EP1283281B1 - Verfahren zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff - Google Patents
Verfahren zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff Download PDFInfo
- Publication number
- EP1283281B1 EP1283281B1 EP02016239A EP02016239A EP1283281B1 EP 1283281 B1 EP1283281 B1 EP 1283281B1 EP 02016239 A EP02016239 A EP 02016239A EP 02016239 A EP02016239 A EP 02016239A EP 1283281 B1 EP1283281 B1 EP 1283281B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cathode
- chamber
- oxygen
- pressure
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/24—Halogens or compounds thereof
- C25B1/26—Chlorine; Compounds thereof
Definitions
- the invention relates to a method for the electrochemical production of chlorine from aqueous solutions of hydrogen chloride in an electrolytic cell.
- aqueous solutions of hydrogen chloride are by-produced in the production of organic chlorine compounds by chlorination with elemental chlorine. Many of these organic chlorine compounds are intermediates for the large-scale production of plastics.
- the resulting aqueous solutions of hydrogen chloride must be recycled. The recovery preferably takes place in such a way that chlorine is again produced from the aqueous solutions of hydrogen chloride, which can then be used, for example, for further chlorinations.
- the conversion to chlorine can be carried out, for example, by electrolysis of the aqueous solutions of hydrogen chloride on a gas diffusion cathode.
- a corresponding procedure is off US-A-5,770,035 and US-A-6149782 known.
- the electrolysis takes place according to US-A-5,770,035 in an electrolytic cell with an anode compartment, with a suitable anode, for example a noble metal-coated or -doped titanium electrode, which is filled with the aqueous solution of hydrogen chloride.
- the chlorine formed at the anode escapes from the anode compartment and is fed to a suitable treatment.
- the anode compartment is separated from a cathode compartment by a commercially available cation exchange membrane.
- a gas diffusion electrode is located on the cation exchange membrane. Behind the gas diffusion electrode is a power distributor. In the cathode space usually an oxygen-containing gas or pure oxygen is introduced.
- the anode compartment is maintained at a higher pressure than the cathode compartment.
- the adjustment of the pressure can be done, for example, by a liquid immersion, through which the chlorine gas formed in the anode chamber is passed.
- the end US-A-5,770,035 known method has the disadvantage that at high current densities, which in particular current densities greater than 4000 A / m 2 are to be understood, a comparatively high amount of hydrogen is formed on the gas diffusion cathode.
- high current densities are necessary in the technical implementation of the method for economic reasons.
- US 6 149 782 A discloses a process for the electrochemical production of chlorine from aqueous solutions of hydrogen chloride in an electrolytic cell comprising an anode chamber and a cathode chamber.
- the anode compartment is separated from the cathode compartment by a cation exchange membrane, Nafion 324.
- the anode chamber contains an anode and the cathode chamber contains an oxygen-consuming cathode containing a rhodium compound catalyst.
- An aqueous solution of hydrogen chloride is introduced into the anode chamber, and oxygen is introduced into the cathode chamber.
- the partial pressure of the oxygen is 45-50 mbar, so the pressure in the cathode chamber is above 1.05 bar.
- the object of the invention is to provide a method for the electrochemical production of chlorine from aqueous solutions of hydrogen chloride, wherein even when working with high current densities as little as possible hydrogen is formed and sets the lowest possible voltage.
- the invention relates to a method according to claim 1 for the electrochemical production of chlorine from aqueous solutions of hydrogen chloride in an electrolytic cell, comprising at least one anode chamber and a cathode chamber, wherein the anode chamber is separated by a cation exchange membrane from the cathode chamber, the anode chamber an anode and the cathode chamber contains an oxygen-consuming cathode, and in the anode chamber, the aqueous solution of hydrogen chloride and in the cathode chamber, an oxygen-containing gas is introduced, wherein the absolute pressure in the cathode chamber is at least 1.05 bar.
- oxygen-containing gas for example, pure oxygen, a mixture of oxygen and inert gases, in particular nitrogen, or air can be used. Pure oxygen, in particular a purity of at least 99% by volume, is preferably used as the oxygen-containing gas.
- the indication of the pressure in the cathode chamber are absolute values.
- the pressure in the cathode chamber is preferably 1.05 to 1.5 bar, particularly preferably 1.05 to 1.3 bar.
- the adjustment of the pressure in the cathode chamber to the value according to the invention of at least 1.05 bar can be effected, for example, by accumulating the oxygen-containing gas supplied to the cathode chamber by means of a pressure-retaining device.
- a suitable pressure-holding device is, for example, a liquid compression, by which the cathode space is shut off. Throttling via valves is also a suitable method for adjusting the pressure in the cathode compartment.
- a pressure is set in the anode chamber, which is 200 to 500 mbar higher than the pressure in the cathode chamber.
- the inventive method is operated at a current density of at least 5000 A / m 2 .
- the temperature of the supplied aqueous solution of hydrogen chloride is preferably from 30 to 80 ° C, particularly preferably from 50 to 70 ° C.
