EP1305524B1 - Compressor - Google Patents
Compressor Download PDFInfo
- Publication number
- EP1305524B1 EP1305524B1 EP01956582A EP01956582A EP1305524B1 EP 1305524 B1 EP1305524 B1 EP 1305524B1 EP 01956582 A EP01956582 A EP 01956582A EP 01956582 A EP01956582 A EP 01956582A EP 1305524 B1 EP1305524 B1 EP 1305524B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- compressor according
- housing
- aluminum
- alloy
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 21
- 229910021364 Al-Si alloy Inorganic materials 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims description 16
- 238000001816 cooling Methods 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 4
- 238000007906 compression Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 230000006835 compression Effects 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 230000003014 reinforcing effect Effects 0.000 claims 2
- 238000005096 rolling process Methods 0.000 claims 1
- 229910000838 Al alloy Inorganic materials 0.000 description 6
- 229910001018 Cast iron Inorganic materials 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000012530 fluid Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 210000000078 claw Anatomy 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009415 formwork Methods 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0408—Light metal alloys
- C22C1/0416—Aluminium-based alloys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/12—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
- F04C18/123—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially or approximately radially from the rotor body extending tooth-like elements, co-operating with recesses in the other rotor, e.g. one tooth
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/10—Stators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/20—Rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/04—Heavy metals
- F05C2201/0433—Iron group; Ferrous alloys, e.g. steel
- F05C2201/0436—Iron
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/04—Heavy metals
- F05C2201/0433—Iron group; Ferrous alloys, e.g. steel
- F05C2201/0436—Iron
- F05C2201/0439—Cast iron
- F05C2201/0442—Spheroidal graphite cast iron, e.g. nodular iron, ductile iron
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/04—Heavy metals
- F05C2201/0433—Iron group; Ferrous alloys, e.g. steel
- F05C2201/0466—Nickel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/90—Alloys not otherwise provided for
- F05C2201/903—Aluminium alloy, e.g. AlCuMgPb F34,37
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2203/00—Non-metallic inorganic materials
- F05C2203/08—Ceramics; Oxides
- F05C2203/0804—Non-oxide ceramics
- F05C2203/0813—Carbides
- F05C2203/0817—Carbides of silicon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2251/00—Material properties
- F05C2251/04—Thermal properties
- F05C2251/042—Expansivity
- F05C2251/046—Expansivity dissimilar
Definitions
- the invention relates to a compressor according to the preamble of claim 1.
- Compressors generally require cooling in order to dissipate the heat generated during the compression process. On a direct cooling of the rotors and shafts is omitted mostly for cost reasons. The cooling of the rotors is then only indirectly via the flow of fluid and the directly cooled housing.
- the standard material used for housing is cast iron with lamellar graphite and for the rotors cast iron with nodular graphite.
- a compressor is known whose housing is formed of an aluminum alloy and whose rotors are made of resin.
- the composition of the resin material is chosen so that it has substantially the same thermal expansion coefficient as the aluminum alloy.
- the invention provides a compressor which despite the use of aluminum materials has small gap widths and a correspondingly high efficiency.
- the rotor consists of a powder metallurgically produced, silicon-containing aluminum material and the housing consists essentially of aluminum.
- Aluminum for the housing is understood to mean essentially pure aluminum or an aluminum alloy with the typical relatively high coefficient of thermal expansion of approximately 23.8 ⁇ 10 -6 / K.
- the powder metallurgically produced, silicon-containing aluminum material however, has a thermal expansion coefficient of only about 16 x 10 -6 / K.
- the gap reduction is barely larger than the corresponding value when using cast iron for housings and rotors.
- an insulating layer is applied to the surfaces of the rotors. Through this insulating layer is the
- Heat transfer from the compressed fluid to the rotors reduced.
- the heat flow is increasingly dissipated via the shaft of the rotor.
- the reduced heating of the rotors by the insulating layer leads to a lower thermal expansion and therefore allows smaller gap widths, whereby the efficiency is increased.
- the compressor shown by way of example in Fig. 1 has a housing, generally designated 10, with an inner chamber 12 consisting of two intersecting sub-cylinders of the same size.
- two rotors 14, 16 are accommodated in the form of double-wing Roots.
- Each rotor 14, 16 is seated on a respective shaft 18, 20.
- the parallel shafts 18, 20 are synchronized by a (not shown) gear.
- the rotors 14, 16 run in the interior of the chamber 12 without mutual contact and without contact with the wall of the chamber 12. They roll into each other and thereby form work spaces of variable size, with an internal compression takes place.
- the heat generated during operation of the compressor is dissipated essentially by cooling the housing 10.
- the housing 10 has a plurality of cooling fins, which are flowed around by an air flow.
- the heated exhaust air is symbolized by arrows in the drawing.
