EP1318906A1 - Controller for a hydraulic press and method for the operation thereof - Google Patents
Controller for a hydraulic press and method for the operation thereofInfo
- Publication number
- EP1318906A1 EP1318906A1 EP01956735A EP01956735A EP1318906A1 EP 1318906 A1 EP1318906 A1 EP 1318906A1 EP 01956735 A EP01956735 A EP 01956735A EP 01956735 A EP01956735 A EP 01956735A EP 1318906 A1 EP1318906 A1 EP 1318906A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure
- valve
- press
- line
- cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B15/00—Details of, or accessories for, presses; Auxiliary measures in connection with pressing
- B30B15/16—Control arrangements for fluid-driven presses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B15/00—Details of, or accessories for, presses; Auxiliary measures in connection with pressing
- B30B15/16—Control arrangements for fluid-driven presses
- B30B15/161—Control arrangements for fluid-driven presses controlling the ram speed and ram pressure, e.g. fast approach speed at low pressure, low pressing speed at high pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B15/00—Details of, or accessories for, presses; Auxiliary measures in connection with pressing
- B30B15/16—Control arrangements for fluid-driven presses
- B30B15/163—Control arrangements for fluid-driven presses for accumulator-driven presses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B15/00—Details of, or accessories for, presses; Auxiliary measures in connection with pressing
- B30B15/16—Control arrangements for fluid-driven presses
- B30B15/22—Control arrangements for fluid-driven presses controlling the degree of pressure applied by the ram during the pressing stroke
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B1/00—Installations or systems with accumulators; Supply reservoir or sump assemblies
- F15B1/02—Installations or systems with accumulators
- F15B1/024—Installations or systems with accumulators used as a supplementary power source, e.g. to store energy in idle periods to balance pump load
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/02—Systems essentially incorporating special features for controlling the speed or actuating force of an output member
- F15B11/028—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
- F15B11/032—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force by means of fluid-pressure converters
- F15B11/0325—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force by means of fluid-pressure converters the fluid-pressure converter increasing the working force after an approach stroke
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B21/00—Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
- F15B21/14—Energy-recuperation means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/2053—Type of pump
- F15B2211/20538—Type of pump constant capacity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/21—Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
- F15B2211/212—Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/21—Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
- F15B2211/214—Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being hydrotransformers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/305—Directional control characterised by the type of valves
- F15B2211/30505—Non-return valves, i.e. check valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/305—Directional control characterised by the type of valves
- F15B2211/30525—Directional control valves, e.g. 4/3-directional control valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/31—Directional control characterised by the positions of the valve element
- F15B2211/3144—Directional control characterised by the positions of the valve element the positions being continuously variable, e.g. as realised by proportional valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/32—Directional control characterised by the type of actuation
- F15B2211/327—Directional control characterised by the type of actuation electrically or electronically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/405—Flow control characterised by the type of flow control means or valve
- F15B2211/40515—Flow control characterised by the type of flow control means or valve with variable throttles or orifices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/42—Flow control characterised by the type of actuation
- F15B2211/426—Flow control characterised by the type of actuation electrically or electronically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/455—Control of flow in the feed line, i.e. meter-in control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/46—Control of flow in the return line, i.e. meter-out control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6306—Electronic controllers using input signals representing a pressure
- F15B2211/6313—Electronic controllers using input signals representing a pressure the pressure being a load pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6336—Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/705—Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
- F15B2211/7051—Linear output members
- F15B2211/7052—Single-acting output members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/775—Combined control, e.g. control of speed and force for providing a high speed approach stroke with low force followed by a low speed working stroke with high force, e.g. for a hydraulic press
Definitions
- the invention relates to a hydraulic press of the type mentioned in the preamble of claim 1, to a method for its operation according to the preamble of claim 8 and to a use according to claim 11.
- Hydraulic presses are used when it is a matter of shaping or reshaping workpieces. Hydraulic presses are also used for cutting processes. The required force of the hydraulic press depends on the workpiece. Presses are used in the ceramic industry whose press force is 20,000 kN or more. With regard to economical production, the cycle time for a pressing process should be as short as possible. Cycle sequences of 20 strokes per minute are a guide. The energy to be expended is determined by the pressing force and cycle time, in hydraulic presses it is the power of pumps and electric motors that drive these pumps. Hydraulic presses according to the prior art also use accumulators, such as pressure medium accumulators or flywheels.
