EP1285105B1 - Elektrochemische erzeugte schichten zum korrosionsschutz oder als haftgrund - Google Patents
Elektrochemische erzeugte schichten zum korrosionsschutz oder als haftgrund Download PDFInfo
- Publication number
- EP1285105B1 EP1285105B1 EP01933902A EP01933902A EP1285105B1 EP 1285105 B1 EP1285105 B1 EP 1285105B1 EP 01933902 A EP01933902 A EP 01933902A EP 01933902 A EP01933902 A EP 01933902A EP 1285105 B1 EP1285105 B1 EP 1285105B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- metal
- conductive surface
- deposited
- electrically conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D13/00—Electrophoretic coating characterised by the process
- C25D13/22—Servicing or operating apparatus or multistep processes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D9/00—Electrolytic coating other than with metals
- C25D9/04—Electrolytic coating other than with metals with inorganic materials
Definitions
- the invention is in the field of coating surfaces to these to protect against corrosion and / or to provide them with a primer for a subsequent organic coating.
- the Surfaces are electrically conductive, for example surfaces of metals or surfaces which have been made conductive by an appropriate treatment Represent glass or plastics.
- a common technical task is metallic or not to provide metallic substrates with a first coating that has a corrosion-inhibiting effect and / or has a primer for an over it represents coating to be applied with organic polymers.
- metals are pretreated before painting. This is what technology stands for different procedures available. Examples include one layer-forming or non-layer-forming phosphating, a chromating or a chrome-free conversion treatment, for example with complex ones Fluorides from titanium, zirconium, boron or silicon. Technically easier to carry out, but a simple application of a primer coat is less effective a metal before painting it. An example of this is the application of Redlead.
- An alternative to the "wet" process is "dry" Procedures in which a corrosion protection or adhesive layer from a Gas phase is deposited. Such methods are for example as PVD or CVD process known. They can be electrical, for example through a Plasma discharge, be supported.
- a layer produced or applied in this way can be used as serve as a corrosion protective primer for subsequent painting.
- the Layer can also be a primer for subsequent gluing represent.
- metallic substrates, but also substrates made of Plastic or glass are often chemically or mechanically pretreated to ensure the adhesion of the adhesive to the substrate improve.
- metal or Plastic parts in each case, but also glued together. Front and Today rear windows of vehicles are usually directly in the body glued.
- Further examples of the use of adhesive layers can be found in the production of rubber-metal composites.
- the Metal substrates are usually mechanically or chemically pretreated before an adhesive layer is applied for gluing with rubber.
- That thin layers of metal compounds, such as oxide layers, be generated electrochemically on an electrically conductive surface is known in the art.
- the influence of the deposition conditions was particularly important investigated the morphology of the oxide layers. A practical application of the Layers do not emerge from this work.
- An electrochemical formation of an oxide layer also takes place with the as Known processes take place anodizing.
- US-A-2 081 121 describes a process for the electrolytic coating of metallic Substrates such as iron, steel, copper and brass with a thin layer of copper (I) oxide described.
- the alkaline baths used for this contain in addition to, for example Copper sulfate is a compound that forms a soluble complex with the copper.
- Examples of such substances are: organic acids such as lactic acid, citric acid, Glycolic acid, tartaric acid, salicylic acid also sugar, glycerin and inorganic Compounds such as pyrophosphate or borax.
- the colored layers obtained in this way can be used as the basis for subsequent painting, varnishing or enamelling serve.
- US-A-4 094 750 discloses the electrodeposition of metal oxides of Al, Cu, Co and Ni on titanium, magnesium, aluminum or steel substrates at current densities of 0.02 to 0.5 A / in 2 in 5 to 60 seconds using appropriate metal salts in alcoholic solution. According to the examples, metal oxide layer thicknesses in the range from 700 to 1600 A result. These layers serve as an adhesive layer for an adhesive bonding of parts.
- the present invention relates to a method for producing an at least two-layer coating on an electrically conductive surface, characterized in that in a step a) on the electrically conductive surface a chromium-free layer of at least one X-ray crystalline inorganic compound of at least one metal A with a mass per unit area of 1.1 to 10 g / m 2 from a solution which contains the metal A in dissolved form, is deposited electrochemically, the metal A being a different metal than the main component of the electrically conductive surface and being selected from Mg. Ca. Sr.
- step b) at least one layer of a cathodically or anodically depositable electrodeposition paint or a powder paint is applied to the layer deposited in step a).
- the solution containing metal A in dissolved form is also referred to below as "Electrolyte” called.
- a conductive salt such as a tetraalkylammonium halide.
- the Ions of the conductive salt are not or only to a minor extent in the Layer installed, but increase the electrical conductivity of the electrolyte.
- the electrically conductive surface can be intrinsic act conductive surface such as a metallic surface.
- layer can also be on a surface of an electrically little or not conductive material are deposited if the Surface is made electrically conductive.
- plastics for example done by first electrically chemical deposits conductive metal layer, which then forms the basis for the electrochemical Deposition of a compound of metal A.
- a glass surface can be made electrically conductive, for example, by using them with a Powdered an electrically conductive substance or a conductive layer through the gas phase, for example as a chemical Vapor Deposition (CVD). It is for the use according to the invention however preferred that the electrically conductive surface be a metal surface represents.
- the inorganic compound of metal A is separated from a solution that contains the metal A in dissolved form. It can be a one- or multi-component aqueous or a non-aqueous solution act.
