[go: up one dir, main page]

EP1266396B1 - Method and device for detecting compounds in a gas stream - Google Patents

Method and device for detecting compounds in a gas stream Download PDF

Info

Publication number
EP1266396B1
EP1266396B1 EP01962408A EP01962408A EP1266396B1 EP 1266396 B1 EP1266396 B1 EP 1266396B1 EP 01962408 A EP01962408 A EP 01962408A EP 01962408 A EP01962408 A EP 01962408A EP 1266396 B1 EP1266396 B1 EP 1266396B1
Authority
EP
European Patent Office
Prior art keywords
laser
laser pulse
mass spectrometer
ionization
ionization chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01962408A
Other languages
German (de)
French (fr)
Other versions
EP1266396A1 (en
Inventor
Ralf Zimmermann
Jörg HEGER
Antonius Kettrup
Fabian Mühlberger
Klaus Hafner
Ulrich Boesl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helmholtz Zentrum Muenchen Deutsches Forschungszentrum fuer Gesundheit und Umwelt GmbH
Original Assignee
Helmholtz Zentrum Muenchen Deutsches Forschungszentrum fuer Gesundheit und Umwelt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helmholtz Zentrum Muenchen Deutsches Forschungszentrum fuer Gesundheit und Umwelt GmbH filed Critical Helmholtz Zentrum Muenchen Deutsches Forschungszentrum fuer Gesundheit und Umwelt GmbH
Publication of EP1266396A1 publication Critical patent/EP1266396A1/en
Application granted granted Critical
Publication of EP1266396B1 publication Critical patent/EP1266396B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/107Arrangements for using several ion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • H01J49/162Direct photo-ionisation, e.g. single photon or multi-photon ionisation

