehr dem Verlauf des Garns innerhalb der Kreuzwickelspule 1 entspricht. Der Ablösepünkt 12 läuft entsprechend der Schraubenlinie, den das Garn 4 auf der jeweiligen Außenseite des Kreuzwickels 2 bildet, in Umfangrichtung um, und gleichzeitig bewegt sich der Ablösepunkt 12 in Längsrichtung der Kreuzwickelspule 1.
  • Die Geschwindigkeit, mit der der Ablösepunkt 12 in Umfangsrichtung umläuft, also dessen Winkelgeschwindigkeit, ist abhängig von der Fadenabzugsgeschwindigkeit und dem Durchmesser des Kreuzwickels 2. Je größer der Durchmesser des Kreuzwickels 2 ist und je niedriger die Abzugsgeschwindigkeit ist, umso kleiner ist die Winkelgeschwindigkeit, mit der der Ablösepunkt 12 rotiert. Umgekehrt steigt die Winkelgeschwindigkeit, wenn bei konstanter Abzugsgeschwindigkeit sich der Wickeldurchmesser infolge eines zunehmenden Fadenverbrauches verringert hat.
  • Weil der Ablösepunkt 12 um die Umfangsseite des Kreuzwickels 2 rotiert, rotiert der Garnabschnitt zwischen der Fadenöse 11 und dem Ablösepunkt 12 um die gedachte Achse, die durch die Fadenöse 11 und die Symmetrieachse des Kreuzwickels 2 gebildet ist. Aufgrund der Rotation entsteht eine Zentrifugalkraft, die bestrebt ist, das abgezogene Garnstück radial nach außen zu drängen.
  • Bei noch vollem Kreuzwickel ist die Umlaufgeschwindigkeit des Ablösepunktes 12 des Garns 4 von der Oberseite des Kreuzwickels 2.bei gegebener Fadengebrauchsgeschwindigkeit noch verhältnismäßig niedrig. Die auftretende Zentrifugalkraft reicht nicht aus, um das Garn 4 bereits unmittelbar im Anschluss um den Ablösepunkt 12 von der Oberseite des Kreuzwickels 2 abzulösen. Jenseits des Ablösepunktes 12 wird das Garn 3 zunächst über die Oberseite des Kreuzwickels 2 gleiten, ehe es nach dem Überschreiten der Abzugsseite 8 in den freien Raum gelangt.
  • Das freifliegende Garnstück definiert im Raum eine Rotationsfläche, deren Spitze bei der Fadenöse 11 liegt. Die Erzeugende dieser Rotationsfläche ist das betreffende freifliegende Stück des Garns 4, das eine komplizierte Raumkurve beschreibt. An diesem freifliegenden Stück Garn greifen sowohl die Zentrifugalkraft als auch der Luftwiderstand an, so dass der Garnverlauf keine einfache in einer Ebene liegende Linie bildet. Die von dem freifliegenden Garnstück umgrenzte Raum wird als Fadenballon bezeichnet.
  • Mit zunehmendem Verbrauch reduziert sich der Außendurchmesser des Kreuzwickels 2. Da die Fadenabzugsgeschwindigkeit konstant bleibt, muss der Ablösepunkt 12 schneller umlaufen, um die Verminderung an Fadenlänge längs dem Umfang zu kompensieren, der sich aus der Durchmesserverminderuhg ergibt.
  • Ab einer bestimmten Winkelgeschwindigkeit wird die Zentrifugalkraft groß genug sein, um das Garn 4 unmittelbar im Anschluss an den Ablösepunkt 12 von der Oberseite des Kreuzwickels 2 abzuheben.
  • Das Anhaften des Garns 4 an den darunter befindlichen Garnlagen, Ungleichförmigkeiten in dem Luftwiderstand des Garns infolge von Strukturänderungen, Schwankungen im Fadenzug und dergleichen mehr, sorgen dafür, dass in einem Bereich der Winkelgeschwindigkeit des Ablösepunktes 12 die Abzugsverhältnisse ständig zwischen einem Gleiten auf der Oberfläche des Kreuzwickels 2 und einem Fliegen über die Oberfläche abwechseln. Die Erfinder haben festgestellt, dass dieses Hin- und Herpendeln zwischen den beiden Abzugssituationen auch davon beeinflusst wird, ob sich der Ablösepunkt 12 von der Abzugsseite 8 weg oder auf die Abzugsseite 8 zubewegt.
  • Wenn sich der Ablösepunkt 12 von der Abzugsseite 8 wegbewegt, erhöht sich die Umlaufgeschwindigkeit und damit die Zentrifugalkraft, womit sich eine Tendenz ergibt, dass sich das Garn 4 unmittelbar im Anschluss an den Ablösepunkt 12 von der Oberseite des Kreuzwickels 2 löst und frei über die Oberfläche zu fliegt. Wenn sich der Ablösepunkt 12 hingegen auf die Abzugsseite 8 hin bewegt, vermindert sich die Umlaufgeschwindigkeit und die Zentrifugalkraft, so dass das Garn 4 eher die Neigung hat, über die Oberseite zu schleiften.