- non-aqueous solvents with a good one Solvent for suitable metal compounds are liquid ammonia, Dimethyl sulfoxide or organic phosphine derivatives.
- one multicomponent aqueous solution are water-alcohol mixtures.
- the electrochemical deposition can be carried out cathodically or anodically, a cathodic deposition can be used more universally and is therefore preferred is.
- the deposition of the inorganic compound of at least one metal A from a corresponding solution can be done according to 2 different mechanisms respectively.
- the deposition can be coupled with a change in the Oxidation level of metal A, with a on the electrically conductive surface Layer of a poorly soluble compound of metal A in the opposite of the Solution changed oxidation level grows up.
- Another separation mechanism is based on the fact that the pH value through electrochemical processes on the electrically conductive surface shifts near the surface.
- the electrical conductive surface an inorganic compound of at least one metal A grow up that are hard on the surface under local pH conditions is soluble. It is not necessary that the oxidation state of the metal A changes during the deposition process.
- a shift in pH can take place on the electrically conductive surface, for example, in that Hydrogen ions are discharged and the pH value rises locally as a result.
- the inorganic compound of at least one metal This means that this connection is definitely the metal A must contain. However, it can also contain other metals B, C, ... This other metals can be present in the solution in addition to metal A. and be deposited with it. These other metals can however, also be components of the electrically conductive surface and at Formation of the layer of an inorganic compound of at least one metal A. can be built directly into this connection.
- inorganic Compounds that contain another metal in addition to metal A Mixed oxides, for example the structure type of the spinels or the Perovskite can belong. Examples include titanates and niobates.
- the in step a) deposited compound is an oxide.
- This can also be a mixed oxide different metals.
- the use according to the invention is not limited to oxides. It also includes non-oxide inorganic Compounds such as, for example, selenides, sulfides or nitrides suitable, possibly anhydrous, solvents can be separated.
- the inorganic Connection of at least one metal A is only binary or ternary Represents connection. Rather, this connection can also be set up in a more complex manner be, for example, ions or molecules from the solution into the compound can also be installed. Oxide hydrates or sulfates are an example of this.
- the use according to the invention does not include a pure galvanization, since a plating layer is not an "inorganic compound" in the sense of this Represents invention.
- To the layer of at least one inorganic Connection of at least one metal A is rather the condition that at least part of the metal A is in an oxidation state> 0.
- any layer can be used for the use according to the invention at least one inorganic compound of at least one metal A are used, which can be deposited electrochemically and which are sufficient is chemically stable to act as a corrosion protection layer.
- the Layer with or without applied varnish better corrosion protection delivers as the uncoated metal surface.
- the metal A selected from Mg, Ca, Sr, Ba, Si, Sn, Pb, Sb, Bi, Ti, Zr, Nb, Ta, Mn, Fe, Co, Ni, Zn, Cu.
- the for The most important metal for practical purposes are Si, Ti, Zr, Mn, Fe, Co, Ni, Zn and Cu.
- the electrochemical deposition can be potentiostatic or galvanostatic.
- the galvanostatic deposition is technically easier to carry out and is therefore preferred.
- the layer formation preferably takes place in that the inorganic compound on the electrically conductive surface at a potential compared to a standard hydrogen electrode between ⁇ 0.1 and ⁇ 300 V or a current density in the range of ⁇ 0.1 to ⁇ 10000 mA per cm 2 electrically conductive surface is deposited. It is preferred to work at potentials between ⁇ 0.1 and ⁇ 100 V or at a current density in the range from ⁇ 0.5 to ⁇ 100 mA per cm 2 .
- the signs in front of voltage and current density express that the deposition can be cathodic or anodic. Cathodic deposition, ie a negative potential compared to the standard hydrogen electrode, is preferred.
- the morphology, the chemical composition and the crystal structure of the deposited Layer depend on the deposition conditions and thus by choice of Conditions can be affected.
- the above mentioned Layer parameters from the concentration of the metal ions A and possibly further Components in the solution, the flow rate of the solution relative to the electrically conductive surface, the set potential and / or the set current density.
- the layer properties can thus be chosen specifically change this parameter.
- the deposition is carried out here under such conditions that the inorganic compound deposits in X-ray crystalline form.
- X-ray crystalline means that the inorganic compound in a sharp X-ray diffraction experiment X-ray reflexes delivers.
- the resulting highly structured surface is particularly favorable as a primer for an organic coating.
- Electrolytes relative to the metallic conductive surface can form layers accelerate and influence the morphology of the layer. For example this is done by stirring the electrolyte or in the Pumped around electrolysis vessel. Furthermore, the electrolyte can be blown through a Gases, especially air, are mixed and moved.
- a cathodically or anodically depositable electrodeposition paint can be applied.
- the layer is deposited between the layers inorganic compound and the application of electrocoat preferably rinsed with water. This can be done by dipping or spraying respectively. It can be advantageous, at least in the last rinsing step rinse low-salt or deionized water.
- a chemical Post-passivation of the inorganic layer before the electrical one Dip painting, as is usually the case with phosphating, for example is not necessary in the method according to the invention.
- a powder coating can also be used in sub-step b) be applied.
- the inorganic layer on the electrical conductive surface can no longer be electrically conductive to the extent that for Subsequent electrocoating is required.
- a powder paint is preferably applied to molded objects that are not strong exposed to corrosive loads. Examples of this are items such as Household appliances or electronic devices used in enclosed spaces be kept.