Definitions

  • the invention relates to a method and an apparatus for detecting compounds in a gas stream according to the preambles of claims 1 and 8, as known from the publication 3.
  • the resonance-enhanced multiphoton ionization technique (REMPI), the UV laser pulses for the selective ionization of z. B. aromatics is used as a selective and soft ionization method for mass spectrometry.
  • the selectivity is determined, inter alia, by the UV spectroscopic properties and the position of the ionization potentials.
  • a typical application is the on-line detection of aromatic compounds from combustion exhaust gases 1 .
  • a disadvantage of the REMPI method is that it is limited to some classes of substances and the ionization cross-section can also be extremely different for similar compounds.
  • Single photon ionization (SPI) with VUV laser light allows for a partially selective and soft ionization 2 .
  • the selectivity is determined by the position of the ionization potentials.
  • a typical application is the detection of compounds that can not be detected by REMPI.
  • a disadvantage of the SPI method is that some substance classes can not be detected.
  • the selectivity is smaller than in the REMPI method, so that interference can occur more intensively with complex samples.
  • Electron impact ionization (EI) with an electron beam is the standard technique for ionization in the mass spectrometry of volatile inorganic and organic compounds. It is very universal (ie non-selective) and results in many molecules often leads to a very strong fragmentation, but is very well suited for a direct measurement of compounds such as O 2, N 2, CO 2, SO 2, CO, C 2 H 2, etc., which can not be detected so well with VUV or REMPI.
  • the object of the invention is to design a method and a device of the generic type such that a multiplicity of compounds in the analysis gas can be characterized almost simultaneously. This object is achieved by the features of claims 1 and 8.
  • FIG. 1 shows by way of example the ionization region of the mass spectrometer 14 and the gas cell 9.
  • FIG. 2 schematically shows an optical delegation for generating a UV laser pulse 10 and a VUV laser pulse.
  • FIG. 3 shows an on-line measurement of NO and naphthalene in the flue gas of a waste incineration plant taken with alternating SPI ionization (VUV for NO) and REMPI ionization (UV for naphthalene).
  • FIG. 1 shows the ionization region of the time of flight (TOF) mass spectrometer.
  • TOF time of flight
  • the gas stream to be analyzed flows effusively through the inlet needle 12 into the ionization chamber 14 1 .
  • supersonic molecular beam inlet systems (described, for example, in Figure 3 ) may also be employed.
  • Analytes from the gas stream are irradiated directly below the inlet needle 12 alternately with UV laser pulses (266 nm) 10 and VUV laser pulses (118 nm) 2.
  • the laser pulse length can be between 1 fs and 100 ns.
  • the ions produced by multiphoton ionization (REMPI, 266 nm) or one-photon ionization (SPI, 118 nm) are drawn off through the opening of the discharge aperture 13 into the TOF mass spectrometer and mass analyzed there.
  • REMPI, 266 nm multiphoton ionization
  • SPI, 118 nm one-photon ionization
  • the VUV laser beams (118 nm) 2 are generated in the gas cell 9, which is filled with inert gas (Xe and Ar) 3, by frequency tripling 355 nm laser pulses 1.
  • the 355 nm laser pulses 1 are focused with a quartz lens 6 and through a quartz window 5 into the gas cell 9.
  • the resulting VUV radiation and the remaining 355 nm Radiation 1 enters the ionization cube 14 of the TOF mass spectrometer through the MgF 2 lens 4.
  • the offset irradiation of the 355 nm laser beam 1 relative to the center of the MgF 2 lens 4 causes a local separation of the 355 nm laser radiation 1 and 118 nm radiation in the ionization chamber 14.
  • the 355 nm radiation can be intercepted before the ionization. This leads to fragmented SPI mass spectra.
  • the alternating generation of the 266 nm 10 and 118 nm 1 ionization laser pulses is carried out with a special optical structure, as it FIG. 2 is shown.
  • the Nd: YAG laser 15 generates 1064 nm laser radiation 23, which are guided via two dichroic mirrors 16 through a frequency doubling crystal 17.
  • the resulting laser beam 24 consists of 1064 nm 23 and 532 nm 25 laser radiation.
  • a movably mounted on an arm dichroid mirror 18, which can be computer controlled via a galvanometer quickly and precisely swung in the beam path is used to redirect the laser pulses alternately or pass.
  • the laser radiation 24 is passed through the sum difference mixed crystal 19 and generates 355 nm laser light 1 separated by the dichroic mirror 20 from the collinear 532nm and 1064nm radiation and into the gas cell 9 to produce the 118 nm VUV laser radiation 2 is used. If the mirror arm 18 is in the beam path, the 532 nm portion of the radiation 24 is directed through the dichroic mirror by a doubling crystal 17. The resulting 266 nm laser radiation 10 is separated from the 532 nm radiation by the dichroic mirrors 22 and then used for REMPI ionization in the inlet block 14 of the TOF mass spectrometer.
  • the data acquisition system records the REMPI and VUV-SPI mass spectra separately. If a sufficiently intense YAG laser is used, then a partially transparent mirror (dichroid beam splitter) can be used instead of a folding mirror. The suppression of the respectively unneeded beam can be realized via a Pockels cell or a chopper wheel. In addition to the Nd: YAG laser, other pulsed third-party lasers such as Ti: sapphire lasers can be used.
  • naphthalene and its methylated derivatives can be detected particularly efficiently at 213 nm.
  • chemometric methods for pattern recognition eg principal component analysis
  • Raman shifters e.g., Raman shifters, with optical parametric Oscillator crystal, with dye laser unit
  • a frequency can also be converted to a desired frequency for a selective REMPI detection of a particular substance, for example, one wavelength can be tuned to a resonance of monochlorobenzene (eg at about 266 nm or at about 269.82 nm 4 ).
  • Monochlorobenzene is an indicator of the presence of toxic polychlorinated dibenzo-p-dioxins and -furans (PCDD / F) and may be associated with REMPI on-line in flue gases from z. B. technical combustion processes are detected 5 . With a wavelength of about 269.82 nm is a detection of monochlorobenzene (MCB) and a number of other aromatics such. As benzene, naphthalene or pyrene possible. Alternatively, MCB can be detected at a resonance that is close to four times the Nd: YAG wavelength 4 . For this purpose, it may be sufficient in certain cases, the fundamental wave of the Nd: YAG laser, z. B. by manipulation of the laser resonator, easy to detune.
  • MCB monochlorobenzene
  • VUV laser wavelength parallel compounds such as NH3, NO many aldehydes and ketones etc. can be detected, which are not detectable with the REMPI at the MCB resonance.
  • An analytical laser mass spectrometer can also be advantageously designed for certain applications with an inlet system for generating a supersonic molecular beam (jet).
  • the resulting adiabatic cooling increases the selectivity of the REMPI-TOFMS method 6 and reduces the fragmentation in SPI and EI ionization.
  • the EI ionization achieves only much smaller cross sections than the laser ionization (with common pulse energies), however, the repetition rate of the laser ionization processes, which are indeed pulsed, limited in many compact laser systems to 10-20 Hz. Since the absorption of a mass spectrum after the ionization pulse takes only a few 10 ⁇ s, the mass spectrometer is not used for most of the time.
  • the EI ionization uses an electron gun that accelerates electrons with kinetic energies of 2-200 eV to the sample molecules. Using pulsed electron guns and pulsed extraction fields, the normally continuous EI method can also be used with time-of-flight mass spectrometry. This is also possible in parallel with the use of laser ionization methods (REMPI, SPI).
  • the information of the laser ionization methods is recorded via a transient recorder while the information from the EI ionization is done via counting cards.
  • the incorporation of electron impact ionization allows direct on-line measurement of the higher concentration compounds that can not be detected by REMPI or SPI.
  • REMPI has proven to be a very powerful analytical method for on-line analysis of aromatic hydrocarbons, dioxin indicators (MCB) and other compounds. 1. In parallel, information such as nitrogen compounds such as NO, NH3 or aldehydes would be important. These compounds can be detected with VUV. Thus, the VUV, SPI and REMPI ionization methods complement each other and together can be used advantageously for a good characterization of the combustion process.
  • FIG. 3 shows the concentration curves of naphthalene and NO in the flue gas of a household waste incineration plant (raw gas at 700 ° C) recorded with parallel VUV-SPI and REMPI ionization.
  • Application example 2 On-line analysis of process gases in food technology
  • the method can be used with a device of the generic type for the analysis of complex substance mixture (solid, solution / liquid, gas phase).
  • Suitable auxiliary devices headspace samples, thermal desorbers, etc.
  • process solutions from the chemical industry, mineral oil products but also end products such as perfume or deodorant can be analyzed and monitored.
  • the method can be used with a device of the generic type for analyzing the breathing air (exhaled breath) of patients and control persons. Certain volatile substances, such as acetone, indicate illness or general health out. Furthermore, the headspace can be analyzed via medical samples (blood, urine, etc.).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

