EP1346326A1 - Identifikationssystem zum nachweis einer berechtigung für den zugang zu einem objekt oder die benutzung eines objekts, insbesondere eines kraftfahrzeugs - Google Patents
Identifikationssystem zum nachweis einer berechtigung für den zugang zu einem objekt oder die benutzung eines objekts, insbesondere eines kraftfahrzeugsInfo
- Publication number
- EP1346326A1 EP1346326A1 EP01984755A EP01984755A EP1346326A1 EP 1346326 A1 EP1346326 A1 EP 1346326A1 EP 01984755 A EP01984755 A EP 01984755A EP 01984755 A EP01984755 A EP 01984755A EP 1346326 A1 EP1346326 A1 EP 1346326A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- code transmitter
- identification system
- frequency
- response signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/74—Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
- G01S13/82—Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
- G01S13/84—Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted for distance determination by phase measurement
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C9/00—Individual registration on entry or exit
- G07C9/00174—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
- G07C9/00309—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C9/00—Individual registration on entry or exit
- G07C9/00174—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
- G07C9/00309—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks
- G07C2009/00412—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks the transmitted data signal being encrypted
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C9/00—Individual registration on entry or exit
- G07C9/00174—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
- G07C2009/00753—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys
- G07C2009/00769—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys with data transmission performed by wireless means
- G07C2009/00793—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys with data transmission performed by wireless means by Hertzian waves
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C2209/00—Indexing scheme relating to groups G07C9/00 - G07C9/38
- G07C2209/60—Indexing scheme relating to groups G07C9/00174 - G07C9/00944
- G07C2209/63—Comprising locating means for detecting the position of the data carrier, i.e. within the vehicle or within a certain distance from the vehicle
Definitions
- Identification system for proving authorization to access or use an object, in particular a motor vehicle
- the invention relates to an identification system for proving authorization for access to an object or the use of an object, in particular a motor vehicle.
- Radio-based identification systems also known as RF-ID "radio frequency identification” systems
- RFID systems are increasingly used, for example, as a replacement for mechanical key systems, for access protection for computers or for automatic payment systems.
- An RFID system consists of an identification tag (hereinafter referred to as Designated code transmitter), which is also called electronic key, RF-ID tag, ID transmitter or ID card, which the user carries with him or which is arranged on an object to be identified.
- the code transmitter is provided with a characteristic code (code information This code is queried via a base station (hereinafter referred to as the transmitting and receiving unit) and then authenticated or verified.
- a base station hereinafter referred to as the transmitting and receiving unit
- F systems in the frequency range from 100-300 kHz, RF systems at 433 MHz or 867 MHz and high-frequency microwave systems, which are mostly at the frequencies 2.4 GHz, 5.8 GHz, 9.5 GHz or 24 GHz work.
- the passive identification is characterized by the fact that the code transmitter can be queried continuously by the transmitting and receiving unit without the user having to do anything. If the code transmitter is within a certain distance range from the transmitting and receiving unit, the identification is carried out automatically or, for example, in the case of a manual one Operation of a switching device, for example by operating a door handle, by the user.
- the limitation of the distance range generally results from the radio field attenuation.
- a common and inexpensive design of code transmitters are so-called backscatter code transmitters (DE 198 39 696 C2).
- a transmitting and receiving unit emits a transmission signal (hereinafter referred to as an interrogation signal) with a linearly frequency-modulated carrier wave in the direction of the code transmitter. If the code transmitter receives the interrogation signal, it is reflected in a modulated manner, but is not evaluated further there internally.
- the interrogation signal and response signal are evaluated on the one hand with regard to the correspondence of the received code information with an expected code information and on the other hand with regard to a frequency offset (frequency difference) of the transmission and reception frequency.
- the temporal frequency offset corresponds to a covered radio path (signal runtime). If the frequency difference lies within a predetermined interval, the code transmitter is regarded as authorized and the desired function is triggered in the object.
- a disadvantage of such identification systems is that the transmission channel can be listened to unnoticed and can be intercepted at any point in time. With a suitable device, an attacker would normally be able to to make the code accessible without authorization and thus to overcome the intended protective function.
- an unauthorized person can bring a "mirror" in the vicinity of the object, through which the interrogation signal is reflected. Since an authorized code transmitter is recognized due to a small frequency difference and a code transmitter is simulated in the vicinity of the object, the protective function is simply overcome ,
- the object of the invention is to provide an identification system which has improved security against unauthorized use or unauthorized access.
- An interrogation signal is transmitted in a frequency-modulated manner in steps.
- a mobile code transmitter does not immediately reflect the interrogation signal, but changes an order that reflects the order in which the frequency stages are received, and sends this back phase-locked as a response signal.
- the response signal is changed inversely compared to before and only then compared with the interrogation signal.
- the distance between the code transmitter and the object is determined from the comparison signal.
- the query signal is only accepted and corresponding functions are carried out in the object if the code transmitter is within a predetermined distance from the object.
- FIG. 1 shows a block diagram of an identification system according to the invention
- FIG. 2 shows an interrogation signal of the identification system according to FIG. 1
- FIG. 3 shows a mixed signal which arises as a mixed product from the interrogation signal and an answer signal
- FIGS. 4 and 5 show signals of the mixed signal in the time and frequency domain
- FIG. 6 shows an identification system according to the invention, which is arranged in a motor vehicle
- FIG. 7 block diagram of a further exemplary embodiment of an identification system according to the invention.
- An identification system has a base station 10 (FIG. 1) with a transmitting and receiving unit 17, which is arranged in an object (the special object motor vehicle is explained in more detail in FIG. 6). Furthermore, the identification system has a mobile, portable code transmitter 20 which, by sending out a response signal, proves authorization to access or use the object.
- the base station 10 has a digital antenna with its transmitting and receiving antenna
- Frequency control 11 which controls a signal generator 12 with respect to its output signal and frequency.
- the output signal of the generator 12 is fed to the antenna via a transmission and reception switch 13 (transmission and reception paths are separated from one another).
- the signals received via the antenna are fed via the switch 13 to a mixer 15, to which the output signal of the generator 12 is also fed as a comparison or reference signal.
- the output signal of the mixer 15 is fed to a decryption unit (for example designed as a stochastic code generator 14), in which an encryption carried out in the code transmitter 20 is "undone" by applying inverse encryption to the signal.
- the decrypted signal is fed via an A / D converter (not shown) to a Fourier transformer 16, by means of which the sampled values of the A / D converter are Fourier-transformed in accordance with a specified regulation.
- the output signal of the Fourier transformer 16 is evaluated with regard to a frequency offset or difference between the generator signal and the response signal and thus with regard to a signal delay of the interrogation signal and the response signal and thus also a distance between the code transmitter and the object.
- Mixer 15, code generator 14 and Fourier transformer 16 thus act like an evaluation unit (or decoding unit) which decode the received response signal and evaluate it with respect to distance d.
- the code transmitter 20 If the code transmitter 20 is within range of the interrogation signal, it receives the interrogation signal via an antenna 21 and forwards it via a switch 22 to a demodulator / amplifier 23.
- the amplifier 23 passes the demodulated interrogation signal to a memory 24, in which it is buffered.
- An encryption unit for example a stochastic generator 25
- the received query signal is thus changed in a predetermined manner.
- the signal generator 26 has a PLL circuit which ensures that the generated signal is phase-locked to the received interrogation signal (PLL synchronizes the phase of the response signal with the interrogation signal). This has the advantage that the signal processing on the code transmitter 20 does not falsify the signal transit time between the base station 10 and the code transmitter 20.
- the signal encrypted or decrypted in this way is fed as a response signal via the switch 22 to the antenna 21 and transmitted via the latter.
- the response signal then presents itself as if it were reflected by the code transmitter 20 and its coding has been changed in the process.
- the base station 10 transmits, if necessary or continuously, a query signal which has been changed in sections in accordance with a predetermined sequence, as is shown, for example, in FIG. 2, and then waits for the receipt of a response signal, on the basis of which the authorization of the code transmitter 20 is checked (This is also known as authentication).
- the frequency-changed signal in the exemplary embodiment according to FIG. 2, the signal increases in steps
- the generator in the exemplary embodiment according to FIG. 2, the signal increases in steps
- the generator generates an oscillator frequency that remains constant for a short period of time (sections) and then suddenly changes its frequency for a further period of time (in the exemplary embodiment, a step-shaped signal is produced).
- the frequency is determined according to a predetermined order or a specific algorithm within a
- the order of the step carrier frequencies generated can be such that, as shown in FIG. 2, there is a linearly increasing envelope (shown by a broken line in FIG. 2). Increasingly higher and higher frequencies are generated one after the other. This stands in contrast to the typical FM-CW modulation (Frequency Modulated Continous Wave), in which the transmission frequency is changed linearly, continuously.