- the rotors 14, 16 and the shafts 18, 20 are not directly cooled. Part of the heat flow is via the shafts 18, 20 and another part via the fluid flow dissipated.
- their surface is provided with a thermally insulating coating.
- the housing 10 is made of aluminum or an aluminum alloy whose thermal expansion coefficient is about 23.8 ⁇ 10 -6 / K.
- the rotors 14, 16 are made of an aluminum material whose thermal expansion coefficient is about 16 x 10 -6 / K. This material combination results in a gap reduction, which - based on a rotor diameter of 100 mm - is about 0.113 mm.
- the principle underlying the invention is applicable to most types of noncontact rotors compressors, but is particularly applicable to internally compacted two-shaft compressors, e.g. Claw compactor and screw compressor.
- the invention generally extends to the use of a powder metallurgical Al-Si alloy in rotors of compressors, pumps and rotary engines in combination with an aluminum housing, particularly in machines with non-contacting rotors.
- the housing is composed of an outer body 10a made of aluminum or an aluminum alloy and a ring 10b cast therein.
- the ring 10b is made of a powder metallurgy, dispersion strengthened Al-Si alloy of the type described in more detail above.
- the ring forms the boundary of the chamber in which the rotors of the compressor are accommodated.
- the two materials are fused together so that an intimate bond between outer body 10a and ring 10b is made. Since the ring 10b is made of a material of substantially greater strength than the material of the outer body 10a, its thermal expansion properties substantially determine the thermal expansion of the housing as a whole.
- the rotors in this embodiment also consist of an Al-Si alloy of the type described above.
- the ring is provided with cast-on stiffening ribs 10c directed radially outward. In each corner region of the housing one of these stiffening ribs is arranged.
- a gap reduction of about 0.16 mm can be achieved, again based on a rotor diameter of 100 mm.
- the housing has a bearing cap 22, with two bearings 24, 26 for the shafts 18, 20.
- a stiffening rib 28, 30 cast from a dispersion-hardened aluminum alloy.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Compressor (AREA)
- Rotary Pumps (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
Die Erfindung betrifft einen Verdichter gemäß dem Oberbegriff von Anspruch 1.The invention relates to a compressor according to the preamble of claim 1.
Verdichter bedürfen im allgemeinen der Kühlung, um die beim Verdichtungsprozeß anfallende Wärme abzuführen. Auf eine direkte Kühlung der Rotoren und Wellen wird zumeist aus Kostengründen verzichtet. Die Kühlung der Rotoren erfolgt dann nur indirekt über den Fördermedienstrom und über das direkt gekühlte Gehäuse.Compressors generally require cooling in order to dissipate the heat generated during the compression process. On a direct cooling of the rotors and shafts is omitted mostly for cost reasons. The cooling of the rotors is then only indirectly via the flow of fluid and the directly cooled housing.
Wegen der direkten Kühlung des Gehäuses, beispielsweise durch eine Luftströmung oder einen Wassermantel, und die nur indirekte Kühlung der Rotoren tritt im Betrieb eine hohe Temperaturdifferenz zwischen Gehäuse und Rotoren auf. Diese Temperaturdifferenz muß bei der Auslegung der Spalte berücksichtigt werden. Der größeren Temperaturdehnung der Rotoren wird durch vergrößerte Spalte im kalten Zustand Rechnung getragen. Der Unterschied der Spaltgröße im kalten Zustand zur Spaltgröße im Betriebszustand, d.h. bei einer Temperaturdifferenz in der Größenordnung von 100° K, wird als Spaltreduzierung bezeichnet. Um ein Anlaufen der Rotoren unter allen Umständen zu verhindern, werden die Spaltweiten für die maximale thermische Belastung festgelegt, die sich durch die unterschiedlichen Druckverhältnisse und Drehzahlen ergibt. Die Berücksichtigung der Spaltreduzierung führt dann zu einer Bemessung der Spaltweiten im kalten Zustand. Man ist aber bestrebt, die Spalte möglichst klein zu halten, um Rückströmungen zu minimieren und den volumetrischen sowie den isentropen Wirkungsgrad zu maximieren.Because of the direct cooling of the housing, for example by an air flow or a water jacket, and the only indirect cooling of the rotors occurs in operation, a high temperature difference between the housing and rotors. This temperature difference must be taken into account when designing the column. The larger temperature expansion of the rotors is accommodated by enlarged gaps in the cold state. The difference of the gap size in the cold state to the gap size in the operating state, i. at a temperature difference of the order of 100 ° K, is referred to as gap reduction. In order to prevent the rotors from starting up under all circumstances, the gap widths are set for the maximum thermal load resulting from the different pressure ratios and speeds. The consideration of the gap reduction then leads to a dimensioning of the gap widths in the cold state. However, efforts are made to keep the gap as small as possible in order to minimize backflow and maximize volumetric and isentropic efficiency.