- the advantages of the invention lies in the fact that thickness, composition and inner and outer structure of the inorganic layer by the choice of Deposition parameters are easier to control than with purely chemical ones Process management. Less will be needed to apply the layer Process stages are required than for phosphating and they generally fall less sludge than with a purely chemical layer formation. Compared The deposition process from the gas phase is electrochemical Separation faster and with less equipment and Energy consumption connected. Furthermore, it is not necessary as the Vapor deposition to provide volatile starting compounds.
- Another advantage of electrochemical layer formation is that Layer growth over the electrical resistance on the metallic conductive Surface is controllable. Unless the growing layer has a higher one has electrical resistance than the electrically conductive surface - what in the The rule is the case - so the layer growth slows down when the electrical resistance becomes too high due to the layer formation. As long as it is there are still unoccupied areas of the metallic conductive surface or the layer is so thin that a current still flows at the set voltage the layer growth at these points. Is the metallic conductive surface almost completely covered with a layer of such a thickness that the electrical resistance increases significantly, the process of layer formation can be ended. With galvanostatically controlled layer growth it shows up the almost complete layer formation in that the terminal voltage rises sharply. The process can then automatically run at a preselected value the terminal voltage can be interrupted.
- Electrolyte 0.4 M CuSO 4 + 3 M lactic acid, pH 10, 60 ° C, with 400 revolutions per minute stirring
- the layers formed are closed after a treatment time of approx. 50 s and consist of fine ( ⁇ 1 ⁇ m) crystals of Cu 2 O:
- the layer properties are very easy to control even without interfering with the electrolyte composition.
- Corrosion tests (10 cycles VDA alternating climate test, cathodic dip painting) show a significant improvement in corrosion protection through the coating depending on the applied layer thickness: Process time (seconds) Alternating climate test: infiltration U / 2 (mm) 10 4.8 30 4.5 60 3.9 120 3.6 300 2.6
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
- Laminated Bodies (AREA)
- Paints Or Removers (AREA)
- Secondary Cells (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Prevention Of Electric Corrosion (AREA)
Description
in einem Schritt a) auf der elektrisch leitenden Oberfläche eine chromfreie Schicht aus mindestens einer röntgenkristallinen anorganischen Verbindung mindestens eines Metalls A mit einer flächenbezogonenen Masse von 1,1 bis 10 g/m2 aus einer Lösung, die das Metall A in gelöster Form enthält, elektrochemisch abgeschieden wird, wobei das Metall A ein anderes Metall darstellt als die Hauptkomponente der elektrisch leitenden Oberfläche und ausgewählt ist aus Mg. Ca. Sr. Ba, Si, Sn, Pb, Sb, Bi, Ti, Zr, Nb, Ta, Mn, Fe, Co, Ni, Zn, Cu und wobei die anorganische Verbindung weniger als 20 Gew.-% Phosphationen enthält, und
in einem nachfolgenden Schritt b) auf die im Schritt a) abgeschiedene Schicht mindestens eine Schicht eines kathodisch oder anodisch abscheidbaren Elektrotauchlacks oder eines Pulverlacks aufgebracht wird.
Behandlungszeit : 10-300 Sekunden
Nachspülung : entionisiertes Wasser
Trocknung : Druckluft
Charakterisierung : Rasterelektronenmikroskopie, Röntgen-Photoelektronenspektroskopie, Korrosionstest (Wechselklimatest)
Lackierung : kathodischer Tauchlack ED 5000
mA :
Prozeßzeit (Sekunden) | Schichtgewicht (gm-2) |
10 | 0.4 |
30 | 0.7 |
60 | 1.1 |
120 | 2..4 |
300 | 5.6 |
Prozeßzeit (Sekunden) | Wechselklimatest: Unterwanderung U/2 (mm) |
10 | 4.8 |
30 | 4.5 |
60 | 3.9 |
120 | 3.6 |
300 | 2.6 |
Claims (3)
- Verfahren zur Herstellung einer mindestens zweilagigen Beschichtung auf einer elektrisch leitenden Oberfläche, dadurch gekennzeichnet, daß in einem Schritt a) auf der elektrisch leitenden Oberfläche eine chromfreie Schicht aus mindestens einer röntgenkristallinen anorganischen Verbindung mindestens eines Metalls A mit einer flächenbezogenenen Masse von 1,1 bis 10 g/m2 aus einer Lösung, die das Metall A in gelöster Form enthält, elektrochemisch abgeschieden wird, wobei das Metall A ein anderes Metall darstellt als die Hauptkomponente der elektrisch leitenden Oberfläche und ausgewählt ist aus Mg, Ca, Sr, Ba, Si, Sn, Pb, Sb, Bi, Ti, Zr, Nb, Ta, Mn, Fe, Co, Ni, Zn, Cu und wobei die anorganische Verbindung weniger als 20 Gew.-% Phosphationen enthält, und
in einem nachfolgenden Schritt b) auf die im Schritt a) abgeschiedene Schicht mindestens eine Schicht eines kathodisch oder anodisch abscheidbaren Elektrotauchlacks oder eines Pulverlacks aufgebracht wird. - Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die im Schritt a) abgeschiedene Verbindung ein Oxid darstellt.