- FM-CW modulation Frequency Modulated Continous Wave
- the sequence can also be such that a non-linear envelope, for example a logarithmic curve, results, which is then modulated or demodulated at the carrier frequency that is set in each case.
- a non-linear envelope for example a logarithmic curve
- the frequencies used are usually over 100 MHz.
- the signals are typically emitted within a predetermined bandwidth in the frequency ranges from 433 MHz, 868 MHz or 2.4 GHz.
- the generated frequencies may only be within the frequency bands approved in the respective countries, so that no national or regional telecommunications regulations and approved frequency bands are violated.
- a mobile code transmitter 20 is arranged in the effective range of the transmitting and receiving unit (ie within the range of the interrogation signal) and receives an interrogation signal, it in turn makes a change (or also called encryption or coding) to the transmitted and received sequence and sends back a response signal with the changed order.
- the encryption unit ensures that the sequence of the carrier frequencies received by the code transmitter 20 is changed and the signal is quasi reflected, in accordance with a stochastic algorithm as it is carried out inversely on the object side.
- the code transmitter 20 has an encryption algorithm which is characteristic of it and with which the sequence is coded. All code transmitters 20 assigned to the object should have the same algorithm so that each code transmitter 20 can prove its authorization. In base station 10, the same algorithm is applied inversely to the response signal in order to restore the original order. Thus, the decrypted response signal can then be compared (mixed) with the transmitted interrogation signal in order to determine a frequency offset and thus the signal delay between the code transmitter 20 and the object.
- a frequency offset of the two corresponds to a signal transit time between base station 10 and code transmitter 20 and back.
- the distance between base station 10 and code transmitter 20 can be determined directly from the transit time or the frequency offset.
- the response signal is only accepted if the distance is smaller than a predetermined value.
- the authorization of the code transmitter 20 is thus proven in order to obtain authorized access to an object or to use the object. The user with the authorized code transmitter 20 should therefore only have this access in the immediate vicinity of the motor vehicle.
- both signals are mixed (multiplied). If, for example, a step-shaped interrogation signal - as shown in FIG. 2 - is emitted and such a signal is present at the input of the mixer 15 after decryption, the result of the mixed product is a sum frequency component and a difference frequency component that is sampled. A sinusoidal signal is thus obtained, as represented by the envelope in FIG. 3. By sampling with an A / D converter, discrete-time samples are obtained.
- a Dirac function (also referred to as a ⁇ function or ⁇ pulse) arises, as shown in FIG. 4, the frequency offset of which is related to the reference zero is proportional to the distance between base station 10 and code transmitter 20.
- the sequence of the frequency levels is encrypted in the exemplary embodiment by stochastic steps with a secret random variable.
- the random variable is used synchronously both in the base station 10 (when decrypting) and in the code transmitter 20 (when encrypting), so that a signal sequence again arises in the base station 10 which, after the Fourier transformation, has a Dirac function corresponding to the distance generated because the transformation is carried out with subsequently arranged values.
- the random variable and thus the encryption algorithm are protected from external read-out both in the base station 10 and on the code transmitter 20.
- fInquiry signal o + random variable * frequency step.
- i * ⁇ * 2d / c (5) preferably corresponds to the period 2 ⁇ .
- a distance d is clearly identified after the Fourier transformation, then there is an authorization which enables access to the object (for example a computer, a motor vehicle, a telephone, an ATM, a building, etc.) or its use ,
- a section-by-section frequency-modulated signal is transmitted on the one hand and on the other hand the sequence of the sections is encrypted on the code side and decoded on the object side using the inverse algorithm.
- the query signal is encrypted “reflected”. Only if the answer signal is decrypted correctly can the distance d be determined. If the distance d is still below a predetermined value, access or use is released.
- the base station 10 must therefore be able to measure signal propagation times (which correspond to distances).
- the distance measurement also has the effect that the changes in the signal transit times, in particular in the event of an undesired and inadmissible extension of the signal transit time, are immediately recognized by the base station 10 and thus protection against unauthorized eavesdropping and playback is guaranteed.
- an anti-collision method of several code transmitters 20 assigned to the object can additionally be implemented. If there is only one authorized code transmitter 20 in the vicinity, this results in 4 shows only a single spectral line in the frequency range, here, for example, at the normalized frequency "1". If there are several code transmitters 20 at different distances in the vicinity of the object, there is a spectral line for each code transmitter 20 at the normalized frequency that is its own Distance di corresponds.
- the identification system according to the invention is advantageously used in a motor vehicle 30 (FIG. 6) and is also explained in more detail by way of example. However, it can also be used for other objects, such as computers, telephones, the Internet, ATMs, toll roads, means of transport (tickets), rooms, buildings, etc. be used.
- FIG. 6 shows possible locations of attachment of the transmitting and receiving unit 17 when used in a motor vehicle 30.
- units 17 in the driver's door 31 for example, with two transmitting and receiving units 17, specifically with an outside antenna and an inside antenna
- / or the front passenger door 32 If rear doors 33 are present, two transmitting and receiving units 17 can also be arranged there his.
- a transmitting and receiving unit 17 can be arranged on the inside mirror 35, one in the rear shelf 36 and one on the rear near the trunk 34.
- the transmitting and receiving unit Upon request (for example, actuating a switch or door handle on the motor vehicle 30), the transmitting and receiving unit transmits its interrogation signal in a preferred direction one or more times or when a person approaches. If the code transmitter 20 receives the interrogation signal, it sends back an answer signal.
- Access to the motor vehicle 30 is only released if it is clearly recognized that the code transmitter 20 is actually close enough to the motor vehicle 30. As a result, a signal to unlock the doors or release the immobilizer can then be triggered. If the code transmitter 20 approaches a door 31, 32, 33 or the trunk 34, an authorization command and also additional commands, such as switching on the interior lighting, can be triggered if the code transmitter 20 is correctly recognized as being within the permitted distance d ,
- the location and the number of transmitting and receiving units 17 result from the vehicle geometry and the desired requirements with regard to the detection area in which the code transmitter 20 should be located and with regard to the wearing comfort of the code transmitter 20.
- the response signal received by the transmitting and receiving unit 17 can be evaluated directly in the transmitting and receiving unit 17.
- Each of the distributed transmitting and receiving units 17 can display its received response signal. in addition to a central unit, not shown, in which the authorization is then checked.
- the central unit can decide whether only driver's door 31, passenger's door 32, all doors 31-33 or only the trunk 34 are to be unlocked or locked. This depends on which of the transmitting and receiving units 17 arranged distributed on the motor vehicle body has determined the shortest distance (shortest transit time) to the code transmitter 20, i.e. from which direction the code signal came or from which direction the user approaches his vehicle.
- This identification system offers additional protection against eavesdropping and reproduction of the response signal, since the encryption variable / encryption algorithm can change synchronously after each question-answer dialog, both on the code transmitter 20 and in the object.
- Such a change in encryption is known and is also referred to as an alternating code or rolling code.
- the identification system there is only a quasi-comparison between the response signal and the interrogation signal, in which it is not the code content of the signals that is of interest, but only the frequency offset between the two signals.
- the two signals are correlated with one another in the mixer. And only if the random variables are the same on both sides, is there a clear and unequivocal distance d.
- two different interrogation signals can also be transmitted.
- the first interrogation signal with the carrier frequency changed in sections in the ultrasound frequency range (with the speed of sound v s as the speed of propagation) is transmitted by means of the US transmitter 43 and US receiver 27 received on the code transmitter 20.
- the second interrogation signal is likewise modulated by a transmitter 44 with a changed carrier frequency in a frequency range (here at approximately 125 kHz) to the code transmitter 20 (with the speed of light c as the speed of propagation) and is received and demodulated there by a receiving unit 21.
- the two signals are correlated (mixed) with one another on the code transmitter 20 by means of a mixer 28 and, as a response signal modulated via a transmitter 29, sent back to the object at a fixed carrier frequency (here 433 MHz), where it is received and demodulated by a receiver 46 becomes.
- a fixed carrier frequency here 433 MHz
- the different propagation speeds of the interrogation signal are used, which, after mixing and Fourier transformation, clearly identify a distance d.
- the interrogation signals are controlled by a stochastic step frequency transmitter 42 and a bandwidth generator 42, which defines a carrier frequency which has been changed in sections in accordance with an order (corresponds to encryption or coding).
- An “inverse” encryption is used on the code transmitter side.
- the same “inverse” coding is used as in the code transmitter 20, in order not to undo the encryption.
- a comparison of the received and demodulated response signal with the reference signal by a mixer 28 takes place on the code transmitter 20.
- the output signals of the receivers 27, 21 are fed to the mixer 28 and sent as a response signal to the object and there, after demodulation and sampling by an A / D converter 47, are fed to a Fourier transformer 48.
- the reference signal which has arisen from the generator signal and through decryption by a stochastic code generator 45, is also passed to the Fourier Transformer 48 supplied. Based on the then Fourier-transformed signal, the authorization can be recognized on the basis of the distance d between the code transmitter 20 and the object.
