[go: up one dir, main page]

EP1305524A1 - Compressor - Google Patents

Compressor

Info

Publication number
EP1305524A1
EP1305524A1 EP01956582A EP01956582A EP1305524A1 EP 1305524 A1 EP1305524 A1 EP 1305524A1 EP 01956582 A EP01956582 A EP 01956582A EP 01956582 A EP01956582 A EP 01956582A EP 1305524 A1 EP1305524 A1 EP 1305524A1
Authority
EP
European Patent Office
Prior art keywords
compressor according
housing
alloy
aluminum
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01956582A
Other languages
German (de)
French (fr)
Other versions
EP1305524B1 (en
Inventor
Reinhard Garczorz
Fritz-Martin Scholz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gardner Denver Schopfheim GmbH
Original Assignee
Rietschle Werner GmbH and Co KG
Werner Rietschle GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rietschle Werner GmbH and Co KG, Werner Rietschle GmbH and Co KG filed Critical Rietschle Werner GmbH and Co KG
Publication of EP1305524A1 publication Critical patent/EP1305524A1/en
Application granted granted Critical
Publication of EP1305524B1 publication Critical patent/EP1305524B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/123Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially or approximately radially from the rotor body extending tooth-like elements, co-operating with recesses in the other rotor, e.g. one tooth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0436Iron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0436Iron
    • F05C2201/0439Cast iron
    • F05C2201/0442Spheroidal graphite cast iron, e.g. nodular iron, ductile iron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0466Nickel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/90Alloys not otherwise provided for
    • F05C2201/903Aluminium alloy, e.g. AlCuMgPb F34,37
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials
    • F05C2203/08Ceramics; Oxides
    • F05C2203/0804Non-oxide ceramics
    • F05C2203/0813Carbides
    • F05C2203/0817Carbides of silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • F05C2251/042Expansivity
    • F05C2251/046Expansivity dissimilar

Definitions

  • the invention relates to a compressor with a housing and at least one rotor rotatably mounted in the housing by means of a shaft, which rotates without contact with the housing.
  • Compressors generally require cooling in order to be able to
  • Cast iron with lamellar graphite is used as the standard material for the housing and cast iron with nodular graphite for the rotors.
  • the value for the gap reduction is approximately 0.1 mm. Satisfactory levels of efficiency can be achieved in this way.
  • the rotor consists of a powder metallurgy, silicon-containing aluminum material and the housing consists essentially of aluminum.
  • Aluminum for the housing is understood to be essentially pure aluminum or an aluminum alloy with the typical relatively large coefficient of thermal expansion of approximately 23.8 x 10 "6 / K.
  • the powdered aluminum-containing aluminum material typically has one Thermal expansion coefficient of only 16 x 10 "6 / K. If one again assumes a rotor diameter of 100 mm, the material combination according to the invention results in a gap reduction at a temperature difference of 100 ° K, which is calculated as follows:
  • the gap reduction is hardly larger than the corresponding value when using cast iron for housings and rotors.
  • an insulating layer is applied to the surfaces of the rotors. Through this insulating layer Heat transfer from the compressed medium to the rotors is reduced. The heat flow is increasingly dissipated via the shaft of the rotor. The reduced heating of the rotors by the insulating layer leads to less thermal expansion and therefore allows smaller gap widths, which increases the efficiency.
  • FIG. 1 shows schematically an open claw compressor with a view of the rotors
  • the compressor shown by way of example in FIG. 1 has a housing, generally designated 10, with an inner chamber 12, which consists of two overlapping partial cylinders of the same size.
  • an inner chamber 12 which consists of two overlapping partial cylinders of the same size.
  • two rotors 14, 16 are received in the form of double-winged roots.
  • Each rotor 14, 16 is seated on a corresponding shaft 18, 20.
  • the mutually parallel shafts 18, 20 are synchronized by a gear (not shown).
  • the rotors 14, 16 run in the interior of the chamber 12 without mutual contact and without contact with the wall of the chamber 12. They roll into one another and thereby form work spaces of variable size, with internal compression taking place.
  • the heat generated during the operation of the compressor is essentially dissipated by cooling the housing 10.
  • the housing 10 has a multiplicity of cooling fins around which an air stream flows.
  • the heated exhaust air is symbolized in the drawing by arrows.
  • the rotors 14, 16 and the shafts 18, 20 are not cooled directly. Part of the heat flow is via the shafts 18, 20 and another part via the fluid flow dissipated.
  • their surface is provided with a thermally insulating coating.
  • the housing 10 is made of aluminum or an aluminum alloy, the coefficient of thermal expansion of which is approximately 23.8 ⁇ 10 6 / K.
  • the rotors 14, 16 are made of an aluminum material, the coefficient of thermal expansion of which is approximately 16 ⁇ 10 6 / K. This pairing of materials results in a gap reduction which, based on a rotor diameter of 100 mm, is approximately 0.113 mm.
  • the aluminum material from which the rotors 14, 16 are made is produced by powder metallurgy and is strengthened with dispersion.
  • the composition of the aluminum material for the rotors is preferably as follows:
  • the principle on which the invention is based can be applied to most designs of compressors with contactless rotors, but is particularly advantageous for two-shaft compressors with internal compression, e.g. Claw compressors and screw compressors.
  • the invention extends in general to the use of a powder-metallurgical Al-Si alloy in rotors of compressors, pumps and rotary lobe machines in combination with a housing made of aluminum, in particular in machines with contactlessly operating rotors.
  • the housing is constructed from an outer body 10a, which consists of aluminum or an aluminum alloy, and a ring 10b cast into it.
  • the ring 10b consists of a powder-metallurgical, dispersion-hardened Al-Si alloy of the type described in more detail above.
  • the ring forms the boundary of the chamber in which the rotors of the compressor are received.
  • the two materials are fused together, so that there is an intimate bond between outer body 10a and ring 10b. Since the ring 10b is made of a material of substantially greater strength than the material of the outer body 10a, its thermal expansion properties essentially determine the thermal expansion of the housing as a whole.
  • the rotors in this embodiment also consist of an Al-Si alloy of the type described above.
  • the ring is provided with cast-on stiffening ribs 10c, which are directed radially outward.
  • One of these stiffening ribs is arranged in each corner region of the housing.
  • a gap reduction of approx. 0.16 mm can be achieved, again based on a rotor diameter of 100 mm.
  • the housing has a bearing cover 22, with two bearings 24, 26 for the shafts 18, 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
  • Rotary Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The compressor has two rotors ( 14, 16 ), which are rotatably mounted in a housing ( 10 ) by means of a shaft each, the rotors ( 14, 16 ) rotating without contact with the housing. The rotors ( 14, 16 ) consist of a powder-metallurgical Al-Si alloy, and the housing ( 10 ) consists essentially of aluminum.