- Verfahren nach einem oder beiden der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die anorganische Verbindung auf der elektrisch leitenden Oberfläche bei einem Potential gegenüber einer Standard-Wasserstoff-Elektrode zwischen ±0,1 und ±300 V oder einer Stromdichte im Bereich von ±0,1 bis ±10000 mA pro cm2 elektrisch leitenden Oberfläche abgeschieden wird.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03025080A EP1394292A3 (de) | 2000-05-06 | 2001-04-27 | Elektrochemisch erzeugte TiO2-Schichten zum Korrosionsschutz oder als Haftgrund |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10022074A DE10022074A1 (de) | 2000-05-06 | 2000-05-06 | Elektrochemisch erzeugte Schichten zum Korrosionsschutz oder als Haftgrund |
DE10022074 | 2000-05-06 | ||
PCT/EP2001/004780 WO2001086029A1 (de) | 2000-05-06 | 2001-04-27 | Elektrochemisch erzeugte schichten zum korrosionsschutz oder als haftgrund |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03025080A Division EP1394292A3 (de) | 2000-05-06 | 2001-04-27 | Elektrochemisch erzeugte TiO2-Schichten zum Korrosionsschutz oder als Haftgrund |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1285105A1 EP1285105A1 (de) | 2003-02-26 |
EP1285105B1 true EP1285105B1 (de) | 2004-03-17 |
Family
ID=7640989
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03025080A Withdrawn EP1394292A3 (de) | 2000-05-06 | 2001-04-27 | Elektrochemisch erzeugte TiO2-Schichten zum Korrosionsschutz oder als Haftgrund |
EP01933902A Expired - Lifetime EP1285105B1 (de) | 2000-05-06 | 2001-04-27 | Elektrochemische erzeugte schichten zum korrosionsschutz oder als haftgrund |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03025080A Withdrawn EP1394292A3 (de) | 2000-05-06 | 2001-04-27 | Elektrochemisch erzeugte TiO2-Schichten zum Korrosionsschutz oder als Haftgrund |
Country Status (7)
Country | Link |
---|---|
US (3) | US20040099535A1 (de) |
EP (2) | EP1394292A3 (de) |
AT (1) | ATE262056T1 (de) |
AU (1) | AU2001260260A1 (de) |
DE (2) | DE10022074A1 (de) |
ES (1) | ES2218415T3 (de) |
WO (1) | WO2001086029A1 (de) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7578921B2 (en) * | 2001-10-02 | 2009-08-25 | Henkel Kgaa | Process for anodically coating aluminum and/or titanium with ceramic oxides |
US7820300B2 (en) * | 2001-10-02 | 2010-10-26 | Henkel Ag & Co. Kgaa | Article of manufacture and process for anodically coating an aluminum substrate with ceramic oxides prior to organic or inorganic coating |
US7452454B2 (en) * | 2001-10-02 | 2008-11-18 | Henkel Kgaa | Anodized coating over aluminum and aluminum alloy coated substrates |
US7569132B2 (en) * | 2001-10-02 | 2009-08-04 | Henkel Kgaa | Process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating |
EP1548157A1 (de) * | 2003-12-22 | 2005-06-29 | Henkel KGaA | Korrosionsschutz durch elektrochemisch abgeschiedene Metalloxidschichten auf Metallsubstraten |
FR2885370B1 (fr) * | 2005-05-03 | 2007-09-28 | Commissariat Energie Atomique | Procede de depot electrochimique, source de rayonnements alpha et x, fabriquee par ce procede, et dispositif d'analyse pixe-xrf, utilisant cette source. |
WO2006136333A2 (en) * | 2005-06-22 | 2006-12-28 | Henkel Kommanditgessellschaft Auf Aktien | ELECTRODEPOSITION MATERIAL, PROCESS FOR PROVIDING A CORROSION-PROTECTIVE LAYER OF TiO2 ON AN ELECTRICALLY CONDUCTIVE SUBSTRATE AND METAL SUBSTRATE COATED WITH A LAYER OF TiO2 |
WO2006136334A2 (en) * | 2005-06-22 | 2006-12-28 | Henkel Kommanditgesellschaft Auf Aktien | Electrodeposition material, process for providing a corrosion-protective layer of tio2 on an electrically conductive substrate and metal substrate coated with a layer of tio2 |
WO2006136335A1 (en) * | 2005-06-22 | 2006-12-28 | Henkel Kommanditgesellschaft Auf Aktien | PROCESS FOR PROVIDING A CORROSION-PROTECTIVE LAYER OF TiO2 ON AN ELECTRICALLY CONDUCTIVE SUBSTRATE AND METAL SUBSTRATE COATED WITH A LAYER OF TiO2 |
US20080131709A1 (en) * | 2006-09-28 | 2008-06-05 | Aculon Inc. | Composite structure with organophosphonate adherent layer and method of preparing |
US20090169903A1 (en) * | 2007-12-27 | 2009-07-02 | Kansai Paint Co., Ltd. | Process for producing metal substrate with multilayer film, metal substrate with multilayer film obtained by the process, and coated article |
US8882983B2 (en) | 2008-06-10 | 2014-11-11 | The Research Foundation For The State University Of New York | Embedded thin films |
US9701177B2 (en) | 2009-04-02 | 2017-07-11 | Henkel Ag & Co. Kgaa | Ceramic coated automotive heat exchanger components |
US9493541B2 (en) | 2010-06-07 | 2016-11-15 | Joshua Rabbani | Antibodies specific for sulfated sclerostin |
US20150010707A1 (en) * | 2013-07-02 | 2015-01-08 | Jian- Liang LIN | Method for Marking a Tool |