Diese Überlegungen führen in der Praxis zur Verwendung von Werkstoffen mit geringer Wärmedehnung. Als Standardwerkstoff wird für Gehäuse Gußeisen mit Lamellengraphit und für die Rotoren Gußeisen mit Kugelgraphit verwendet. Der Wärmedehnungskoeffizient beträgt jeweils αk = 10,5-6/K. Bei Verwendung von Gußeisen für Gehäuse und Rotoren und einem Außendurchmesser der Rotoren von beispielsweise 100 mm ergibt sich für die Spaltreduzierung ein Wert von etwa 0,1 mm. Damit können befriedigende Wirkungsgrade erzielt werden. Die Verwendung eines Materials wie Aluminium kommt hingegen nicht in Betracht, da wegen der mehr als doppelt so großen Wärmedehnung die entsprechenden Werte der Spaltreduzierung bei etwa 0,24 mm liegen würden, so dass die Spaltweiten im kalten Zustand mehr als doppelt so groß sein müßten, wodurch die Spaltverluste enorm vergrößert würden.These considerations lead in practice to the use of materials with low thermal expansion. The standard material used for housing is cast iron with lamellar graphite and for the rotors cast iron with nodular graphite. The thermal expansion coefficient is in each case α k = 10.5 -6 / K. Using of cast iron for housing and rotors and an outer diameter of the rotors, for example, 100 mm results in the gap reduction, a value of about 0.1 mm. Thus, satisfactory efficiencies can be achieved. On the other hand, the use of a material such as aluminum is out of the question since, because of the thermal expansion more than twice as high, the corresponding gap reduction values would be about 0.24 mm, so that the gap widths would have to be more than twice as high when cold, whereby the gap losses would be increased enormously.
Aus der JP-A-05010282 ist ein Verdichter bekannt, dessen Gehäuse aus einer Aluminiumlegierung und dessen Rotoren aus Harz gebildet sind. Um eine Spaltreduzierung im Betrieb des Verdichters möglichst zu vermeiden, wird die Zusammensetzung des Harzmaterials so gewählt, daß es im wesentlichen den gleichen Wärmedehnungskoeffizienten wie die Aluminiumlegierung aufweist.From JP-A-05010282 a compressor is known whose housing is formed of an aluminum alloy and whose rotors are made of resin. In order to avoid a gap reduction in the operation of the compressor as possible, the composition of the resin material is chosen so that it has substantially the same thermal expansion coefficient as the aluminum alloy.
Aus der US-A-4,702,885 ist ein Verfahren zur Herstellung einer Aluminium-Silizium-Legierung mit verbesserten Materialeigenschaften hinsichtlich Hitzebeständigkeit und Verschleißfestigkeit bekannt.From US-A-4,702,885 a method for producing an aluminum-silicon alloy having improved material properties in terms of heat resistance and wear resistance is known.
Durch die Erfindung wird ein Verdichter geschaffen, der trotz Verwendung von Aluminium-Werkstoffen geringe Spaltweiten und einen entsprechend hohen Wirkungsgrad aufweist. Gemäß der Erfindung besteht der Rotor aus einem pulvermetallurgisch hergestellten, siliziumhaltigen Aluminium-Werkstoff und das Gehäuse besteht im wesentlichen aus Aluminium. Unter Aluminium für das Gehäuse wird im wesentlichen reines Aluminium oder eine Aluminium-Legierung mit dem typischen relativen großen Wärmedehnungskoeffizienten von etwa 23,8 x 10-6/K verstanden. Der pulvermetallurgisch hergestellte, siliziumhaltige Aluminium-Werkstoff hat hingegen einen Wärmedehnungskoeffizient von nur etwa 16 x 10-6/K. Geht man wiederum von einem Rotordurchmesser von 100 mm aus, so ergibt sich bei der erfindungsgemäßen Werkstofflcombination bei einer Temperaturdifferenz von 100° K eine Spaltreduzierung, die wie folgt berechnet wird:
Die Spaltreduzierung ist mit einem Wert von 0,113 mm somit kaum größer als der entsprechende Wert bei Verwendung von Gußeisen für Gehäuse und Rotoren.With a value of 0.113 mm, the gap reduction is barely larger than the corresponding value when using cast iron for housings and rotors.
Die Verwendung von Aluminium anstelle von Gußeisen erbringt erhebliche Vorteile, insbesondere ein geringeres Gewicht, kürzere Bearbeitungszeiten, Korrosionsbeständigkeit, geringere Herstellungskosten.The use of aluminum instead of cast iron provides significant advantages, in particular a lower weight, shorter processing times, corrosion resistance, lower production costs.