- the concentration of hydrochloric acid in the electrolyzer in carrying out the process according to the invention is 5 to 20 wt .-%, particularly preferably 10 to 15 wt .-%.
- the consumed hydrochloric acid in the electrolyzer can be supplemented by a hydrochloric acid supplied to the electrolyzer in the concentration range from 8 to 36% by weight.
- the oxygen-containing gas is preferably supplied in an amount such that oxygen is present in excess relative to the theoretically required amount. Particularly preferred is a 1.2 to 1.5-fold excess of oxygen.
- the process according to the invention is carried out in an electrochemical cell (electrolysis cell) whose anode chamber is separated from the cathode chamber by a cation exchange membrane, the cathode chamber containing an oxygen-consuming cathode.
- electrochemical cell electrolysis cell
- the electrolytic cell used may, for example, comprise the following components: an anode in an anode chamber, a cation exchange membrane which is hydrostatically pressed onto an oxygen-consuming cathode (SVK), which in turn is supported on a cathode-side current distributor and thus electrically contacted, and a cathode-side gas space (cathode chamber) ,
- the aqueous solution of hydrogen chloride is introduced into the anode chamber, the oxygen-containing gas in the cathode chamber.
- oxygen-consuming cathode is not critical.
- the known and partly commercially available oxygen-consuming cathodes can be used.
- oxygen-consuming cathodes are used which contain a catalyst of the platinum group, preferably platinum or rhodium.
- Suitable cation exchange membranes are those made of perfluoroethylene, which contain sulfonic acid groups as active centers. Both single-layer membranes having sulfonic acid groups of equal equivalent weights on both sides and membranes having sulfonic acid groups of different equivalent weights on both sides are suitable. Also membranes with carboxyl groups on the cathode side are conceivable.
- Suitable anodes are, for example, titanium anodes, in particular with an acid-resistant, chlorine-developing coating.
- the cathode-side power distributor can consist, for example, of expanded titanium metal or noble metal-coated titanium.
- FIG Fig. 1 A suitable electrolytic cell for carrying out the method according to the invention is shown schematically in FIG Fig. 1 shown.
- the electrolysis cell 1 is divided by a cation exchange membrane 6 into a cathode chamber 2 with an oxygen-consuming cathode 5 and an anode chamber 3 with an anode 4 .
- the oxygen-consuming cathode 5 is located on the cathode side on the cation exchange membrane 6 .
- Behind the Sauerstoffverzehrkathode 5 is a power distributor. 7 Due to the higher pressure in the anode chamber 3 , the cation exchange membrane 6 is pressed onto the oxygen-consuming cathode 5 and this in turn onto the current distributor 7 . In this way, the Sauerstoffverzehrkathode 5 is sufficiently electrically contacted and supplied with power.
- a pressure maintenance 8 The adjustment of the pressure in the cathode chamber 2 and anode chamber 3 takes place respectively via a pressure maintenance 8.
- a pressure maintenance 8 Via an HCl inlet 12 , an aqueous solution of hydrogen chloride is introduced into the anode chamber 3 , wherein formed at the anode 4 chlorine, which flows through the pressure maintenance 8 and discharged via the Cl 2 outlet 13 from the anode chamber 3 becomes.
- an O 2 inlet 9 oxygen-containing gas is introduced into the cathode chamber 2 , where it reacts with the oxygen-consuming cathode 5 to form water with protons, which diffuse out of the anode chamber 3 into the oxygen-consuming cathode 5 .
- the water formed is removed together with the excess oxygen-containing gas via the pressure maintenance 8 from the cathode chamber 2 , wherein the water formed via a H 2 O outlet 11 and the oxygen-containing gas via an O 2 outlet 10 is removed. It is also possible that the oxygen supply is from below and / or that the removal of water formed and oxygen-containing gas is carried out separately via a separate pressure maintenance.
- the electrolysis was carried out in an electrolytic cell 1 divided into a cathode chamber 2 and an anode chamber 3 as shown in FIG Fig. 1 shown schematically and explained in more detail above.
- An activated titanium anode with a size of 10 cm ⁇ 10 cm was used as anode 4 .
- the anode chamber 3 was supplied with an aqueous solution of hydrogen chloride.
- the temperature of the aqueous solution of hydrogen chloride was 60 ° C, the concentration 12-15 wt .-%.
- a gas diffusion electrode of the company E-TEK, type ELAT which was directly on a power distributor 7 in the form of an activated expanded titanium metal.
- Cathode chamber 2 and anode chamber 3 were separated from a cation exchange membrane 6 from DuPont, type Nafion® 324.
- pure oxygen having a content of greater than 99 vol .-% was introduced at a temperature of 20 ° C.
- the electrolysis was at a pressure in the anode chamber 3 of 1 , 4 bar, abs. and a pressure in the cathode chamber 2 of 1 bar, abs., A voltage of 1.67 V and a current density of 6000 A / m 2 operated.
- the excess oxygen-containing gas was removed from the cathode chamber 2 together with the water formed.