In a method and apparatus for detecting compounds in a gas stream, the gas stream with the compounds to be detected is conducted into an ionization chamber of a mass spectrometer where the gas stream is subjected in the ion chamber in a pulsed manner alternately to UV laser pulses and to vacuum ultraviolet VUV laser pulses and the ions generated thereby are directed into the mass spectrometer for detection therein to determine the compounds in the gas stream.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Nachweis von Verbindungen in einem Gasstrom nach den Oberbegriffen der Patentansprüche 1 und 8, wie sie aus der Veröffentlichung 3 bekannt ist.The invention relates to a method and an apparatus for detecting compounds in a gas stream according to the preambles of claims 1 and 8, as known from the publication 3.

Stand der TechnikState of the art

Die resonanzverstärkte Multiphotonenionisations-Technik (resonance-enhanced multiphoton ionization - REMPI), die UV-Laserpulse zur selektiven Ionisation von z. B. Aromaten einsetzt, wird als selektive und weiche Ionisationsmethode für die Massenspektrometrie verwendet. Die Selektivität wird u.a. durch die UV spektroskopischen Eigenschaften und die Lage der Ionisationspotentiale bestimmt. Eine typische Anwendung ist der on-line Nachweis aromatischer Verbindungen aus Verbrennungsabgasen1. Nachteilig bei der REMPI-Methode ist, dass es auf einige Substanzklassen beschränkt ist und der Ionisationsquerschnitt auch für ähnliche Verbindungen teilweise extrem unterschiedlich sein kann.The resonance-enhanced multiphoton ionization technique (REMPI), the UV laser pulses for the selective ionization of z. B. aromatics is used as a selective and soft ionization method for mass spectrometry. The selectivity is determined, inter alia, by the UV spectroscopic properties and the position of the ionization potentials. A typical application is the on-line detection of aromatic compounds from combustion exhaust gases 1 . A disadvantage of the REMPI method is that it is limited to some classes of substances and the ionization cross-section can also be extremely different for similar compounds.