CN105112967A (zh) * | 2015-09-11 | 2015-12-02 | 西南交通大学 | 一种具有骨诱导和抗菌性能的导电涂层的制备方法 |
DE102018107563B4 (de) | 2018-03-29 | 2022-03-03 | Infineon Technologies Austria Ag | Halbleitervorrichtung mit kupferstruktur und verfahren zur herstellung einer halbleitervorrichung |
WO2020160531A1 (en) * | 2019-02-01 | 2020-08-06 | Lumishield Technologies Incorporated | Methods and compositions for improved adherence of organic coatings to materials |
MX2022006167A (es) * | 2019-11-22 | 2022-06-14 | Ppg Ind Ohio Inc | Metodos para depositar electrolicamente composiciones de pretratamiento. |
Family Cites Families (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE655700C (de) * | 1935-01-08 | 1938-01-21 | Max Schenk Dr | Verfahren zur Herstellung opaker, emailaehnlicher Schutzschichten auf Aluminium und dessen Legierungen |
US2081121A (en) * | 1935-08-06 | 1937-05-18 | Kansas City Testing Lab | Decorating metals |
US2275223A (en) * | 1936-10-20 | 1942-03-03 | Robert H Hardoen | Rustproof material and process |
US2231372A (en) * | 1937-04-03 | 1941-02-11 | Telefunken Gmbh | Amplifier tube arrangement |
FR845549A (fr) * | 1937-12-01 | 1939-08-25 | Fides Gmbh | Procédé de fabrication de couches protectrices dures et étanches sur le magnésium et les alliages de magnésium |
US2880148A (en) * | 1955-11-17 | 1959-03-31 | Harry A Evangelides | Method and bath for electrolytically coating magnesium |
US2901409A (en) * | 1956-08-03 | 1959-08-25 | Dow Chemical Co | Anodizing magnesium |
US2925125A (en) * | 1956-10-18 | 1960-02-16 | Kenneth D Curry | Tire tread cutting machine |
GB1051665A (de) * | 1962-06-15 | |||
US3345276A (en) * | 1963-12-23 | 1967-10-03 | Ibm | Surface treatment for magnesiumlithium alloys |
US4166777A (en) * | 1969-01-21 | 1979-09-04 | Hoechst Aktiengesellschaft | Corrosion resistant metallic plates particularly useful as support members for photo-lithographic plates and the like |
US3620940A (en) * | 1970-05-12 | 1971-11-16 | Us Army | Method of inducing polarization of active magnesium surfaces |
JPS4919979B1 (de) * | 1970-12-15 | 1974-05-21 | ||
GB1386234A (en) * | 1971-04-28 | 1975-03-05 | Imp Metal Ind Kynoch Ltd | Preparation of titanium oxide and method of coating with an oxide |
AT309942B (de) * | 1971-05-18 | 1973-09-10 | Isovolta | Verfahren zum anodischen Oxydieren von Gegenständen aus Aluminium oder seinen Legierungen |
JPS5319974B2 (de) * | 1972-10-04 | 1978-06-23 | ||
US3956080A (en) * | 1973-03-01 | 1976-05-11 | D & M Technologies | Coated valve metal article formed by spark anodizing |
US3945899A (en) * | 1973-07-06 | 1976-03-23 | Kansai Paint Company, Limited | Process for coating aluminum or aluminum alloy |
US4075135A (en) * | 1975-07-28 | 1978-02-21 | Ppg Industries, Inc. | Method and resinous vehicles for electrodeposition |
US3996115A (en) * | 1975-08-25 | 1976-12-07 | Joseph W. Aidlin | Process for forming an anodic oxide coating on metals |
US4110147A (en) * | 1976-03-24 | 1978-08-29 | Macdermid Incorporated | Process of preparing thermoset resin substrates to improve adherence of electrolessly plated metal deposits |
JPS5326236A (en) * | 1976-08-25 | 1978-03-10 | Toyo Kohan Co Ltd | Surface treated steel sheet for coating |
US4082626A (en) * | 1976-12-17 | 1978-04-04 | Rudolf Hradcovsky | Process for forming a silicate coating on metal |
US4094750A (en) * | 1977-10-05 | 1978-06-13 | Northrop Corporation | Cathodic deposition of oxide coatings |
SE440089B (sv) * | 1978-06-05 | 1985-07-15 | Nippon Steel Corp | Ytbehandlat stalmaterial och sett for dess framstellning |
US4188270A (en) * | 1978-09-08 | 1980-02-12 | Akiyoshi Kataoka | Process for electrolytically forming glossy film on articles of aluminum or alloy thereof |
US4184926A (en) * | 1979-01-17 | 1980-01-22 | Otto Kozak | Anti-corrosive coating on magnesium and its alloys |
US4227976A (en) * | 1979-03-30 | 1980-10-14 | The United States Of America As Represented By The Secretary Of The Army | Magnesium anodize bath control |
US4370538A (en) * | 1980-05-23 | 1983-01-25 | Browning Engineering Corporation | Method and apparatus for ultra high velocity dual stream metal flame spraying |
US4452674A (en) * | 1980-09-26 | 1984-06-05 | American Hoechst Corporation | Electrolytes for electrochemically treated metal plates |
US4448647A (en) * | 1980-09-26 | 1984-05-15 | American Hoechst Corporation | Electrochemically treated metal plates |
US4399021A (en) * | 1980-09-26 | 1983-08-16 | American Hoechst Corporation | Novel electrolytes for electrochemically treated metal plates |
CA1162504A (en) * | 1980-11-25 | 1984-02-21 | Mobuyuki Oda | Treating tin plated steel sheet with composition containing titanium or zirconium compounds |
US4438287A (en) * | 1981-03-27 | 1984-03-20 | Uop Inc. | Preparation of alcohols |