Description

Verdichter compressor
Die Erfindung betrifft einen Verdichter mit einem Gehäuse und wenigstens einem in dem Gehäuse drehbar mittels einer Welle gelagerten Rotor, der ohne Berührung mit dem Gehäuse rotiert.The invention relates to a compressor with a housing and at least one rotor rotatably mounted in the housing by means of a shaft, which rotates without contact with the housing.
Verdichter bedürfen im allgemeinen der Kühlung, um die beimCompressors generally require cooling in order to be able to
Verdichtungsprozeß anfallende Wärme ab--uführen. Auf eine direkte Kühlung der Rotoren und Wellen wird zumeist aus Kostengründen verzichtet. Die Kühlung. der Rotoren erfolgt dann nur indirekt über den Fördermedienstrom und über das direkt gekühlte Gehäuse.Dissipate heat generated by the compression process. Direct cooling of the rotors and shafts is usually avoided for cost reasons. The cooling. the rotors are then only carried out indirectly via the fluid flow and the directly cooled housing.
Wegen der direkten Kühlung des Gehäuses, beispielsweise durch eineBecause of the direct cooling of the housing, for example by a
Luftströmung oder einen Wassermantel, und die nur indirekte Kühlung der Rotoren tritt im Betrieb eine hohe Temperaturdifferenz zwischen Gehäuse und Rotoren auf. Diese Temperaturdifferenz muß bei der Auslegung der Spalte berücksichtigt werden. Der größeren Temperaturdehnung der Rotoren wird durch vergrößerte Spalte im kalten Zustand Rechnung getragen. Der Unterschied der Spaltgröße im kalten Zustand zur Spaltgröße im Betriebszustand, d.h. bei einer Temperaturdifferenz in der Größenordnung von 100° K, wird als Spaltreduzierung bezeichnet. Um ein Anlaufen der Rotoren unter allen Umständen zu verhindern, werden die Spaltweiten für die maximale thermische Belastung festgelegt, die sich durch die unterschiedlichen Druckverhältnisse und Drehzahlen ergibt. Die Berücksichtigung der Spaltreduzierung fuhrt dann zu einer Bemessung der Spaltweiten im kalten Zustand. Man ist aber bestrebt, die Spalte möglichst klein zu halten, um Rückströmungen zu minimieren und den volumetrischen sowie den isentropen Wirkungsgrad zu maximieren.Air flow or a water jacket, and the only indirect cooling of the rotors occurs during operation, a high temperature difference between the housing and the rotors. This temperature difference must be taken into account when designing the column. The larger temperature expansion of the rotors is taken into account by enlarged gaps in the cold state. The difference of the gap size in the cold state to the gap size in the operating state, i.e. at a temperature difference in the order of 100 ° K, is called gap reduction. In order to prevent the rotors from starting under all circumstances, the gap widths for the maximum thermal load are determined, which result from the different pressure ratios and speeds. The consideration of the gap reduction then leads to a dimensioning of the gap widths in the cold state. However, efforts are being made to keep the gaps as small as possible in order to minimize backflows and to maximize volumetric and isentropic efficiency.
Diese Überlegungen führen in der Praxis zur Verwendung von Werkstoffen mit geringer Wärmedehnung. Als Standardwerkstoff wird für Gehäuse Gußeisen mit Lamellengraphit und für die Rotoren Gußeisen mit Kugelgraphit verwendet. Der Wärmedehnungskoeffizient beträgt jeweils eck = lO^/K. Bei Verwendung von Gußeisen für Gehäuse und Rotoren und einem Außendurchmesser der Rotoren von beispielsweise 100 mm ergibt sich für die Spaltreduzierung ein Wert von etwa 0,1 mm. Damit können befriedigende Wirkungsgrade erzielt werden. Die Verwendung eines Materials wie Alumim'um kommt hingegen nicht in Betracht, da wegen der mehr als doppelt so großen Wärmedehnung die entsprechenden Werte der Spaltreduzierung bei etwa 0,24 mm liegen würden, so dass die Spaltweiten im kalten Zustand mehr als doppelt so groß sein müßten, wodurch die Spaltverluste enorm vergrößert würden.In practice, these considerations lead to the use of materials with low thermal expansion. Cast iron with lamellar graphite is used as the standard material for the housing and cast iron with nodular graphite for the rotors. The thermal expansion coefficient is ec k = 10 ^ / K. Using of cast iron for housings and rotors and an outer diameter of the rotors of, for example, 100 mm, the value for the gap reduction is approximately 0.1 mm. Satisfactory levels of efficiency can be achieved in this way. However, the use of a material such as Alumim ' um is out of the question, since due to the more than twice the thermal expansion, the corresponding values for the gap reduction would be around 0.24 mm, so that the gap widths in the cold state are more than twice as large would have, which would increase the gap losses enormously.