  • Luftwiderstandseffekte an der Oberseite des Kreuzwickels 2 werden hier auch einen entsprechenden Einfluss haben.
  • Erst wenn die Winkelgeschwindigkeit des Ablösepunktes noch weiter gestiegen ist, wird kein Umklappen in die Abzugssituation mit über der Oberfläche gleitendem Garn mehr auftreten.
  • Der fortschreitende Fadenverbrauch lässt den Durchmesser des Kreuzwickels 2 zunehmend schrumpfen und die Winkelgeschwindigkeit des Ablösepunktes 12 weiter ansteigen. Die höhere Geschwindigkeit des Fadens in der Luft führt dazu, dass der sich zunächst ausbildende einfache Ballon zu einem so genannten doppelten Ballon mit zwei deutlich erkennbaren voluminösen Ballonabschnitten wird, die über eine Einschnürstelle miteinander verbunden sind. Der hierzu gehörige Verlauf des fliegenden Garnstücks ist in Fig. 2 gezeigt.
  • Der Übergang von der Situation nach Fig. 1 zu der Situation nach Fig. 2 findet ebenfalls in einem Bereich statt, in dem ständig die Konformation nach Fig. 1 und die Konformation nach Fig. 2 einander abwechseln. Erst ab einer bestimmten Winkelgeschwindigkeit wird sich ausschließlich die Konformation nach Fig. 2 ausbilden.
  • Bei sehr kleinem Wickeldurchmesser entsteht schließlich ein dreifacher Fadenballon, an dem zwei Einschnürstellen zu erkennen sind. Der Fadenverlauf, der zu diesem dreifachen Ballon gehört, ist in Fig. 3 gezeigt. Auch der Übergang von der Konformation nach Fig.2 zu der Konformation nach Fig. 3 erstreckt sich über einen Winkelgeschwindigkeitsbereich, bei dem der Ballon ständig zwischen zweifach und dreifach hin und her wechselt. Zu den einzelnen Ballonarten gehören durchaus unterschiedliche im Faden auftretende Kräfte und Fadenspannungen.
  • Die Festigkeit eines Garns gehorcht einer glockenförmigen Verteilung, die um einen mittleren Zugfestigkeitswert herum verteilt ist. Wegen der Streuung der Festigkeitswerte gibt es im Garn Abschnitte, die eine deutlich höhere Bruchfestigkeit haben und umgekehrt aber auch Abschnitte, die bereits bei deutlich kleineren Kräften reißen.
  • Die fadenverbrauchende Einrichtung erzeugt ihrerseits keineswegs nur eine einzige konstante Kraft, vielmehr wird auch hier die Kraft, gemäß einer Glockenkurve verteilt sein. Fadenbrüche sind in jenem Bereich zu erwarten, in dem sich die Gaußkurve der tatsächlich auftretenden Kraft mit der Festigkeitsverteilung des Garns überdeckt, also jener Bereich, in dem die beiden Gaußkurven eine Schnittmenge bilden. Je größer diese Fläche ist, umso größer ist die Wahrscheinlichkeit, dass das Garn auf der Seite des Garnverbrauches bricht, was zu entsprechenden Maschinenstillständen führt.
  • Eine durchaus kritische Strecke, die das Garn von der Kreuzwickelspule zum fertigen Textilgebilde durchlaufen muss, ist der Abzug von der Kreuzwickelspule 1 selbst.
  • Fig. 4 zeigt den Verlauf der Fadenspannung aufgetragen über dem Wickeldurchmesser der Kreuzwickelspule 1. Die Maßeinheit des Wickeldurchmessers sind Millimeter und die Maßeinheit der Zugkraft cN (Gramm). Eine stark gezackt verlaufende obere Kurve 13 zeigt den Verlauf der auftretenden Maximalkraft, jeweils pro 100 Messwerte. Darunter befindet sich ein dunkelgefärbter, schlauch- oder bandförmiger Bereich 14, der die statistische Standardabweichung der gemessenen Zugkraftwerte veranschaulicht. Etwa mittig in diesem Band liegt der statistische Mittelwert der auftretenden Zugkraft. In Längsrichtung ist das Diagramm in Zonen aufgeteilt, die von 1 bis 6 nummeriert sind.