- the invention has the advantage that "cryptology" is included in the identification system and thus becomes more secure, although no comparison of the code information contained in the encrypted signals is carried out on the object side. However, the response signal or the query signal is not present in encrypted form , then no authorization can be recognized due to distance d that cannot be determined.
- This embodiment of the invention has the advantage that existing identification systems can be retrofitted without distance detection.
- the conventional identification systems usually work at low frequencies (125 kHz and 433 MHz), at which a distance determination with only one interrogation signal and the method according to the invention is only possible if large distances are permitted as authorized.
- To increase the security of the identification system only small distances should be allowed. The user should therefore be in the immediate vicinity of the object to be used in order to gain access.
- either the order in which the carrier frequency is changed in sections is initially transmitted to the code transmitter 20, encrypted there, transmitted back and decrypted on the object side before the signal is Fourier-transformed.
- the encrypted sequence is sent out on the object side, brought into the “correct” order on the code transmitter side and sent back to the object.
- the reference signal is either encrypted or decrypted on the object side before it is compared with the received / demodulated response with regard to frequency offset.
- the term “stochastic” is to be understood to mean encryption or decryption, for example by means of a mathematical algorithm and / or a random generator.
- mixing is to be understood as a conversion of a frequency into another frequency range by modulation with an auxiliary frequency.
- the mixing results in a sum frequency and a difference frequency.
- a filter can be used to filter out one of the frequencies and use it for further evaluation can be compared by mixing two signals in terms of their frequencies / frequency offset.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Lock And Its Accessories (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Bei dem Identifikationssystem wird ein Abfragesignal objektseitig mit abschnittsweise geänderter Trägerfrequenz ausgesendet. Ein mobiler Codegeber (20) verschlüsselt das Abfragesignal und erzeugt ein Antwortsignal, das zu dem Objekt (10) zurückgesendet wird. In einer objektseitigen Auswerteeinheit (14 - 16) wird das Antwortsignal und mit dem Abfragesignal gemischt und entschlüsselt. Durch anschliessende Fourier-Transformation (16) wird der Abstand (d) zwischen Codegeber (20) und Objekt (10) ermittelt.
Description
Beschreibung
Identifikationssystem zum Nachweis einer Berechtigung für den Zugang zu einem Objekt oder die Benutzung eines Objekts, ins- besondere eines Kraftfahrzeugs
Die Erfindung betrifft ein Identifikationssystem zum Nachweis einer Berechtigung für den Zugang zu einem Objekt oder die Benutzung eines Objekts, insbesondere eines Kraftfahrzeugs.
Funkbasierte Identifikationssysteme, auch RF-ID „radio frequency identification" Systeme genannt, finden, z.B. als Ersatz für mechanische Schlüsselsysteme, beim Zugangsschutz für Rechner oder etwa bei automatischen ZahlungsSystemen zuneh- menden Einsatz. Ein RFID-System besteht aus einer Identifikationsmarke (im folgenden als Codegeber bezeichnet) , die auch elektronischer Schlüssel, RF-ID-Tag, ID-Geber oder ID-Karte genannt wird, die der Benutzer bei sich trägt oder die an einem zu identifizierenden Objekt angeordnet ist. Der Codegeber ist mit einem charakteristischen Code (Codeinformation) ausgestattet. Dieser Code wird über eine Basisstation (im folgenden als Sende- und Empfangseinheit bezeichnet) abgefragt und anschließend authentifiziert oder verifiziert.
Verschiedene funkbasierte Ubertragungstechnologien sind möglich oder üblich: F-Systeme im Frequenzbereich von 100-300 kHz, RF-Systeme bei 433 MHz oder 867 MHz und hochfrequente Mikrowellensysteme, die zumeist bei den Frequenzen 2,4 GHz, 5,8 GHz, 9,5 GHz oder 24 GHz arbeiten.
Man unterscheidet bei Codegebern zwischen einer aktiven und passiven Identifikation. Die passive Identifikation zeichnet sich dadurch aus, dass der Codegeber ständig, ohne Zutun des Benutzers von der Sende- und Empfangseinheit abgefragt werden kann. Befindet sich der Codegeber innerhalb eines gewissen Entfernungsbereiches zur Sende- und Empfangseinheit, so erfolgt die Identifikation automatisch oder z.B. bei manueller
Betätigung einer Schalteinrichtung, z.B. durch Betätigen einer Türklinke, durch den Benutzer. Die Beschränkung des Entfernungsbereiches ergibt sich im allgemeinen aus der Funkfelddämpfung.
Bei einem aktiven Identifikationssystem hingegen wird die Kommunikation aktiv vom Benutzer am Codegeber ausgelöst . Der Benutzer muss hierbei also üblicherweise zum einen den Codegeber manuell bedienen und dann z.B. zusätzlich die Türklinke betätigen. Aus Gründen eines erhöhten Komforts finden daher passive Identifikationssysteme vermehrt Anwendung.
Eine übliche und günstige Ausführung von Codegebern sind sogenannte Backscatter-Codegeber (DE 198 39 696 C2) . Dabei sen- det eine Sende- und Empfangseinheit ein Sendesignal (im folgenden als Abfragesignal bezeichnet) mit einer linear frequenzmodulierten Trägerwelle in Richtung des Codegebers aus. Falls der Codegeber das Abfragesignal empfängt, so wird es moduliert reflektiert, jedoch dort intern nicht weiter ausge- wertet.
In der Basisstation werden Abfragesignal und Antwortsignal einerseits hinsichtlich Übereinstimmung der empfangenen Codeinformation mit einer erwarteten Codeinformation und ande- rerseits hinsichtlich eines Frequenzversatzes (Frequenzdifferenz) von Sende- und Empfangsfrequenz ausgewertet. Der zeitliche Frequenzversatz entspricht einer zurückgelegten Funkstrecke (Signallaufzeit) . Liegt die Frequenzdifferenz innerhalb eines vorgegebenen Intervalls, so wird der Codegeber als berechtigt angesehen und die gewünschte Funktion wird in dem Objekt ausgelöst.
Nachteilig ist bei solchen Identifikationssystemen, dass der Übertragungskanal unbemerkt und zu einem im Prinzip beliebi- gen Zeitpunkt abgehört werden kann. Durch eine geeignete Einrichtung ist es einem Angreifer daher normalerweise möglich,
sich den Code unbefugt zugänglich zu machen und damit die eigentlich angestrebte Schutzfunktion zu überwinden.
Bei dem bekannten Identifikationssystemen kann ein Unberechtigter einen „Spiegel" in die Nähe des Objekts bringen, durch den das Abfragesignal reflektiert wird. Da aufgrund einer geringen Frequenzdifferenz ein berechtigter Codegeber erkannt und ein Codegeber in der Nähe des Objekts vorgetäuscht wird, wird die Schutzfunktion einfach überwunden.
Aufgabe der Erfindung ist es, ein Identifikationssystem zu schaffen, das eine verbesserte Sicherheit gegen unbefugte Benutzung oder unbefugten Zugang aufweist.
Diese Aufgabe wird erfindungsgemäß durch ein Identifikationssystem gemäß Patentanspruch 1 oder 7 gelöst. Dabei wird ein Abfragesignal stufenweise frequenzmoduliert ausgesendet. Ein mobiler Codegeber reflektiert das Abfragesignal nicht sofort, sondern verändert eine Reihenfolge, die die Reihenfolge des Empfangs der Frequenzstufen wiedergibt, und sendet dies jeweils phasenstarr als Antwortsignal zurück. In der Basisstation wird das Antwortsignal invers gegenüber vorher verändert und erst dann mit dem Abfragesignal verglichen. Aus dem Vergleichssignal wird die Entfernung zwischen Codegeber und Ob- jekt ermittelt. Nur wenn sich der Codegeber innerhalb eines vorgegebenen Abstands zum Objekt befindet, wird das Abfragesignal akzeptiert und entsprechende Funktionen in dem Objekt ausgeführt .
Somit wird eine doppelte Sicherheit geboten, bei der nicht nur die Codierung des Antwortsignals, sondern auch die Entfernung des Codegebers zum Objekt vorgegebenen Werten entsprechen muss, auch wenn die Codierung selber nicht auf Berechtigung überprüft wird. Dies hat den Vorteil, dass dieser sogenannte Frage-Antwort-Dialog zwischen Objekt und Codegeber schnell vonstatten gehen kann und dennoch ein ausreichender Schutz vor Nachahmern sichergestellt ist.
Vorteilhafte Ausgestaltungen der Erfindung sind durch die Unteransprüche wiedergegeben.