- the concentration of hydrogen in this gas was determined by gas chromatography. The hydrogen concentration was 700 ppm after an electrolysis time of 10 minutes, increased steadily during the electrolysis and was 1600 ppm after an electrolysis time of 3 hours.
- Example 1 An electrolysis of an aqueous solution of hydrogen chloride was carried out as described in Example 1.
- the pressure in the anode chamber 3 was 1.4 bar, abs.,
- the pressure in the cathode chamber 2 1 bar, abs.,
- the voltage 1.82 V and the current density 7000 A / m 2 were measured.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
- Die Erfindung betrifft ein Verfahren zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff in einer Elektrolysezelle.
- Wässrige Lösungen von Chlorwasserstoff (Salzsäuren) fallen beispielsweise als Nebenprodukte bei der Herstellung von organischen Chlorverbindungen durch Chlorierung mit elementarem Chlor an. Viele dieser organischen Chlorverbindungen sind Zwischenprodukte für die großtechnische Herstellung von Kunststoffen. Die anfallenden wässrigen Lösungen von Chlorwasserstoff müssen einer Verwertung zugeführt werden. Vorzugsweise erfolgt die Verwertung dergestalt, dass aus den wässrigen Lösungen von Chlorwasserstoff wieder Chlor hergestellt wird, das dann beispielsweise für weitere Chlorierungen eingesetzt werden kann.
- Die Umsetzung zu Chlor kann z.B. durch Elektrolyse der wässrigen Lösungen von Chlorwasserstoff an einer Gasdiffusionskathode erfolgen. Ein entsprechendes Verfahren ist aus
US-A-5 770 035 undUS-A-6149782 bekannt. Die Elektrolyse erfolgt gemäßUS-A-5 770 035 in einer Elektrolysezelle mit einem Anodenraum, mit einer geeigneten Anode, z.B. einer edelmetallbeschichteten bzw. -dotierten Titanelektrode, der mit der wässrigen Lösung von Chlorwasserstoff gefüllt wird. Das an der Anode gebildete Chlor entweicht aus dem Anodenraum und wird einer geeigneten Aufbereitung zugeführt. Der Anodenraum ist von einem Kathodenraum durch eine handelsübliche Kationenaustauschermembran getrennt. Auf der Kathodenseite liegt eine Gasdiffusionselektrode auf der Kationenaustauschermembran auf. Hinter der Gasdiffusionselektrode befindet sich ein Stromverteiler. In den Kathodenraum wird üblicherweise ein Sauerstoff-haltiges Gas oder reiner Sauerstoff eingeleitet. - Der Anodenraum wird auf einem höheren Druck gehalten als der Kathodenraum. Dadurch wird die Kationenaustauschermembran auf die Gasdiffusionskathode und diese wiederum auf den Stromverteiler gedrückt. Die Einstellung des Drucks kann z.B. durch eine Flüssigkeitstauchung erfolgen, durch die das in der Anodenkammer gebildete Chlorgas geleitet wird.
- Das aus
US-A-5 770 035 bekannte Verfahren hat den Nachteil, dass bei hohen Stromdichten, worunter insbesondere Stromdichten größer als 4000 A/m2 zu verstehen sind, an der Gasdiffusionskathode eine vergleichsweise hohe Menge Wasserstoff gebildet wird. Hohe Stromdichten sind jedoch bei der technischen Durchführung des Verfahrens aus wirtschaftlichen Gründen notwendig. Außerdem stellt sich bei hohen Stromdichten eine vergleichsweise hohe Spannung ein, was einen hohen Energieverbrauch bedingt. -
US 6 149 782 A offenbart ein Verfahren zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff in einer Elektrolysezelle, umfassend eine Anodenkammer und eine Kathodenkammer. Die Anodenkammer ist durch eine Kationenaustauschermembran, Nafion 324, von der Kathodenkammer getrennt. Die Anodenkammer enthält eine Anode und die Kathodenkammer enthält eine Sauerstoffverzehrkathode, die einen Katalysator aus einer Rhodium Verbindung enthält. In die Anodenkammer wird eine wässrige Lösung von Chlorwasserstoff und in die Kathodenkammer wird Sauerstoff eingeleitet. Der Teildruck des Sauerstoffs beträgt 45-50 mbar, also liegt der Druck in der Kathodenkammer bei über 1,05 bar. - Aufgabe der Erfindung ist die Bereitstellung eines Verfahrens zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff, wobei selbst beim Arbeiten mit hohen Stromdichten möglichst wenig Wasserstoff gebildet wird und sich eine möglichst niedrige Spannung einstellt.
- Gegenstand der Erfindung ist ein Verfahren gemäß Anspruch 1 zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff in einer Elektrolysezelle, umfassend mindestens eine Anodenkammer und eine Kathodenkammer, wobei die Anodenkammer durch eine Kationenaustauschermembran von der Kathodenkammer getrennt ist, die Anodenkammer eine Anode und die Kathodenkammer eine Sauerstoffverzehrkathode enthält, und in die Anodenkammer die wässrige Lösung von Chlorwasserstoff und in die Kathodenkammer ein sauerstoffhaltiges Gas eingeleitet wird, wobei der absolute Druck in der Kathodenkammer mindestens 1,05 bar beträgt.