- a hydraulic press of the type mentioned in the preamble of claim 1 is known from DE-Al-43 20 213.
- a pressure medium reservoir in the feed circuit of the hydraulic press cylinder which is loaded when the press returns and is used to drive the press tool when it is fed. Energy can thus be saved with the main drive.
- a hydraulic drive system for a press is known from US-A-5,852,933 and DE-Al-44 36 666. It contains a low pressure and a high pressure circuit. In this there are three hydrostatic machines, two of which are mechanically coupled. In order to enable satisfactory operation, these machines have to swallow or Funding volume can be adjusted, which is associated with considerable costs.
- the system described here can only be used if the press has differential cylinders or synchronous cylinders. It is also known (DE-Al-43 08 344) to use the principle of secondary control when controlling the drive of a hydraulic press. The various movements of the press ram are combined with one another in such a way that the pressure network operates in a closed circuit, the maximum system pressure being determined by the pressure medium reservoir.
- the invention has for its object to provide a hydraulic press, the hydraulic control is constructed so that the total energy requirement is reduced without an increased outlay on equipment is necessary.
- the control should also be applicable to a press with plunger cylinders.
- Fig. 7 is a diagram of an embodiment of the press control.
- 1 means a press cylinder to which a reservoir 2 for the hydraulic medium is assigned.
- Reference number 3 designates a valve group which contains a series of valves which are mentioned below. Over a Cylinder line 4, the hydraulic medium is conveyed between the press cylinder 1 and the valve group 3.
- a storage line 5 is connected to the valve group 3.
- a pressure medium accumulator 7 is connected to the accumulator line 5, which also runs within the valve group 3. This also means that the hydraulic pump 6 is able to convey the hydraulic medium into the pressure medium reservoir 7.
- a check valve (not shown) can be arranged in the line section between the hydraulic pump 6 and the storage line 5 in order to relieve the hydraulic pump 6 of the pressure prevailing in the pressure medium store 7 when the hydraulic pump 6 is not running.
- a tank line 8 leads from the valve group 3 to the storage container 2.
- a pressure converter 9 is also connected to the valve group 3, which according to the general inventive concept can act on the one hand as a pressure intensifier and on the other hand as a pressure reducer.
- the pressure converter 9 has a piston 9K which is displaceable within a cylinder 9Z and which separates a low-pressure chamber 9.1 with a large effective cross-section from a high-pressure chamber 9.2 with a small effective cross-section.
- the effective ratio with regard to pressure and volume flow is determined by the cross sections of the two pressure chambers 9.1 and 9.2.
- the cross-section is determined according to the inner diameter of the cylinder 9Z and for the high pressure chamber 9.2 by the difference between the inner diameter of the cylinder 9Z and the piston rod 9S according to
- a 9.1 is the hydraulically effective cross section of the low pressure chamber 9.1, A 92 that of the high chamber 9.2, d 9 z the inner diameter of the cylinder 9Z and d 9 s the diameter of the piston rod 9S.
- the pressure ratio of the pressure converter 9 and accordingly also the ratio of the volume flows is therefore determined by A 9 . 1 : A 9 . 2nd
- the ratio A 9 : A 92 is, for example, 2: 1.
- the position of the piston 9K is detected by means of a displacement sensor 9W.
- the low pressure chamber 9.1 is connected to a pressure converter low pressure line 10.1 of the valve group 3.
- a pressure converter low-pressure line 10.1 there are three switching valves, namely a pre-pressure valve 11, the second connection of which is connected to the cylinder line 4, a low-pressure chamber outlet valve 12, the second connection of which is connected to the reservoir 2 via the tank line 8, and a low-pressure chamber inlet valve 13, the second connection of which is connected to the storage line 5 and thus also to the pressure medium store 7.
- the high pressure chamber 9.2 is connected to a pressure converter high pressure line 10.2 of the valve group 3.
- a pressure converter high-pressure line 10.2 there are also valves, namely a main pressure valve 14, the second connection of which is connected to the cylinder line 4, and a shut-off valve 15, the second connection of which is connected to the storage line 5 and thus also to the pressure medium store 7.
- a pressure relief valve 16 lies between the cylinder line 4 and the tank line 8.