Bei der bevorzugten Ausführungsform ist auf den Oberflächen der Rotoren eine Isolierschicht aufgebracht. Durch diese Isolierschicht wird derIn the preferred embodiment, an insulating layer is applied to the surfaces of the rotors. Through this insulating layer is the
Wärmeübergang von dem komprimierten Fördermedium auf die Rotoren vermindert. Der Wärmestrom wird verstärkt über die Welle des Rotors abgeführt. Die verminderte Erwärmung der Rotoren durch die Isolierschicht führt zu einer geringeren Wärmedehnung und läßt daher kleinere Spaltweiten zu, wodurch der Wirkungsgrad gesteigert wird.Heat transfer from the compressed fluid to the rotors reduced. The heat flow is increasingly dissipated via the shaft of the rotor. The reduced heating of the rotors by the insulating layer leads to a lower thermal expansion and therefore allows smaller gap widths, whereby the efficiency is increased.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der folgenden Beschreibung zweier Ausführungsformen des Verdichters und aus den beigefügten Zeichnungen. In den Zeichnungen zeigen:
- Figur 1 schematisch einen geöffneten Klauenverdichter mit Blick auf die Rotoren;
- Figur 2 eine entsprechende Ansicht einer Ausführungsvariante; und
- Figur 3 eine weitere Ausführungsvariante.
- Figure 1 shows schematically an open claw compressor with a view of the rotors;
- Figure 2 is a corresponding view of a variant embodiment; and
- Figure 3 shows a further embodiment.
Der in Fig. 1 beispielshalber gezeigte Verdichter hat einen allgemein mit 10 bezeichnetes Gehäuse mit einer inneren Kammer 12, die aus zwei einander überschneidenden Teilzylindern gleicher Größe besteht. In der Kammer 12 sind zwei Rotoren 14, 16 in Form von zweiflügeligen Wälzkolben aufgenommen. Jeder Rotor 14, 16 sitzt auf einer entsprechenden Welle 18, 20. Die zueinander parallelen Wellen 18, 20 sind durch ein (nicht gezeigtes) Getriebe synchronisiert. Die Rotoren 14, 16 laufen im inneren der Kammer 12 ohne gegenseitige Berührung und ohne Berührung mit der Wandung der Kammer 12. Sie wälzen sich ineinander ab und bilden dabei Arbeitsräume variabler Größe, wobei eine innere Verdichtung stattfindet.The compressor shown by way of example in Fig. 1 has a housing, generally designated 10, with an
Die im Betrieb des Verdichters anfallende Wärme wird im wesentlichen durch Kühlung des Gehäuses 10 abgeführt. Zu diesem Zweck weist das Gehäuse 10 eine Vielzahl von Kühlrippen auf, die von einem Luftstrom umströmt werden. Die erwärmte Abluft ist in der Zeichnung durch Pfeile symbolisiert. Die Rotoren 14, 16 und die Wellen 18, 20 werden nicht direkt gekühlt. Ein Teil des Wärmestroms wird über die Wellen 18, 20 und ein anderer Teil über den Fördermedienstrom abgeführt. Um die Erwärmung der Rotoren 14, 16 im Betrieb zu reduzieren, ist ihre Oberfläche mit einer thermisch isolierenden Beschichtung versehen.The heat generated during operation of the compressor is dissipated essentially by cooling the housing 10. For this purpose, the housing 10 has a plurality of cooling fins, which are flowed around by an air flow. The heated exhaust air is symbolized by arrows in the drawing. The
Das Gehäuse 10 besteht aus Aluminium oder einer Aluminium-Legierung, deren Wärmedehnungskoeffizient etwa 23,8 x 10-6/K beträgt. Die Rotoren 14, 16 bestehen aus einem Aluminium-Werkstoff, dessen Wärmedehnungskoeffizient etwa 16 x 10-6/K beträgt. Durch diese Werkstoffpaarung ergibt sich eine Spaltreduzierung, die - bezogen auf einen Rotordurchmesser von 100 mm - etwa 0,113 mm beträgt.The housing 10 is made of aluminum or an aluminum alloy whose thermal expansion coefficient is about 23.8 × 10 -6 / K. The
Der Aluminium-Werkstoff, aus dem die Rotoren 14, 16 bestehen, ist pulvermetallurgisch hergestellt und dispersionsverfestigt. Die Zusammensetzung des Aluminium-Werkstoffs für die Rotoren ist vorzugsweise wie folgt:
- 18,5 bis 21,5 Gew.% Silizium,
- 4,6 bis 5,4 Gew% Eisen,
- 1,8 bis 2,2 Gew.% Nickel
- Rest: Aluminium
- 18.5 to 21.5% by weight of silicon,
- 4.6 to 5.4% by weight of iron,
- 1.8 to 2.2 wt.% Nickel
- Rest: aluminum
Das der Erfindung zugrunde liegende Prinzip ist bei den meisten Bauformen von Verdichtern mit berührungslosen Rotoren anwendbar, mit besonderem Vorteil jedoch bei zweiwelligen Verdichtern mit innerer Verdichtung, z.B. Klauenverdichter und Schraubenverdichter. Die Erfindung erstreckt sich allgemein auf die Verwendung einer pulvermetallurgischen Al-Si-Legierung bei Rotoren von Verdichtern, Pumpen und Drehkolbenmaschinen in Kombination mit einem Gehäuse aus Aluminium, insbesondere bei Maschinen mit berührungslos arbeitenden Rotoren.The principle underlying the invention is applicable to most types of noncontact rotors compressors, but is particularly applicable to internally compacted two-shaft compressors, e.g. Claw compactor and screw compressor. The invention generally extends to the use of a powder metallurgical Al-Si alloy in rotors of compressors, pumps and rotary engines in combination with an aluminum housing, particularly in machines with non-contacting rotors.