  • Der Abzug des Garns 4 von der Kreuzwickelspule 1 beginnt beim Maximaldurchmesser der Kreuzwickelspule von ca. 280 mm. Bei diesem Durchmesser ist die Winkelgeschwindigkeit des Ablösepunktes 12 zu klein, als dass die Zentrifugalkraft das Garn unmittelbar an den Ablösepunkt 12 von der Oberseite der Kreuzwickelspule 1 ablöst. Das Garn 4 schleift in dieser Betriebssituation über die Oberfläche und erzeugt verhältnismäßig sehr große Zugspannungsmaxima, obwohl der Mittelwert relativ niedrig liegt, und auch die Standardabweichung nicht allzu groß ist, wie dies das Band 14 erkennen lässt. Die hohen Zugspannungsmaxima haben vor allen Dingen ihre Ursache in dem Umstand, dass sich das auf der Oberfläche gleitende Garn 4 mit der Garnlage, über die es gleitet, verhakt, weil die Garnoberfläche nicht glatt ist. Es stehen aus ihr einzelne Fasern vor.
  • Die Betriebssituation mit gleitendem Garn bleibt bis zu einem Wickeldurchmesser von ca. 260 mm in Reinform erhalten.
  • Ab ca. 260 mm, also am Übergang zwischen der mit 1 und der mit 2 bezeichneten Zone in dem Diagramm, wird sporadisch die Abzugssituation auftreten, bei der sich das Garn 4 unmittelbar im Anschluss an den Ablösepunkt 12 von der Oberseite löst. In den Bereichen, in denen der Ballon bereits ab dem Ablösepunkt 12 ausgebildet ist, reduziert sich sprunghaft die maximale Abzugskraft, die sogleich wieder ansteigt, wenn der Ballon sich erst im Anschluss an die Abzugsseite 7 ausbildet. In dem Abschnitt 2 sind deswegen sehr große Schwankungen bei der maximalen Abzugskraft und auch verhältnismäßig große Schwankungen im Bereich der Standardabweichung zu beobachten.
  • Bei weiter fortschreitender Durchmesserverminderung, also rechts von dem Abschnitt 2, bleibt der Ballon im Anschluss an den Ablösepunkt 12 stabil. Es tritt kein gleitender Abzug mehr auf. Die auftretende maximale Zugkraft geht sprunghaft nach unten. Die Standardabweichung wird kleiner und auch der Mittelwert sinkt. Offensichtlich wird rechts von dem Bereich 2 das Garn 4 beim Abzug mechanisch deutlich weniger belastet. Es vermindert sich die Wahrscheinlichkeit des Fadenbruches signifikant.
  • Bis zu einem Durchmesser von ca. 160 mm, d.h. innerhalb der Zone 3 bleiben die Verhältnisse stabil und die Fadenspannung steigt nur langsam an. Das Ansteigen der Fadenspannung ist auf die höhere Rotationsgeschwindigkeit und die damit zusammenhängende höhere Belastung durch den Luftwiederstand sowie die größere im Ballon zu findende Fadenmasse zurückzuführen.
  • Rechts von der Zone 3 ist ein deutlicher Anstieg der maximalen Zugspannung und auch des Mittelwertes zu beobachten. Der Ballon nimmt hier noch größere Abmessungen an, die zu höheren Zugspannungen infolge größerer Zentrifugalkraft führen. Außerdem tritt ein zufällig verteilter Wechsel zwischen dem Einfachballon und dem Zweifachballon auf. Gegen Ende der Zone 4 kippt schließlich die Situation endgültig zugunsten des Doppelballons um, womit sich schlagartig die Zentrifugalkräfte vermindern und damit auch die auftretenden Zugspannungen. Sowohl die Standardabweichung als auch die auftretenden Maximalspannungen, also die Ausreißer der Spannung in Richtung auf sehr große Werte vermindern sich sprunghaft. Am Ende der Zone 5, bei einem Durchmesser kleiner 60 mm, ist schließlich auch ein Wechsel zu einem Dreifachballon zu beobachten. Am Ende der Zone 5 steigt die Maximalkraft wieder relativ stark an um sprunghaft zusammenzubrechen, wenn sich der Dreifachballon stationär ausgebildet hat.
  • Ausgehend hiervon ist es Aufgabe-der Erfindung, eine Kreuzwickelspule zu schaffen, die geeignet ist, die auftretenden maximalen Zugspannungen in dem Garn betragsmäßig zu vermindern und/oder auf einen reduzierten Betriebsbereich zu beschränkten, um die Wahrscheinlichkeit des Fadenbruchs zu vermindern.
  • Diese Aufgabe wird erfindungsgemäß durch die Kreuzwickelspule mit den Merkmalen des Anspruches 1 gelöst.