Die Einphotonenionisation (single photon ionization -SPI) mit VUV-Laserlicht erlaubt eine teilselektive und weiche Ionisation2. Die Selektivität wird durch die Lage der Ionisationspotentiale bestimmt. Eine typische Anwendung ist der Nachweis von Verbindungen, die nicht mit REMPI nachgewiesen werden können. Nachteilig bei der SPI Methode ist, dass einige Substanzklassen nicht nachgewiesen werden können. Weiterhin ist die Selektivität kleiner als bei der REMPI-Methode, sodass bei komplexen Proben verstärkt Interferenzen auftreten können. Single photon ionization ( SPI) with VUV laser light allows for a partially selective and soft ionization 2 . The selectivity is determined by the position of the ionization potentials. A typical application is the detection of compounds that can not be detected by REMPI. A disadvantage of the SPI method is that some substance classes can not be detected. Furthermore, the selectivity is smaller than in the REMPI method, so that interference can occur more intensively with complex samples.

Die Elektronenstoßionisation (EI) mit einem Elektronenstrahl ist die Standardtechnik zur Ionisation in der Massenspektrometrie flüchtiger anorganischer und organischer Verbindungen. Sie ist sehr universell (d.h. nicht selektiv) und führt bei vielen Molekülen häufig zu einer sehr starken Fragmentierung, ist aber sehr gut für eine direkte Messung von Verbindungen wie 02, N2, CO2, SO2, CO, C2H2 etc. geeignet, die mit VUV oder REMPI nicht so gut erfaßt werden können.Electron impact ionization (EI) with an electron beam is the standard technique for ionization in the mass spectrometry of volatile inorganic and organic compounds. It is very universal (ie non-selective) and results in many molecules often leads to a very strong fragmentation, but is very well suited for a direct measurement of compounds such as O 2, N 2, CO 2, SO 2, CO, C 2 H 2, etc., which can not be detected so well with VUV or REMPI.

Aufgabe der ErfindungObject of the invention

Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrichtung der gattungsgemäßen Art so auszugestalten, dass eine Vielzahl von Verbindungen im Analysengas nahezu gleichzeitig charakterisiert werden können. Gelöst wird diese Aufgabe durch die Merkmale der Patentansprüche 1 und 8. Die Unteransprüche beschrieben vorteilhafte Ausgestaltungen der Erfindung.The object of the invention is to design a method and a device of the generic type such that a multiplicity of compounds in the analysis gas can be characterized almost simultaneously. This object is achieved by the features of claims 1 and 8. The subclaims described advantageous embodiments of the invention.

Die Kombination von (quasi-) simultan durchgeführter SPI- und REMPI-Ionisation in einem Massenspektrometer bringt eine Reihe von Vorteilen. Beide Methoden erfassen mit einer unterschiedlichen Selektivität unterschiedliche Teilmengen des komplexen Analysengases. Insgesamt können so mehr Verbindungen aus der Probe identifiziert werden.The combination of (quasi) simultaneous SPI and REMPI ionization in a mass spectrometer has a number of advantages. Both methods detect different subsets of the complex analysis gas with different selectivity. Overall, more compounds from the sample can be identified.

Wird die EI-Ionisationstechnik noch hinzugezogen, so können noch weitere Verbindungen wie CO2, H2O oder CH4 nachgewiesen werden, die weder mit SPI- noch mit REMPI sinnvoll nachgewiesen werden können. Die Vereinigung der Methoden und die Vorrichtung zum quasi- parallelen Gebrauch derselben in einem Gerät erlaubt den Bau besonders kompakter analytischer MS-Systeme für z. B. on-line analytische Feldanwendungen (Prozeßanalyse), die trotzdem eine sehr große Leistungsfähigkeit aufweisen. Die parallel erhaltenen REMPI- und/oder VUV- und/oder EI- massenspektropmetrische Daten können auch einer chemometrischen Analyse durch mustererkennende Verfahren (z. B. einer Hauptkomponenentanalyse) zugeführt werden.If the EI ionization technique is still used, further compounds such as CO2, H2O or CH4 can be detected, which can not be sensibly detected with either SPI or REMPI. The combination of the methods and the device for quasi-parallel use of the same in one device allows the construction of particularly compact analytical MS systems for z. B. on-line analytical field applications (process analysis), which nevertheless have a very high performance. The parallel obtained REMPI and / or VUV and / or EI mass spectropetric data can also be supplied to a chemometric analysis by pattern recognizing methods (eg a main component analysis).

Ausführungsbeispieleembodiments

Die Erfindung wird im folgenden anhand von Ausführungsbeispielen mit Hilfe der Figuren näher erläutert.The invention will be explained in more detail below with reference to exemplary embodiments with the aid of the figures.

Die Figur 1 zeigt beispielhaft die Ionisationsregion des Massenspektrometer 14 und die Gaszelle 9.The FIG. 1 shows by way of example the ionization region of the mass spectrometer 14 and the gas cell 9.