Bei der in Fig. 2 gezeigten Ausführungsvariante ist das Gehäuse aus einem Außenkörper 10a, der aus Aluminium oder einer Aluminiumlegierung besteht, und einem darin eingegossenen Ring 10b aufgebaut. Der Ring 10b besteht aus einer pulvermetallurgischen, dispersionsverfestigten Al-Si-Legierung der oben näher beschriebenen Art. Der Ring bildet die Begrenzung der Kammer in der die Rotoren des Verdichters aufgenommen sind. An der Grenzfläche zwischen Außenkörper 10a und Ring 10b sind die beiden Werkstoffe miteinander verschmolzen, so daß ein inniger Verbund zwischen Außenkörper 10a und Ring 10b besteht. Da der Ring 10b aus einem Material von wesentlich größerer Festigkeit als das Material des Außenkörpers 10a besteht, bestimmen seine Wärmedehnungseigenschaften im wesentlichen die Wärmedehnung des Gehäuses als ganzes. Auch die Rotoren bestehen bei dieser Ausführungsform aus einer Al-Si-Legierung der oben beschriebenen Art. Der Ring ist mit angegossenen Versteifungsrippen 10c versehen, die radial auswärts gerichtet sind. In jedem Eckbereich des Gehäuses ist eine dieser Versteifungsrippen angeordnet.In the embodiment shown in Fig. 2, the housing is composed of an outer body 10a made of aluminum or an aluminum alloy and a
Bei dieser Ausführungsform kann eine Spaltreduzierung von ca. 0,16 mm erreicht werden, wiederum bezogen auf einen Rotordurchmesser von 100 mm.In this embodiment, a gap reduction of about 0.16 mm can be achieved, again based on a rotor diameter of 100 mm.
Bei der in Fig. 3 gezeigten Ausführungsform hat das Gehäuse einen Lagerdeckel 22, mit zwei Lagern 24, 26 für die Wellen 18, 20. Beiderseits der Lager 24, 26 ist in dem Lagerdeckel 22 eine Versteifungsrippe 28, 30 aus einer dispersionsverfestigten Aluminiumlegierung eingegossen. Durch diese Versteifungsrippen 28, 30 wird einerseits die Lagerung der Wellen 18, 20 versteift, zum anderen wird die Wärmedehnung des Achsabstandes reduziert.In the embodiment shown in Fig. 3, the housing has a
Claims (14)
- Compressor comprising a housing and at least one rotor rotatably mounted in the housing by means of a shaft, which rotates without touching the housing, wherein the housing essentially consists of aluminum, and wherein the cooling of the at least one rotor happens indirectly by means of a delivery media flow and via the directly cooled housing, characterized in that the rotor consists of a powder metallurgic Al-Si-alloy comprising a heat strain coefficient of about 16 x 10- 6/K and that the aluminum, of which the housing is made, has a heat strain coefficient of about 23.8 x 10-6/K.
- Compressor according to claim 1, characterized in that the Al-Si-alloy is dispersion-hardened.
- Compressor according to claim 1 or 2, characterized in that the Al-Si-alloy has the following composition:18.5 to 21.5 percent in weight silicon,4.6 to 5.4 percent in weight iron,1.8 to 2.2 percent in weight nickel,rest: aluminum.
- Compressor according to one of claims 1 to 3, characterized in that the housing is cooled by an air flow.
- Compressor according to one of claims 1 to 4, characterized in that it comprises two rotary pistons, rolling off in each other contact-free.
- Compressor according to claim 5, characterized in that it works with an inner compression.
- Compressor according to claim 6, characterized in that the rotary pistons are two-bladed or three-bladed.
- Compressor according to one of claims 1 to 4, characterized in that it is a screw-type compressor.
- Compressor according to one of claims 1 to 8, characterized in that an isolating layer is applied to the surface of the rotors.
- Compressor according to one of the precedent claims, characterized in that the housing has an external body made of aluminum and a ring consisting of a dispersion-hardened powder metallurgic Al-Si-alloy molded therein.
- Compressor according to claim 10, characterized in that at the interface of the ring and the external body their materials are fused together.