DE3211782A1 (de) * | 1982-03-30 | 1983-10-06 | Siemens Ag | Bad und verfahren zum anodisieren von aluminierten teilen |
IT1212859B (it) * | 1983-03-21 | 1989-11-30 | Centro Speriment Metallurg | Laminati piatti di acciaio rivestiti perfezionati |
US4551211A (en) * | 1983-07-19 | 1985-11-05 | Ube Industries, Ltd. | Aqueous anodizing solution and process for coloring article of magnesium or magnesium-base alloy |
JPS60208494A (ja) * | 1984-03-31 | 1985-10-21 | Kawasaki Steel Corp | 溶接性に優れたシ−ム溶接缶用表面処理鋼板 |
NL189310C (nl) * | 1984-05-18 | 1993-03-01 | Toyo Kohan Co Ltd | Beklede stalen plaat met verbeterde lasbaarheid en werkwijze voor de vervaardiging. |
US4578156A (en) * | 1984-12-10 | 1986-03-25 | American Hoechst Corporation | Electrolytes for electrochemically treating metal plates |
US4659440A (en) * | 1985-10-24 | 1987-04-21 | Rudolf Hradcovsky | Method of coating articles of aluminum and an electrolytic bath therefor |
US4620904A (en) * | 1985-10-25 | 1986-11-04 | Otto Kozak | Method of coating articles of magnesium and an electrolytic bath therefor |
US4668347A (en) * | 1985-12-05 | 1987-05-26 | The Dow Chemical Company | Anticorrosive coated rectifier metals and their alloys |
GB8602582D0 (en) * | 1986-02-03 | 1986-03-12 | Alcan Int Ltd | Porous anodic aluminium oxide films |
US4775600A (en) * | 1986-03-27 | 1988-10-04 | Nippon Kokan Kabushiki Kaisha | Highly corrosion-resistant surface-treated steel plate |
US4744872A (en) * | 1986-05-30 | 1988-05-17 | Ube Industries, Ltd. | Anodizing solution for anodic oxidation of magnesium or its alloys |
JPS6335798A (ja) * | 1986-07-31 | 1988-02-16 | Nippon Steel Corp | カチオン電着塗装用有機複合鋼板 |
US4861441A (en) * | 1986-08-18 | 1989-08-29 | Nippon Steel Corporation | Method of making a black surface treated steel sheet |
JPS6387716A (ja) * | 1986-09-30 | 1988-04-19 | Nippon Steel Corp | 非晶質合金材料の表面処理方法 |
JPS63100194A (ja) * | 1986-10-16 | 1988-05-02 | Kawasaki Steel Corp | 電解化成処理亜鉛系めつき鋼板およびその製造方法 |
DE3870925D1 (de) * | 1987-02-02 | 1992-06-17 | Friebe & Reininghaus Ahc | Verfahren zur herstellung dekorativer ueberzuege auf metallen. |
US4839002A (en) * | 1987-12-23 | 1989-06-13 | International Hardcoat, Inc. | Method and capacitive discharge apparatus for aluminum anodizing |
US4869936A (en) * | 1987-12-28 | 1989-09-26 | Amoco Corporation | Apparatus and process for producing high density thermal spray coatings |
US4882014A (en) * | 1988-02-24 | 1989-11-21 | Union Oil Company Of California | Electrochemical synthesis of ceramic films and powders |
DE3808609A1 (de) * | 1988-03-15 | 1989-09-28 | Electro Chem Eng Gmbh | Verfahren zur erzeugung von korrosions- und verschleissbestaendigen schutzschichten auf magnesium und magnesiumlegierungen |
DE3808610A1 (de) * | 1988-03-15 | 1989-09-28 | Electro Chem Eng Gmbh | Verfahren zur oberflaechenveredelung von magnesium und magnesiumlegierungen |
FR2649359B1 (fr) * | 1989-07-06 | 1993-02-12 | Cebal | Bande ou portion de bande pour emboutissage ou emboutissage-etirage, et son utilisation |
WO1991019016A1 (en) * | 1990-05-19 | 1991-12-12 | Institut Teoreticheskoi I Prikladnoi Mekhaniki Sibirskogo Otdelenia Akademii Nauk Sssr | Method and device for coating |
US5275713A (en) * | 1990-07-31 | 1994-01-04 | Rudolf Hradcovsky | Method of coating aluminum with alkali metal molybdenate-alkali metal silicate or alkali metal tungstenate-alkali metal silicate and electroyltic solutions therefor |
US5776892A (en) * | 1990-12-21 | 1998-07-07 | Curative Health Services, Inc. | Anti-inflammatory peptides |
US5283131A (en) * | 1991-01-31 | 1994-02-01 | Nihon Parkerizing Co., Ltd. | Zinc-plated metallic material |
US5240589A (en) * | 1991-02-26 | 1993-08-31 | Technology Applications Group, Inc. | Two-step chemical/electrochemical process for coating magnesium alloys |
US5470664A (en) * | 1991-02-26 | 1995-11-28 | Technology Applications Group | Hard anodic coating for magnesium alloys |
JP2697351B2 (ja) * | 1991-04-03 | 1998-01-14 | 日本鋼管株式会社 | 電解処理絶縁被膜を有する電磁鋼板およびその製造方法 |
US5266412A (en) * | 1991-07-15 | 1993-11-30 | Technology Applications Group, Inc. | Coated magnesium alloys |
US5264113A (en) * | 1991-07-15 | 1993-11-23 | Technology Applications Group, Inc. | Two-step electrochemical process for coating magnesium alloys |
DK187391D0 (da) * | 1991-11-15 | 1991-11-15 | Inst Produktudvikling | Fremgangsmaade til efterbehandling af zinkbelagte materialer samt behandlingsoploesning til brug ved fremgangsmaaden |
DE4139006C3 (de) * | 1991-11-27 | 2003-07-10 | Electro Chem Eng Gmbh | Verfahren zur Erzeugung von Oxidkeramikschichten auf sperrschichtbildenden Metallen und auf diese Weise erzeugte Gegenstände aus Aluminium, Magnesium, Titan oder deren Legierungen mit einer Oxidkeramikschicht |