- Durch den erfindungsgemäß leicht erhöhten Druck in der Kathodenkammer wird die Bildung von Wasserstoff an der Sauerstoffverzehrkathode vermindert und zudem eine niedrigere Elektrolysespannung erzielt, als bei Reaktionsführung unter Normaldruck, entsprechend dem Umgebungsdruck, in der Kathodenkammer. Es ist erstaunlich und war nicht zu erwarten, dass bereits eine vergleichsweise geringe Erhöhung des Drucks in der Kathodenkammer zu einer deutlichen Reduzierung der unerwünschten Wasserstoffentwicklung an der Sauerstoffverzehrkathode und zu niedrigeren Elektrolysespannungen führt, was wiederum hinsichtlich des Energieverbrauchs vorteilhaft ist.
- Als sauerstoffhaltiges Gas kann beispielsweise reiner Sauerstoff, ein Gemisch aus Sauerstoff und inerten Gasen, insbesondere Stickstoff, oder Luft eingesetzt werden. Bevorzugt wird als sauerstoffhaltiges Gas reiner Sauerstoff, insbesondere einer Reinheit von mind. 99 Vol.-% eingesetzt.
- Bei der Angabe des Drucks in der Kathodenkammer handelt es sich um Absolutwerte. Bevorzugt beträgt der Druck in der Kathodenkammer 1,05 bis 1,5 bar, insbesondere bevorzugt 1,05 bis 1,3 bar.
- Die Einstellung des Drucks in der Kathodenkammer auf den erfindungsgemäßen Wert von mindestens 1,05 bar kann beispielsweise dadurch erfolgen, dass das der Kathodenkammer zugeführte sauerstoffhaltige Gas durch eine Druckhaltevorrichtung angestaut wird. Eine geeignete Druckhaltevorrichtung ist beispielsweise eine Flüssigkeitstauchung, durch die der Kathodenraum abgesperrt wird. Eine Androsselung über Ventile stellt ebenfalls eine geeignete Methode zur Einstellung des Drucks im Kathodenraum dar.
- Um einen hinreichenden Kontakt zwischen Kationenaustauschermembran und Sauerstoffverzehrkathode zu gewährleisten, wird in der Anodenkammer ein Druck eingestellt, der 200 bis 500 mbar höher ist als der Druck in der Kathodenkammer.
- Das erfindungsgemäße Verfahren wird bei einer Stromdichte von mindestens 5000 A/m2 betrieben.
- Die Temperatur der zugeführten wässrigen Lösung von Chlorwasserstoff beträgt vorzugsweise 30 bis 80°C, insbesondere bevorzugt 50 bis 70°C.
- Vorzugsweise beträgt die Konzentration der Salzsäure im Elektrolyseur bei der Durchführung des erfindungsgemäßen Verfahrens 5 bis 20 Gew.-%, besonders bevorzugt 10 bis 15 Gew.-%. Die verbrauchte Salzsäure im Elektrolyseur kann durch eine dem Elektrolyseur zugeführte Salzsäure in Konzentrationsbereich von 8 bis 36 Gew.-% ergänzt werden.
- Das sauerstoffhaltige Gas wird bevorzugt in einer solchen Menge zugeführt, dass Sauerstoff bezogen auf die theoretisch benötigte Menge im Überschuss vorliegt. Besonders bevorzugt ist ein 1,2 bis 1,5 facher Überschuß an Sauerstoff.
- Das erfindungsgemäße Verfahren wird in einer elektrochemischen Zelle (Elektrolysezelle) durchgeführt, deren Anodenkammer durch eine Kationenaustauschermembran von der Kathodenkammer getrennt ist, wobei die Kathodenkammer eine Sauerstoffverzehrkathode enthält.
- Die verwendete Elektrolysezelle kann beispielsweise folgende Komponenten umfassen: eine Anode in einer Andodenkammer, eine Kationenaustauschermembran, die hydrostatisch auf eine Sauerstoffverzehrkathode (SVK) aufgepresst wird, die sich wiederum auf einen kathodenseitigen Stromverteiler abstützt und so elektrisch kontaktiert wird, sowie einen kathodenseitigen Gasraum (Kathodenkammer).
- Die wässrige Lösung des Chlorwasserstoffs wird in die Anodenkammer eingeleitet, das sauerstoffhaltige Gas in die Kathodenkammer.
- Die Wahl der Sauerstoffverzehrkathode ist nicht kritisch. Es können die bekannten und zum Teil kommerziell verfügbaren Sauerstoffverzehrkathoden eingesetzt werden. Vorzugsweise werden jedoch Sauerstoffverzehrkathoden eingesetzt, die einen Katalysator der Platingruppe, vorzugsweise Platin oder Rhodium enthalten.
