[go: up one dir, main page]

EP1305524B1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
EP1305524B1
EP1305524B1 EP01956582A EP01956582A EP1305524B1 EP 1305524 B1 EP1305524 B1 EP 1305524B1 EP 01956582 A EP01956582 A EP 01956582A EP 01956582 A EP01956582 A EP 01956582A EP 1305524 B1 EP1305524 B1 EP 1305524B1
Authority
EP
European Patent Office
Prior art keywords
compressor according
housing
aluminum
alloy
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01956582A
Other languages
German (de)
French (fr)
Other versions
EP1305524A1 (en
Inventor
Reinhard Garczorz
Fritz-Martin Scholz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gardner Denver Schopfheim GmbH
Original Assignee
Rietschle Thomas Schopfheim GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rietschle Thomas Schopfheim GmbH filed Critical Rietschle Thomas Schopfheim GmbH
Publication of EP1305524A1 publication Critical patent/EP1305524A1/en
Application granted granted Critical
Publication of EP1305524B1 publication Critical patent/EP1305524B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/123Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially or approximately radially from the rotor body extending tooth-like elements, co-operating with recesses in the other rotor, e.g. one tooth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0436Iron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0436Iron
    • F05C2201/0439Cast iron
    • F05C2201/0442Spheroidal graphite cast iron, e.g. nodular iron, ductile iron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0466Nickel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/90Alloys not otherwise provided for
    • F05C2201/903Aluminium alloy, e.g. AlCuMgPb F34,37
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials
    • F05C2203/08Ceramics; Oxides
    • F05C2203/0804Non-oxide ceramics
    • F05C2203/0813Carbides
    • F05C2203/0817Carbides of silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • F05C2251/042Expansivity
    • F05C2251/046Expansivity dissimilar

Definitions

  • the invention relates to a compressor according to the preamble of claim 1.
  • Compressors generally require cooling in order to dissipate the heat generated during the compression process. On a direct cooling of the rotors and shafts is omitted mostly for cost reasons. The cooling of the rotors is then only indirectly via the flow of fluid and the directly cooled housing.
  • the standard material used for housing is cast iron with lamellar graphite and for the rotors cast iron with nodular graphite.
  • a compressor is known whose housing is formed of an aluminum alloy and whose rotors are made of resin.
  • the composition of the resin material is chosen so that it has substantially the same thermal expansion coefficient as the aluminum alloy.
  • the invention provides a compressor which despite the use of aluminum materials has small gap widths and a correspondingly high efficiency.
  • the rotor consists of a powder metallurgically produced, silicon-containing aluminum material and the housing consists essentially of aluminum.
  • Aluminum for the housing is understood to mean essentially pure aluminum or an aluminum alloy with the typical relatively high coefficient of thermal expansion of approximately 23.8 ⁇ 10 -6 / K.
  • the powder metallurgically produced, silicon-containing aluminum material however, has a thermal expansion coefficient of only about 16 x 10 -6 / K.
  • the gap reduction is barely larger than the corresponding value when using cast iron for housings and rotors.
  • an insulating layer is applied to the surfaces of the rotors. Through this insulating layer is the
  • Heat transfer from the compressed fluid to the rotors reduced.
  • the heat flow is increasingly dissipated via the shaft of the rotor.
  • the reduced heating of the rotors by the insulating layer leads to a lower thermal expansion and therefore allows smaller gap widths, whereby the efficiency is increased.
  • the compressor shown by way of example in Fig. 1 has a housing, generally designated 10, with an inner chamber 12 consisting of two intersecting sub-cylinders of the same size.
  • two rotors 14, 16 are accommodated in the form of double-wing Roots.
  • Each rotor 14, 16 is seated on a respective shaft 18, 20.
  • the parallel shafts 18, 20 are synchronized by a (not shown) gear.
  • the rotors 14, 16 run in the interior of the chamber 12 without mutual contact and without contact with the wall of the chamber 12. They roll into each other and thereby form work spaces of variable size, with an internal compression takes place.
  • the heat generated during operation of the compressor is dissipated essentially by cooling the housing 10.
  • the housing 10 has a plurality of cooling fins, which are flowed around by an air flow.
  • the heated exhaust air is symbolized by arrows in the drawing.
  • the rotors 14, 16 and the shafts 18, 20 are not directly cooled. Part of the heat flow is via the shafts 18, 20 and another part via the fluid flow dissipated.
  • their surface is provided with a thermally insulating coating.
  • the housing 10 is made of aluminum or an aluminum alloy whose thermal expansion coefficient is about 23.8 ⁇ 10 -6 / K.
  • the rotors 14, 16 are made of an aluminum material whose thermal expansion coefficient is about 16 x 10 -6 / K. This material combination results in a gap reduction, which - based on a rotor diameter of 100 mm - is about 0.113 mm.
  • the principle underlying the invention is applicable to most types of noncontact rotors compressors, but is particularly applicable to internally compacted two-shaft compressors, e.g. Claw compactor and screw compressor.
  • the invention generally extends to the use of a powder metallurgical Al-Si alloy in rotors of compressors, pumps and rotary engines in combination with an aluminum housing, particularly in machines with non-contacting rotors.
  • the housing is composed of an outer body 10a made of aluminum or an aluminum alloy and a ring 10b cast therein.
  • the ring 10b is made of a powder metallurgy, dispersion strengthened Al-Si alloy of the type described in more detail above.
  • the ring forms the boundary of the chamber in which the rotors of the compressor are accommodated.
  • the two materials are fused together so that an intimate bond between outer body 10a and ring 10b is made. Since the ring 10b is made of a material of substantially greater strength than the material of the outer body 10a, its thermal expansion properties substantially determine the thermal expansion of the housing as a whole.
  • the rotors in this embodiment also consist of an Al-Si alloy of the type described above.
  • the ring is provided with cast-on stiffening ribs 10c directed radially outward. In each corner region of the housing one of these stiffening ribs is arranged.
  • a gap reduction of about 0.16 mm can be achieved, again based on a rotor diameter of 100 mm.
  • the housing has a bearing cap 22, with two bearings 24, 26 for the shafts 18, 20.
  • a stiffening rib 28, 30 cast from a dispersion-hardened aluminum alloy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
  • Rotary Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The compressor has two rotors ( 14, 16 ), which are rotatably mounted in a housing ( 10 ) by means of a shaft each, the rotors ( 14, 16 ) rotating without contact with the housing. The rotors ( 14, 16 ) consist of a powder-metallurgical Al-Si alloy, and the housing ( 10 ) consists essentially of aluminum.