Die Figur 2 zeigt schematisch eine optische Abordnung zur Erzeugung eines UV-Laserpulses 10 und eines VUV-Laserpulses 2.The FIG. 2 schematically shows an optical delegation for generating a UV laser pulse 10 and a VUV laser pulse. 2

Die Figur 3 zeigt eine on-line Messung von NO und Naphthalin im Rauchgas einer Müllverbrennungsanlage aufgenommen mit alternierender SPI-Ionisierung (VUV für NO) und REMPI-Ionisierung (UV für Naphthalin).The FIG. 3 shows an on-line measurement of NO and naphthalene in the flue gas of a waste incineration plant taken with alternating SPI ionization (VUV for NO) and REMPI ionization (UV for naphthalene).

Die (quasi-)parallele Nutzung der Ionisierung mit REMPI und SPI erlaubt somit die gleichzeitige Verfolgung komplexer chemischer Proben. Aufgrund der unterschiedlichen Selektivität der beiden Methoden werden verschiedene Massenspektren mit den jeweiligen Methoden erhalten. Die Figur 1 zeigt dabei die Ionisationsregion des Flugzeit (TOF) Massenspektrometers. Der zu analysierende Gasstrom strömt effusiv durch die Einlaßnadel 12 in die Ionisationskammer 14 1. Alternativ können auch Überschallmolkularstrahleneinlaßsysteme (beschrieben z. B. in 3) eingesetzt werden. Analyte aus dem Gasstrom werden direkt unterhalb der Einlaßnadel 12 abwechselnd mit UV-Laserpulsen (266 nm) 10 und VUV-Laserpulsen (118 nm) 2 bestrahlt. Die Laserpulslänge kann zwischen 1 fs und 100 ns liegen. Die durch Mehrphotonenionisation (REMPI, 266 nm) oder Einphotonenionisation (SPI, 118 nm) erzeugten Ionen werden durch die Öffnung der Abzugsblende 13 in das TOF- Massenspektrometer abgezogen und dort massenanalysiert. Alternativ zum abwechselnden Umschalten zwischen UV-Laserpulsen (266 nm) und VUV-Laserpulsen (118 nm) können auch mehrere Pulse einer Wellenlänge nacheinander eingestrahlt werden bevor auf die andere Wellenlänge umgeschaltet wird. Die VUV-Laserstrahlen (118 nm) 2 werden in der Gaszelle 9, die mit Edelgas gefüllt (Xe und Ar) 3 gefüllt ist, durch Frequenzverdreifachung von 355 nm Laserpulsen 1 erzeugt. Die 355 nm Laserpulse 1 werden mit einer Quarzlinse 6 und durch ein Quarzfenster 5 in die Gaszelle 9 fokussiert. Die entstehende VUV-Strahlung und die restliche 355 nm Strahlung 1 treten durch die MgF2 Linse 4 in den Ionisationswürfel 14 des TOF-Massenspektrometers ein. Die versetzte Einstrahlung der 355 nm Laserstrahls 1 relativ zum Zentrum der MgF2 Linse 4 bewirkt eine örtliche Separation der 355 nm Laserstrahlung 1 und 118 nm Strahlung in der die Ionisationskammer 14. Durch eine Blende kann die 355 nm Strahlung vor dem Ionisationsort abgefangen werden. Dies führt zu fragmentärmeren SPI-Massenspektren.The (quasi-) parallel use of ionization with REMPI and SPI thus allows the simultaneous tracking of complex chemical samples. Due to the different selectivity of the two methods different mass spectra are obtained with the respective methods. The FIG. 1 shows the ionization region of the time of flight (TOF) mass spectrometer. The gas stream to be analyzed flows effusively through the inlet needle 12 into the ionization chamber 14 1 . Alternatively, supersonic molecular beam inlet systems (described, for example, in Figure 3 ) may also be employed. Analytes from the gas stream are irradiated directly below the inlet needle 12 alternately with UV laser pulses (266 nm) 10 and VUV laser pulses (118 nm) 2. The laser pulse length can be between 1 fs and 100 ns. The ions produced by multiphoton ionization (REMPI, 266 nm) or one-photon ionization (SPI, 118 nm) are drawn off through the opening of the discharge aperture 13 into the TOF mass spectrometer and mass analyzed there. As an alternative to alternating switching between UV laser pulses (266 nm) and VUV laser pulses (118 nm), it is also possible to irradiate several pulses of one wavelength in succession before switching to the other wavelength. The VUV laser beams (118 nm) 2 are generated in the gas cell 9, which is filled with inert gas (Xe and Ar) 3, by frequency tripling 355 nm laser pulses 1. The 355 nm laser pulses 1 are focused with a quartz lens 6 and through a quartz window 5 into the gas cell 9. The resulting VUV radiation and the remaining 355 nm Radiation 1 enters the ionization cube 14 of the TOF mass spectrometer through the MgF 2 lens 4. The offset irradiation of the 355 nm laser beam 1 relative to the center of the MgF 2 lens 4 causes a local separation of the 355 nm laser radiation 1 and 118 nm radiation in the ionization chamber 14. By a diaphragm, the 355 nm radiation can be intercepted before the ionization. This leads to fragmented SPI mass spectra.