Durch die Erfindung wird ein Verdichter geschaffen, der trotz Verwendung von Aluminium- Werkstoffen geringe Spaltweiten und einen entsprechend hohen Wirkungsgrad aufweist. Gemäß der Erfindung besteht der Rotor aus einem pulvermetallurgisch hergestellten, siliziumhaltigen Aluminium- Werkstoff und das Gehäuse besteht im wesentlichen aus Aluminium. Unter Aluminium für das Gehäuse wird im wesentlichen reines Aluminium oder eine Alu-mnium-Legierung mit dem typischen relativen großen Wärmedehnungskoefϊizienten von etwa 23,8 x 10"6/K verstanden. Der pulvermetallurgisch hergestellte, sili-dπihaltige Aluminium-Werkstoff hat hingegen typischerweise einen Wärmedehnungskoeffizient von nur 16 x 10"6/K. Geht man wiederum von einem Rotordurchmesser von 100 mm aus, so ergibt sich bei der erfindungsgemäßen Werkstoffkombination bei ei- ner Temperaturdifferenz von 100° K eine Spaltreduzierung, die wie folgt berechnet wird:The invention creates a compressor which, despite the use of aluminum materials, has small gap widths and a correspondingly high degree of efficiency. According to the invention, the rotor consists of a powder metallurgy, silicon-containing aluminum material and the housing consists essentially of aluminum. Aluminum for the housing is understood to be essentially pure aluminum or an aluminum alloy with the typical relatively large coefficient of thermal expansion of approximately 23.8 x 10 "6 / K. The powdered aluminum-containing aluminum material, on the other hand, typically has one Thermal expansion coefficient of only 16 x 10 "6 / K. If one again assumes a rotor diameter of 100 mm, the material combination according to the invention results in a gap reduction at a temperature difference of 100 ° K, which is calculated as follows:
SWA = (αki x ΔTi - Oto x ΔT2) x L.SWA = (αki x ΔTi - Oto x ΔT 2 ) x L.
Die Spaltreduzierung ist mit einem Wert von 0,113 mm somit kaum größer als der entsprechende Wert bei Verwendung von Gußeisen für Gehäuse und Rotoren.With a value of 0.113 mm, the gap reduction is hardly larger than the corresponding value when using cast iron for housings and rotors.
Die Verwendung von Aluminium anstelle von Gußeisen erbringt erheblicheThe use of aluminum instead of cast iron brings considerable results
Vorteile, insbesondere ein geringeres Gewicht, kürzere Bearbeitungszeiten, Korrosionsbeständigkeit, geringere Herstellungskosten.Advantages, in particular a lower weight, shorter processing times, corrosion resistance, lower manufacturing costs.
Bei der bevorzugten Ausfuhrungsform ist auf den Oberflächen der Rotoren eine Isolierschicht aufgebracht. Durch diese Isolierschicht wird der Wärmeübergang von dem komprimierten Fördermedium auf die Rotoren vermindert. Der Wärmestrom wird verstärkt über die Welle des Rotors abgeführt. Die verminderte Erwärmung der Rotoren durch die Isolierschicht führt zu einer geringeren Wärmedehnung und läßt daher kleinere Spaltweiten zu, wodurch der Wirkungsgrad gesteigert wird.In the preferred embodiment, an insulating layer is applied to the surfaces of the rotors. Through this insulating layer Heat transfer from the compressed medium to the rotors is reduced. The heat flow is increasingly dissipated via the shaft of the rotor. The reduced heating of the rotors by the insulating layer leads to less thermal expansion and therefore allows smaller gap widths, which increases the efficiency.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der folgenden Beschreibung zweier Ausführungsformen des Verdichters und aus den beigefügten Zeichnungen. In den Zeichnungen zeigen:Further features and advantages of the invention will become apparent from the following description of two embodiments of the compressor and from the accompanying drawings. The drawings show:
- Figur 1 schematisch einen geöffneten Klauenverdichter mit Blick auf die Rotoren;- Figure 1 shows schematically an open claw compressor with a view of the rotors;
- Figur 2 eine entsprechende Ansicht einer Ausfuhrungsvariante; und- Figure 2 shows a corresponding view of an embodiment; and
- Figur 3 eine weitere Ausführungsvariante.- Figure 3 shows another embodiment.
Der in Fig. 1 beispielshalber gezeigte Verdichter hat einen allgemein mit 10 bezeichnetes Gehäuse mit einer inneren Kammer 12, die aus zwei einander überschneidenden Teilzylindern gleicher Größe besteht. In der Kammer 12 sind zwei Rotoren 14, 16 in Form von zweiflügeligen Wälzkolben aufgenommen.The compressor shown by way of example in FIG. 1 has a housing, generally designated 10, with an inner chamber 12, which consists of two overlapping partial cylinders of the same size. In the chamber 12, two rotors 14, 16 are received in the form of double-winged roots.
Jeder Rotor 14, 16 sitzt auf einer entsprechenden Welle 18, 20. Die zueinander parallelen Wellen 18, 20 sind durch ein (nicht gezeigtes) Getriebe synchronisiert.Each rotor 14, 16 is seated on a corresponding shaft 18, 20. The mutually parallel shafts 18, 20 are synchronized by a gear (not shown).
Die Rotoren 14, 16 laufen im inneren der Kammer 12 ohne gegenseitige Berührung und ohne Berührung mit der Wandung der Kammer 12. Sie wälzen sich ineinander ab und bilden dabei Arbeitsräume variabler Größe, wobei eine innere Verdichtung stattfindet.The rotors 14, 16 run in the interior of the chamber 12 without mutual contact and without contact with the wall of the chamber 12. They roll into one another and thereby form work spaces of variable size, with internal compression taking place.
Die im Betrieb des Verdichters anfallende Wärme wird im wesentlichen durch Kühlung des Gehäuses 10 abgeführt. Zu diesem Zweck weist das Gehäuse 10 eine Vielzahl von Kühlrippen auf, die von einem Luftstrom umströmt werden. Die erwärmte Abluft ist in der Zeichnung durch Pfeile symbolisiert. Die Rotoren 14, 16 und die Wellen 18, 20 werden nicht direkt gekühlt. Ein Teil des Wärmestroms wird über die Wellen 18, 20 und ein anderer Teil über den Fördermedienstrom abgeführt. Um die Erwärmung der Rotoren 14, 16 im Betrieb zu reduzieren, ist ihre Oberfläche mit einer thermisch isolierenden Beschichtung versehen.The heat generated during the operation of the compressor is essentially dissipated by cooling the housing 10. For this purpose, the housing 10 has a multiplicity of cooling fins around which an air stream flows. The heated exhaust air is symbolized in the drawing by arrows. The rotors 14, 16 and the shafts 18, 20 are not cooled directly. Part of the heat flow is via the shafts 18, 20 and another part via the fluid flow dissipated. In order to reduce the heating of the rotors 14, 16 during operation, their surface is provided with a thermally insulating coating.
Das Gehäuse 10 besteht aus Aluminium oder einer Aluminium-Legierung, deren Wärmedehnungskoeffizient etwa 23,8 x 10"6/K beträgt. Die Rotoren 14, 16 bestehen aus einem Aluminium- Werkstoff, dessen Wärmedehnungskoeffizient etwa 16 x 10'6/K beträgt. Durch diese Werkstoffpaarung ergibt sich eine Spaltreduzierung, die - bezogen auf einen Rotordurchmesser von 100 mm - etwa 0,113 mm beträgt.The housing 10 is made of aluminum or an aluminum alloy, the coefficient of thermal expansion of which is approximately 23.8 × 10 6 / K. The rotors 14, 16 are made of an aluminum material, the coefficient of thermal expansion of which is approximately 16 × 10 6 / K. This pairing of materials results in a gap reduction which, based on a rotor diameter of 100 mm, is approximately 0.113 mm.
Der Aluminium- Werkstoff, aus dem die Rotoren 14, 16 bestehen, ist pulvermetallurgisch hergestellt und dispersionsverfestigt. Die Zusammensetzung des Aluminium- Werkstoffs für die Rotoren ist vorzugsweise wie folgt:The aluminum material from which the rotors 14, 16 are made is produced by powder metallurgy and is strengthened with dispersion. The composition of the aluminum material for the rotors is preferably as follows:
18,5 bis 21,5 Gew.% Silizium, 4,6 bis 5,4 Gew% Eisen, 1,8 bis 2,2 Gew.% Nickel Rest: Aluminium18.5 to 21.5% by weight silicon, 4.6 to 5.4% by weight iron, 1.8 to 2.2% by weight nickel rest: aluminum