- Compressor according to claim 10 or 11, characterized in that the ring directly surrounds the rotor.
- Compressor according to one of the preceding claims, characterized in that the housing has at least one bearing cover provided with cast-in reinforcing ribs made of a dispersion-hardened powder metallurgic Al-Si-alloy.
- Compressor according to claim 13, characterized in that the reinforcing ribs are arranged on opposing sides of the bearings.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE20013338U DE20013338U1 (en) | 2000-08-02 | 2000-08-02 | compressor |
DE20013338U | 2000-08-02 | ||
PCT/EP2001/008967 WO2002010593A1 (en) | 2000-08-02 | 2001-08-02 | Compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1305524A1 EP1305524A1 (en) | 2003-05-02 |
EP1305524B1 true EP1305524B1 (en) | 2006-10-18 |
Family
ID=7944714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01956582A Expired - Lifetime EP1305524B1 (en) | 2000-08-02 | 2001-08-02 | Compressor |
Country Status (10)
Country | Link |
---|---|
US (1) | US6918749B2 (en) |
EP (1) | EP1305524B1 (en) |
JP (1) | JP2004505210A (en) |
KR (1) | KR20030026992A (en) |
CN (1) | CN1277054C (en) |
AT (1) | ATE343064T1 (en) |
AU (1) | AU2001278520A1 (en) |
CA (1) | CA2417794C (en) |
DE (2) | DE20013338U1 (en) |
WO (1) | WO2002010593A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202016005207U1 (en) * | 2016-08-30 | 2017-12-01 | Leybold Gmbh | Vacuum pump rotor |
DE202016005209U1 (en) * | 2016-08-30 | 2017-12-01 | Leybold Gmbh | Screw vacuum pump |
DE102016216279A1 (en) | 2016-08-30 | 2018-03-01 | Leybold Gmbh | Vacuum-screw rotor |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4777541B2 (en) * | 2001-06-08 | 2011-09-21 | パナソニック株式会社 | Compressor with built-in electric motor and mobile vehicle equipped with this |
DE10156179A1 (en) | 2001-11-15 | 2003-05-28 | Leybold Vakuum Gmbh | Cooling a screw vacuum pump |
DE10156180B4 (en) | 2001-11-15 | 2015-10-15 | Oerlikon Leybold Vacuum Gmbh | Cooled screw vacuum pump |
DE20216504U1 (en) | 2002-10-25 | 2003-03-06 | Werner Rietschle GmbH + Co. KG, 79650 Schopfheim | Displacement machine with rotors running in opposite directions |
DE10258363A1 (en) * | 2002-12-12 | 2004-06-24 | Daimlerchrysler Ag | Device for supplying air to fuel cells has claw compressor with at least two mutually engaged compressor wheels, claw expansion device with at least two mutually engaged expansion device wheels |
EP1584819B1 (en) | 2002-12-26 | 2008-09-17 | Zexel Valeo Climate Control Corporation | Compressor |
DE10321521B3 (en) * | 2003-05-14 | 2004-06-09 | Gkn Sinter Metals Gmbh | Oil pump used in the production of molded parts comprises a housing made from aluminum containing moving molded parts partially made from a sinterable material consisting of an austenitic iron-base alloy |
DE10331979A1 (en) * | 2003-07-14 | 2005-02-17 | Gkn Sinter Metals Gmbh | Pump with optimized axial clearance |
US20080170958A1 (en) * | 2007-01-11 | 2008-07-17 | Gm Global Technology Operations, Inc. | Rotor assembly and method of forming |
GB0705971D0 (en) * | 2007-03-28 | 2007-05-09 | Boc Group Plc | Vacuum pump |
GB0707753D0 (en) * | 2007-04-23 | 2007-05-30 | Boc Group Plc | Vacuum pump |
US7708113B1 (en) * | 2009-04-27 | 2010-05-04 | Gm Global Technology Operations, Inc. | Variable frequency sound attenuator for rotating devices |
CN106968950B (en) | 2010-03-31 | 2020-02-07 | 纳博特斯克汽车零部件有限公司 | Vacuum pump |
DE102012003066B3 (en) * | 2012-02-17 | 2013-07-04 | Netzsch Pumpen & Systeme Gmbh | METHOD AND DEVICE FOR FIXING AND SYNCHRONIZING TURNING PISTONS IN A ROTARY PISTON PUMP |
US10718334B2 (en) | 2015-12-21 | 2020-07-21 | Ingersoll-Rand Industrial U.S., Inc. | Compressor with ribbed cooling jacket |
US10215186B1 (en) * | 2016-09-02 | 2019-02-26 | Rotary Machine Providing Thermal Expansion Compenstion, And Method For Fabrication Thereof | Rotary machine providing thermal expansion compensation, and method for fabrication thereof |
CN109707628A (en) * | 2018-12-17 | 2019-05-03 | 陈鑫 | The aluminium alloy pump body structure of vacuum pump and the honing head processed for the pump housing |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2708548A (en) | 1953-10-12 | 1955-05-17 | Hosdreg Company Inc | Blower |