- a third valve, namely a 3-way valve 17 with an upstream check valve 18, is also connected to the pressure converter high-pressure line 10.2, the 3-way valve 17 on the other hand the storage line 5 and thus also with the
- Pressure medium accumulator 7 and its further connection is connected to the tank line 8 and thus to the reservoir 2.
- the line section between the check valve 18 and the 3-way valve 17 is referred to as a press line and is provided with the reference number 19.
- the check valve 18 is functionally a non-return valve.
- the functioning of the various valves 11, 12, 13, 14, 15, 16 and 17 is then reported in detail with reference to FIGS. 2 to 6.
- the valves can be controlled electrically and are controlled by a control unit 20.
- the naturally existing connection lines from the control unit 20 to the valves 11, 12, 13, 14, 15, 16 and 17 are not shown in the figures for reasons of clarity.
- control unit 20 displacement sensor 9W
- pressure sensor 22 press safety lowering and retraction control 21 and other safety-relevant elements on the press are also not shown.
- a first phase of press operation is described below with reference to FIG. 2, namely the build-up of the form.
- the press cylinder 1 is filled in the usual way from the reservoir 2 with hydraulic medium, which is indicated by an arrow. This lowers the upper press tool and closes the mold.
- the piston 9K is in an upper position near its upper end position A.
- the 3-way valve 17 is controlled so that it releases the flow from the connection of the storage line 5 to the connection of the press line 19.
- the activation of the 3-way valve 17 is marked in FIG. 2 by the fact that its electrically operated drive is filled in black.
- hydraulic medium can now flow from the pressure medium reservoir 7 via said 3-way valve 17 through the press line 19, through the check valve 18 which inevitably opens due to the pressure of the hydraulic medium, and through the pressure converter high-pressure line 10.2 into the High-pressure chamber 9.2 of the pressure converter 9 flow, which is indicated by arrows in FIG. 2.
- the pre-press valve 11 is also activated, which in turn is marked by the fact that its electrically operated drive is filled in black.
- Hydraulic medium can now flow from the low-pressure chamber 9.1 via the pressure converter low-pressure line 10.1, through the pre-pressure valve 11 and the cylinder line 4 into the press cylinder 1. Because of the area ratio A 9 . 2 to A 9-1, the pressure converter 9 now acts as a pressure reducer, the amount of hydraulic medium being increased in accordance with the area ratio A 92 to A 9 1 . Is that
- Area ratio A 9 . 2 to A 9 ⁇ for example 1: 2, so the pressure converter 9 Pressure reduced in a ratio of 1: 2, but the amount of hydraulic medium increased in a ratio of 1: 2.
- the piston 9K is moved in direction B by the flow of the hydraulic medium.
- the 3-way valve 17 is a proportionally controllable valve, so that the drive of the 3-way valve 17 is, for example, a proportional magnet, so that the pressure in the press line 9 and in the pressure converter high-pressure line 10.2 and thus also the pressure in the pressure converter low-pressure line 10.1. is controllable or regulatable in the cylinder line 4 and in the press cylinder 1.
- the control unit 20 If the desired admission pressure has been reached, which is detected by the pressure transducer 22, transmitted by the latter to the control unit 20 and thus determined by the control unit 20, the control unit 20 causes the 3-way valve 17 and the pre-compression valve 11 to be closed.
- the pressure relief valve 16 is then actuated and thus opened. This results in a pressure reduction in the press cylinder 1 and in the cylinder line 4, which is detected by the pressure detector 22. Hydraulic medium flows from it
- the piston 9K is located within the cylinder 9Z in a position near the lower end position B, which is determined by the displacement sensor 9W. This position is necessary in order to subsequently be able to generate the required main pressure.
- the next phase of the press operation follows, the build-up of the main pressure. This is described below with reference to FIGS. 3 and 4.
- the first step of this phase is shown in FIG.
- the actuated valves are again shown by black marking of the electric drives and the flow of the hydraulic medium is indicated by arrows next to the lines.
- the check valve 15 and the main press valve 14 are now controlled.
- Check valve 15 and main press valve 14 are then open.
- These two valves 14, 15 are advantageously electrically controllable OPEN-CLOSE valves.
- Prepressing valve 11, low pressure chamber inlet valve 13, low pressure chamber outlet valve 12 and pressure relief valve 16 are advantageously of this type.