Das der Erfindung zugrunde liegende Prinzip ist bei den meisten Bauformen von Verdichtern mit berührungslosen Rotoren anwendbar, mit besonderem Vorteil jedoch bei zwei welligen Verdichtern mit innerer Verdichtung, z.B. Klauenverdichter und Schraubenverdichter. Die Erfindung erstreckt sich allgemein auf die Verwendung einer pulvermetallurgischen Al-Si-Legierung bei Rotoren von Verdichtern, Pumpen und Drehkolbenmaschinen in Kombination mit einem Gehäuse aus Aluminium, insbesondere bei Maschinen mit berührungslos arbeitenden Rotoren.The principle on which the invention is based can be applied to most designs of compressors with contactless rotors, but is particularly advantageous for two-shaft compressors with internal compression, e.g. Claw compressors and screw compressors. The invention extends in general to the use of a powder-metallurgical Al-Si alloy in rotors of compressors, pumps and rotary lobe machines in combination with a housing made of aluminum, in particular in machines with contactlessly operating rotors.
Bei der in Fig. 2 gezeigten Ausfurirungsvariante ist das Gehäuse aus einem Außenkörper 10a, der aus Aluminium oder einer Aluminiumlegierung besteht, und einem darin eingegossenen Ring 10b aufgebaut. Der Ring 10b besteht aus einer pulvermetallurgischen, dispersionsverfestigten Al-Si-Legierung der oben näher beschriebenen Art. Der Ring bildet die Begrenzung der Kammer in der die Rotoren des Verdichters aufgenommen sind. An der Grenzfläche zwischen Außenkörper 10a und Ring 10b sind die beiden Werkstoffe miteinander verschmolzen, so daß ein inniger Verbund zwischen Außenkörper 10a und Ring 10b besteht. Da der Ring 10b aus einem Material von wesentlich größerer Festigkeit als das Material des Außenkörpers 10a besteht, bestimmen seine Wärmedehnungseigenschaften im wesentlichen die Wärmedehnung des Gehäuses als ganzes. Auch die Rotoren bestehen bei dieser Ausfurirungsform aus einer Al- Si-Legierung der oben beschriebenen Art. Der Ring ist mit angegossenen Versteifungsrippen 10c versehen, die radial auswärts gerichtet sind. In jedem Eckbereich des Gehäuses ist eine dieser Versteifungsrippen angeordnet.In the embodiment shown in FIG. 2, the housing is constructed from an outer body 10a, which consists of aluminum or an aluminum alloy, and a ring 10b cast into it. The ring 10b consists of a powder-metallurgical, dispersion-hardened Al-Si alloy of the type described in more detail above. The ring forms the boundary of the chamber in which the rotors of the compressor are received. At the interface between Outer body 10a and ring 10b, the two materials are fused together, so that there is an intimate bond between outer body 10a and ring 10b. Since the ring 10b is made of a material of substantially greater strength than the material of the outer body 10a, its thermal expansion properties essentially determine the thermal expansion of the housing as a whole. The rotors in this embodiment also consist of an Al-Si alloy of the type described above. The ring is provided with cast-on stiffening ribs 10c, which are directed radially outward. One of these stiffening ribs is arranged in each corner region of the housing.
Bei dieser Ausfuhrungsform kann eine Spaltreduzierung von ca. 0,16 mm erreicht werden, wiederum bezogen auf einen Rotordurchmesser von 100 mm.In this embodiment, a gap reduction of approx. 0.16 mm can be achieved, again based on a rotor diameter of 100 mm.
Bei der in Fig. 3 gezeigten Ausfuhrungsform hat das Gehäuse einen Lagerdeckel 22, mit zwei Lagern 24, 26 für die Wellen 18, 20. Beiderseits der Lager 24, 26 ist in dem Lagerdeckel 22 eine Versteifungsrippe 28, 30 aus einer dispersionsverfestigten Alun-tiniumlegierung eingegossen. Durch diese Versteifungsrippen 28, 30 wird einerseits die Lagerung der Wellen 18, 20 versteift, zum anderen wird die Wärmedehnung des Achsabstandes reduziert. In the embodiment shown in FIG. 3, the housing has a bearing cover 22, with two bearings 24, 26 for the shafts 18, 20. On both sides of the bearings 24, 26 there is a stiffening rib 28, 30 made of a dispersion-strengthened aluminum alloy in the bearing cover 22 cast. These stiffening ribs 28, 30 stiffen the mounting of the shafts 18, 20 on the one hand, and on the other hand the thermal expansion of the center distance is reduced.