  • Bei der erfindungsgemäßen Kreuzwickelspule, werden die einzelnen Lagen mit unterschiedlicher Steigung der Schraubenlinien gewickelt. Sie werden so gewickelt, dass die abgezogene Fadenlänge größer ist, wenn sich der Ablösepunkt von der Kopfseite zur Fußseite bewegt, verglichen mit der Fadenlänbe, die abgezogen wird, wenn sich der Ablösepunkt von der Fußseite zu Kopfseite bewegt. Mit anderen Worten, die Schraube, längs derer sich der Ablösepunkt von der Kopfseite zur Fußseite bewegt, hat eine deutlich kleinere Steigung als die Schraubenlinie längs derer sich der Ablösepunkt von der Fußseite in Richtung auf die Kopfseite bewegt. Aufgrund dieser Maßnahme lässt sich der ungünstige Einfluss auf den Fadenballon vermindern, der seine Ursache darin hat, dass sich der Ablösepunkt mit verhältnismäßig hoher Geschwindigkeit von dem Fadenballon wegbewegt. Infolge der geringen Steigung der Schraubenlinie beim Wegbewegen des Ablösepunktes von dem Ballon wird die Axialgeschwindigkeit des Ablösepunktes vom Ballon weg deutlich reduziert und der ungünstige Einfluss auf die Ballonbildung verringert.
  • Bei kleineren Durchmessern wird die erfindungsgemäße Kreuzwickelspule deutlich eher den Übergang zum Doppelballon zeigen, der wie oben dargestellt hinsichtlich der auftretenden Maximalspannung günstiger ist. Auch hierbei wird der Durchmesserbereich, über den ein Hin- und Herpendeln zwischen dem Einfach- und dem Doppelballon auftritt. deutlich reduziert werden. Kleinere Bereiche vermindern entsprechend die Wahrscheinlichkeit des Fadenbruchs.
  • Falls ein gleitender Abzug auftritt, vermindert sich das ständigen Schwanken zwischen gleitendem Fadenabzug und freifliegendem Fadenabzug bei der erfindungsgemäßen Kreuzwickelspule auf einen sehr viel kleineren Durchmesserbereich.
  • Verglichen mit dem Stand der Technik wird sich bereits bei sehr viel größeren Außendurchmessern des Kreuzwickels ein stationärer fliegender Ballon ausbilden, der am Ablösepunkt beginnt.
  • In beiden Fällen ermöglicht die Erfindung eine höhere Abzugsgeschwindigkeit.
  • Durch entsprechende freie Wahl der Ganghöhen der Schraubenlinien innerhalb des Kreuzwickels lässt sich innerhalb gewisser Grenzen steuern, wann das Umklappen in die jeweils andere Abzugsart bzw. Konformation des Ballons auftritt, d.h. wann irreversibel der Wechsel von dem gleitenden Ablösen zum freifliegenden Ablösen nach dem Ablösepunkt stattfindet, bzw der Doppelballon oder der Dreifachballon.
  • Im übrigen sind Weiterbildungen der Erfindung Gegenstand von Unteransprüchen.
  • In Fig. 5 ist die erfindungsgemäße Kreuzwickelspule 1 stark schematisiert gezeigt.
  • Die erfindungsgemäße Kreuzwickelspule 1 zeigt den selben prinzipiellen Aufbau wie Kreuzwickelspule 1 nach dem Stand der Technik. Sie weist eine Spulenhülse 3 auf, auf dem der Kreuzwickel 2 aufgebracht ist. Der Verlauf des Garns 4 auf der Oberseite des Kreuzwickels 2 ist schematisch veranschaulicht. Beim Abzug bewegt sich der angedeutete Ablaufpunkt 12 in der oberen sichtbaren Garnlage in Richtung eines Pfeiles 15 von der Fußseite 16 zu der Abzugs- oder Kopfseite 8. Die Lage bildet eine Rechtsschraube. Sobald die obere sichtbare Lage abgenommen ist, wechselt der Ablösepunkt 12 zu der darunter befindlichen Lage, wo sich der Ablösepunkt 12' (mit Apostroph versehen, weil er sich der nächsten Lage befindet) in Richtung des Pfeiles 17 bewegt. Diese Lage enthält das Garn 4 in einer Linksschraube.
  • Wie die Fig. 5 unschwer erkennen lässt, vollführt der Ablösepunkt 12' 2,5 Umgänge, wenn er sich von der Kopf-oder Abzugsseite 8 zur Fußseite 16 bewegt und nur ca. einen Umgang bei der Bewegung von der Fußseite 16 zu der Abzugsseite 8. Das Windungsverhältnis wäre im gezeigten Fall 1 zu 2,5. Abweichend von dem gezeigten Windungsverhältnis sind auch andere Windungsverhältnisse bis hin zu 1:10 vorzugsweise 1:5 denkbar und liefern je nach Fadenverhältnissen verbesserte Werte der Abzugskraft, verglichen mit einer Kreuzwickelspule, bei der das Windungsverhältnis in den aufeinanderfolgenden Lagen 1:1 beträgt. Unter Windungsverhältnis wird hierbei die Anzahl der Windungen verstanden, in denen das Garn auf dem Weg von der Fußseite zu der Kopfseite aufgewickelt ist, verglichen mit der Anzahl der Windungen, die das Garn auf dem umgekehrten Weg beschreibt.