- Als Kationenaustauschermembran eignen sich beispielsweise solche aus Perfluorethylen, die als aktive Zentren Sulfonsäuregruppen enthalten. Es sind sowohl Einschichten-Membranen, die beidseitig Sulfonsäuregruppen mit gleichen Äquivalentgewichten haben, als auch Membranen, die auf beiden Seiten Sulfonsäuregruppen mit unterschiedlichen Äquivalentgewichten haben, geeignet. Ebenfalls sind Membranen mit Carboxylgruppen auf der Kathodenseite denkbar.
- Geeignete Anoden sind beispielsweise Titananoden, insbesondere mit einer säurefesten, Chlor-entwickelnden Beschichtung.
- Der kathodenseitige Stromverteiler kann beispielsweise aus Titan-Streckmetall oder edelmetallbeschichtetem Titan bestehen.
- Eine geeignete Elektrolysezelle zur Durchführung des erfindungsgemäßen Verfahrens ist schematisch in
Fig. 1 dargestellt. - Die Elektrolysezelle 1 ist durch eine Kationenaustauschermembran 6 in eine Kathodenkammer 2 mit Sauerstoffverzehrkathode 5 und eine Anodenkammer 3 mit Anode 4 unterteilt. Die Sauerstoffverzehrkathode 5 liegt kathodenseitig auf der Kationenaustauschermembran 6 auf. Hinter der Sauerstoffverzehrkathode 5 befindet sich ein Stromverteiler 7. Durch den höheren Druck in der Anodenkammer 3 wird die Kationenaustauschermembran 6 auf die Sauerstoffverzehrkathode 5 und diese wiederum auf den Stromverteiler 7 gedrückt. Auf diese Weise wird die Sauerstoffverzehrkathode 5 hinreichend elektrisch kontaktiert und mit Strom versorgt. Die Einstellung des Drucks in Kathodenkammer 2 und Anodenkammer 3 erfolgt jeweils über eine Druckhaltung 8. Über einen HCl-Einlass 12 wird eine wässrigen Lösung von Chlorwasserstoff in die Anodenkammer 3 eingeleitet, wobei sich an der Anode 4 Chlor bildet, das die Druckhaltung 8 durchströmt und über der Cl2-Auslass 13 aus der Anodenkammer 3 abgeführt wird. Über einen O2-Einlass 9 wird sauerstoffhaltiges Gas in die Kathodenkammer 2 eingeleitet, wo es sich an der Sauerstoffverzehrkathode 5 unter Bildung von Wasser mit Protonen umsetzt, die aus der Anodenkammer 3 in die Sauerstoffverzehrkathode 5 eindiffundieren. Das gebildete Wasser wird gemeinsam mit dem überschüssigen sauerstoffhaltigen Gas über die Druckhaltung 8 aus der Kathodenkammer 2 entfernt, wobei das gebildete Wasser über einen H2O-Auslass 11 und das sauerstoffhaltige Gas über einen O2-Auslass 10 entnommen wird. Es ist auch möglich, dass die Sauerstoffzufuhr von unten erfolgt und/oder dass die Entfernung von gebildeten Wasser und sauerstoffhaltigem Gas getrennt über jeweils eine separate Druckhaltung vorgenommen wird.
- In den folgenden Beispielen wird das erfindungsgemäße Verfahren weiter erläutert, wobei die Beispiele nicht als Einschränkung des allgemeinen Erfindungsgedankens zu verstehen sind.
- Die Elektrolyse wurde in einer in eine Kathodenkammer 2 und eine Anodenkammer 3 unterteilten Elektrolysezelle 1 durchgeführt, wie sie in
Fig. 1 schematisch dargestellt und oben näher erläutert ist. Als Anode 4 kam eine aktivierte Titan-Anode mit einer Grösse von 10 cm * 10 cm zum Einsatz. Der Anodenkammer 3 wurde eine wässrige Lösung von Chlorwasserstoff zugeführt. Die Temperatur der wässrigen Lösung von Chlorwasserstoff betrug 60°C, die Konzentration 12-15 Gew.-%. In der Kathodenkammer 2 befand sich als Sauerstoffverzehrkathode 5 eine Gasdiffusionselektrode der Firma E-TEK, Typ ELAT, die unmittelbar auf einem Stromverteiler 7 in Form eines aktivierten Titan-Streckmetalls auflag. Kathodenkammer 2 und Anodenkammer 3 wurden von einer Kationenaustauschermembran 6 der Firma DuPont, Typ Nafion® 324, getrennt. In die Kathodenkammer 2 wurde reiner Sauerstoff mit einem Gehalt von größer als 99 Vol.-% mit einer Temperatur von 20°C eingeleitet. - Die Elektrolyse wurde bei einem Druck in der Anodenkammer 3 von 1,4 bar, abs. und einem Druck in der Kathodenkammer 2 von 1 bar, abs., einer Spannung von 1,67 V und einer Stromdichte von 6000 A/m2 betrieben. Das überschüssige sauerstoffhaltige Gas wurde gemeinsam mit dem gebildeten Wasser aus der Kathodenkammer 2 abgeführt. Es wurde die Konzentration an Wasserstoff in diesem Gas mittels Gaschromatographie bestimmt. Die Wasserstoffkonzentration betrug nach einer Elektrolysedauer von 10 Minuten 700 ppm, stieg im Laufe der Elektrolyse stetig an und lag nach einer Elektrolysedauer von 3 Stunden bei 1600 ppm.