Claims

Patentansprüche claims
1. Verdichter mit einem Gehäuse und wenigstens einem in dem Gehäuse drehbar mittels einer Welle gelagerten Rotor, der ohne Berührung mit dem Gehäuse rotiert, dadurch gekennzeichnet, daß der Rotor aus einer pulvermetallurgischen Al-Si-Legierung und das Gehäuse im wesentlichen aus Aluminium besteht.1. Compressor with a housing and at least one rotatably mounted in the housing by means of a shaft rotor which rotates without contact with the housing, characterized in that the rotor consists of a powder metallurgical Al-Si alloy and the housing consists essentially of aluminum.
2. Verdichter nach Anspruch 1, dadurch gekennzeichnet, daß die Al-Si- Legierung dispersionsverfestigt ist.2. Compressor according to claim 1, characterized in that the Al-Si alloy is dispersion hardened.
3. Verdichter nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Al- Si-Legierung folgende Zusammensetzung aufweist:3. Compressor according to claim 1 or 2, characterized in that the Al-Si alloy has the following composition:
18,5 bis 21,5 Gew.% Silizium, 4,6 bis 5,4 Gew% Eisen, 1,8 bis 2,2 Gew.% Nickel, Rest: Aluminium.18.5 to 21.5% by weight of silicon, 4.6 to 5.4% by weight of iron, 1.8 to 2.2% by weight of nickel, the rest: aluminum.
4. Verdichter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Al-Si-Legierung einen Wärmedehnungskoeffizient von etwa 16*10"6 /K aufweist.4. Compressor according to one of claims 1 to 3, characterized in that the Al-Si alloy has a thermal expansion coefficient of about 16 * 10 "6 / K.
5. Verdichter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Aluminium, aus dem das Gehäuse besteht, einen Wärme- dehnungskoeffizient von etwa 23,8*10"6 /K aufweist.5. Compressor according to one of claims 1 to 4, characterized in that the aluminum from which the housing is made has a thermal expansion coefficient of approximately 23.8 * 10 "6 / K.
6. Verdichter nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Gehäuse durch einen Luftstrom gekühlt ist.6. Compressor according to one of claims 1 to 5, characterized in that the housing is cooled by an air stream.
7. Verdichter nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Rotor nur über den Fördermedienstrom und die Welle gekühlt ist.7. Compressor according to one of claims 1 to 6, characterized in that the rotor is cooled only via the flow of media and the shaft.
8. Verdichter nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß er zwei berührungslos ineinander abwälzende Drehkolben aufweist. 8. Compressor according to one of claims 1 to 7, characterized in that it has two non-contacting rotating pistons.
9. Verdichter nach Anspruch 8, dadurch gekennzeichnet, daß er mit innerer Verdichtung arbeitet.9. A compressor according to claim 8, characterized in that it works with internal compression.
10. Verdichter nach Anspruch 9, dadurch gekennzeichnet, daß die Dehkolben zwei- oder dreiflügelig ausgebildet sind.10. A compressor according to claim 9, characterized in that the rotary pistons are of two or three blades.
11. Verdichter nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß er als Schraubenverdichter ausgebildet ist.11. Compressor according to one of claims 1 to 7, characterized in that it is designed as a screw compressor.
12. Verdichter nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß auf der Oberfläche der Rotoren eine Isolierschicht aufgebracht ist.12. Compressor according to one of claims 1 to 11, characterized in that an insulating layer is applied to the surface of the rotors.
13. Verdichter nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Gehäuse einen Außenkörper aus Aluminium und einen darin eingegossenen Ring aus einer dispersionsverfestigten pulvermetallurgischen Al-Si-Legierung aufweist.13. Compressor according to one of the preceding claims, characterized in that the housing has an outer body made of aluminum and a ring cast therein made of a dispersion-hardened powder-metallurgical Al-Si alloy.
14. Verdichter nach Anspruch 13, dadurch gekennzeichnet, daß an der Grenzfläche des Ringes und des Außenkörpers deren Werkstoffe miteinander verschmolzen sind.14. A compressor according to claim 13, characterized in that at the interface of the ring and the outer body whose materials are fused together.
15. Verdichter nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß der Ring unmittelbar den Rotor umgibt.15. A compressor according to claim 13 or 14, characterized in that the ring immediately surrounds the rotor.
16. Verdichter nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Gehäuse wenigstens einen Lagerdeckel aufweist, der mit einge- gossenen Versteifungsrippen aus einer dispersionsverfestigten pulvermetallurgischen Al-Si-Legierung versehen ist.16. Compressor according to one of the preceding claims, characterized in that the housing has at least one bearing cover which is provided with cast-in stiffening ribs made of a dispersion-strengthened powder-metallurgical Al-Si alloy.
17. Verdichter nach Anspruch 16, dadurch gekennzeichnet, daß die Versteifungsrippen auf einander gegenüberliegenden Seiten der Lager angeordnet sind. 17. A compressor according to claim 16, characterized in that the stiffening ribs are arranged on opposite sides of the bearings.
EP01956582A 2000-08-02 2001-08-02 Compressor Expired - Lifetime EP1305524B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE20013338U DE20013338U1 (en) 2000-08-02 2000-08-02 compressor
DE20013338U 2000-08-02
PCT/EP2001/008967 WO2002010593A1 (en) 2000-08-02 2001-08-02 Compressor

Publications (2)

Publication Number Publication Date
EP1305524A1 true EP1305524A1 (en) 2003-05-02
EP1305524B1 EP1305524B1 (en) 2006-10-18

Family

ID=7944714

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01956582A Expired - Lifetime EP1305524B1 (en) 2000-08-02 2001-08-02 Compressor

Country Status (10)

Country Link
US (1) US6918749B2 (en)
EP (1) EP1305524B1 (en)
JP (1) JP2004505210A (en)
KR (1) KR20030026992A (en)
CN (1) CN1277054C (en)
AT (1) ATE343064T1 (en)
AU (1) AU2001278520A1 (en)
CA (1) CA2417794C (en)
DE (2) DE20013338U1 (en)
WO (1) WO2002010593A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11293435B2 (en) 2016-08-30 2022-04-05 Leybold Gmbh Vacuum pump screw rotors with symmetrical profiles on low pitch sections
US11300123B2 (en) 2016-08-30 2022-04-12 Leybold Gmbh Screw vacuum pump without internal cooling