  • Oder anders ausgedrückt, der Betrag des Winkels α, den das Garn 4 in der Lage mit der Rechtsschraube mit der Ebene 7 einschließt, ist größer als der Betrag des Winkels β, den das Garn 4 in der Lage mit der Linksschraube mit der Ebene 7 einschließt.
  • Abgesehen von dem erläuterten Unterschied, wird die Kreuzwickelspule 1 nach Fig. 5 nach den selben Kriterien hergestellt wie üblich. Es wird angestrebt durch Verlagerung des Umkehrpunktes 9 sowohl an der Abzugsseite 8 als auch an der Fußseite 16 Materialanhäufungen zu vermeiden. Es wird ferner angestrebt, den Fadenverlauf, bezogen auf die nächste Lage mit dem selben Wickelsinn, möglichst zufällig auszurichten um Moirébildungen oder Regelmäßigkeiten zu vermeiden, was zu Störungen führt.
  • Abgesehen von der konischen Form, wie sie in Fig. 5 gezeigt ist, kann die Kreuzwickelspule 1 auch durch geeignete Bewicklung so gestaltet werden, dass ihr Kegelwinkel sich durchmesserabhängig verändert oder dass sie beispielsweise gegen Ende, d.h. bei kleinen Durchmessern in eine zylindrische Form übergeht. Es wäre auch denkbar, eine Kreuzwickelspule 1 zu erzeugen, bei der der Kreuzwickel 2 im Anschluss an die Abzugsseite 8 zunächst zylindrisch ist und sodann in einen kegelstumpfförmgien Bereich übergeht. Es wird damit Hyperboloid angenähert.
  • Der Kreuzwickel kann auch über die gesamte Länge und alle Durchmesser zylindrisch sein, wie dies heute üblich ist.
  • Nach den bisherigen Erkenntnissen aus einer Reihe von Versuchen, lässt sich die Verbesserung wie folgt tabellarisch für den Durchmesser-100 mm tabellarisch darstellen.
    Gangverhältnis
    1:1 Stand der Technik 1:2 1:2,5 1:3
    Maximalkraft 25 cN 18 cN 11 cN 17 cn
    Standardabweichung ±5 cN ±4 cN ±3 cN ±4 cN
    Mittelwert 6 cN 5 cN 3 cN 5 cN
  • Für einen Wickeldurchmesser von ca. 65 mm ergibt sich folgende Gegenüberstellung.
    Gangverhältnis
    1:1 Stand der Technik 1:2 1:2,5 1:3
    Maximalkraft 35 cN 18 cN 15 cN 12 cN
    Standardabweichung ±6 cN ±4 cN ±3 cN ±2 cN
    Mittelwert 7 cN 4 cN 4 cN 2 cN
  • Die Steigungswinkel α und β können mit Ausnahme der Randbereiche an der Abzugsseite 8 und der Fußseite 6 konstant sein. Sie können sich aber auch über die axiale Länge gesehen verändern und sie können obendrein vom radialen Abstand abhängig sein. Schließlich ist es denkbar, einen nach zur vollen Spule hin zunehmenden konischen Winkel zu erzeugen, indem im Inneren des Kreuzwickels, bezogen auf die radiale Ausdehnung, Wicklungen vorgesehen werden, die nicht die volle axiale Länge haben, d.h. es werden Wicklungen erzeugt, die beispielsweise ausgehend von der Fußseite 16 nur bis etwa zur halben Länge des Kreuzwickels 2 reichen.
  • Welche Form und welches Winkelverhältnis jeweils gewählt wird, muss im einzelnen experimentell ermittelt werden, denn in das Ablaufverhalten des Garns gehen sehr wesentlich die Garnart und das Garnmaterial sowie der Garndurchmesser ein. Ringspinngarne haben andere Eigenschaften als Garne aus Rotorspinnmaschinen. Eine Optimierung durch Versuchreihen wird sich deswegen nicht vermeiden lassen.
  • Bei einer Kreuzwickelspule haben die Schraubenlinien, in denen das Garn aufgewickelt ist, in benachbarten Lagen unterschiedliche Steigung. Die Wicklungsverhältnisse sind so gewählt, dass die abgezogene Menge größer ist, wenn sich der Ablösepukt von der Abzugsseite zur Fußseite bewegt, verglichen mit der abgezogenen Menge, wenn sich der Ablösepunkt von der Fußseite zur Abzugsseite bewegt.