Description

Die Erfindung betrifft einen Verdichter gemäß dem Oberbegriff von Anspruch 1.The invention relates to a compressor according to the preamble of claim 1.

Verdichter bedürfen im allgemeinen der Kühlung, um die beim Verdichtungsprozeß anfallende Wärme abzuführen. Auf eine direkte Kühlung der Rotoren und Wellen wird zumeist aus Kostengründen verzichtet. Die Kühlung der Rotoren erfolgt dann nur indirekt über den Fördermedienstrom und über das direkt gekühlte Gehäuse.Compressors generally require cooling in order to dissipate the heat generated during the compression process. On a direct cooling of the rotors and shafts is omitted mostly for cost reasons. The cooling of the rotors is then only indirectly via the flow of fluid and the directly cooled housing.

Wegen der direkten Kühlung des Gehäuses, beispielsweise durch eine Luftströmung oder einen Wassermantel, und die nur indirekte Kühlung der Rotoren tritt im Betrieb eine hohe Temperaturdifferenz zwischen Gehäuse und Rotoren auf. Diese Temperaturdifferenz muß bei der Auslegung der Spalte berücksichtigt werden. Der größeren Temperaturdehnung der Rotoren wird durch vergrößerte Spalte im kalten Zustand Rechnung getragen. Der Unterschied der Spaltgröße im kalten Zustand zur Spaltgröße im Betriebszustand, d.h. bei einer Temperaturdifferenz in der Größenordnung von 100° K, wird als Spaltreduzierung bezeichnet. Um ein Anlaufen der Rotoren unter allen Umständen zu verhindern, werden die Spaltweiten für die maximale thermische Belastung festgelegt, die sich durch die unterschiedlichen Druckverhältnisse und Drehzahlen ergibt. Die Berücksichtigung der Spaltreduzierung führt dann zu einer Bemessung der Spaltweiten im kalten Zustand. Man ist aber bestrebt, die Spalte möglichst klein zu halten, um Rückströmungen zu minimieren und den volumetrischen sowie den isentropen Wirkungsgrad zu maximieren.Because of the direct cooling of the housing, for example by an air flow or a water jacket, and the only indirect cooling of the rotors occurs in operation, a high temperature difference between the housing and rotors. This temperature difference must be taken into account when designing the column. The larger temperature expansion of the rotors is accommodated by enlarged gaps in the cold state. The difference of the gap size in the cold state to the gap size in the operating state, i. at a temperature difference of the order of 100 ° K, is referred to as gap reduction. In order to prevent the rotors from starting up under all circumstances, the gap widths are set for the maximum thermal load resulting from the different pressure ratios and speeds. The consideration of the gap reduction then leads to a dimensioning of the gap widths in the cold state. However, efforts are made to keep the gap as small as possible in order to minimize backflow and maximize volumetric and isentropic efficiency.