US5281282A (en) * | 1992-04-01 | 1994-01-25 | Henkel Corporation | Composition and process for treating metal |
JP4083794B2 (ja) * | 1994-03-29 | 2008-04-30 | レノボ・リミテッド | 創傷の治癒 |
GB2298870B (en) * | 1995-03-13 | 1998-09-30 | British Steel Plc | Passivation treatment of tinplate |
US5792335A (en) * | 1995-03-13 | 1998-08-11 | Magnesium Technology Limited | Anodization of magnesium and magnesium based alloys |
FR2733998B1 (fr) * | 1995-05-12 | 1997-06-20 | Satma Societe Anonyme De Trait | Procede de polissage electrolytique en deux etapes de surfaces metalliques pour obtenir des proprietes optiques ameliorees et produits resultants |
RU2077611C1 (ru) * | 1996-03-20 | 1997-04-20 | Виталий Макарович Рябков | Способ обработки поверхностей и устройство для его осуществления |
US5981084A (en) * | 1996-03-20 | 1999-11-09 | Metal Technology, Inc. | Electrolytic process for cleaning electrically conducting surfaces and product thereof |
US5958604A (en) * | 1996-03-20 | 1999-09-28 | Metal Technology, Inc. | Electrolytic process for cleaning and coating electrically conducting surfaces and product thereof |
DE19621818A1 (de) * | 1996-05-31 | 1997-12-04 | Henkel Kgaa | Kurzzeit-Heißverdichtung anodisierter Metalloberflächen mit tensidhaltigen Lösungen |
US5793335A (en) * | 1996-08-14 | 1998-08-11 | L-3 Communications Corporation | Plural band feed system |
US6153080A (en) * | 1997-01-31 | 2000-11-28 | Elisha Technologies Co Llc | Electrolytic process for forming a mineral |
JP2981184B2 (ja) * | 1997-02-21 | 1999-11-22 | トーカロ株式会社 | ボイラ伝熱管および管内面デポジット付着抑制効果に優れるボイラ伝熱管の製造方法 |
FR2764310B1 (fr) * | 1997-06-10 | 1999-07-09 | Commissariat Energie Atomique | Materiau multicouches a revetement anti-erosion, anti-abrasion, et anti-usure sur substrat en aluminium, en magnesium ou en leurs alliages |
US6090490A (en) * | 1997-08-01 | 2000-07-18 | Mascotech, Inc. | Zirconium compound coating having a silicone layer thereon |
EP0978576B1 (de) * | 1998-02-23 | 2003-11-26 | Mitsui Mining and Smelting Co., Ltd | Produkt auf magnesiumbasis mit erhöhtem glanz des basismetalls und korrosionsbeständigkeit und verfahren zu dessen herstellung |
JP2000248398A (ja) * | 1999-02-26 | 2000-09-12 | Toyo Kohan Co Ltd | 表面処理鋼板の製造方法および表面処理鋼板 |
US6197178B1 (en) * | 1999-04-02 | 2001-03-06 | Microplasmic Corporation | Method for forming ceramic coatings by micro-arc oxidation of reactive metals |
JP2000328292A (ja) * | 1999-05-11 | 2000-11-28 | Honda Motor Co Ltd | Si系アルミニウム合金の陽極酸化処理方法 |
WO2003002776A2 (en) * | 2001-06-28 | 2003-01-09 | Algat Sherutey Gimur Teufati | Method of anodizing of magnesium and magnesium alloys and producing conductive layers on an anodized surface |
US6916414B2 (en) * | 2001-10-02 | 2005-07-12 | Henkel Kommanditgesellschaft Auf Aktien | Light metal anodization |
US20030070935A1 (en) * | 2001-10-02 | 2003-04-17 | Dolan Shawn E. | Light metal anodization |
US6861101B1 (en) * | 2002-01-08 | 2005-03-01 | Flame Spray Industries, Inc. | Plasma spray method for applying a coating utilizing particle kinetics |
US6863990B2 (en) * | 2003-05-02 | 2005-03-08 | Deloro Stellite Holdings Corporation | Wear-resistant, corrosion-resistant Ni-Cr-Mo thermal spray powder and method |
US6869703B1 (en) * | 2003-12-30 | 2005-03-22 | General Electric Company | Thermal barrier coatings with improved impact and erosion resistance |
US6875529B1 (en) * | 2003-12-30 | 2005-04-05 | General Electric Company | Thermal barrier coatings with protective outer layer for improved impact and erosion resistance |
-
2000
- 2000-05-06 DE DE10022074A patent/DE10022074A1/de not_active Ceased
-
2001
- 2001-04-27 ES ES01933902T patent/ES2218415T3/es not_active Expired - Lifetime
- 2001-04-27 AU AU2001260260A patent/AU2001260260A1/en not_active Abandoned
- 2001-04-27 AT AT01933902T patent/ATE262056T1/de not_active IP Right Cessation
- 2001-04-27 EP EP03025080A patent/EP1394292A3/de not_active Withdrawn
- 2001-04-27 WO PCT/EP2001/004780 patent/WO2001086029A1/de active IP Right Grant
- 2001-04-27 US US10/275,504 patent/US20040099535A1/en not_active Abandoned
- 2001-04-27 EP EP01933902A patent/EP1285105B1/de not_active Expired - Lifetime
- 2001-04-27 DE DE50101713T patent/DE50101713D1/de not_active Expired - Fee Related
-
2007
- 2007-03-01 US US11/681,122 patent/US20070144914A1/en not_active Abandoned
-
2008
- 2008-11-19 US US12/273,969 patent/US20090162563A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
EP1285105A1 (de) | 2003-02-26 |
DE50101713D1 (de) | 2004-04-22 |
AU2001260260A1 (en) | 2001-11-20 |
ATE262056T1 (de) | 2004-04-15 |
WO2001086029A1 (de) | 2001-11-15 |
US20070144914A1 (en) | 2007-06-28 |
US20040099535A1 (en) | 2004-05-27 |
US20090162563A1 (en) | 2009-06-25 |
ES2218415T3 (es) | 2004-11-16 |
EP1394292A2 (de) | 2004-03-03 |