Claims (18)

  1. Kreuzwickelspule (1),
    mit einem Spulenkern und
    mit einem Kreuzwickel (2), der aus Garn (4) besteht, das in Lagen auf den Spulenkern (3) aufgebracht ist, und der eine Abzugsseite (8), von der das Garn (4) über Kopf abziehbar ist, und eine Fußseite (16) aufweist,
    wobei das Garn (4) in dem Kreuzwickel (2) längs einer Schraubelinie von der Abzugsseite (8) zu der Fußseite (16) sowie in einer anderen Schraubenlinie mit entgegengesetztem Wickelsinn von der Fußseite (16) zu der Abzugsseite (8) verläuft und sich die Steigungen der Schraubenlinien derart voneinander unterscheiden, dass, zumindest in einem Bereich des Kreuzwickels (2), die Garnlänge beim Abzug in diesem Bereich größer ist, wenn sich der Ablösepunkt (12') des Garns (4) an der Außenseite des Kreuzwickels (2) längs einer Schraubelinie von der Abzugsseite zu der Fußseite (16) bewegt hat, bezogen auf die Garnlänge, die in diesem Bereich abgenommen wird, wenn sich der Ablösepunkt (12) von der Fußseite (16) zu der Abzugseite (8) längs einer Schraubelinie bewegt hat, und
    dadurch gekennzeichnet daß die beiden Schraubenlinien ein Steigungsverhältnis bilden und das Steigungsverhältnis vom radialen Abstand abhängig ist.
  2. Kreuzwickelspule nach Anspruch 1, dadurch gekennzeichnet, dass der Bereich ein Bereich ist, der von einem ersten Durchmesser bis zu einem zweiten Durchmesser reicht.
  3. Kreuzwickelspule nach Anspruch 1, dadurch gekennzeichnet, dass der Bereich ein Bereich ist, der von einer ersten Stelle bis zu einer zweiten Stelle reicht, die von der ersten Stelle axial beabstandet ist.
  4. Kreuzwickelspule nach Anspruch 1, dadurch gekennzeichnet, dass es wenigstens einen weiteren Bereich gibt, der ein anderes Wickelverhältnis gemäß Anspruch 1 enthält.
  5. Kreuzwickelspule nach Anspruch 1, dadurch gekennzeichnet, dass der Spulenkern (3) durch eine Spulenhülse gebildet ist.
  6. Kreuzwickelspule nach Anspruch 1, dadurch gekennzeichnet, dass der Kreuzwickel (2) an der Abzugsseite (8) frei von Abdeckungen ist.
  7. Kreuzwickelspule nach Anspruch 1, dadurch gekennzeichnet, dass eine Garnlage in die andere Garnlage jeweils an einem Umkehrpunkt (9) übergeht, wobei aufeinander folgende Umkehrpunkte (9) weder an der Fußseite (16) noch an der Abzugsseite (8) unmittelbar übereinander liegen.
  8. Kreuzwickelspule-nach Anspruch 7, dadurch gekennzeichnet, dass die Umkehrpunkte (9) in Umfangsrichtung und/oder in Längsrichtung bezogen auf die Achse des Kreuzwickels (2) gegeneinander versetzt sind.
  9. Kreuzwickelspule nach Anspruch 1, dadurch gekennzeichnet, dass Kreuzwickel (2) derart gestaltet ist, dass aufeinander folgende Lagen kein Moirémuster bilden.
  10. Kreuzwickelspule nach Anspruch 1, dadurch gekennzeichnet, dass der Kreuzwickel (2) zumindest der vollen Kreuzwickelspule (1) zylindrisch ist.
  11. Kreuzwickelspule nach Anspruch 10, dadurch gekennzeichnet, dass der Kreuzwickel (2) über den gesamten Betriebsbereich zylindrisch ist.
  12. Kreuzwickelspule nach Anspruch 1, dadurch gekennzeichnet, dass der Kreuzwickel (2) zumindest der vollen Kreuzwickelspule (1) sich zur Abzugsseite (8) hin konisch verjüngt.
  13. Kreuzwickelspule nach Anspruch 1, dadurch gekennzeichnet, dass der Kreuzwickel (2) derart gestaltet ist, dass die volle Kreuzwickelspule (1) einen konischen Kreuzwickel (2) bildet, dessen Gestalt mit zunehmender Garnabnahme in die zylindrische Gestalt übergeht.
  14. Kreuzwickelspule nach Anspruch 1, dadurch gekennzeichnet, dass das Garn zu einer Gruppe gehört, die Fasergarne, Monofilamentgarne, Multifilamentgarne.und deren Zwirne umfasst.
  15. Kreuzwickelspule nach Anspruch 1, dadurch gekennzeichnet, dass das Garn ein Garn für textile oder textiltechnische Anwendung ist.
  16. Kreuzwickelspule nach Anspruch 1, dadurch gekennzeichnet, dass der Winkel (α,β), mit dem das Garn (4) in der einen Garnlage aufgewickelt ist, betragsmäßig zwischen 30° und 12° liegt, jeweils gemessen, gegenüber einer Ebene (7), die rechwinklig zu der Achse des Kreuzwickels (2) liegt, und dass der Winkel (α,β), mit dem das Garn (4) in der anderen Garnlage aufgewickelt ist, betragsmäßig zwischen 0,5° und 15° liegt, gemessen gegenüber der selben Ebene (7).
  17. Kreuzwickelspule nach Anspruch 1, dadurch gekennzeichnet, dass das Windungsverhältnis zwischen der Wicklung von der Fußseite (16) zur der Abzugsseite (8) und der Wicklung von der Abzugsseite (8) zu der Fußseite (16) zwischen 1:1,2 und 1:10, vorzugsweise zwischen 1:1,5 und 1:8 liegt.
  18. Kreuzwickelspule nach Anspruch 1, dadurch gekennzeichnet, dass die Kreuzwicklung an der Abzugsseiteseite (8) und/oder der Fußseite (16) eine kegelstumpfförmige Gestalt aufweist.
EP02701234A 2001-02-01 2002-01-25 Kreuzwickelspule Expired - Lifetime EP1358120B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10104463A DE10104463A1 (de) 2001-02-01 2001-02-01 Kreuzwickelspule
DE10104463 2001-02-01
PCT/DE2002/000250 WO2002060800A1 (de) 2001-02-01 2002-01-25 Kreuzwickelspule