Die abwechselnde Erzeugung der 266 nm 10 und 118 nm 1 Ionisationslaserpulse erfolgt mit einem speziellen optischen Aufbau, wie er in Figur 2 dargestellt ist. Der Nd:YAG Laser 15 erzeugt 1064 nm Laserstrahlung 23 die über zwei dichroide Spiegel 16 durch einen Frequenzverdopplungskristall 17 geführt werden. Der resultierende Laserstrahl 24 besteht aus 1064 nm 23 und 532 nm 25 Laserstrahlung. Ein beweglich auf einem Arm angebrachter dichroider Spiegel 18, der computergesteuert über ein Galvanometer schnell und präzise in den Strahlengang eingeschwenkt werden kann, wird verwendet um die Laserpulse alternierend umzuleiten oder durchzulassen. Wenn der Spiegelarm 18 aus dem Strahlengang geschwenkt wird die Laserstrahlung 24 durch den Summendifferenz-Mischkristall 19 geleitet und 355 nm Laserlicht 1 erzeugt, dass durch die dichroiden Spiegel 20 von der kolinearen 532nm und 1064nm Strahlung separiert und in die Gaszelle 9 zur Erzeugung der 118 nm VUV-Laserstrahlung 2 eingesetzt wird. Ist der Spiegelarm 18 im Strahlengang so wird der 532 nm Anteil der Strahlung 24 über den dichroiden Spiegel durch einen Verdopplungskristall 17 gelenkt. Die entstehende 266 nm Laserstrahlung 10 wird durch die dichroiden Spiegel 22 von der 532 nm Strahlung separiert und dann zur REMPI Ionisation im Einlaßblock 14 des TOF-Massenspektrometers eingesetzt.The alternating generation of the 266 nm 10 and 118 nm 1 ionization laser pulses is carried out with a special optical structure, as it FIG. 2 is shown. The Nd: YAG laser 15 generates 1064 nm laser radiation 23, which are guided via two dichroic mirrors 16 through a frequency doubling crystal 17. The resulting laser beam 24 consists of 1064 nm 23 and 532 nm 25 laser radiation. A movably mounted on an arm dichroid mirror 18, which can be computer controlled via a galvanometer quickly and precisely swung in the beam path is used to redirect the laser pulses alternately or pass. When the mirror arm 18 is pivoted out of the beam path, the laser radiation 24 is passed through the sum difference mixed crystal 19 and generates 355 nm laser light 1 separated by the dichroic mirror 20 from the collinear 532nm and 1064nm radiation and into the gas cell 9 to produce the 118 nm VUV laser radiation 2 is used. If the mirror arm 18 is in the beam path, the 532 nm portion of the radiation 24 is directed through the dichroic mirror by a doubling crystal 17. The resulting 266 nm laser radiation 10 is separated from the 532 nm radiation by the dichroic mirrors 22 and then used for REMPI ionization in the inlet block 14 of the TOF mass spectrometer.

Das Datenaufnahmesystem nimmt die REMPI und VUV-SPI Massenspektren getrennt auf. Wenn ein genügend intensiver YAG Laser angewendet wird so kann anstatt eines Umklappspiegels auch ein teildurchlässiger Spiegel (dichroider Strahlteiler) verwendet werden. Die Ausblendung des jeweils nicht benötigten Strahls kann über eine Pockelszelle oder ein Chopperrad realisiert werden. Neben dem Nd:YAG Laser sind auch andere gepulst betreibare Festkörperlaser wie z.B. Ti:Saphir-Laser einsetzbar.The data acquisition system records the REMPI and VUV-SPI mass spectra separately. If a sufficiently intense YAG laser is used, then a partially transparent mirror (dichroid beam splitter) can be used instead of a folding mirror. The suppression of the respectively unneeded beam can be realized via a Pockels cell or a chopper wheel. In addition to the Nd: YAG laser, other pulsed third-party lasers such as Ti: sapphire lasers can be used.