- this pressure build-up is connected to a flow of hydraulic medium from the pressure medium reservoir 7 into the low pressure chamber 9.1 and from the high pressure chamber 9.2 via the cylinder line 4 to the press cylinder 1, whereby the piston 9K is also displaced in direction A. Because of the area ratio A 92 to A 9 1 , the amount of hydraulic medium that flows from the high-pressure chamber 9.2 is, under the given conditions of an area ratio A 92 to A 9 1 of 1: 2, only half as large as the amount of hydraulic medium that flows from Pressure medium reservoir 7 flows into the low-pressure chamber 9.1.
- the press now reaches its maximum pressure and carries out the pressing. Under the effect of this pressure, the stresses in the components of the press are also at the maximum values. Since the components deform elastically, energy is stored in these components. The compressible represents a further energy potential
- FIGS. 5 and 6 The first step is shown in FIG. 5.
- the main press valve 14 and the shut-off valve 15 are open, which is shown analogously to the previous figures with black marking of the drives of the valves 14, 15.
- the hydraulic medium can flow from the press cylinder 1 to the pressure medium reservoir 7, taking the path through the cylinder line 4, the main press valve 14, the shut-off valve 15 and the accumulator line 5.
- the flow comes about from the fact that, as mentioned above, the pressure in the press cylinder 1 is greater than in the pressure medium reservoir 7.
- the first step lasts until the pressures in the press cylinder 1 and in the pressure medium reservoir 7 are equal.
- the residual pressure prevailing in the press cylinder 1, in the cylinder line 4 and in the pressure converter high pressure line 10.2 by opening the main pressure valve 14 and the low pressure chamber outlet valve 12 is used to push the piston 9K of the pressure converter 9 into the bring desired position.
- This desired position is shown in FIG. 6.
- the high-pressure chamber 9.2 is also filled again with hydraulic medium under pressure, so that no hydraulic medium has to be removed from the pressure accumulator 7 for the filling. That means further energy savings.
- the hydraulic medium displaced from the low-pressure chamber 9.1 during the movement of the piston 9K passes via the low-pressure chamber outlet valve 12 through the tank line 8 into the reservoir 2. If the piston 9K has reached the desired position, which is determined by the displacement sensor 9W, as will be said Low pressure chamber outlet valve 12 and main pressure valve 14 closed again.
- the residual pressure in the press cylinder 1 and in the cylinder line 4 is completely reduced, which is done by opening the pressure relief valve 16. Hydraulic medium flows from the press cylinder 1 through the cylinder line 4 under the effect of the residual pressure
- FIG. 7 shows a variant of the press control system according to the invention. Compared to the example of FIG. 1, the only change is that the pressure converter 9 'has a different design than the pressure converter 9 according to FIGS. 1 to 6.
- the pressure converter 9' essentially consists of a first pump 23, the shaft 24 of which is rigidly coupled to a second pump 25 so that the shaft 24 is common to both pumps 23, 25.
- the first pump 23 is connected on the one hand to the pressure converter low pressure line 10.1, this side of the pump 23 acting as low pressure chamber 9.1, on the other hand to a tank 26.
- the second pump 25 is connected on the one hand to the pressure converter high pressure line 10.2, this side of the pump 25 acts as a high-pressure chamber 9.2, and also on the other hand with the tank 26.
- the two pumps 23, 25 are not driven by a motor, but rather act as a unit of pump and hydraulic motor due to the rigid connection.
- This combination of the two pumps 23, 25 is effective as a pressure converter in that the specific delivery volume, that is to say the volume per revolution, is different, which is symbolically represented in FIG. 7 by the different sizes of the pumps 23, 25. For example, this ratio is 2: 1.
- the pressure converter 9 'behaves exactly like the pressure converter 9 during the different phases of the press operation shown in FIGS. 2 to 6 and described with reference to these figures.
- the pressure converter 9 During the aforementioned first phase of the press operation, for example, the pressure converter 9 'acts as a pressure reducer, the second pump 25 working as a hydraulic motor and driving the first pump 23.
- the first pump 23 acts as a hydraulic motor which drives the second pump 25.
- control device Despite the very simple construction of the control device according to the invention, individual pressing steps can be recovered with this energy. As described above, even those in the press, in the material to be pressed and in the compressible hydraulic oil become elastic recovered stored energy.