Publications (2)

Publication Number Publication Date
EP1358120A1 EP1358120A1 (de) 2003-11-05
EP1358120B1 true EP1358120B1 (de) 2007-01-17

Family

ID=7672449

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02701234A Expired - Lifetime EP1358120B1 (de) 2001-02-01 2002-01-25 Kreuzwickelspule

Country Status (7)

Country Link
US (1) US7246764B2 (de)
EP (1) EP1358120B1 (de)
JP (1) JP4323168B2 (de)
KR (1) KR20030076639A (de)
CN (1) CN1254428C (de)
DE (2) DE10104463A1 (de)
WO (1) WO2002060800A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013003286A1 (de) 2013-02-26 2014-08-28 Saurer Germany Gmbh & Co. Kg Verfahren zum Betreiben einer Arbeitsstelle einer Kreuzspulen herstellenden Textilmaschine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004004926B4 (de) * 2004-01-31 2008-06-05 Festo Ag & Co. Steuerungsmodul für eine Faden-Aufwickelvorrichtung
DE102004010824A1 (de) * 2004-02-27 2005-09-15 Wilhelm Stahlecker Gmbh Kreuzwickelspule und Verfahren zur Herstellung
DE102004048913A1 (de) * 2004-10-06 2006-04-13 Deutsche Institute für Textil- und Faserforschung Verfahren und Vorrichtung zum Umspulen von Fadenzulieferspulen
DE102004057389A1 (de) * 2004-11-26 2006-06-01 Deutsche Institute für Textil- und Faserforschung Stuttgart Verfahren und Vorrichtung zum Umspulen von Fadenzulieferspulen
CN102933477B (zh) 2010-04-07 2015-06-10 帝斯曼知识产权资产管理有限公司 具有高杨氏模量纱线的填装体以及卷绕该纱线填装体的方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD20293A (de) *
DE35812C (de) * A. LEUPOLD in Dresden, Marienstrafse 1 Konstruktion von Solenoiden
US1647535A (en) * 1926-11-02 1927-11-01 Foster Machine Co Wound package and method of producing the same
US2267983A (en) * 1938-05-14 1941-12-30 Ind Rayon Corp Manufacture of cross-wound thread packages
US2539942A (en) * 1947-03-24 1951-01-30 American Enka Corp Production of cross wound bobbins
US2764368A (en) * 1952-10-31 1956-09-25 British Celanese Yarn winding
CH603469A5 (de) * 1975-11-05 1978-08-15 Rieter Ag Maschf
US4586679A (en) * 1984-02-06 1986-05-06 Toray Industries, Inc. Yarn package of carbon filament yarn
JPS6151465A (ja) * 1984-08-16 1986-03-13 Teijin Ltd 仮撚捲縮糸のチ−ズパツケ−ジ
EP0244653B1 (de) * 1986-04-09 1994-07-13 Asahi Kasei Kogyo Kabushiki Kaisha Spulmaschine für synthetische Fäden, Kreuzspule aus synthetischen Fäden und Verfahren zum Wickeln solcher Spulen
DE3627879C2 (de) * 1986-08-16 1995-09-28 Barmag Barmer Maschf Verfahren zum Aufwickeln von Fäden
JPH03128866A (ja) * 1989-10-16 1991-05-31 Murata Mach Ltd 綾振ドラム
JP2560918B2 (ja) * 1990-12-28 1996-12-04 村田機械株式会社 トラバース装置
DE4313113A1 (de) * 1992-04-24 1993-10-28 Barmag Barmer Maschf Asymmetrische Fadenspule
JPH06151465A (ja) * 1992-11-10 1994-05-31 Toshiba Corp 半導体素子
JP2881678B2 (ja) * 1994-02-16 1999-04-12 ヨット糸業有限会社 巻糸体並びに巻糸体の製造装置
JPH10167564A (ja) * 1996-12-05 1998-06-23 Toray Ind Inc 炭素繊維パッケージおよび炭素繊維梱包体
DE10021963A1 (de) * 1999-05-14 2000-12-21 Barmag Barmer Maschf Verfahren und Vorrichtung zum Aufwickeln eines kontinuierlich zulaufenden Fadens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013003286A1 (de) 2013-02-26 2014-08-28 Saurer Germany Gmbh & Co. Kg Verfahren zum Betreiben einer Arbeitsstelle einer Kreuzspulen herstellenden Textilmaschine