DE1949033A1 (en) | 1969-09-27 | 1971-04-15 | Bosch Gmbh Robert | Housing, especially for a gear pump |
US4086043A (en) * | 1976-12-30 | 1978-04-25 | Ingersoll-Rand Company | Rotor with plastic sheathing |
DE2945488A1 (en) | 1979-11-10 | 1981-05-21 | Barmag Barmer Maschf | Vacuum pump for vehicle brakes - has rotor of sintered alloyed aluminium for light weight |
DE3124247C1 (en) | 1981-06-19 | 1983-06-01 | Boge Kompressoren Otto Boge Gmbh & Co Kg, 4800 Bielefeld | Screw compressor |
DE3149245A1 (en) | 1981-12-11 | 1983-06-16 | Isartaler Schraubenkompressoren GmbH, 8192 Geretsried | "COMPRESSOR SYSTEM" |
JPS5991490U (en) | 1982-12-13 | 1984-06-21 | 日本ピストンリング株式会社 | rotary compressor |
DE3321718A1 (en) | 1983-06-16 | 1984-12-20 | Arthur Pfeiffer Vakuumtechnik Wetzlar Gmbh, 6334 Asslar | ROLLING PISTON PUMP |
EP0144898B1 (en) * | 1983-12-02 | 1990-02-07 | Sumitomo Electric Industries Limited | Aluminum alloy and method for producing same |
DE3621176A1 (en) | 1986-06-25 | 1988-01-07 | Wankel Gmbh | ROTARY PISTON BLOWER |
DE3726209A1 (en) | 1986-08-08 | 1988-02-18 | Diesel Kiki Co | TURNING PISTON COMPRESSORS |
JPS63243478A (en) | 1987-03-30 | 1988-10-11 | Aisin Seiki Co Ltd | Rotor for fluid equipment |
JPH0672616B2 (en) | 1987-04-21 | 1994-09-14 | 株式会社ゼクセル | Steel shaft composite aluminum alloy rotor |
JPH0267488A (en) * | 1988-09-01 | 1990-03-07 | Kobe Steel Ltd | Screw type supercharger |
JPH02130289A (en) | 1988-11-09 | 1990-05-18 | Toyota Autom Loom Works Ltd | Vane type compressor |
US5024591A (en) | 1989-06-21 | 1991-06-18 | Diesel Kiki Co., Ltd. | Vane compressor having reduced weight as well as excellent anti-seizure and wear resistance |
JPH0510282A (en) * | 1990-09-21 | 1993-01-19 | Ntn Corp | Supercharger |
JPH0579468A (en) * | 1991-05-02 | 1993-03-30 | Mitsubishi Materials Corp | Manufacture of gear for fluid machine |
JPH0543917A (en) * | 1991-08-14 | 1993-02-23 | Mitsubishi Materials Corp | Manufacture of al-si alloy hot forged gear |
DE69326290T2 (en) | 1992-06-29 | 2000-01-27 | Sumitomo Electric Industries | Aluminum alloy oil pump |
DE9209641U1 (en) | 1992-07-17 | 1992-11-19 | Werner Rietschle Maschinen- Und Apparatebau Gmbh, 7860 Schopfheim | Roots pump |
DE4300274A1 (en) | 1993-01-08 | 1994-07-14 | Leybold Ag | Vacuum pump with rotor |
JP2592344Y2 (en) | 1993-04-13 | 1999-03-17 | 株式会社豊田自動織機製作所 | Scroll compressor |
IL120001A0 (en) * | 1997-01-13 | 1997-04-15 | Amt Ltd | Aluminum alloys and method for their production |
JP2001132660A (en) | 1999-11-09 | 2001-05-18 | Mitsubishi Materials Corp | Al ALLOY INSCRIBED GEAR TYPE OIL PUMP HAVING STRUCTURAL MEMBER FOR EXHIBITING SMALL OPPONENT ATTACKING PROPERTY AND EXCELLENT ABRASION RESISTANCE |
-
2000
- 2000-08-02 DE DE20013338U patent/DE20013338U1/en not_active Expired - Lifetime
-
2001
- 2001-08-02 DE DE50111283T patent/DE50111283D1/en not_active Expired - Fee Related
- 2001-08-02 CN CNB018137083A patent/CN1277054C/en not_active Expired - Fee Related
- 2001-08-02 CA CA002417794A patent/CA2417794C/en not_active Expired - Fee Related
- 2001-08-02 WO PCT/EP2001/008967 patent/WO2002010593A1/en active IP Right Grant
- 2001-08-02 EP EP01956582A patent/EP1305524B1/en not_active Expired - Lifetime
- 2001-08-02 AT AT01956582T patent/ATE343064T1/en not_active IP Right Cessation
- 2001-08-02 JP JP2002516488A patent/JP2004505210A/en active Pending
- 2001-08-02 US US10/343,447 patent/US6918749B2/en not_active Expired - Fee Related
- 2001-08-02 KR KR10-2003-7001264A patent/KR20030026992A/en not_active Application Discontinuation
- 2001-08-02 AU AU2001278520A patent/AU2001278520A1/en not_active Abandoned
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202016005207U1 (en) * | 2016-08-30 | 2017-12-01 | Leybold Gmbh | Vacuum pump rotor |
DE202016005209U1 (en) * | 2016-08-30 | 2017-12-01 | Leybold Gmbh | Screw vacuum pump |
DE102016216279A1 (en) | 2016-08-30 | 2018-03-01 | Leybold Gmbh | Vacuum-screw rotor |
Also Published As
Publication number | Publication date |
---|---|
DE50111283D1 (en) | 2006-11-30 |
CN1277054C (en) | 2006-09-27 |
DE20013338U1 (en) | 2000-12-28 |
JP2004505210A (en) | 2004-02-19 |