- the control device manages without expensive components such as adjustable pumps.
- control device according to the invention achieves considerable energy savings compared to the prior art.
- the energy saving can well reach around 40%.
- the invention can be used with great advantage in hydraulic presses of various types for various fields of application.
- the press can be equipped with differential cylinders, synchronous cylinders or even plunger cylinders. It is particularly advantageous if the control device according to the invention is used in presses for shaping ceramic parts such as tiles.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Control Of Presses (AREA)
- Press Drives And Press Lines (AREA)
- Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
- Fluid-Pressure Circuits (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH182600 | 2000-09-20 | ||
CH18262000 | 2000-09-20 | ||
PCT/IB2001/001527 WO2002024441A1 (en) | 2000-09-20 | 2001-08-24 | Controller for a hydraulic press and method for the operation thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1318906A1 true EP1318906A1 (en) | 2003-06-18 |
EP1318906B1 EP1318906B1 (en) | 2009-09-30 |
Family
ID=4566403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01956735A Expired - Lifetime EP1318906B1 (en) | 2000-09-20 | 2001-08-24 | Controller for a hydraulic press and method for the operation thereof |
Country Status (12)
Country | Link |
---|---|
US (1) | US6973780B2 (en) |
EP (1) | EP1318906B1 (en) |
JP (1) | JP5058426B2 (en) |
KR (1) | KR20030032042A (en) |
CN (1) | CN1243637C (en) |
AT (1) | ATE444157T1 (en) |
AU (1) | AU2001278651A1 (en) |
BR (1) | BR0113991B1 (en) |
CA (1) | CA2422879A1 (en) |
DE (1) | DE50115141D1 (en) |
ES (1) | ES2329443T3 (en) |
WO (1) | WO2002024441A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102963026A (en) * | 2012-11-16 | 2013-03-13 | 无锡阳工机械制造有限公司 | Driving technology of hydraulic press pump and energy accumulator in field of ship building |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1330882C (en) * | 2004-07-30 | 2007-08-08 | 天津市天锻压力机有限公司 | Proportional direct driving system in hydraulic machine for warm cold extrusion |
EP1643244B2 (en) † | 2004-09-07 | 2015-09-09 | Asahi Kasei Bioprocess, Inc. | Hoist-free chromatography method |
DE102005043367B4 (en) * | 2005-09-12 | 2016-09-08 | Laeis Gmbh | Control device and control method for a piston-cylinder arrangement |
JP4901292B2 (en) * | 2006-04-28 | 2012-03-21 | 北都建機サービス株式会社 | Hydraulic drive device and pinch processing device equipped with the same |
KR100851997B1 (en) * | 2007-04-06 | 2008-08-12 | 조영환 | Valve block for hydraulic press |
AT505724B1 (en) * | 2007-09-12 | 2010-06-15 | Trumpf Maschinen Austria Gmbh | DRIVE DEVICE FOR A BEND PRESS |
US8186154B2 (en) * | 2008-10-31 | 2012-05-29 | Caterpillar Inc. | Rotary flow control valve with energy recovery |
DE102010037330B4 (en) * | 2010-09-06 | 2013-07-11 | Schuler Pressen Gmbh & Co. Kg | Drive device with linear motor for a press |
KR101274968B1 (en) * | 2011-06-22 | 2013-06-17 | 남양기공 주식회사 | Acturator control apparatus using servo motor for press |
RU2468919C1 (en) * | 2011-08-15 | 2012-12-10 | Валерий Владимирович Бодров | Hydraulic drive of press walking beam |
CN102287407B (en) * | 2011-09-19 | 2013-12-11 | 宁波汉商液压有限公司 | Double-action reciprocating hydraulic booster |
US9103356B2 (en) * | 2012-01-18 | 2015-08-11 | Taguchi Industrial Co., Ltd. | Oil-pressure apparatus |
JP5829286B2 (en) | 2012-01-31 | 2015-12-09 | 株式会社タグチ工業 | Hydraulic device |
CN102602020A (en) * | 2012-03-29 | 2012-07-25 | 苏州市科林除尘设备有限公司 | Wire-wound hydraulic press with reciprocating multistage supercharger |
DE102012013098B4 (en) * | 2012-06-30 | 2014-08-07 | Hoerbiger Automatisierungstechnik Holding Gmbh | machine press |