Diese Überlegungen führen in der Praxis zur Verwendung von Werkstoffen mit geringer Wärmedehnung. Als Standardwerkstoff wird für Gehäuse Gußeisen mit Lamellengraphit und für die Rotoren Gußeisen mit Kugelgraphit verwendet. Der Wärmedehnungskoeffizient beträgt jeweils αk = 10,5-6/K. Bei Verwendung von Gußeisen für Gehäuse und Rotoren und einem Außendurchmesser der Rotoren von beispielsweise 100 mm ergibt sich für die Spaltreduzierung ein Wert von etwa 0,1 mm. Damit können befriedigende Wirkungsgrade erzielt werden. Die Verwendung eines Materials wie Aluminium kommt hingegen nicht in Betracht, da wegen der mehr als doppelt so großen Wärmedehnung die entsprechenden Werte der Spaltreduzierung bei etwa 0,24 mm liegen würden, so dass die Spaltweiten im kalten Zustand mehr als doppelt so groß sein müßten, wodurch die Spaltverluste enorm vergrößert würden.These considerations lead in practice to the use of materials with low thermal expansion. The standard material used for housing is cast iron with lamellar graphite and for the rotors cast iron with nodular graphite. The thermal expansion coefficient is in each case α k = 10.5 -6 / K. Using of cast iron for housing and rotors and an outer diameter of the rotors, for example, 100 mm results in the gap reduction, a value of about 0.1 mm. Thus, satisfactory efficiencies can be achieved. On the other hand, the use of a material such as aluminum is out of the question since, because of the thermal expansion more than twice as high, the corresponding gap reduction values would be about 0.24 mm, so that the gap widths would have to be more than twice as high when cold, whereby the gap losses would be increased enormously.

Aus der JP-A-05010282 ist ein Verdichter bekannt, dessen Gehäuse aus einer Aluminiumlegierung und dessen Rotoren aus Harz gebildet sind. Um eine Spaltreduzierung im Betrieb des Verdichters möglichst zu vermeiden, wird die Zusammensetzung des Harzmaterials so gewählt, daß es im wesentlichen den gleichen Wärmedehnungskoeffizienten wie die Aluminiumlegierung aufweist.From JP-A-05010282 a compressor is known whose housing is formed of an aluminum alloy and whose rotors are made of resin. In order to avoid a gap reduction in the operation of the compressor as possible, the composition of the resin material is chosen so that it has substantially the same thermal expansion coefficient as the aluminum alloy.

Aus der US-A-4,702,885 ist ein Verfahren zur Herstellung einer Aluminium-Silizium-Legierung mit verbesserten Materialeigenschaften hinsichtlich Hitzebeständigkeit und Verschleißfestigkeit bekannt.From US-A-4,702,885 a method for producing an aluminum-silicon alloy having improved material properties in terms of heat resistance and wear resistance is known.

Durch die Erfindung wird ein Verdichter geschaffen, der trotz Verwendung von Aluminium-Werkstoffen geringe Spaltweiten und einen entsprechend hohen Wirkungsgrad aufweist. Gemäß der Erfindung besteht der Rotor aus einem pulvermetallurgisch hergestellten, siliziumhaltigen Aluminium-Werkstoff und das Gehäuse besteht im wesentlichen aus Aluminium. Unter Aluminium für das Gehäuse wird im wesentlichen reines Aluminium oder eine Aluminium-Legierung mit dem typischen relativen großen Wärmedehnungskoeffizienten von etwa 23,8 x 10-6/K verstanden. Der pulvermetallurgisch hergestellte, siliziumhaltige Aluminium-Werkstoff hat hingegen einen Wärmedehnungskoeffizient von nur etwa 16 x 10-6/K. Geht man wiederum von einem Rotordurchmesser von 100 mm aus, so ergibt sich bei der erfindungsgemäßen Werkstofflcombination bei einer Temperaturdifferenz von 100° K eine Spaltreduzierung, die wie folgt berechnet wird: S W A = ( α k 1 × Δ T 1 α k 2 × Δ T 2 ) × L .

Figure imgb0001
The invention provides a compressor which despite the use of aluminum materials has small gap widths and a correspondingly high efficiency. According to the invention, the rotor consists of a powder metallurgically produced, silicon-containing aluminum material and the housing consists essentially of aluminum. Aluminum for the housing is understood to mean essentially pure aluminum or an aluminum alloy with the typical relatively high coefficient of thermal expansion of approximately 23.8 × 10 -6 / K. The powder metallurgically produced, silicon-containing aluminum material, however, has a thermal expansion coefficient of only about 16 x 10 -6 / K. If, in turn, one starts from a rotor diameter of 100 mm, the result of the material combination according to the invention is a gap reduction at a temperature difference of 100 ° K, which is calculated as follows: S W A = ( α k 1 × Δ T 1 - α k 2 × Δ T 2 ) × L ,
Figure imgb0001

Die Spaltreduzierung ist mit einem Wert von 0,113 mm somit kaum größer als der entsprechende Wert bei Verwendung von Gußeisen für Gehäuse und Rotoren.With a value of 0.113 mm, the gap reduction is barely larger than the corresponding value when using cast iron for housings and rotors.

Die Verwendung von Aluminium anstelle von Gußeisen erbringt erhebliche Vorteile, insbesondere ein geringeres Gewicht, kürzere Bearbeitungszeiten, Korrosionsbeständigkeit, geringere Herstellungskosten.The use of aluminum instead of cast iron provides significant advantages, in particular a lower weight, shorter processing times, corrosion resistance, lower production costs.