- Es wurde eine Elektrolyse einer wässrigen Lösung von Chlorwasserstoff durchgeführt, wie in Beispiel 1 beschrieben, wobei der Druck in der Anodenkammer 3 jedoch 1,15 bar, abs. betrug. Die Wasserstoffkonzentration betrug nach 10 Minuten Elektrolysedauer 700 ppm, stieg im Lauf der Elektrolyse stetig an und lag nach 3 Stunden bei 1600 ppm.
- Es wurde eine Elektrolyse einer wässrigen Lösung von Chlorwasserstoff durchgeführt, wie in Beispiel 1 beschrieben, wobei der Druck in der Kathodenkammer 2 jedoch 1,06 bar, abs. betrug und sich bei einer Stromdichte von 6000 A/m2 eine Spannung von 1,62 V einstellte. Die Wasserstoffkonzentration betrug 300 ppm und blieb über den Zeitraum der Elektrolyse von mehreren Tagen konstant.
- Es wurde eine Elektrolyse einer wässrigen Lösung von Chlorwasserstoff durchgeführt, wie in Beispiel 1 beschrieben. Der Druck in der Anodenkammer 3 betrug 1,4 bar, abs., der Druck in der Kathodenkammer 2 1 bar, abs., die Spannung 1,82 V und die Stromdichte 7000 A/m2. Bereits nach einer Elektrolysedauer von 3 Minuten wurde eine Wasserstoffkonzentration von 8000 ppm gemessen.
- Es wurde eine Elektrolyse einer wässrigen Lösung von Chlorwasserstoff durchgeführt, wie in Beispiel 4 beschrieben, wobei der Druck in der Kathodenkammer 2 jedoch 1,12 bar, abs. betrug und sich bei der gewählten Stromdichte von 7000 A/m2 eine Spannung von 1,74 V einstellte. Die Wasserstoffkonzentration betrug 600 ppm und blieb über den gesamten Zeitraum der Elektrolyse von mehreren Tagen konstant.
Claims (4)
- Verfahren zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff in einer Elektrolysezelle, umfassend mindestens eine Anodenkammer und eine Kathodenkammer, wobei die Anodenkammer durch eine Kationenaustauschermembran von der Kathodenkammer getrennt ist, die Anodenkammer eine Anode und die Kathodenkammer eine Sauerstoffverzehrkathode enthält, und in die Anodenkammer die wässrige Lösung von Chlorwasserstoff und in die Kathodenkammer ein sauerstoähaltiges Gas eingeleitet wird, dadurch gekennzeichnet, dass der Druck in der Kathodenkammer mindestens 1,05 bar beträgt., wobei der Druck in der Anodenkammer 200 bis 500 mbar höher ist als der Druck in der Kathodenkammer, und das Verfahren bei einer Stromdichte von mindestens 5000 A/m2 betrieben wird.
- Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass der Druck in der Kathodenkammer 1,05 bis 1,5 bar beträgt.
- Verfahren gemäß einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die eingesetzte Sauerstoffverzehrkathode einen Katalysator der Platingruppe, vorzugsweise Platin oder Rhodium enthält.
- Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass eine Kationenaustauschermembran aus Perfluorethylen eingesetzt wird, die als aktive Zentren bevorzugt Sulfonsäuregruppen enthält.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10138215A DE10138215A1 (de) | 2001-08-03 | 2001-08-03 | Verfahren zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff |
DE10138215 | 2001-08-03 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1283281A2 EP1283281A2 (de) | 2003-02-12 |
EP1283281A3 EP1283281A3 (de) | 2003-05-28 |
EP1283281B1 true EP1283281B1 (de) | 2012-11-14 |
Family
ID=7694329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02016239A Expired - Lifetime EP1283281B1 (de) | 2001-08-03 | 2002-07-22 | Verfahren zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff |
Country Status (7)
Country | Link |
---|---|
US (1) | US6790339B2 (de) |
EP (1) | EP1283281B1 (de) |
CN (1) | CN1247818C (de) |
DE (1) | DE10138215A1 (de) |
ES (1) | ES2397508T3 (de) |
HK (1) | HK1054575A1 (de) |
PT (1) | PT1283281E (de) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040254134A1 (en) | 2001-04-27 | 2004-12-16 | Eduardo Marban | Biological pacemaker |
DE10152275A1 (de) * | 2001-10-23 | 2003-04-30 | Bayer Ag | Verfahren zur Elektrolyse von wässrigen Lösungen aus Chlorwasserstoff |
WO2004048643A1 (ja) * | 2002-11-27 | 2004-06-10 | Asahi Kasei Chemicals Corporation | 複極式ゼロギャップ電解セル |
DE10342148A1 (de) | 2003-09-12 | 2005-04-07 | Bayer Materialscience Ag | Verfahren zur Elektrolyse einer wässrigen Lösung von Chlorwasserstoff oder Alkalichlorid |
DE102006023261A1 (de) | 2006-05-18 | 2007-11-22 | Bayer Materialscience Ag | Verfahren zur Herstellung von Chlor aus Chlorwasserstoff und Sauerstoff |
JP5041769B2 (ja) * | 2006-09-06 | 2012-10-03 | 住友化学株式会社 | スタートアップ方法 |
DE102008015901A1 (de) * | 2008-03-27 | 2009-10-01 | Bayer Technology Services Gmbh | Elektrolysezelle zur Chlorwasserstoffelektrolyse |
US9181624B2 (en) | 2009-04-16 | 2015-11-10 | Chlorine Engineers Corp., Ltd. | Method of electrolysis employing two-chamber ion exchange membrane electrolytic cell having gas diffusion electrode |
DE102009023539B4 (de) * | 2009-05-30 | 2012-07-19 | Bayer Materialscience Aktiengesellschaft | Verfahren und Vorrichtung zur Elektrolyse einer wässerigen Lösung von Chlorwasserstoff oder Alkalichlorid in einer Elektrolysezelle |
SG174714A1 (en) | 2010-03-30 | 2011-10-28 | Bayer Materialscience Ag | Process for preparing diaryl carbonates and polycarbonates |
SG174715A1 (en) | 2010-03-30 | 2011-10-28 | Bayer Materialscience Ag | Process for preparing diaryl carbonates and polycarbonates |
US8562810B2 (en) | 2011-07-26 | 2013-10-22 | Ecolab Usa Inc. | On site generation of alkalinity boost for ware washing applications |
CN103194765A (zh) * | 2012-01-10 | 2013-07-10 | 石福金属兴业株式会社 | 杀菌水生成装置 |
WO2014000030A1 (en) * | 2012-06-29 | 2014-01-03 | Australian Biorefining Pty Ltd | Process and apparatus for generating or recovering hydrochloric acid from metal salt solutions |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS534796A (en) * | 1976-07-05 | 1978-01-17 | Asahi Chem Ind Co Ltd | Electrolysis of pressurized alkali halide |
US4311568A (en) * | 1980-04-02 | 1982-01-19 | General Electric Co. | Anode for reducing oxygen generation in the electrolysis of hydrogen chloride |
IT1282367B1 (it) * | 1996-01-19 | 1998-03-20 | De Nora Spa | Migliorato metodo per l'elettrolisi di soluzioni acquose di acido cloridrico |
US6149782A (en) * | 1999-05-27 | 2000-11-21 | De Nora S.P.A | Rhodium electrocatalyst and method of preparation |
US6135331A (en) * | 1999-08-13 | 2000-10-24 | Davis; Richard Maurice | Snow ski boot remover |
-
2001
- 2001-08-03 DE DE10138215A patent/DE10138215A1/de not_active Withdrawn
-
2002
- 2002-07-22 EP EP02016239A patent/EP1283281B1/de not_active Expired - Lifetime
- 2002-07-22 ES ES02016239T patent/ES2397508T3/es not_active Expired - Lifetime
- 2002-07-22 PT PT2016239T patent/PT1283281E/pt unknown
- 2002-07-30 US US10/207,937 patent/US6790339B2/en not_active Expired - Lifetime
- 2002-08-02 CN CNB021274622A patent/CN1247818C/zh not_active Expired - Lifetime
-
2003
- 2003-09-18 HK HK03106703.2A patent/HK1054575A1/zh unknown
Also Published As
Publication number | Publication date |
---|---|
PT1283281E (pt) | 2013-01-24 |
CN1247818C (zh) | 2006-03-29 |
US6790339B2 (en) | 2004-09-14 |
HK1054575A1 (zh) | 2003-12-05 |
JP2003049290A (ja) | 2003-02-21 |
DE10138215A1 (de) | 2003-02-20 |
EP1283281A2 (de) | 2003-02-12 |
ES2397508T3 (es) | 2013-03-07 |
US20030024824A1 (en) | 2003-02-06 |
CN1405357A (zh) | 2003-03-26 |
EP1283281A3 (de) | 2003-05-28 |
JP4251432B2 (ja) | 2009-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0866890B1 (de) | Verfahren zur direkten elektrochemischen gasphasen-phosgensynthese | |
EP1283281B1 (de) | Verfahren zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff | |
DE69016459T2 (de) | Elektrochemischer chlordioxidgenerator. | |
DE69215093T2 (de) | Vorrichtung und Verfahren zur elektrochemischen Zersetzung von Salzlösungen um die entsprechenden Basen und Säuren zu bilden | |
DE69301028T2 (de) | VERFAHREN ZUR ELEKTROCHEMISCHEN OXIDATION VON Methanol ZU FORMALDEHYD UND METHYLAL | |
EP1417356B1 (de) | Elektrolysezelle, insbesondere zur elektrochemischen herstellung von chlor | |
EP2260124A1 (de) | Elektrolysezelle zur chlorwasserstoffelektrolyse | |
DE69033828T2 (de) | Elektrolysezelle | |