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4777541B2 (en) * 2001-06-08 2011-09-21 パナソニック株式会社 Compressor with built-in electric motor and mobile vehicle equipped with this
DE10156179A1 (en) 2001-11-15 2003-05-28 Leybold Vakuum Gmbh Cooling a screw vacuum pump
DE10156180B4 (en) 2001-11-15 2015-10-15 Oerlikon Leybold Vacuum Gmbh Cooled screw vacuum pump
DE20216504U1 (en) 2002-10-25 2003-03-06 Werner Rietschle GmbH + Co. KG, 79650 Schopfheim Displacement machine with rotors running in opposite directions
DE10258363A1 (en) * 2002-12-12 2004-06-24 Daimlerchrysler Ag Device for supplying air to fuel cells has claw compressor with at least two mutually engaged compressor wheels, claw expansion device with at least two mutually engaged expansion device wheels
EP1584819B1 (en) 2002-12-26 2008-09-17 Zexel Valeo Climate Control Corporation Compressor
DE10321521B3 (en) * 2003-05-14 2004-06-09 Gkn Sinter Metals Gmbh Oil pump used in the production of molded parts comprises a housing made from aluminum containing moving molded parts partially made from a sinterable material consisting of an austenitic iron-base alloy
DE10331979A1 (en) * 2003-07-14 2005-02-17 Gkn Sinter Metals Gmbh Pump with optimized axial clearance
US20080170958A1 (en) * 2007-01-11 2008-07-17 Gm Global Technology Operations, Inc. Rotor assembly and method of forming
GB0705971D0 (en) * 2007-03-28 2007-05-09 Boc Group Plc Vacuum pump
GB0707753D0 (en) * 2007-04-23 2007-05-30 Boc Group Plc Vacuum pump
US7708113B1 (en) * 2009-04-27 2010-05-04 Gm Global Technology Operations, Inc. Variable frequency sound attenuator for rotating devices
CN106968950B (en) 2010-03-31 2020-02-07 纳博特斯克汽车零部件有限公司 Vacuum pump
DE102012003066B3 (en) * 2012-02-17 2013-07-04 Netzsch Pumpen & Systeme Gmbh METHOD AND DEVICE FOR FIXING AND SYNCHRONIZING TURNING PISTONS IN A ROTARY PISTON PUMP
US10718334B2 (en) 2015-12-21 2020-07-21 Ingersoll-Rand Industrial U.S., Inc. Compressor with ribbed cooling jacket
DE202016005207U1 (en) * 2016-08-30 2017-12-01 Leybold Gmbh Vacuum pump rotor
US10215186B1 (en) * 2016-09-02 2019-02-26 Rotary Machine Providing Thermal Expansion Compenstion, And Method For Fabrication Thereof Rotary machine providing thermal expansion compensation, and method for fabrication thereof
CN109707628A (en) * 2018-12-17 2019-05-03 陈鑫 The aluminium alloy pump body structure of vacuum pump and the honing head processed for the pump housing

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2708548A (en) 1953-10-12 1955-05-17 Hosdreg Company Inc Blower
DE1949033A1 (en) 1969-09-27 1971-04-15 Bosch Gmbh Robert Housing, especially for a gear pump
US4086043A (en) * 1976-12-30 1978-04-25 Ingersoll-Rand Company Rotor with plastic sheathing
DE2945488A1 (en) 1979-11-10 1981-05-21 Barmag Barmer Maschf Vacuum pump for vehicle brakes - has rotor of sintered alloyed aluminium for light weight
DE3124247C1 (en) 1981-06-19 1983-06-01 Boge Kompressoren Otto Boge Gmbh & Co Kg, 4800 Bielefeld Screw compressor
DE3149245A1 (en) 1981-12-11 1983-06-16 Isartaler Schraubenkompressoren GmbH, 8192 Geretsried "COMPRESSOR SYSTEM"
JPS5991490U (en) 1982-12-13 1984-06-21 日本ピストンリング株式会社 rotary compressor
DE3321718A1 (en) 1983-06-16 1984-12-20 Arthur Pfeiffer Vakuumtechnik Wetzlar Gmbh, 6334 Asslar ROLLING PISTON PUMP
EP0144898B1 (en) * 1983-12-02 1990-02-07 Sumitomo Electric Industries Limited Aluminum alloy and method for producing same
DE3621176A1 (en) 1986-06-25 1988-01-07 Wankel Gmbh ROTARY PISTON BLOWER
DE3726209A1 (en) 1986-08-08 1988-02-18 Diesel Kiki Co TURNING PISTON COMPRESSORS
JPS63243478A (en) 1987-03-30 1988-10-11 Aisin Seiki Co Ltd Rotor for fluid equipment
JPH0672616B2 (en) 1987-04-21 1994-09-14 株式会社ゼクセル Steel shaft composite aluminum alloy rotor
JPH0267488A (en) * 1988-09-01 1990-03-07 Kobe Steel Ltd Screw type supercharger
JPH02130289A (en) 1988-11-09 1990-05-18 Toyota Autom Loom Works Ltd Vane type compressor
US5024591A (en) 1989-06-21 1991-06-18 Diesel Kiki Co., Ltd. Vane compressor having reduced weight as well as excellent anti-seizure and wear resistance
JPH0510282A (en) * 1990-09-21 1993-01-19 Ntn Corp Supercharger
JPH0579468A (en) * 1991-05-02 1993-03-30 Mitsubishi Materials Corp Manufacture of gear for fluid machine
JPH0543917A (en) * 1991-08-14 1993-02-23 Mitsubishi Materials Corp Manufacture of al-si alloy hot forged gear
DE69326290T2 (en) 1992-06-29 2000-01-27 Sumitomo Electric Industries Aluminum alloy oil pump
DE9209641U1 (en) 1992-07-17 1992-11-19 Werner Rietschle Maschinen- Und Apparatebau Gmbh, 7860 Schopfheim Roots pump
DE4300274A1 (en) 1993-01-08 1994-07-14 Leybold Ag Vacuum pump with rotor
JP2592344Y2 (en) 1993-04-13 1999-03-17 株式会社豊田自動織機製作所 Scroll compressor
IL120001A0 (en) * 1997-01-13 1997-04-15 Amt Ltd Aluminum alloys and method for their production
JP2001132660A (en) 1999-11-09 2001-05-18 Mitsubishi Materials Corp Al ALLOY INSCRIBED GEAR TYPE OIL PUMP HAVING STRUCTURAL MEMBER FOR EXHIBITING SMALL OPPONENT ATTACKING PROPERTY AND EXCELLENT ABRASION RESISTANCE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0210593A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11293435B2 (en) 2016-08-30 2022-04-05 Leybold Gmbh Vacuum pump screw rotors with symmetrical profiles on low pitch sections
US11300123B2 (en) 2016-08-30 2022-04-12 Leybold Gmbh Screw vacuum pump without internal cooling