Bei der bevorzugten Ausführungsform ist auf den Oberflächen der Rotoren eine Isolierschicht aufgebracht. Durch diese Isolierschicht wird derIn the preferred embodiment, an insulating layer is applied to the surfaces of the rotors. Through this insulating layer is the

Wärmeübergang von dem komprimierten Fördermedium auf die Rotoren vermindert. Der Wärmestrom wird verstärkt über die Welle des Rotors abgeführt. Die verminderte Erwärmung der Rotoren durch die Isolierschicht führt zu einer geringeren Wärmedehnung und läßt daher kleinere Spaltweiten zu, wodurch der Wirkungsgrad gesteigert wird.Heat transfer from the compressed fluid to the rotors reduced. The heat flow is increasingly dissipated via the shaft of the rotor. The reduced heating of the rotors by the insulating layer leads to a lower thermal expansion and therefore allows smaller gap widths, whereby the efficiency is increased.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der folgenden Beschreibung zweier Ausführungsformen des Verdichters und aus den beigefügten Zeichnungen. In den Zeichnungen zeigen:

  • Figur 1 schematisch einen geöffneten Klauenverdichter mit Blick auf die Rotoren;
  • Figur 2 eine entsprechende Ansicht einer Ausführungsvariante; und
  • Figur 3 eine weitere Ausführungsvariante.
Further features and advantages of the invention will become apparent from the following description of two embodiments of the compressor and from the accompanying drawings. In the drawings show:
  • Figure 1 shows schematically an open claw compressor with a view of the rotors;
  • Figure 2 is a corresponding view of a variant embodiment; and
  • Figure 3 shows a further embodiment.

Der in Fig. 1 beispielshalber gezeigte Verdichter hat einen allgemein mit 10 bezeichnetes Gehäuse mit einer inneren Kammer 12, die aus zwei einander überschneidenden Teilzylindern gleicher Größe besteht. In der Kammer 12 sind zwei Rotoren 14, 16 in Form von zweiflügeligen Wälzkolben aufgenommen. Jeder Rotor 14, 16 sitzt auf einer entsprechenden Welle 18, 20. Die zueinander parallelen Wellen 18, 20 sind durch ein (nicht gezeigtes) Getriebe synchronisiert. Die Rotoren 14, 16 laufen im inneren der Kammer 12 ohne gegenseitige Berührung und ohne Berührung mit der Wandung der Kammer 12. Sie wälzen sich ineinander ab und bilden dabei Arbeitsräume variabler Größe, wobei eine innere Verdichtung stattfindet.The compressor shown by way of example in Fig. 1 has a housing, generally designated 10, with an inner chamber 12 consisting of two intersecting sub-cylinders of the same size. In the chamber 12, two rotors 14, 16 are accommodated in the form of double-wing Roots. Each rotor 14, 16 is seated on a respective shaft 18, 20. The parallel shafts 18, 20 are synchronized by a (not shown) gear. The rotors 14, 16 run in the interior of the chamber 12 without mutual contact and without contact with the wall of the chamber 12. They roll into each other and thereby form work spaces of variable size, with an internal compression takes place.

Die im Betrieb des Verdichters anfallende Wärme wird im wesentlichen durch Kühlung des Gehäuses 10 abgeführt. Zu diesem Zweck weist das Gehäuse 10 eine Vielzahl von Kühlrippen auf, die von einem Luftstrom umströmt werden. Die erwärmte Abluft ist in der Zeichnung durch Pfeile symbolisiert. Die Rotoren 14, 16 und die Wellen 18, 20 werden nicht direkt gekühlt. Ein Teil des Wärmestroms wird über die Wellen 18, 20 und ein anderer Teil über den Fördermedienstrom abgeführt. Um die Erwärmung der Rotoren 14, 16 im Betrieb zu reduzieren, ist ihre Oberfläche mit einer thermisch isolierenden Beschichtung versehen.The heat generated during operation of the compressor is dissipated essentially by cooling the housing 10. For this purpose, the housing 10 has a plurality of cooling fins, which are flowed around by an air flow. The heated exhaust air is symbolized by arrows in the drawing. The rotors 14, 16 and the shafts 18, 20 are not directly cooled. Part of the heat flow is via the shafts 18, 20 and another part via the fluid flow dissipated. In order to reduce the heating of the rotors 14, 16 during operation, their surface is provided with a thermally insulating coating.

Das Gehäuse 10 besteht aus Aluminium oder einer Aluminium-Legierung, deren Wärmedehnungskoeffizient etwa 23,8 x 10-6/K beträgt. Die Rotoren 14, 16 bestehen aus einem Aluminium-Werkstoff, dessen Wärmedehnungskoeffizient etwa 16 x 10-6/K beträgt. Durch diese Werkstoffpaarung ergibt sich eine Spaltreduzierung, die - bezogen auf einen Rotordurchmesser von 100 mm - etwa 0,113 mm beträgt.The housing 10 is made of aluminum or an aluminum alloy whose thermal expansion coefficient is about 23.8 × 10 -6 / K. The rotors 14, 16 are made of an aluminum material whose thermal expansion coefficient is about 16 x 10 -6 / K. This material combination results in a gap reduction, which - based on a rotor diameter of 100 mm - is about 0.113 mm.