Ausführungsbeispiele der Erfindung werden im Folgenden anhand der schematischen Zeichnungen näher erläutert. Es zeigen
Figur 1 Blockschaltbild eines erfindungsgemäßen Identifikationssystems, Figur 2 ein Abfragesignal des Identifikationssystems gemäß Figur 1, Figur 3 ein Mischsignal, das als Mischprodukt aus dem Abfragesignal und einem Antwortsignal entsteht, Figuren 4 und 5 Signaldarstellungen des Mischsignals im Zeit- und Frequenzbereich
Figur 6 ein erfindungsgemäßes Identifikationssystem, das in einem Kraftfahrzeug angeordnet ist, und Figur 7 Blockschaltbild eines weiteren Ausführungsbeispiels eines erfindungsgemäßen Identifikationssystems .
Ein Identifikationssystem weist eine Basisstation 10 (Figur 1) mit einer Sende- und Empfangseinheit 17 auf, die in einem Objekt (das spezielle Objekt Kraftfahrzeug wird in der Figur 6 näher erläutert) angeordnet ist. Des weiteren weist das I- dentifikationssystem einen mobilen, tragbaren Codegeber 20 auf, der mit Hilfe des Aussendens eines Antwortsignals eine Berechtigung zum Zugang oder Benutzen des Objekts nachweist.
Die Basisstation 10 weist neben der Sende- und Empfangsein- heit 17 mit ihrer Sende- und Empfangsantenne eine digitale
Frequenzsteuerung 11 auf, die einen Signalgenerator 12 bezüglich dessen Ausgangssignal und -frequenz steuert. Über eine Sende- und Empfangsweiche 13 (Sende- und Empfangsweg werden voneinander getrennt) wird das Ausgangssignal des Generators 12 der Antenne zugeführt.
Die über die Antenne empfangenen Signale werden über die Weiche 13 einem Mischer 15 zugeführt, dem auch das Ausgangssignal des Generators 12 als Vergleichs- oder Referenzsignal zugeführt wird. Das Ausgangssignal des Mischers 15 wird einer Entschlüsselungseinheit (beispielsweise als stochastischer Codegenerator 14 ausgeführt) zugeführt, in dem eine im Codegeber 20 vorgenommene Verschlüsselung „rückgängig" gemacht wird, indem eine inverse Verschlüsselung auf das Signal angewendet wird.
Das entschlüsselte Signal wird über einen nicht dargestellten A/D-Wandler einem Fourier-Transformator 16 zugeführt, durch den die Abtastwerte des A/D-Wandlers entsprechend einer festgelegten Vorschrift fouriertransformiert werden. Das Aus- gangssignal des Fourier-Transfor ators 16 wird hinsichtlich eines Frequenzversatzes oder -differenz zwischen Generatorsignal und Antwortsignal und damit hinsichtlich einer Signallaufzeit des Abfragesignals und des Antwortsignals und damit auch einer Entfernung Codegeber - Objekt ausgewertet. Somit wirken Mischer 15, Codegenerator 14 und Fourier-Transformator 16 wie eine Auswerteeinheit (oder Decodiereinheit) , die das empfangene Antwortsignal decodieren und hinsichtlich Abstand d auswerten.
Falls der Codegeber 20 in Reichweite des Abfragesignal ist, so empfängt er das Abfragesignal über eine Antenne 21 und leitet es über eine Weiche 22 an einen Demodulator/Verstärker 23 weiter. Der Verstärker 23 leitet das demodulierte Abfragesignal an einen Speicher 24, in dem es zwischengespeichert wird. Eine Verschlüsselungseinheit (beispielsweise ein stochastischer Generator 25) nimmt eine Verschlüsselung mit Hilfe eines mathematischen Algorithmus und der gespeicherten Werte vor und steuert damit einem Signalgenerator 26. Somit wird das empfangene Abfragesignal auf vorgegebene Weise ver- ändert.
Der Signalgenerator 26 weist einen PLL-Schaltkreis auf, der dafür sorgt, dass das erzeugte Signal phasenstarr zu dem emp- fangnen Abfragesignal ist (PLL synchronisiert die Phase des Antwortsignals mit dem Abfragesignal) . Dies hat den Vorteil, dass keine Verfälschung der Signallaufzeit zwischen Basisstation 10 und Codegeber 20 durch die Signalverarbeitung auf dem Codegeber 20 erzeugt wird.
Das so ver- oder entschlüsselte Signal wird als Antwortsignal über die Weiche 22, der Antenne 21 zugeführt und über diese ausgesendet. Das Antwortsignal stellt sich dann derart dar, als wäre es durch den Codegeber 20 reflektiert und dabei bezüglich seiner Codierung verändert worden.
Die Basisstation 10 sendet bei Bedarf oder ständig ein abschnittsweise, gemäß einer vorgegebenen Reihenfolge in seiner Frequenz verändertes Abfragesignal aus, wie es beispielsweise in der Figur 2 dargestellt ist, und wartet daraufhin auf den Empfang eines Antwortsignals, anhand dessen die Berechtigung des Codegebers 20 überprüft wird (dies wird auch als Authen- tifikation bezeichnet) .
Abschnittsweise frequenzverändertes Signal (im Ausführungsbeispiel nach Figur 2 ist das Signal stufenförmig ansteigend) bedeutet dabei, dass der Generator eine für kurze Zeitdauer (Abschnitte) gleichbleibende Oszillatorfrequenz erzeugt und danach seine Frequenz für eine weitere Zeitdauer sprunghaft ändert (im Ausführungsbeispiel entsteht ein treppenförmiges Signal) . Die Frequenz wird entsprechend einer vorgegebenen Reihenfolge oder eines bestimmten Algorithmus innerhalb eines
Frequenzbandes mehrfach geändert .
Die Reihenfolge der erzeugten Stufen-Trägerfrequenzen kann so sein, dass sich - wie in Figur 2 dargestellt - eine linear ansteigende Einhüllende (in Figur 2 durch eine gestrichelte Linie dargestellt) ergibt. Es werden der Reihe nach stufenweise/abschnittsweise immer höhere Frequenzen erzeugt. Dies
steht im Gegensatz zur typischen FM-CW-Modulation (Frequency Modulated Continous Wave) , bei der die Sendefrequenz linear, stufenlos geändert wird.
Die Reihenfolge kann auch so sein, dass sich eine nicht lineare Einhüllende, beispielsweise eine logarithmische Kurve ergibt, die dann bei der jeweilig sich einstellenden Trägerfrequenz moduliert oder demoduliert wird. Die verwendeten Frequenzen liegen üblicherweise über 100 MHz. Typischerweise werden die Signale innerhalb einer vorgegebenen Bandbreite in den Frequenzbereichen von 433 MHz, 868 MHz oder 2,4 GHz ausgesendet. Die erzeugten Frequenzen dürfen dabei immer nur innerhalb von in den jeweiligen Ländern zugelassenen Frequenzbändern liegen, so dass keine nationalen oder regionalen fernmeldetechnischen Vorschriften und zugelassene Frequenzbänder verletzt werden.
Falls ein mobiler Codegeber 20 im Wirkungsbereich der Sende- und Empfangseinheit (d.h. innerhalb der Reichweite des Abfra- gesignals) angeordnet ist und ein Abfragesignal empfängt, so nimmt er seinerseits eine Veränderung (oder auch Verschlüsselung oder Codierung bezeichnet) der gesendeten und empfangenen Reihenfolge vor und sendet ein Antwortsignal mit der geänderten Reihenfolge zurück.
Die Verschlüsselungseinheit (stochastischer Codegenerator 12) sorgt dafür, dass die vom Codegeber 20 empfangene Reihenfolge der Trägerfrequenzen verändert werden und das Signal quasi reflektiert wird, und zwar gemäß einem stochastischen Algo- rithmus, wie er invers objektseitig vorgenommen wird. Der Codegeber 20 weist einen für ihn charakteristischen Verschlüsselungsalgorithmus auf, mit dem die Reihenfolge codiert wird. Alle dem Objekt zugeordneten Codegeber 20 sollten den gleichen Algorithmus aufweisen, damit jeder Codegeber 20 seine Berechtigung nachweisen kann.
In der Basisstation 10 wird der gleiche Algorithmus auf das Antwortsignal invers angewendet, um wieder die ursprüngliche Reihenfolge zu erhalten. Somit kann dann das entschlüsselte Antwortsignal mit dem gesendeten Abfragesignal verglichen (gemischt) werden, um einen Frequenzversatz und damit Signallaufzeit zwischen Codegeber 20 und Objekt festzustellen.
Ein Frequenzversatz der beiden entspricht einer Signallaufzeit zwischen Basisstation 10 sowie Codegeber 20 und zurück. Aus der Laufzeit oder dem Frequenzversatz kann unmittelbar der Abstand Basisstation 10 - Codegeber 20 ermittelt werden. Nur wenn der Abstand kleiner als ein vorgegebener Wert ist, wird das Antwortsignal akzeptiert. Die Berechtigung des Codegebers 20 ist somit nachgewiesen, um berechtigten Zugang zu einem Objekt zu erhalten oder um das Objekt zu benutzen. Der Benutzer mit dem berechtigten Codegeber 20 soll also nur in unmittelbarer Nähe des Kraftfahrzeugs zu diesem Zugang erhalten.