Also Published As

Publication number Publication date
DE50111283D1 (en) 2006-11-30
CN1277054C (en) 2006-09-27
DE20013338U1 (en) 2000-12-28
JP2004505210A (en) 2004-02-19
ATE343064T1 (en) 2006-11-15
CN1446290A (en) 2003-10-01
US6918749B2 (en) 2005-07-19
WO2002010593A1 (en) 2002-02-07
EP1305524B1 (en) 2006-10-18
US20040022646A1 (en) 2004-02-05
KR20030026992A (en) 2003-04-03
CA2417794A1 (en) 2003-01-30
AU2001278520A1 (en) 2002-02-13
CA2417794C (en) 2007-03-13

Similar Documents

Publication Publication Date Title
EP1305524A1 (en) Compressor
DE60209825T2 (en) Abradable coating and production process
DE69928979T2 (en) Fluid displacement machine
DE69000250T2 (en) COOLED SHAFT SEAL.
EP1391586B1 (en) Turbocharger
WO2000012900A1 (en) Dry compressing screw pump
EP2466149A1 (en) Flow engine for a fluid with a radial sealing gap and a stationary wear ring
EP0668433A1 (en) Lightweight scroll element and method of making
DE19648641A1 (en) Heat-protection device for turbine bearing
DE2636436A1 (en) ROTARY LISTON ENGINE COOLING
EP3507495B1 (en) Screw-type vacuum pump
DE3438049A1 (en) FLOWING MACHINE IN SPIRAL DESIGN
EP2772651B1 (en) Pump
US20050084396A1 (en) Grooved shaft member and associated turbocharger and method
EP2196671B1 (en) Piston vacuum pump
DE10120409B4 (en) Centrifugal pump for conveying hot media
EP1216372B1 (en) Shaft seal, in particular for an axial piston displacement compressor
DE3344271A1 (en) ROTATIONAL COMPRESSOR HOUSING
EP1240449A1 (en) Axially sliding radial sealing ring, especially for a compressor of an automobile air conditioning system
AT240458B (en) Device for cooling rotating machines
EP0920590A1 (en) Dry vacuum machine with shaft passage
DE3612877A1 (en) GASKET WITH AT LEAST ONE ROTATING MACHINE PART AND AT LEAST ONE FIXED OR ROTATING PART, FIRST BYpass
EP2048367A1 (en) Casing with cooling device for a process gas turbo compressor
DE60037353T2 (en) Turbo molecular pump
DE2312263A1 (en) PISTON FOR ROTATING PISTON INTERNAL ENGINE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030206

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040622

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RIETSCHLE THOMAS GMBH + CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RIETSCHLE THOMAS SCHOPFHEIM GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50111283

Country of ref document: DE

Date of ref document: 20061130

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070118

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070129

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070119

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: GARDNER DENVER SCHOPFHEIM GMBH

Free format text: RIETSCHLE THOMAS SCHOPFHEIM GMBH#ROGGENBACHSTRASSE 58#79650 SCHOPFHEIM (DE) -TRANSFER TO- GARDNER DENVER SCHOPFHEIM GMBH#ROGGENBACHSTRASSE 58#79650 SCHOPFHEIM (DE)

Ref country code: CH

Ref legal event code: NV

Representative=s name: BUGNION S.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070319

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070827

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070830

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070828

Year of fee payment: 7

Ref country code: DE

Payment date: 20071001

Year of fee payment: 7

BERE Be: lapsed

Owner name: RIETSCHLE THOMAS SCHOPFHEIM G.M.B.H.

Effective date: 20070831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070831

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070817

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070802

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080802

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070802

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080802

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080901

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090303

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080802