Also Published As

Publication number Publication date
KR20030076639A (ko) 2003-09-26
JP4323168B2 (ja) 2009-09-02
CN1500060A (zh) 2004-05-26
CN1254428C (zh) 2006-05-03
JP2004533981A (ja) 2004-11-11
EP1358120A1 (de) 2003-11-05
DE10104463A1 (de) 2002-09-12
WO2002060800A1 (de) 2002-08-08
DE50209280D1 (de) 2007-03-08
US7246764B2 (en) 2007-07-24
US20040104290A1 (en) 2004-06-03

Similar Documents

Publication Publication Date Title
DE2660983C2 (de) Verfahren zum pneumatischen Drallspinnen
EP0729524A1 (de) Spinnspulmaschinen
DE2447715B2 (de) Vorgarn und verfahren zu dessen herstellung
EP3140440B1 (de) Textilmaschine sowie verfahren zum betrieb einer solchen
DE1535097B2 (de) Aufwickelvorrichtung mit einer einrichtung zum bilden von hilfswickeln am anfang des aufwickelvorganges
EP1358120B1 (de) Kreuzwickelspule
WO1993024688A1 (de) Verfahren zum betrieb von zwirnspindeln sowie einrichtungen zur durchführung des verfahrens
DE10342266B4 (de) Verfahren zum Herstellen einer Kreuzspule
EP3140232B1 (de) Textilmaschine, die der herstellung von vorgarn dient, sowie verfahren zum betrieb einer solchen
DE2814382A1 (de) Verfahren und vorrichtung zum austragen einer lunte in einen behaelter
WO2005082758A1 (de) Kreuzwickelspule und verfahren zur herstellung
EP1321412B1 (de) Konische Kreuzspule und Verfahren zur Bildung des Wickelkörpers einer konischen Kreuzspule
EP0684203B1 (de) Einrichtung zur Beeinflussung des Fadenlaufs an der Spulstelle einer Spulmaschine
EP2118348B1 (de) Zwirnverfahren und garnspule
EP1321547B1 (de) Zylindrische Kreuzspule und Verfahren zur Bildung des Wickelkörpers einer zylindrischen Kreuzspule
DE3613163C2 (de)
DE1660339C3 (de) Verfahren zum Vergleichsmäßigen des Elastizitätsmoduls von Streckzwirnfäden
DE69311460T2 (de) Spule aus Fasern mit geringem Abriebswiderstand und ihr Herstellungsverfahren
EP3269853B1 (de) Verfahren zum starten einer spindel einer kablier- oder doppeldrahtzwirnmaschine
DE2432166A1 (de) Vorrichtung zum aufspulen von garnen
DE102013003286A1 (de) Verfahren zum Betreiben einer Arbeitsstelle einer Kreuzspulen herstellenden Textilmaschine
EP0512257B1 (de) Verfahren und Vorrichtung zum Steuern der Spindeldrehzahl einer Streckzwirnmaschine
AT205893B (de) Einrichtung zum Zwirnen von kontinuierlichem Fasergarn
DE1685866A1 (de) Polyamidgarnwickel
DE69120519T2 (de) Verfahren zum kontinuierlichen Spinne von Stapelfasern und Vorrichtung zur Durchführ des Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030826

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040811

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50209280

Country of ref document: DE

Date of ref document: 20070308

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070618

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20070117

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

26N No opposition filed

Effective date: 20071018

BERE Be: lapsed

Owner name: DEUTSCHE INSTITUTE FUR TEXTIL- UND FASERFORSCHUNG

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070907

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160120

Year of fee payment: 15

Ref country code: IT

Payment date: 20160127

Year of fee payment: 15

Ref country code: DE

Payment date: 20160128

Year of fee payment: 15

Ref country code: TR

Payment date: 20160122

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160121

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50209280

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 351816

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170125

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170125