CN102886917B (en) * | 2012-10-09 | 2014-04-23 | 南通大学 | A hydraulic servo control system that effectively improves the pressing accuracy of a hydraulic press for powder forming |
CN103851037A (en) * | 2012-11-29 | 2014-06-11 | 何荣志 | Multi-pressure source energy-saving hydraulic pressure station |
RU2515779C1 (en) * | 2013-02-13 | 2014-05-20 | Валерий Владимирович Бодров | Hydraulic drive of press moving beam |
RU2528282C1 (en) * | 2013-02-18 | 2014-09-10 | Валерий Владимирович Бодров | Hydraulic drive of press moving beam |
CN103111471B (en) * | 2013-02-28 | 2015-01-07 | 浙江远景铝业有限公司 | Dual-roll rolling machine hydraulic pressing down system and operation method thereof |
RU2530917C1 (en) * | 2013-04-29 | 2014-10-20 | Валерий Владимирович Бодров | Hydraulic drive of press moving beam |
CN103612412B (en) * | 2013-11-22 | 2016-04-27 | 江苏华宏科技股份有限公司 | Material pushing-type domestic refuse dewatering machine |
DE102013224657A1 (en) * | 2013-12-02 | 2015-06-03 | Robert Bosch Gmbh | Hydraulic arrangement |
DE102014105111A1 (en) * | 2014-04-10 | 2015-10-15 | Dorst Technologies Gmbh & Co. Kg | Pressure control device and method for controlling a pressure to be output for a ceramic and / or metal powder press |
DE102014005352B4 (en) * | 2014-04-11 | 2016-03-10 | Hoerbiger Automatisierungstechnik Holding Gmbh | machine press |
CN105090173B (en) * | 2014-05-08 | 2017-03-15 | 佛山市恒力泰机械有限公司 | A kind of pressure method of two-way cylinder without gap sensors |
FI20145773A (en) * | 2014-09-05 | 2016-03-06 | Kratos Oy | A method and arrangement for converting pressure and arranging a charge cycle |
DE102014218885A1 (en) * | 2014-09-19 | 2016-03-24 | Voith Patent Gmbh | Hydraulic drive with fast lift and load stroke |
RU2598410C1 (en) * | 2015-06-03 | 2016-09-27 | Валерий Владимирович Бодров | Hydraulic drive of press moving beam |
WO2016206966A1 (en) * | 2015-06-22 | 2016-12-29 | Vat Holding Ag | Control device for a pneumatic piston-cylinder unit for moving a closing element of a vacuum valve |
RU2602934C1 (en) * | 2015-08-19 | 2016-11-20 | Валерий Владимирович Бодров | Hydraulic drive of press moving beam |
CN105545840B (en) * | 2015-12-16 | 2017-10-13 | 佛山市恒力泰机械有限公司 | A kind of adobe exhaust gear controlled by volume cylinder and method |
DE102016118853B3 (en) * | 2016-10-05 | 2017-10-26 | Hoerbiger Automatisierungstechnik Holding Gmbh | Electrohydraulic drive unit |
RU178161U1 (en) * | 2016-11-21 | 2018-03-26 | Валерий Владимирович Бодров | HYDRAULIC DRIVE MOBILE CROSS VERTICAL PRESS |
CN108248089B (en) * | 2016-11-30 | 2019-07-19 | 合肥工业大学 | A control method of a double-execution unit hydraulic press |
CN106762927A (en) * | 2016-12-12 | 2017-05-31 | 天津商企生产力促进有限公司 | Electromechanical organisation of working with backhaul decompression function |
CN106762893A (en) * | 2016-12-12 | 2017-05-31 | 天津书芹科技有限公司 | Electromechanical organisation of working with voltage stabilizing function |
PL3437848T3 (en) * | 2017-08-03 | 2024-07-15 | Nienstedt Gmbh | Machine tool |
IT201800007019A1 (en) * | 2018-07-09 | 2020-01-09 | FLUID DYNAMIC SYSTEM FOR THE CONTROLLED OPERATION OF THE SLIDE OF A PRESS | |
RU2687122C1 (en) * | 2018-07-24 | 2019-05-07 | Валерий Владимирович Бодров | Vertical press moving cross member hydraulic drive |
CN109531150B (en) * | 2018-11-13 | 2020-10-13 | 太原重工股份有限公司 | Synchronous control method for hydraulic cylinders of large-diameter welded pipe unit |
DE102019101596A1 (en) * | 2019-01-23 | 2020-07-23 | Tox Pressotechnik Gmbh & Co. Kg | Device for embossing and punching a plate-like workpiece |
CN110159616B (en) * | 2019-06-18 | 2024-07-30 | 济南瑞原液压气动设备有限公司 | Metallurgical hydraulic cylinder performance test system and test method thereof |
DE102020001291A1 (en) | 2020-02-26 | 2021-08-26 | Hydrosaar Gmbh | Hydraulic supply system for a consumer |
JP7604242B2 (en) * | 2021-01-18 | 2024-12-23 | 住友重機械工業株式会社 | Pressurizing Device |