Der Aluminium-Werkstoff, aus dem die Rotoren 14, 16 bestehen, ist pulvermetallurgisch hergestellt und dispersionsverfestigt. Die Zusammensetzung des Aluminium-Werkstoffs für die Rotoren ist vorzugsweise wie folgt:

  • 18,5 bis 21,5 Gew.% Silizium,
  • 4,6 bis 5,4 Gew% Eisen,
  • 1,8 bis 2,2 Gew.% Nickel
  • Rest: Aluminium
The aluminum material of which the rotors 14, 16 are made is produced by powder metallurgy and dispersion-strengthened. The composition of the aluminum material for the rotors is preferably as follows:
  • 18.5 to 21.5% by weight of silicon,
  • 4.6 to 5.4% by weight of iron,
  • 1.8 to 2.2 wt.% Nickel
  • Rest: aluminum

Das der Erfindung zugrunde liegende Prinzip ist bei den meisten Bauformen von Verdichtern mit berührungslosen Rotoren anwendbar, mit besonderem Vorteil jedoch bei zweiwelligen Verdichtern mit innerer Verdichtung, z.B. Klauenverdichter und Schraubenverdichter. Die Erfindung erstreckt sich allgemein auf die Verwendung einer pulvermetallurgischen Al-Si-Legierung bei Rotoren von Verdichtern, Pumpen und Drehkolbenmaschinen in Kombination mit einem Gehäuse aus Aluminium, insbesondere bei Maschinen mit berührungslos arbeitenden Rotoren.The principle underlying the invention is applicable to most types of noncontact rotors compressors, but is particularly applicable to internally compacted two-shaft compressors, e.g. Claw compactor and screw compressor. The invention generally extends to the use of a powder metallurgical Al-Si alloy in rotors of compressors, pumps and rotary engines in combination with an aluminum housing, particularly in machines with non-contacting rotors.

Bei der in Fig. 2 gezeigten Ausführungsvariante ist das Gehäuse aus einem Außenkörper 10a, der aus Aluminium oder einer Aluminiumlegierung besteht, und einem darin eingegossenen Ring 10b aufgebaut. Der Ring 10b besteht aus einer pulvermetallurgischen, dispersionsverfestigten Al-Si-Legierung der oben näher beschriebenen Art. Der Ring bildet die Begrenzung der Kammer in der die Rotoren des Verdichters aufgenommen sind. An der Grenzfläche zwischen Außenkörper 10a und Ring 10b sind die beiden Werkstoffe miteinander verschmolzen, so daß ein inniger Verbund zwischen Außenkörper 10a und Ring 10b besteht. Da der Ring 10b aus einem Material von wesentlich größerer Festigkeit als das Material des Außenkörpers 10a besteht, bestimmen seine Wärmedehnungseigenschaften im wesentlichen die Wärmedehnung des Gehäuses als ganzes. Auch die Rotoren bestehen bei dieser Ausführungsform aus einer Al-Si-Legierung der oben beschriebenen Art. Der Ring ist mit angegossenen Versteifungsrippen 10c versehen, die radial auswärts gerichtet sind. In jedem Eckbereich des Gehäuses ist eine dieser Versteifungsrippen angeordnet.In the embodiment shown in Fig. 2, the housing is composed of an outer body 10a made of aluminum or an aluminum alloy and a ring 10b cast therein. The ring 10b is made of a powder metallurgy, dispersion strengthened Al-Si alloy of the type described in more detail above. The ring forms the boundary of the chamber in which the rotors of the compressor are accommodated. At the interface between Outer body 10a and ring 10b, the two materials are fused together so that an intimate bond between outer body 10a and ring 10b is made. Since the ring 10b is made of a material of substantially greater strength than the material of the outer body 10a, its thermal expansion properties substantially determine the thermal expansion of the housing as a whole. The rotors in this embodiment also consist of an Al-Si alloy of the type described above. The ring is provided with cast-on stiffening ribs 10c directed radially outward. In each corner region of the housing one of these stiffening ribs is arranged.

Bei dieser Ausführungsform kann eine Spaltreduzierung von ca. 0,16 mm erreicht werden, wiederum bezogen auf einen Rotordurchmesser von 100 mm.In this embodiment, a gap reduction of about 0.16 mm can be achieved, again based on a rotor diameter of 100 mm.