ATE343064T1 (en) | 2006-11-15 |
CN1446290A (en) | 2003-10-01 |
US6918749B2 (en) | 2005-07-19 |
WO2002010593A1 (en) | 2002-02-07 |
US20040022646A1 (en) | 2004-02-05 |
KR20030026992A (en) | 2003-04-03 |
CA2417794A1 (en) | 2003-01-30 |
EP1305524A1 (en) | 2003-05-02 |
AU2001278520A1 (en) | 2002-02-13 |
CA2417794C (en) | 2007-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1305524B1 (en) | Compressor | |
DE69928979T2 (en) | Fluid displacement machine | |
WO2000012899A1 (en) | Dry-compressing screw pump | |
DE10114321A1 (en) | Electrical machine | |
AT503361A1 (en) | DRIVE | |
DE112008002715B4 (en) | Spiral compressor with compensation of spiral bending | |
EP1763642B1 (en) | Device for transmitting a torque | |
DE102017106781A1 (en) | Rotor edge pairings | |
EP3507495B1 (en) | Screw-type vacuum pump | |
DE3438049A1 (en) | FLOWING MACHINE IN SPIRAL DESIGN | |
WO2010052226A1 (en) | Squirrel-cage rotor, asynchronous motor and turbomachine | |
DE19800825A1 (en) | Dry compacting screw pump | |
EP1065382A2 (en) | Rotor for oil gear pump made from aluminium powder | |
DE3344271A1 (en) | ROTATIONAL COMPRESSOR HOUSING | |
DE3124247C1 (en) | Screw compressor | |
EP0920590A1 (en) | Dry vacuum machine with shaft passage | |
DE3612877A1 (en) | GASKET WITH AT LEAST ONE ROTATING MACHINE PART AND AT LEAST ONE FIXED OR ROTATING PART, FIRST BYpass | |
US6223437B1 (en) | Method for fabricating a friction bearing, and friction bearing | |
DE10149127B4 (en) | Compression piston ring for use in an internal combustion engine and diesel engine | |
WO2019137852A1 (en) | Compressor | |
EP0902202A1 (en) | Extremely thin-walled sliding bearing | |
DE60037353T2 (en) | Turbo molecular pump | |
WO2002103204A1 (en) | Dry-compressing spindle pump | |
EP3499041B1 (en) | Screw vacuum pump | |
AT507217B1 (en) | PROCESS FOR USE OF HEAT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030206 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17Q | First examination report despatched |
Effective date: 20040622 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: RIETSCHLE THOMAS GMBH + CO. KG |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: RIETSCHLE THOMAS SCHOPFHEIM GMBH |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061018 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061018 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061018 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 50111283 Country of ref document: DE Date of ref document: 20061130 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070118 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070129 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070119 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: GARDNER DENVER SCHOPFHEIM GMBH Free format text: RIETSCHLE THOMAS SCHOPFHEIM GMBH#ROGGENBACHSTRASSE 58#79650 SCHOPFHEIM (DE) -TRANSFER TO- GARDNER DENVER SCHOPFHEIM GMBH#ROGGENBACHSTRASSE 58#79650 SCHOPFHEIM (DE) Ref country code: CH Ref legal event code: NV Representative=s name: BUGNION S.A. |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070319 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070719 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20070827 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20070830 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20070828 Year of fee payment: 7 Ref country code: DE Payment date: 20071001 Year of fee payment: 7 |
|
BERE | Be: lapsed |
Owner name: RIETSCHLE THOMAS SCHOPFHEIM G.M.B.H. Effective date: 20070831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070831 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070119 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20070817 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070802 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20080802 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20090430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070802 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080802 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080901 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090303 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080802 |