RU2764536C1 (en) * | 2021-04-16 | 2022-01-18 | Валерий Владимирович Бодров | Method for controlling the movable traverse of a hydraulic press |
FR3138485A1 (en) * | 2022-09-22 | 2024-02-02 | Poclain Hydraulics Industrie | Improved hydrostatic transmission. |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2926412A (en) * | 1953-12-31 | 1960-03-01 | French Oil Mill Machinery | Press |
DE1147847B (en) * | 1957-01-30 | 1963-04-25 | Waldemar Lindemann | Control for hydraulically operated shears, presses and other processing machines |
IT1073144B (en) * | 1976-10-28 | 1985-04-13 | Welko Ind Spa | HYDRAULIC EQUIPMENT FOR THE SUPPLY OF LIQUID AT TWO DIFFERENT PRESSURES TO A HYDRAULIC DEVICE |
JPS63256300A (en) * | 1987-04-13 | 1988-10-24 | Nikkei:Kk | Hydraulic press |
DE4308344A1 (en) * | 1993-03-16 | 1994-09-22 | Mueller Weingarten Maschf | Method for controlling the drive of a hydraulic press and device for carrying out the method |
DE4320213A1 (en) * | 1993-06-18 | 1994-12-22 | Schloemann Siemag Ag | Pressing main drive |
EP0641644A1 (en) * | 1993-09-02 | 1995-03-08 | Maschinenfabrik Müller-Weingarten AG | Method for controlling the drive of a hydraulic press and apparatus for carrying out the method |
ES2113699T3 (en) * | 1994-07-01 | 1998-05-01 | Mueller Weingarten Maschf | REGULATION OF A DRIVE OF A HYDRAULIC PRESS. |
DE4436666A1 (en) * | 1994-10-13 | 1996-04-18 | Rexroth Mannesmann Gmbh | Hydraulic drive system for a press |
DE19831624A1 (en) * | 1998-07-15 | 2000-01-20 | Mueller Weingarten Maschf | Hydraulic drive for a press |
-
2001
- 2001-08-24 AU AU2001278651A patent/AU2001278651A1/en not_active Abandoned
- 2001-08-24 EP EP01956735A patent/EP1318906B1/en not_active Expired - Lifetime
- 2001-08-24 WO PCT/IB2001/001527 patent/WO2002024441A1/en active Application Filing
- 2001-08-24 BR BRPI0113991-6A patent/BR0113991B1/en not_active IP Right Cessation
- 2001-08-24 JP JP2002528486A patent/JP5058426B2/en not_active Expired - Fee Related
- 2001-08-24 US US10/380,887 patent/US6973780B2/en not_active Expired - Fee Related
- 2001-08-24 KR KR10-2003-7003958A patent/KR20030032042A/en not_active Application Discontinuation
- 2001-08-24 DE DE50115141T patent/DE50115141D1/en not_active Expired - Lifetime
- 2001-08-24 ES ES01956735T patent/ES2329443T3/en not_active Expired - Lifetime
- 2001-08-24 CN CNB018159850A patent/CN1243637C/en not_active Expired - Fee Related
- 2001-08-24 CA CA002422879A patent/CA2422879A1/en not_active Abandoned
- 2001-08-24 AT AT01956735T patent/ATE444157T1/en active
Non-Patent Citations (1)
Title |
---|
See references of WO0224441A1 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102963026A (en) * | 2012-11-16 | 2013-03-13 | 无锡阳工机械制造有限公司 | Driving technology of hydraulic press pump and energy accumulator in field of ship building |
Also Published As
Publication number | Publication date |
---|---|
ATE444157T1 (en) | 2009-10-15 |
AU2001278651A1 (en) | 2002-04-02 |
DE50115141D1 (en) | 2009-11-12 |
CN1243637C (en) | 2006-03-01 |
EP1318906B1 (en) | 2009-09-30 |
CN1461255A (en) | 2003-12-10 |
US20030167936A1 (en) | 2003-09-11 |
BR0113991B1 (en) | 2010-05-18 |
ES2329443T3 (en) | 2009-11-26 |
KR20030032042A (en) | 2003-04-23 |
JP5058426B2 (en) | 2012-10-24 |
US6973780B2 (en) | 2005-12-13 |
JP2004522580A (en) | 2004-07-29 |
BR0113991A (en) | 2003-08-12 |
CA2422879A1 (en) | 2003-03-19 |
WO2002024441A1 (en) | 2002-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1318906B1 (en) | Controller for a hydraulic press and method for the operation thereof | |
EP2480405B1 (en) | Prestressed hydraulic drive with variable-speed pump | |
DE102006058630B4 (en) | Electro-hydraulic press main or auxiliary drive device, in particular electro-hydraulic die cushion drive | |
EP1274526B1 (en) | Method and drive system for the control/regulation of linear pressure/cast movement | |
DE4308344A1 (en) | Method for controlling the drive of a hydraulic press and device for carrying out the method | |