Um das entschlüsselte Antwortsignal mit dem Abfragesignal
(d.h. Generatorsignal) zu vergleichen, werden beide Signale gemischt (multipliziert) . Wird beispielsweise ein stufenförmiges Abfragesignal - wie in Figur 2 dargestellt - ausgesendet und liegt ein solches Signal nach der Entschlüsselung am Eingang des Mischers 15 vor, so ergibt sich als Mischprodukt eine Summenfrequenzanteil und eine Differenzfrequenzanteil, der abgetastet wird. Es wird also ein sinusförmiges Signal erhalten, wie es in der Figur 3 durch die Hüllkurve dargestellt ist. Durch das Abtasten mit einem A/D-Wandler werden zeitdiskrete Abtastwerte erhalten.
Wird ein solches sinusförmiges Signal nun mittels eines Fourier-Transformators 16 vom Zeitbereich in den Frequenzbereich transformiert, so entsteht - wie in Figur 4 dargestellt ist - eine Dirac-Funktion (auch als δ-Funktion oder δ-Impuls bezeichnet) , deren Frequenzversatz zum Bezugsnullpunkt proportional der Entfernung Basisstation 10 - Codegeber 20 ist.
Die Verschlüsselung der Reihenfolge der Frequenzstufen wird bei dem Ausführungsbeispiel durch stochastische Schritte mit einer geheimen Zufallsvariablen vorgenommen. Die Zufallsvari- able wird synchron sowohl in der Basisstation 10 (beim Entschlüsseln) als auch im Codegeber 20 (beim Verschlüsseln) verwendet, so dass in der Basisstation 10 wieder eine Signalfolge entsteht, die nach der Fourier-Transformation eine der Entfernung entsprechende Dirac-Funktion erzeugt, da die Transformation mit nachträglich wieder geordneten Werten vorgenommen wird.
Die Zufallsvariable und damit der Verschlüsselungsalgorithmus sind vor externem Auslesen geschützt sowohl in der Basissta- tion 10 als auch auf dem Codegeber 20 gespeichert.
Würde ein Codegeber 20 verwendet, der die Zufallsfolge (Zufallsvariable) nicht kennt, so würde dieser das Antwortsignal in einer ihm zugänglichen, ungeordneten oder verfälschten Folge zurücksenden. Die Fourier-Transformation würde keine Dirac-Funktion ergeben, sondern eine ganze Folge davon, wie sie beispielsweise in der Figur 5 dargestellt ist, da in der Basisstation 10 die inverse Zufallsfolge auf das empfangene Antwortsignal angewendet wird. Sobald keine eindeutige Dirac- Funktion (sondern mehrere Frequenzlinien) erkannt wird, wird das Antwortsignal nicht akzeptiert, selbst wenn die Frequenzlinie im unteren Frequenzbereich einen entsprechend kurzen Abstand ergeben würde.
Zunächst wird die Trägerfrequenz des Abfragesignals in der
Weise moduliert, dass folgende Reihe entsteht:
fAbfragesignal = o + Zufallsvariable*Frequenzschritt .
Dies wird mit n Zufallswerten durchgeführt. Dementsprechend wird dann beispielsweise ein Abfragesignal entsprechend der Funktion
cos ( G)i* t ) ( 1 ) mit (£>ι = Kreisfrequenz und i = 1, 2, ... n, ausgesendet. Nach Verschlüsseln (Zufallsvariable auf die ausgesendete Funktion anwenden) oder Verändern der Reihenfolge auf dem Codegeber 20 und dem Entschlüsseln (inverse Zufallsvariable auf die Funktion anwenden) in der Basisstation 10 erhält man dann ein Signal entsprechend der Funktion:
mit d = Abstand zwischen Codegeber 20 und Basisstation 10 so- wie c = Lichtgeschwindigkeit.
Durch den Mischer 15 werden die beiden Funktionen miteinander multipliziert und es ergibt sich ein Signal entsprechend der Funktion: cos(α)i*t) * cos(ωi*(t-2d/c) = l/2*cos (2ωι*d/c) + 1/2* ...(3) wobei der Term
2töi*d/c = 2ω0*d/c + i*Δω*2d/c (4) mit i = 1 ... n ist .
Der Term i*Δω*2d/c (5) entspricht vorzugsweise der Periodendauer 2π. Somit ergibt sich die Bandbreite, innerhalb derer die Trägerfrequenz schrittweise geändert wird, zu: n*Δf = c/2d (6)
Nimmt man beispielsweise den Abstand d zwischen Codegeber 20 und Basisstation 10 zu 30m an, so ergibt sich aus der Formel (6) eine Bandbreite von 5 MHz. Werden beispielsweise n = 16 Abschnitte für die Trägerfrequenz angenommen, so hat jeder Abschnitt die minimale Bandbreite Δf = 312 kHz. Für die Fourier-Transformation werden dann ebenfalls 16 Werte genommen.
Daraus ist ersichtlich, dass das Identifikationssystem vernünftigerweise nur bei höheren Frequenzen eingesetzt wird, da ansonsten die Bandbreite zu groß wird und dann nationale Funkzulassungsvorschriften verletzt werde könnten. Anderer- seits kann aber auch der maximal zulässige Abstand d größer gewählt werden, um das IdentifikationsSystem in einem kleineren Frequenzband betreiben zu können.
Wird eindeutig ein Abstand d nach der Fourier-Transformation erkannt, so liegt eine Berechtigung vor, durch die der Zugang zu dem Objekt (beispielsweise einem Computer, einem Kraftfahrzeug, einem Telefon, einem Geldautomaten, einem Gebäude, usw.) oder dessen Benutzung freigegeben wird.
Damit das Codesignal nicht unbefugt abgehört und wiedergegeben wird, wird einerseits eine abschnittsweise frequenzmoduliertes Signal ausgesendet und andererseits die Reihenfolge der Abschnitte codegeberseitig verschlüsselt und objektseitig mit dem inversen Algorithmus entschlüsselt. Somit wird das Abfragesignal verschlüsselt „reflektiert". Nur wenn das Antwortsignal korrekt entschlüsselt wird, kann der Abstand d ermittelt werden. Wenn der Abstand d dann noch unter einem vorgegebenen Wert liegt, so wird der Zugang oder die Benutzung freigegeben.
Die Basisstation 10 muss daher in der Lage sein Signallaufzeiten (die Entfernungen entsprechen) zu messen. Die Entfernungsmessung bewirkt zudem, dass die Veränderungen in den Signallaufzeiten, insbesondere bei unerwünschter und unzuläs- siger Verlängerung der Signallaufzeit sofort von der Basisstation 10 erkannt werden und somit ein Schutz gegen unberechtigtes Abhören und Wiedergeben gewährleistet ist.
Durch die Fourier-Transformation des gemischten Signals kann zusätzlich ein Antikollisionsverfahren mehrerer, dem Objekt zugeordneter Codegeber 20 realisiert werden. Wenn nur ein berechtigter Codegeber 20 in der Nähe ist, so ergibt sich gemäß
Figur 4 nur eine einzige Spektrallinie im Frequenzbereich, hier beispielsweise bei der normierten Frequenz „1". Sind mehrere Codegeber 20 in unterschiedlichen Abständen in der Nähe des Objekts, so ergeben sich jeweils eine Spektrallinie für jeden Codegeber 20 bei derjenigen normierten Frequenz, die jeweils seinem Abstand di entspricht.
Ist jedoch ein unberechtigter Codegeber 20 in der Nähe des Objekts, der das Verschlüsselungsgeheimnis nicht kennt, so ergeben sich gemäß Figur 5 viele harmionische Spektrallinien von der Grundfrequenz (ganzzahlige Vielfache der Grundfrequenz) . Die Amplituden der Spektrallinien nehmen ab einer bestimmten Frequenz ab. Es sind jedoch in der Regel viel mehr Spektrallinien als dem Objekt zugeordnet Codegeber 20 vorhan- den und zudem sind die Spektrallinien immer nur bei den ganzzahligen Vielfachen der Grundfrequenz anzutreffen.
Da es sehr unwahrscheinlich ist, dass sich mehrere berechtigte Codegeber 20 genau in einem ganzzahligen Abstand des näh- esten Codegebers 20 befinden, kann daher gut erkannt werden, ob mehrere berechtigte Codegeber 20 oder zumindest ein unberechtigter Codegeber 20 in der Nähe des Objekts sind. Daher dürfen sich eben auch mehrere berechtigte Codegeber 20 im Abfragegebiet befinden, ohne dass eine Kollision der verschie- denen AntwortSignale eine Überprüfung der Berechtigung beeinträchtigt .