EP1327011B1 (de) | Verfahren zur elektrochemischen herstellung von wasserstoffperoxid | |
WO2003056065A2 (de) | Elektroden für die elektrolyse in sauren medien | |
DE69508689T2 (de) | Elektrode für elektrochemisches Verfahren und deren Verwendung | |
EP0391192A2 (de) | Verfahren zur Herstellung von Alkalidichromaten und Chromsäuren durch Elektrolyse | |
DE102017219974A1 (de) | Herstellung und Abtrennung von Phosgen durch kombinierte CO2 und Chlorid-Elektrolyse | |
EP0008470B1 (de) | Verfahren zur Elektrolyse wässriger Alkalihalogenid-Lösungen | |
DE3602683A1 (de) | Verfahren zur durchfuehrung der hcl-membranelektrolyse | |
DE10152275A1 (de) | Verfahren zur Elektrolyse von wässrigen Lösungen aus Chlorwasserstoff | |
EP1106714B1 (de) | Verfahren zur Herstellung von Halogenen durch Gasphasenelektrolyse | |
EP3597791B1 (de) | Verfahren zur leistungsverbesserung von nickelelektroden | |
DE19625600B4 (de) | Elektrolyseverfahren | |
DE10138966A1 (de) | Verfahren zum geschlossenen Recycling von Ammoniumsalzen zu Ammoniak und Säuren | |
DE102010029272A1 (de) | Verfahren zur elektrochemischen Herstellung von Isophoron | |
DE2235027A1 (de) | Verfahren zur herstellung von akalimetallhydroxyden und elementarem chlor | |
DD271722A5 (de) | Elektrochemisches verfahren zur herstellung von fluorkohlenwasserstoffen | |
EP0356806B1 (de) | Verfahren zur Herstellung von Chromsäure | |
EP0029083A1 (de) | Verfahren zur gleichzeitigen Herstellung von Stickstoffmonoxid und Alkalihydroxid aus wässrigen Lösungen von Alkalinitrit durch Elektrolyse |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20031128 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BAYER MATERIALSCIENCE AG |
|
17Q | First examination report despatched |
Effective date: 20100714 |
|
RTI1 | Title (correction) |
Free format text: PROCESS FOR THE ELECTROCHEMICAL PRODUCTION OF CHLORINE FROM AQUEOUS HYDROCHLORIC ACID SOLUTIONS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 584067 Country of ref document: AT Kind code of ref document: T Effective date: 20121115 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 50215645 Country of ref document: DE Effective date: 20130110 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20130111 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2397508 Country of ref document: ES Kind code of ref document: T3 Effective date: 20130307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121114 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121114 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: BAYER INTELLECTUAL PROPERTY GMBH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130215 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130214 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121114 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121114 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121114 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121114 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20130815 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 50215645 Country of ref document: DE Effective date: 20130815 |
|
BERE | Be: lapsed |
Owner name: BAYER MATERIALSCIENCE A.G. Effective date: 20130731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121114 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130722 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130722 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50215645 Country of ref document: DE Owner name: COVESTRO DEUTSCHLAND AG, DE Free format text: FORMER OWNER: BAYER AG, 51373 LEVERKUSEN, DE Effective date: 20121031 Ref country code: DE Ref legal event code: R081 Ref document number: 50215645 Country of ref document: DE Owner name: COVESTRO DEUTSCHLAND AG, DE Free format text: FORMER OWNER: BAYER MATERIALSCIENCE AG, 51373 LEVERKUSEN, DE Effective date: 20140526 Ref country code: DE Ref legal event code: R081 Ref document number: 50215645 Country of ref document: DE Owner name: BAYER INTELLECTUAL PROPERTY GMBH, DE Free format text: FORMER OWNER: BAYER AG, 51373 LEVERKUSEN, DE Effective date: 20121031 Ref country code: DE Ref legal event code: R081 Ref document number: 50215645 Country of ref document: DE Owner name: BAYER INTELLECTUAL PROPERTY GMBH, DE Free format text: FORMER OWNER: BAYER MATERIALSCIENCE AG, 51373 LEVERKUSEN, DE Effective date: 20140526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130722 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 584067 Country of ref document: AT Kind code of ref document: T Effective date: 20130722 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130722 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130722 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20150629 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20150709 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20150717 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50215645 Country of ref document: DE Owner name: COVESTRO DEUTSCHLAND AG, DE Free format text: FORMER OWNER: BAYER INTELLECTUAL PROPERTY GMBH, 40789 MONHEIM, DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20160801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160723 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20181128 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20210628 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210622 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 50215645 Country of ref document: DE |