Bei der in Fig. 3 gezeigten Ausführungsform hat das Gehäuse einen Lagerdeckel 22, mit zwei Lagern 24, 26 für die Wellen 18, 20. Beiderseits der Lager 24, 26 ist in dem Lagerdeckel 22 eine Versteifungsrippe 28, 30 aus einer dispersionsverfestigten Aluminiumlegierung eingegossen. Durch diese Versteifungsrippen 28, 30 wird einerseits die Lagerung der Wellen 18, 20 versteift, zum anderen wird die Wärmedehnung des Achsabstandes reduziert.In the embodiment shown in Fig. 3, the housing has a bearing cap 22, with two bearings 24, 26 for the shafts 18, 20. On both sides of the bearings 24, 26 in the bearing cap 22, a stiffening rib 28, 30 cast from a dispersion-hardened aluminum alloy. By these stiffening ribs 28, 30 on the one hand, the support of the shafts 18, 20 stiffened, on the other hand, the thermal expansion of the axial distance is reduced.

Claims (14)

  1. Compressor comprising a housing and at least one rotor rotatably mounted in the housing by means of a shaft, which rotates without touching the housing, wherein the housing essentially consists of aluminum, and wherein the cooling of the at least one rotor happens indirectly by means of a delivery media flow and via the directly cooled housing, characterized in that the rotor consists of a powder metallurgic Al-Si-alloy comprising a heat strain coefficient of about 16 x 10- 6/K and that the aluminum, of which the housing is made, has a heat strain coefficient of about 23.8 x 10-6/K.
  2. Compressor according to claim 1, characterized in that the Al-Si-alloy is dispersion-hardened.
  3. Compressor according to claim 1 or 2, characterized in that the Al-Si-alloy has the following composition:
    18.5 to 21.5 percent in weight silicon,
    4.6 to 5.4 percent in weight iron,
    1.8 to 2.2 percent in weight nickel,
    rest: aluminum.
  4. Compressor according to one of claims 1 to 3, characterized in that the housing is cooled by an air flow.
  5. Compressor according to one of claims 1 to 4, characterized in that it comprises two rotary pistons, rolling off in each other contact-free.
  6. Compressor according to claim 5, characterized in that it works with an inner compression.
  7. Compressor according to claim 6, characterized in that the rotary pistons are two-bladed or three-bladed.
  8. Compressor according to one of claims 1 to 4, characterized in that it is a screw-type compressor.
  9. Compressor according to one of claims 1 to 8, characterized in that an isolating layer is applied to the surface of the rotors.
  10. Compressor according to one of the precedent claims, characterized in that the housing has an external body made of aluminum and a ring consisting of a dispersion-hardened powder metallurgic Al-Si-alloy molded therein.
  11. Compressor according to claim 10, characterized in that at the interface of the ring and the external body their materials are fused together.
  12. Compressor according to claim 10 or 11, characterized in that the ring directly surrounds the rotor.
  13. Compressor according to one of the preceding claims, characterized in that the housing has at least one bearing cover provided with cast-in reinforcing ribs made of a dispersion-hardened powder metallurgic Al-Si-alloy.
  14. Compressor according to claim 13, characterized in that the reinforcing ribs are arranged on opposing sides of the bearings.
EP01956582A 2000-08-02 2001-08-02 Compressor Expired - Lifetime EP1305524B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE20013338U DE20013338U1 (en) 2000-08-02 2000-08-02 compressor
DE20013338U 2000-08-02
PCT/EP2001/008967 WO2002010593A1 (en) 2000-08-02 2001-08-02 Compressor

Publications (2)

Publication Number Publication Date
EP1305524A1 EP1305524A1 (en) 2003-05-02
EP1305524B1 true EP1305524B1 (en) 2006-10-18

Family

ID=7944714

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01956582A Expired - Lifetime EP1305524B1 (en) 2000-08-02 2001-08-02 Compressor

Country Status (10)

Country Link
US (1) US6918749B2 (en)
EP (1) EP1305524B1 (en)
JP (1) JP2004505210A (en)
KR (1) KR20030026992A (en)
CN (1) CN1277054C (en)
AT (1) ATE343064T1 (en)
AU (1) AU2001278520A1 (en)
CA (1) CA2417794C (en)
DE (2) DE20013338U1 (en)
WO (1) WO2002010593A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202016005207U1 (en) * 2016-08-30 2017-12-01 Leybold Gmbh Vacuum pump rotor
DE202016005209U1 (en) * 2016-08-30 2017-12-01 Leybold Gmbh Screw vacuum pump
DE102016216279A1 (en) 2016-08-30 2018-03-01 Leybold Gmbh Vacuum-screw rotor