Das erfindungsgemäße Identifikationssystem wird vorteilhafterweise bei einem Kraftfahrzeug 30 eingesetzt (Figur 6) und auch beispielhaft für dieses näher erläutert. Es kann aber auch bei anderen Objekten, wie Computer, Telefon, Internet, Geldautomat, gebührenpflichtige Straßen, Verkehrsmittel (Fahrkarte), Räume, Gebäude, u.a. verwendet werden.
In der Figur 6 sind mögliche Anbringungsorte der Sende- und Empfangseinheit 17 bei Verwendung in einem Kraftfahrzeug 30 angegeben. Vorzugsweise befinden sich Sende- und Empfangsein-
heiten 17 in der Fahrertür 31 (z.B. mit zwei Sende- und Empfangseinheiten 17, und zwar mit einer Außenraumantenne und einer Innenraumantenne) und/oder der Beifahrertür 32. Falls Fondtüren 33 vorhanden sind, so können dort ebenfalls jeweils zwei Sende- und Empfangseinheiten 17 angeordnet sein. Eine Sende- und Empfangseinheit 17 kann am Innenspiegel 35, eine in der Hutablage 36 und eine am Heck in der Nähe des Kofferraums 34 angeordnet sein.
Die Sende- und Empfangseinheit sendet auf Aufforderung (beispielsweise Betätigen eines Schalters oder Türgriffs am Kraftfahrzeug 30) , ein- oder mehrfach wiederholt, oder bei Annähern einer Person sein Abfragesignal in eine Vorzugsrichtung aus. Falls der Codegeber 20 das Abfragesignal empfängt, so sendet er ein Antwortsignal zurück.
Nur wenn eindeutig erkannt wird, dass der Codegeber 20 auch tatsächlich nahe genug am Kraftfahrzeug 30 ist, wird der Zugang zum Kraftfahrzeug 30 freigegeben. Folglich kann dann ein Signal zum Entriegeln der Türen oder Lösen der Wegfahrsperre ausgelöst werden. Falls sich Codegeber 20 einer Tür 31, 32, 33 oder dem Kofferraum 34 nähert, so kann bei Berechtigung ein Entriegelungsbefehl und auch zusätzliche Befehle, wie Innenbeleuchtung einschalten, ausgelöst werden, falls der Code- geber 20 als innerhalb des zugelassenen Abstands d korrekt erkannt wird.
Der Anbringungsort und die Anzahl der Sende- und Empfangseinheiten 17 ergeben sich aus der Fahrzeuggeometrie und den ge- wünschten Anforderungen hinsichtlich Erfassungsbereich, in dem sich der Codegeber 20 aufhalten sollte, und hinsichtlich des Trageko forts des Codegebers 20.
Das von der Sende- und Empf ngseinheit 17 empfangene Antwort- signal kann direkt in der Sende- und Empfangseinheit 17 ausgewertet werden. Jede der verteilt angeordneten Sende- und Empfangseinheiten 17 kann sein empfangenes Antwortsignal dar-
über hinaus einer nicht dargestellten Zentraleinheit zuführen, in der dann die Berechtigung überprüft wird.
Außerdem kann die Zentraleinheit je nach Anzahl und Ort der empfangenen Antwortsignale entscheiden, ob nur Fahrertür 31, Beifahrertür 32, alle Türen 31 - 33 oder nur der Kofferraum 34 ent- oder verriegelt werden sollen. Dies hängt davon ab, zu welcher der an der Kraftfahrzeugkarosserie verteilt angeordneten Sende- und Empfangseinheiten 17 die geringste Ent- fernung (geringste Laufzeit) zum Codegeber 20 ermittelt wurde, d.h. aus welcher Richtung das Codesignal gekommen ist o- der von welcher Richtung sich der Benutzer seinem Fahrzeug nähert .
Dieses Identifikationssystem bietet zusätzlichen Schutz vor Abhören und Wiedergeben des Antwortsignal, da sich die Verschlüsselungsvariable / Verschlüsselungsalgorithmus nach jedem Frage-Antwort-Dialog sowohl auf dem Codegeber 20 als auch in dem Objekt synchron ändern kann. Solche eine Änderung der Verschlüsselung ist bekannt und wird auch als Wechselcode o- der Rolling Code bezeichnet.
Bei dem erfindungsgemäßen Identifikationssystem findet nur ein Quasi-Vergleich zwischen dem Antwortsignal und dem Abfra- gesignal statt, bei dem nicht der Codeinhalt der Signale interessiert, sondern lediglich der Frequenzversatz zwischen beiden Signalen. Hierzu werden die beiden Signale in dem Mischer miteinander korreliert. Und nur wenn die Zufallsvariablen auf beiden Seiten gleich sind, ergibt sich ein eindeuti- ger und zweifelsfreier Abstand d.
Bei dem weiteren Ausführungsbeispiel der Erfindung können auch zwei verschiedene Abfragesignale (Figur 7) ausgesendet werden. Dabei wird das erste Abfragesignal mit abschnittswei- se geänderter Trägerfrequenz im Ultraschallfrequenzbereich (mit Schallgeschwindigkeit vs als Ausbreitungsgeschwindigkeit) mittels US-Sender 43 ausgesendet und US-Empfänger 27
auf dem Codegeber 20 empfangen. Das zweite Abfragesignal wird ebenfalls mit abschnittsweise geänderter Trägerfrequenz in einem Frequenzbereich (hier bei etwa 125 kHz) durch einen Sender 44 moduliert zu dem Codegeber 20 gesendet (mit Licht- geschwindigkeit c als Ausbreitungsgeschwindigkeit) und dort von einer Empfangseinheit 21 empfangen und demoduliert.
Die beiden Signale werden auf dem Codegeber 20 mittels einem Mischer 28 miteinander korreliert (gemischt) und als Antwort- signal über einen Sender 29 moduliert bei einer festen Trägerfrequenz (hier 433 MHz) zu dem Objekt zurückgesendet, wo es von einem Empfänger 46 empfangen und demoduliert wird.
Bei diesem Ausführungsbeispiel werden sich die unterschiedli- chen Ausbreitungsgeschwindigkeiten der Abfragesignals zu Nutze gemacht, die nach Mischung und Fourier-Transformation einen Abstand d eindeutig erkennen lassen.
Die Abfragesignale werden hierzu durch einen stochastischen Stufenfrequenzgeber 42 und einen Bandbreitengenerator 42 gesteuert, der eine abschnittsweise geänderte Trägerfrequenz entsprechend einer Reihenfolge festlegt (entspricht einer Verschlüsselung oder Codierung) . Eine „inverse" Verschlüsselung wird codegeberseitig angewendet. Zur Erzeugung eines Re- ferenzsignals wird die gleiche „inverse" Codierung wie im Codegeber 20 angewendet, um die Verschlüsselung weder rückgängig zu machen.
Auf dem Codegeber 20 findet ein Vergleich des empfangenen und demodulierten Antwortsignals mit dem Referenzsignal durch einen Mischer 28 statt. Die AusgangsSignale der Empfänger 27, 21 werden hierzu dem Mischer 28 zugeführt und als ein Antwortsignal zum Objekt gesendet und dort nach Demodulation und Abtasten durch ein A/D-Wandler 47 einem Fourier-Transformator 48 zugeführt. Das Referenzsignal, das aus dem Generatorsignal und durch Entschlüsselung durch einen stochastischen Codegenerator 45 entstanden ist, wird ebenfalls dem Fourier-
Transformator 48 zugeführt. Anhand des dann Fourier- transformierten Signals kann die Berechtigung anhand es Ab- stands d des Codegebers 20 zum Objekt erkannt werden.
Die Erfindung hat den Vorteil, dass bei dem Identifikationssystem die „Kryptologie" mit einbezogen ist und dadurch sicherer wird, obwohl auf der Objektseite kein Vergleich der in den verschlüsselten Signalen enthaltene Codeinformation vorgenommen wird. Liegt allerdings das Antwortsignal oder das Abfragesignal nicht in verschlüsselter Form vor, so kann aufgrund nicht ermittelbaren Abstands d keine Berechtigung erkannt werden.
Diese Ausführungsform der Erfindung hat den Vorteil, dass vorhandene Identifikationssystems ohne Abstandserkennung nachgerüstet werden können. Die herkömmlichen Identifikationssysteme arbeiten üblicherweise bei niedrigen Frequenzen (125 kHz und 433 MHz) , bei denen eine Abstandsbestimmung mit nur einem Abfragesignal und dem erfindungsgemäßen Verfahren nur dann möglich ist, wenn große Abstände als berechtigt zugelassen werden. Um die Sicherheit des Identifikationssystems zu erhöhen, sollten nur kleine Abstände zugelassen werden. Der Benutzer sollte also in unmittelbarer Nähe des zu benutzenden Objekts sein, um Zugang zu erhalten.