Aus der Primärwelle des Nd:YAG Lasers (1064 nm) können folgende harmonischen Frequenzen erzeugt werden: 523 nm (verdoppelt), 355 nm (verdreifacht), 266 nm (vervierfacht), 213 nm (verfünffacht) und 118 nm (verneunfacht). In Erweiterung zum oben beschrieben Zweistrahlverfahren (266 nm für REMPI und 118 nm für VUV) können auch mehrere Wellenlängen alternierend eingestrahlt werden. Bei einer Kombination von 266, 213 und 118 nm werden beispielsweise neben der VUV-Selektivität simultan (d.h. leicht versetzt) noch zwei unterschiedliche REMPI-Selektivitäten ausgenutzt. Beispielsweise können Naphthalin und seine methylierten Derivate (diese Verbindungen sind Indikatoren für die Effizienz von Verbrennungsprozessen) besonders effizient mit 213 nm nachgewiesen werden. Je nach Festkörperlasertyp lassen sich somit 2, 3 oder mehr Wellenlängen parallel zur Ionisation von Verbindungen aus der Probe einsetzen. Die unterschiedlichen Selektivitäten die durch die verschiedenen REMPI und oder VUV Wellenlängen induziert werden führen zu jeweils verscheiden Massenspektren (d.h. jeweils andere Verbindungen kommen hinzu oder verschwinden aus dem Massenspektrum. Falls bei sehr komplexen Proben oder unbekannten Proben keine Zuordnung der jeweils beobachteten Verbindungen möglich ist, kann ein Einsatz von chemometrischen Verfahren zur Mustererkennung (z. B. Hauptkomponentenanalyse) und damit z. B. zur phänomenologischen Charakterisierung eingesetzt werden. Durch Einsatz von fest eingestellten Frequenzverschiebeeinheiten (z. B. über optoakustische Kopplung, mit Raman-Shifter, mit Optischer-Parametrischem-Oszillator Kristall, mit Farbstofflasereinheit) kann eine Frequenz auch in eine gewünschte Frequenz für einen selektiven REMPI-Nachweis einer bestimmten Substanz umgewandelt werden. Beispielsweise kann eine Wellenlänge auf eine Resonanz von Monochlorbenzol abgestimmt werden (z. B. bei ca. 266 nm oder bei etwa 269,82 nm 4). Monochlorbenzol ist ein Indikator für das Vorkommen toxischer polychlorierter Dibenzo-p-dioxine und -furane (PCDD/F) und kann mit REMPI on-line in Rauchgasen von z. B. technischen Verbrennungsprozessen nachgewiesen werden 5. Mit einer Wellenlänge von ca. 269.82 nm ist eine Nachweis von Monochlorbenzol (MCB) sowie einer Reihe weiterer Aromaten wie z. B. Benzol, Naphthalin oder Pyren möglich. Alternativ kann MCB bei einer Resonanz die ganz knapp neben der vervierfachten Nd:YAG Wellenlänge liegt nachgewiesen werden 4. Hierzu kann es in bestimmten Fällen ausreichend sein, die Grundwelle des Nd:YAG Lasers, z. B. durch Manipulation des Laserresonators, leicht zu verstimmen.From the primary wave of the Nd: YAG laser (1064 nm), the following harmonic frequencies can be generated: 523 nm (doubled), 355 nm (tripled), 266 nm (quadrupled), 213 nm (quintupled), and 118 nm (nine times). As an extension to the two-beam method described above (266 nm for REMPI and 118 nm for VUV), several wavelengths can also be irradiated alternately. In a combination of 266, 213 and 118 nm, for example, in addition to the VUV selectivity simultaneously (ie slightly offset) still exploited two different REMPI selectivities. For example, naphthalene and its methylated derivatives (these compounds are indicators of the efficiency of combustion processes) can be detected particularly efficiently at 213 nm. Depending on the solid-state laser type, it is thus possible to use 2, 3 or more wavelengths in parallel with the ionization of compounds from the sample. The different selectivities induced by the different REMPI and / or VUV wavelengths lead to different mass spectra (ie different compounds are added or disappear from the mass spectrum.) If very complex samples or unknown samples can not be assigned to the observed compounds, then use of chemometric methods for pattern recognition (eg principal component analysis) and thus, for example, for the phenomenological characterization, by using fixed frequency-shifting units (eg via optoacoustic coupling, with Raman shifters, with optical parametric Oscillator crystal, with dye laser unit), a frequency can also be converted to a desired frequency for a selective REMPI detection of a particular substance, for example, one wavelength can be tuned to a resonance of monochlorobenzene (eg at about 266 nm or at about 269.82 nm 4 ). Monochlorobenzene is an indicator of the presence of toxic polychlorinated dibenzo-p-dioxins and -furans (PCDD / F) and may be associated with REMPI on-line in flue gases from z. B. technical combustion processes are detected 5 . With a wavelength of about 269.82 nm is a detection of monochlorobenzene (MCB) and a number of other aromatics such. As benzene, naphthalene or pyrene possible. Alternatively, MCB can be detected at a resonance that is close to four times the Nd: YAG wavelength 4 . For this purpose, it may be sufficient in certain cases, the fundamental wave of the Nd: YAG laser, z. B. by manipulation of the laser resonator, easy to detune.