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4777541B2 (en) * 2001-06-08 2011-09-21 パナソニック株式会社 Compressor with built-in electric motor and mobile vehicle equipped with this
DE10156179A1 (en) 2001-11-15 2003-05-28 Leybold Vakuum Gmbh Cooling a screw vacuum pump
DE10156180B4 (en) 2001-11-15 2015-10-15 Oerlikon Leybold Vacuum Gmbh Cooled screw vacuum pump
DE20216504U1 (en) 2002-10-25 2003-03-06 Werner Rietschle GmbH + Co. KG, 79650 Schopfheim Displacement machine with rotors running in opposite directions
DE10258363A1 (en) * 2002-12-12 2004-06-24 Daimlerchrysler Ag Device for supplying air to fuel cells has claw compressor with at least two mutually engaged compressor wheels, claw expansion device with at least two mutually engaged expansion device wheels
EP1584819B1 (en) 2002-12-26 2008-09-17 Zexel Valeo Climate Control Corporation Compressor
DE10321521B3 (en) * 2003-05-14 2004-06-09 Gkn Sinter Metals Gmbh Oil pump used in the production of molded parts comprises a housing made from aluminum containing moving molded parts partially made from a sinterable material consisting of an austenitic iron-base alloy
DE10331979A1 (en) * 2003-07-14 2005-02-17 Gkn Sinter Metals Gmbh Pump with optimized axial clearance
US20080170958A1 (en) * 2007-01-11 2008-07-17 Gm Global Technology Operations, Inc. Rotor assembly and method of forming
GB0705971D0 (en) * 2007-03-28 2007-05-09 Boc Group Plc Vacuum pump
GB0707753D0 (en) * 2007-04-23 2007-05-30 Boc Group Plc Vacuum pump
US7708113B1 (en) * 2009-04-27 2010-05-04 Gm Global Technology Operations, Inc. Variable frequency sound attenuator for rotating devices
CN106968950B (en) 2010-03-31 2020-02-07 纳博特斯克汽车零部件有限公司 Vacuum pump
DE102012003066B3 (en) * 2012-02-17 2013-07-04 Netzsch Pumpen & Systeme Gmbh METHOD AND DEVICE FOR FIXING AND SYNCHRONIZING TURNING PISTONS IN A ROTARY PISTON PUMP
US10718334B2 (en) 2015-12-21 2020-07-21 Ingersoll-Rand Industrial U.S., Inc. Compressor with ribbed cooling jacket
US10215186B1 (en) * 2016-09-02 2019-02-26 Rotary Machine Providing Thermal Expansion Compenstion, And Method For Fabrication Thereof Rotary machine providing thermal expansion compensation, and method for fabrication thereof
CN109707628A (en) * 2018-12-17 2019-05-03 陈鑫 The aluminium alloy pump body structure of vacuum pump and the honing head processed for the pump housing

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2708548A (en) 1953-10-12 1955-05-17 Hosdreg Company Inc Blower
DE1949033A1 (en) 1969-09-27 1971-04-15 Bosch Gmbh Robert Housing, especially for a gear pump
US4086043A (en) * 1976-12-30 1978-04-25 Ingersoll-Rand Company Rotor with plastic sheathing
DE2945488A1 (en) 1979-11-10 1981-05-21 Barmag Barmer Maschf Vacuum pump for vehicle brakes - has rotor of sintered alloyed aluminium for light weight
DE3124247C1 (en) 1981-06-19 1983-06-01 Boge Kompressoren Otto Boge Gmbh & Co Kg, 4800 Bielefeld Screw compressor
DE3149245A1 (en) 1981-12-11 1983-06-16 Isartaler Schraubenkompressoren GmbH, 8192 Geretsried "COMPRESSOR SYSTEM"
JPS5991490U (en) 1982-12-13 1984-06-21 日本ピストンリング株式会社 rotary compressor
DE3321718A1 (en) 1983-06-16 1984-12-20 Arthur Pfeiffer Vakuumtechnik Wetzlar Gmbh, 6334 Asslar ROLLING PISTON PUMP
EP0144898B1 (en) * 1983-12-02 1990-02-07 Sumitomo Electric Industries Limited Aluminum alloy and method for producing same
DE3621176A1 (en) 1986-06-25 1988-01-07 Wankel Gmbh ROTARY PISTON BLOWER
DE3726209A1 (en) 1986-08-08 1988-02-18 Diesel Kiki Co TURNING PISTON COMPRESSORS
JPS63243478A (en) 1987-03-30 1988-10-11 Aisin Seiki Co Ltd Rotor for fluid equipment
JPH0672616B2 (en) 1987-04-21 1994-09-14 株式会社ゼクセル Steel shaft composite aluminum alloy rotor
JPH0267488A (en) * 1988-09-01 1990-03-07 Kobe Steel Ltd Screw type supercharger
JPH02130289A (en) 1988-11-09 1990-05-18 Toyota Autom Loom Works Ltd Vane type compressor
US5024591A (en) 1989-06-21 1991-06-18 Diesel Kiki Co., Ltd. Vane compressor having reduced weight as well as excellent anti-seizure and wear resistance
JPH0510282A (en) * 1990-09-21 1993-01-19 Ntn Corp Supercharger
JPH0579468A (en) * 1991-05-02 1993-03-30 Mitsubishi Materials Corp Manufacture of gear for fluid machine
JPH0543917A (en) * 1991-08-14 1993-02-23 Mitsubishi Materials Corp Manufacture of al-si alloy hot forged gear
DE69326290T2 (en) 1992-06-29 2000-01-27 Sumitomo Electric Industries Aluminum alloy oil pump
DE9209641U1 (en) 1992-07-17 1992-11-19 Werner Rietschle Maschinen- Und Apparatebau Gmbh, 7860 Schopfheim Roots pump
DE4300274A1 (en) 1993-01-08 1994-07-14 Leybold Ag Vacuum pump with rotor
JP2592344Y2 (en) 1993-04-13 1999-03-17 株式会社豊田自動織機製作所 Scroll compressor
IL120001A0 (en) * 1997-01-13 1997-04-15 Amt Ltd Aluminum alloys and method for their production
JP2001132660A (en) 1999-11-09 2001-05-18 Mitsubishi Materials Corp Al ALLOY INSCRIBED GEAR TYPE OIL PUMP HAVING STRUCTURAL MEMBER FOR EXHIBITING SMALL OPPONENT ATTACKING PROPERTY AND EXCELLENT ABRASION RESISTANCE