Bei der Erfindung wird entweder die Reihenfolge, wie die Trägerfrequenz abschnittsweise geändert wird, anfänglich zum Codegeber 20 übertragen, dort verschlüsselt, zurückübertragen und objektseitig entschlüsselt, bevor das Signal fou- riertransformiert wird. Oder die verschlüsselte Reihenfolge wird objektseitig ausgesendet, codegeberseitig in die „richtige" Reihenfolge gebracht und zurück zu dem Objekt gesendet. Objektseitig wird das Referenzsignal entweder verschlüsselt oder entschlüsselt, bevor es mit der empfangenen/demodu- lierten Antwort bezüglich Frequenzversatz verglichen wird.
Unter dem Begriff „stochastisch" ist bei der Erfindung das Ver- oder Entschlüsseln beispielsweise mittels eines mathematischen Algorithmus und/oder eines Zufallsgenerators zu verstehen.
Unter dem Begriff „Mischen" ist eine Umsetzung einer Frequenz in eine anderen Frequenzbereich durch Modulation mit einer Hilfsfrequenz zu verstehen. Bei der Mischung entstehen eine Summenfrequenz und eine Differenzfrequenz. Durch einen Filter kann eine der Frequenzen herausgesiebt werden und zur weiteren Auswertung herangezogen werden. Somit können durch Mischen zwei Signale bezüglich ihrer Frequenzen/Frequenzversatz verglichen werden.
Claims
1. Identifikationssystem zum Nachweis einer Berechtigung für den Zugang zu einem Objekt oder die Benutzung eines Objekts, insbesondere eines Kraftfahrzeugs, mit
- einer objektseitig angeordneten Sende- und Empfangseinheit (17), die ein Abfragesignal mit abschnittsweise geänderter Trägerfrequenz entsprechend einer Reihenfolge moduliert aussendet, - einem mobilen Codegeber (20) , der ein Antwortsignal erzeugt, indem er die empfangene Reihenfolge verschlüsselt und moduliert zurücksendet, und
- einer objektseitigen Auswerteeinheit (14, 15, 16), die das Antwortsignal entschlüsselt sowie mit dem Abfragesignal hinsichtlich eines Frequenzversatzes vergleicht und die in Abhängigkeit vom Vergleichsergebnis den Abstand (d) zwischen Codegeber (20) und Objekt (10) ermittelt.
2. Identifikationssystem nach Anspruch 1, dadurch gekenn- zeichnet, dass der Auswerteeinheit ein Mischsignal aus Abfragesignal und Antwortsignal zugeführt wird und ein dabei entstehendes Mischprodukt hinsichtlich Abstand (d) ausgewertet wird.
3. Identifikationssystem nach Anspruch 1, dadurch gekennzeichnet, dass der Codegeber (20) einen Speicher (24) aufweist, in dem die Reihenfolge abschnittsweise geänderten Trägerfrequenzen gespeichert wird und mit dessen Hilfe das Antwortsignal verschlüsselt wird.
4. Identifikationssystem nach Anspruch 1, dadurch gekennzeichnet, dass die Auswerteeinheit (14 - 16) eine Entschlüsselungseinheit (14) aufweist, die das empfangene Antwortsignal hinsichtlich der Reihenfolge der abschnittsweise geänder- ten Trägerfrequenzen entschlüsselt, und dass sie eine Decodiereinheit (15, 16) aufweist, die das Antwortsignal mit dem Abfragesignal mischt und hinsichtlich Laufzeitunterschied der beiden und damit Abstand zwischen Codegeber (20) und Objekt (10) auswertet.
5. Identifikationssystem nach Anspruch 1, dadurch gekenn- zeichnet, dass das Abfragesignal als breitbandig mit abschnittsweise geänderter Trägerfrequenzen moduliertes Signal im Frequenzbereich größer als 100 MHz ausgesendet wird.
6. Identifikationssystem nach Anspruch 1, dadurch gekenn- zeichnet, dass die Auswerteeinheit (14 - 16) einen Fourier-
Transfor ator (16) aufweist, mit dessen Hilfe der Abstand (d) ermittelt wird.
7. Identifikationssystem zum Nachweis einer Berechtigung für den Zugang zu einem Objekt oder die Benutzung eines Objekts, insbesondere eines Kraftfahrzeugs, mit
- einer objektseitig angeordneten Sende- und Empfangseinheit (17), die ein erstes Abfragesignal mit abschnittsweise geänderter Trägerfrequenz entsprechend einer Reihenfolge und ein zweites Abfragesignal bei einer anderen Trägerfrequenz moduliert aussendet,
- einem mobilen Codegeber (20) , der das erste und das zweite Abfragesignal korreliert und als Antwortsignal zurücksendet, und - einer objektseitigen Auswerteeinheit (45, 48), die das Antwortsignal zusammen mit einem codierten Referenzsignal hinsichtlich eines Frequenzversatzes vergleicht und in Abhängigkeit vom Vergleichsergebnis den Abstand (d) zwischen Codegeber (20) und Objekt (40) ermittelt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01984755A EP1346326A1 (de) | 2000-12-29 | 2001-11-22 | Identifikationssystem zum nachweis einer berechtigung für den zugang zu einem objekt oder die benutzung eines objekts, insbesondere eines kraftfahrzeugs |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00128704 | 2000-12-29 | ||
EP00128704 | 2000-12-29 | ||
EP01984755A EP1346326A1 (de) | 2000-12-29 | 2001-11-22 | Identifikationssystem zum nachweis einer berechtigung für den zugang zu einem objekt oder die benutzung eines objekts, insbesondere eines kraftfahrzeugs |
PCT/EP2001/013638 WO2002054353A1 (de) | 2000-12-29 | 2001-11-22 | Identifikationssystem zum nachweis einer berechtigung für den zugang zu einem objekt oder die benutzung eines objekts, insbesondere eines kraftfahrzeugs |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1346326A1 true EP1346326A1 (de) | 2003-09-24 |
Family
ID=8170866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01984755A Withdrawn EP1346326A1 (de) | 2000-12-29 | 2001-11-22 | Identifikationssystem zum nachweis einer berechtigung für den zugang zu einem objekt oder die benutzung eines objekts, insbesondere eines kraftfahrzeugs |
Country Status (4)
Country | Link |
---|---|
US (1) | US7098769B2 (de) |
EP (1) | EP1346326A1 (de) |
JP (1) | JP3935432B2 (de) |
WO (1) | WO2002054353A1 (de) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2270700A1 (de) | 2002-07-26 | 2011-01-05 | Koninklijke Philips Electronics N.V. | Sichere authentifizierte Abstandmessung |
US7130646B2 (en) * | 2003-02-14 | 2006-10-31 | Atheros Communications, Inc. | Positioning with wireless local area networks and WLAN-aided global positioning systems |
DE10350081B4 (de) * | 2003-10-27 | 2007-02-15 | Sciknowtec Gmbh | Messung der Distanz zwischen Stationen in drahtlos arbeitenden Zugangssystemen zur Abwehr von Bypassangriffen |
EP1759330B1 (de) * | 2004-06-09 | 2018-08-08 | Koninklijke Philips Electronics N.V. | Biometrische vorlagenähnlichkeit auf der basis von merkmallokalisierungen |
US20060093051A1 (en) * | 2004-11-03 | 2006-05-04 | Silicon Integrated Systems Corp. | Method and device for resisting DC interference of an OFDM system |
US8886125B2 (en) | 2006-04-14 | 2014-11-11 | Qualcomm Incorporated | Distance-based association |
US9215581B2 (en) | 2006-04-14 | 2015-12-15 | Qualcomm Incorported | Distance-based presence management |
US8552903B2 (en) * | 2006-04-18 | 2013-10-08 | Qualcomm Incorporated | Verified distance ranging |
JP4802888B2 (ja) * | 2006-06-21 | 2011-10-26 | 株式会社デンソー | 車載装置用盗難抑止システム |
US7791457B2 (en) * | 2006-12-15 | 2010-09-07 | Lear Corporation | Method and apparatus for an anti-theft system against radio relay attack in passive keyless entry/start systems |
US8837724B2 (en) | 2007-03-27 | 2014-09-16 | Qualcomm Incorporated | Synchronization test for device authentication |
US9141961B2 (en) | 2007-06-20 | 2015-09-22 | Qualcomm Incorporated | Management of dynamic mobile coupons |
US9524502B2 (en) | 2007-06-20 | 2016-12-20 | Qualcomm Incorporated | Management of dynamic electronic coupons |
US9483769B2 (en) | 2007-06-20 | 2016-11-01 | Qualcomm Incorporated | Dynamic electronic coupon for a mobile environment |
US20100102924A1 (en) * | 2008-10-27 | 2010-04-29 | Lear Corporation | Remote control system and a method of control |