EP1394292A3 (de) | 2004-06-16 |
DE10022074A1 (de) | 2001-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1285105B1 (de) | Elektrochemische erzeugte schichten zum korrosionsschutz oder als haftgrund | |
DE3816265C2 (de) | ||
WO2011067094A1 (de) | Mehrstufiges vorbehandlungsverfahren für metallische bauteile mit zink- und eisenoberflächen | |
DE3116743A1 (de) | "verfahren zum vorbehandeln eines nicht leitfaehigen substrats fuer nachfolgendes galvanisieren" | |
DE102016205814A1 (de) | Verfahren zur gezielten Einstellung der elektrischen Leitfähigkeit von Konversionsbeschichtungen | |
EP2588645B1 (de) | Verfahren zur abscheidung einer nickel-metall-schicht | |
EP0760871B1 (de) | Verfahren zur beschichtung phosphatierter metallsubstrate | |
EP0261519B1 (de) | Schichtbildende Passivierung bei Multimetall-Verfahren | |
EP0366941B1 (de) | Verfahren zur elektrophoretischen Tauchlackierung von chromatierbaren Metalloberflächen | |
EP1675975A2 (de) | ELEKTROLYTISCHES VERFAHREN ZUM PHOSPHATIEREN VON METALLOBERFLÄCHEN UND DAMIT PHOSPHATIERTE METALLSCHICHT | |
DE3211782A1 (de) | Bad und verfahren zum anodisieren von aluminierten teilen | |
DE10159890B4 (de) | Verfahren für das Beschichten von Aluminiumwerkstoffen mit Funktionsschichten aus Eisen | |
EP3856947B1 (de) | Verfahren zur verbesserung der phosphatierbarkeit von metallischen oberflächen, welche mit einer temporären vor- bzw. nachbehandlung versehen werden | |
EP3728693B1 (de) | Verfahren zur korrosionsschützenden und reinigenden vorbehandlung von metallischen bauteilen | |
EP1273679A1 (de) | Metallisches Bauteil mit äusserer Funktionsschicht und Verfahren zu seiner Herstellung | |
DE102010033785A1 (de) | Verfahren zum Beschichten von Substraten auf Magnesiumbasis | |
DE2650611B2 (de) | Verfahren zur Herstellung beschichteter Stahl-Verbundbleche | |
DE68908471T2 (de) | Beschichtete Stahlbleche und Verfahren zu deren Herstellung. | |
EP1433879B1 (de) | Verfahren zur Beschichtung von Metalloberflächen mit einer Alkaliphosphatierungslösung, wässeriges Konzentrat und Verwendung der derart beschichteten Metalloberflächen | |
WO2015090418A1 (de) | Verfahren zur beschichtung elektrisch leitfähiger substrate | |
DE3111369A1 (de) | Bad und verfahren zum galvanischen aluminieren von polytetrafluoraethylenteilen | |
WO2011036260A2 (de) | Verfahren zum galvanisieren und zur passivierung | |
DE19934323A1 (de) | Metallisiertes Bauteil und seine Verwendung | |
EP0505886A1 (de) | Erzeugung dekorativer Aluminiumbeschichtungen | |
WO2001059180A1 (de) | Verfahren zur beschichtung von metalloberflächen, wässeriges konzentrat hierzu und verwendung der beschichteten metallteile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20021026 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17Q | First examination report despatched |
Effective date: 20030530 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040317 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040317 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040317 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040317 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040317 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50101713 Country of ref document: DE Date of ref document: 20040422 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040427 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040430 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040617 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040617 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040617 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040624 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20040317 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
BERE | Be: lapsed |
Owner name: HENKEL K.G.A.A. Effective date: 20040430 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2218415 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20041220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050430 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040817 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20090508 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090428 Year of fee payment: 9 Ref country code: FR Payment date: 20090417 Year of fee payment: 9 Ref country code: IT Payment date: 20090423 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090422 Year of fee payment: 9 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100427 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20101230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100427 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100427 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20110714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100430 |