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202016005207U1 (en) * 2016-08-30 2017-12-01 Leybold Gmbh Vacuum pump rotor
DE202016005209U1 (en) * 2016-08-30 2017-12-01 Leybold Gmbh Screw vacuum pump
DE102016216279A1 (en) 2016-08-30 2018-03-01 Leybold Gmbh Vacuum-screw rotor

Also Published As

Publication number Publication date
DE50111283D1 (en) 2006-11-30
CN1277054C (en) 2006-09-27
DE20013338U1 (en) 2000-12-28
JP2004505210A (en) 2004-02-19
ATE343064T1 (en) 2006-11-15
CN1446290A (en) 2003-10-01
US6918749B2 (en) 2005-07-19
WO2002010593A1 (en) 2002-02-07
US20040022646A1 (en) 2004-02-05
KR20030026992A (en) 2003-04-03
CA2417794A1 (en) 2003-01-30
EP1305524A1 (en) 2003-05-02
AU2001278520A1 (en) 2002-02-13
CA2417794C (en) 2007-03-13

Similar Documents

Publication Publication Date Title
EP1305524B1 (en) Compressor
DE69928979T2 (en) Fluid displacement machine
WO2000012899A1 (en) Dry-compressing screw pump
DE10114321A1 (en) Electrical machine
AT503361A1 (en) DRIVE
DE112008002715B4 (en) Spiral compressor with compensation of spiral bending
EP1763642B1 (en) Device for transmitting a torque
DE102017106781A1 (en) Rotor edge pairings
EP3507495B1 (en) Screw-type vacuum pump
DE3438049A1 (en) FLOWING MACHINE IN SPIRAL DESIGN
WO2010052226A1 (en) Squirrel-cage rotor, asynchronous motor and turbomachine
DE19800825A1 (en) Dry compacting screw pump
EP1065382A2 (en) Rotor for oil gear pump made from aluminium powder
DE3344271A1 (en) ROTATIONAL COMPRESSOR HOUSING
DE3124247C1 (en) Screw compressor
EP0920590A1 (en) Dry vacuum machine with shaft passage
DE3612877A1 (en) GASKET WITH AT LEAST ONE ROTATING MACHINE PART AND AT LEAST ONE FIXED OR ROTATING PART, FIRST BYpass
US6223437B1 (en) Method for fabricating a friction bearing, and friction bearing
DE10149127B4 (en) Compression piston ring for use in an internal combustion engine and diesel engine
WO2019137852A1 (en) Compressor
EP0902202A1 (en) Extremely thin-walled sliding bearing
DE60037353T2 (en) Turbo molecular pump
WO2002103204A1 (en) Dry-compressing spindle pump
EP3499041B1 (en) Screw vacuum pump
AT507217B1 (en) PROCESS FOR USE OF HEAT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030206

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040622

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RIETSCHLE THOMAS GMBH + CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RIETSCHLE THOMAS SCHOPFHEIM GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50111283

Country of ref document: DE

Date of ref document: 20061130

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070118

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070129

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070119

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: GARDNER DENVER SCHOPFHEIM GMBH

Free format text: RIETSCHLE THOMAS SCHOPFHEIM GMBH#ROGGENBACHSTRASSE 58#79650 SCHOPFHEIM (DE) -TRANSFER TO- GARDNER DENVER SCHOPFHEIM GMBH#ROGGENBACHSTRASSE 58#79650 SCHOPFHEIM (DE)

Ref country code: CH

Ref legal event code: NV

Representative=s name: BUGNION S.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070319

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070827

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070830

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070828

Year of fee payment: 7

Ref country code: DE

Payment date: 20071001

Year of fee payment: 7

BERE Be: lapsed

Owner name: RIETSCHLE THOMAS SCHOPFHEIM G.M.B.H.

Effective date: 20070831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070831

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070817

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070802

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080802

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070802

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080802

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080901

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090303

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080802