US9129454B2 (en) * | 2009-06-05 | 2015-09-08 | Lear Corporation | Passive entry system and method for a vehicle |
US8284020B2 (en) * | 2009-12-22 | 2012-10-09 | Lear Corporation | Passive entry system and method for a vehicle |
US10542372B2 (en) | 2011-03-15 | 2020-01-21 | Qualcomm Incorporated | User identification within a physical merchant location through the use of a wireless network |
US8723720B2 (en) * | 2011-05-03 | 2014-05-13 | Harris Corporation | Wireless location detection and/or tracking device and associated methods |
JP6427321B2 (ja) * | 2014-02-05 | 2018-11-21 | 株式会社Soken | 制御システム、携帯機 |
DE102014205672A1 (de) * | 2014-03-26 | 2015-10-01 | Bayerische Motoren Werke Aktiengesellschaft | Herstellerübergreifendes Positionierungssystem für induktives Laden |
DE102015206009B4 (de) * | 2015-04-02 | 2017-06-08 | Volkswagen Aktiengesellschaft | Abstandsbestimmung und Authentifizierung eines Funkschlüssels für ein Fahrzeug |
US9613475B2 (en) * | 2015-05-27 | 2017-04-04 | Nxp B.V. | Communications with interaction detection |
FR3041459B1 (fr) * | 2015-09-18 | 2017-10-13 | Valeo Comfort & Driving Assistance | Procede de determination d'une distance entre un vehicule et un identifiant |
KR20180036495A (ko) * | 2016-09-30 | 2018-04-09 | 삼성전자주식회사 | 차량 내에서 단말의 위치를 식별하는 방법 및 장치. |
CN111417867B (zh) * | 2017-10-02 | 2023-10-03 | 安全堡垒有限责任公司 | 针对传感器的网络物理攻击的检测和预防 |
DE102020210096A1 (de) * | 2020-08-10 | 2022-02-10 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren und Vorrichtung zum Ermitteln von Informationen eines Bussystems |
US20240073678A1 (en) * | 2022-08-26 | 2024-02-29 | Cypress Semiconductor Corporation | Security signature for bluetooth low energy frame synch detection |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH614051A5 (de) * | 1977-04-07 | 1979-10-31 | Siemens Ag Albis | |
SE456118B (sv) * | 1985-12-12 | 1988-09-05 | Stiftelsen Inst Mikrovags | Forfarande och anordning for att meta avstand mellan ett forsta och ett andra foremal med signaler av mikrovagsfrekvens |
US5748147A (en) * | 1992-03-04 | 1998-05-05 | Motorola Inc | Position locating rescue transceiver |
FR2716850B1 (fr) * | 1994-03-01 | 1996-04-05 | Setics | Identification de véhicule. |
FR2723238B1 (fr) * | 1994-07-27 | 1996-09-13 | Suisse Electronique Microtech | Systeme de communication entre une station de base et un transpondeur passif |
FR2761480B1 (fr) * | 1997-03-28 | 1999-06-11 | Thomson Csf | Procede et dispositif de levee d'ambiguite en distance appliquee notamment a un radar a onde continue et a saut de frequence |
DE19839695C1 (de) * | 1998-09-01 | 2000-05-04 | Kostal Leopold Gmbh & Co Kg | Verfahren zum Durchführen einer schlüssellosen Zugangsberechtigungskontrolle sowie schlüssellose Zugangsberechtigungskontrolleinrichtung |
DE19926234A1 (de) * | 1999-06-10 | 2000-12-14 | Kostal Leopold Gmbh & Co Kg | Verfahren zum Durchführen einer schlüssellosen Zugangsberechtigungskontrolle sowie schlüssellose Zugangsberechtigungskontrolleinrichtung |
DE19846803C1 (de) * | 1998-10-10 | 2000-09-07 | Daimler Chrysler Ag | Verfahren zur Herstellung der Zugangsberechtigung zu einem motorangetriebenen Fahrzeug |
DE19909140A1 (de) * | 1999-03-03 | 2000-09-21 | Daimler Chrysler Ag | Elektronische Entfernungsbestimmungsvorrichtung und damit ausgerüstete elektronische Sicherungsanlage |
ATE278090T1 (de) * | 1999-05-06 | 2004-10-15 | Assa Abloy Ab | Schlüssel und schlossvorrichtung |
FR2795263B1 (fr) * | 1999-06-15 | 2001-08-24 | Valeo Securite Habitacle | Procede pour securiser une transmission bidirectionnelle de donnees avec un identifiant et systeme pour sa mise en oeuvre |
-
2001
- 2001-11-22 WO PCT/EP2001/013638 patent/WO2002054353A1/de active Application Filing
- 2001-11-22 JP JP2002555377A patent/JP3935432B2/ja not_active Expired - Fee Related
- 2001-11-22 EP EP01984755A patent/EP1346326A1/de not_active Withdrawn
-
2003
- 2003-06-30 US US10/609,782 patent/US7098769B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO02054353A1 * |
Also Published As
Publication number | Publication date |
---|---|
US7098769B2 (en) | 2006-08-29 |
US20040000986A1 (en) | 2004-01-01 |
JP3935432B2 (ja) | 2007-06-20 |
JP2004516989A (ja) | 2004-06-10 |
WO2002054353A1 (de) | 2002-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2002054353A1 (de) | Identifikationssystem zum nachweis einer berechtigung für den zugang zu einem objekt oder die benutzung eines objekts, insbesondere eines kraftfahrzeugs | |
EP1109981B1 (de) | Verfahren zum durchführen einer schlüssellosen zugangsberechtigungskontrolle sowie schlüssellose zugangsberechtigungskontrolleinrichtung | |
DE19957536C2 (de) | Diebstahlschutzsystem für ein Kraftfahrzeug und Verfahren zum Betreiben eines Diebstahlschutzsystems | |
EP0980800B1 (de) | Diebstahlschutzeinrichtung für ein Kraftfahrzeug und Verfahren zum Betreiben der Diebstahlschutzeinrichtung | |
DE10148830B4 (de) | Verfahren und System zur Authentifizierung eines ersten Sende-/Empfangsgeräts gegenüber einem zu diesem entfernt angeordneten zweiten Sende-/Empfangsgerät | |
EP1261792B1 (de) | Sende- und empfangsverfahren, insbesondere zur detektierung eines id-gebers | |
EP1069265A2 (de) | Zugangskontrolleinrichtung sowie Zugangskontroll- und Fahrberechtigungseinrichtung | |
DE112019001472T5 (de) | Authentisierungssystem | |
DE19957557A1 (de) | Identifikationssystem, insbesondere für ein Kraftfahrzeug, und Verfahren zum Betreiben des Identifikationssystems | |
DE10301146B4 (de) | Ein Sicherheitssystem | |
DE10212648A1 (de) | Identifikationssystem zum Nachweis einer Berechtigung für den Zugang zu einem Objekt oder die Benutzung eines Objekts, insbesondere eines Kraftfahrzeugs | |
EP3580578B1 (de) | Schutz gegen einen relayangriff | |
DE10159604A1 (de) | Verfahren zur Erkennung einer Weiterleitung bei einer kontaktlosen Datenübertragung | |
DE19850176C1 (de) | Diebstahlschutzeinrichtung für ein Kraftfahrzeug und Verfahren zum Betreiben der Diebstahlschutzeinrichtung | |
DE10012113A1 (de) | Verfahren und Vorrichtung zur Datenübertragung und/oder Abstandsmessung zwischen einer Basiseinheit und einer mobilen Schlüsseleinheit eines Zugangsberechtigungskontrollsystems, insbesondere für Kraftfahrzeuge | |
DE10046897B4 (de) | Sende- und Empfangsverfahren, insbesondere zum Detektieren eines ID-Gebers | |
EP1360095B1 (de) | Identifikationssystem zum nachweis einer berechtigung für den zugang zu einem objekt oder die benutzung eines objekts, insbesondere eines kraftfahrzeugs | |
EP1246137A1 (de) | Identifikationssystem zum Nachweis einer Berechtigung für den Zugang zu einem Objekt oder die Benutzung eines Objekts, insbesondere eines Kraftfahrzeugs | |
WO2003052455A1 (de) | Kommunikationssystem mit einem ersten und einem zweiten sendeempfänger und verfahren zu dessen betrieb | |
DE19839695C1 (de) | Verfahren zum Durchführen einer schlüssellosen Zugangsberechtigungskontrolle sowie schlüssellose Zugangsberechtigungskontrolleinrichtung | |
EP3777282B1 (de) | Erkennung von angriffen auf funkautorisierungssysteme | |
DE60113762T2 (de) | Handfreies Zugangssystem für Kraftfahrzeuge | |
EP1549971A1 (de) | Verfahren zur ermittlung des abstands zwischen zwei sende-empfangs-stationen | |
DE102004042231A1 (de) | Bestimmung der räumlichen Distanz zwischen kommunizierenden Funkpartnern | |
DE102014220399B4 (de) | Verfahren und Vorrichtung zur Zugangs- und Startverifizierung in einem Fahrzeug |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030516 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20080603 |