EP0641644A1 (en) | Method for controlling the drive of a hydraulic press and apparatus for carrying out the method | |
EP3378581A1 (en) | Multi-stage joining device and joining method therefor | |
WO1996011796A1 (en) | Hydraulic press drive | |
EP0972631B1 (en) | Hydraulic drive for a press | |
DE3036533A1 (en) | PRESS FOR PRODUCING MOLDED BODIES FROM POWDER | |
DE102011000473A1 (en) | Pressing machine and method for pressing workpieces | |
CH634254A5 (en) | SERVOHYDRAULIC PRESS WITH CLOSED CONTROL CIRCUIT. | |
WO1998013243A1 (en) | Hydraulic brake system with hydraulic servo brake | |
DE2600948C3 (en) | Unit of force as a working organ, e.g. for presses for forming, compacting, etc. | |
EP3880975B1 (en) | Electro-hydrostatic actuator system | |
EP2511023B1 (en) | Hydraulically operated setting device with a hydraulic aggregate and a joining method for connecting at least two components | |
WO2014166935A2 (en) | Hydraulic press | |
DE1907077A1 (en) | Press and method for deep drawing sheet metal blanks to containers | |
DE102016102960A1 (en) | Apparatus and method for translating a mechanical force to drive a pressing device for press fittings | |
EP0629455B1 (en) | Main drive for upsetting press | |
DE19924473A1 (en) | Hydraulic drive with several hydraulic consumers including a differential cylinder, in particular on a plastic injection molding machine | |
CH704896B1 (en) | Hydraulic drive device for plunger hydraulic cylinders of a powder press. | |
DE4218953B4 (en) | Hydraulic press drive, in particular for a sheet metal forming press | |
DE102014101616B4 (en) | Hydraulic drawing pad of a drawing press and method of operating the hydraulic drawing pad | |
DE102013007148A1 (en) | Hydraulic press drive with energy recovery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030320 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LAEIS GMBH |
|
17Q | First examination report despatched |
Effective date: 20070309 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LAEIS GMBH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: WERNER FENNER PATENTANWALT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 50115141 Country of ref document: DE Date of ref document: 20091112 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2329443 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090930 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090930 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090930 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090930 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20100701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090930 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140821 Year of fee payment: 14 Ref country code: IE Payment date: 20140828 Year of fee payment: 14 Ref country code: CH Payment date: 20140820 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20140821 Year of fee payment: 14 Ref country code: AT Payment date: 20140813 Year of fee payment: 14 Ref country code: FR Payment date: 20140821 Year of fee payment: 14 Ref country code: GB Payment date: 20140820 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20140827 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20140820 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50115141 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 444157 Country of ref document: AT Kind code of ref document: T Effective date: 20150824 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150824 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150831 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150824 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160301 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150824 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150831 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20180629 |