Mit den VUV-Laserwellenlänge können dann parallel Verbindungen wie NH3, NO viele Aldehyde und Ketone etc. nachgewiesen werden, die mit REMPI bei der MCB Resonanz nicht nachweisbar sind.With the VUV laser wavelength parallel compounds such as NH3, NO many aldehydes and ketones etc. can be detected, which are not detectable with the REMPI at the MCB resonance.

Ein analytischer Lasermassenspektrometer kann weiterhin für bestimmte Anwendungen vorteilhaft mit einem Einlaßsystem zur Erzeugung eines Überschallmolekularstrahles (Jet) ausgestaltet werden. Die dadurch erreichbare adiabatische Kühlung erhöht die Selektivität der REMPI-TOFMS Methode 6 und verringert die Fragmentation bei SPI und EI-Ionisierung.An analytical laser mass spectrometer can also be advantageously designed for certain applications with an inlet system for generating a supersonic molecular beam (jet). The resulting adiabatic cooling increases the selectivity of the REMPI-TOFMS method 6 and reduces the fragmentation in SPI and EI ionization.

Die EI-Ionisierung erreicht nur viel geringere Wirkungsquerschnitte als die Laserionisation (bei üblichen Pulsenergien) allerdings ist die Wiederholrate der Laserionisationsprozesse, die ja gepulst ablaufen, bei vielen kompakten Lasersystemen auf 10-20 Hz. beschränkt. Da die Aufnahme eines Massenspektrums nach dem Ionisationspuls nur einige 10 µs dauert ist das Massenspektrometer für die meiste Zeit nicht genutzt. Die EI-Ionisation verwendet eine Elektronenkanone die Elektronen mit kinetischen Energien von 2-200 eV zu den Probenmolekülen beschleunigt. Über gepulste Elektronenkanonen und gepulste Abzugsfelder kann die normalerweise kontinuierlich arbeitende EI-Methode auch mit der Flugzeitmassenspektrometrie verwendet werden. Dies ist auch parallel mit der Verwendung der Laserionisationsmethoden (REMPI, SPI) möglich. Typischerweise wird die Information der Laserionisationsmethoden über einen Transientenrekorder aufgezeichnet währen die Information aus der EI-Ionisation über Zählkarten erfolgt. Die Einbindung der Elektronenstoßionisation erlaubt die direkte on-line Messung der in höheren Konzentrationen vorliegenden Verbindungen die nicht mit REMPI oder SPI erfaßt werden können.The EI ionization achieves only much smaller cross sections than the laser ionization (with common pulse energies), however, the repetition rate of the laser ionization processes, which are indeed pulsed, limited in many compact laser systems to 10-20 Hz. Since the absorption of a mass spectrum after the ionization pulse takes only a few 10 μs, the mass spectrometer is not used for most of the time. The EI ionization uses an electron gun that accelerates electrons with kinetic energies of 2-200 eV to the sample molecules. Using pulsed electron guns and pulsed extraction fields, the normally continuous EI method can also be used with time-of-flight mass spectrometry. This is also possible in parallel with the use of laser ionization methods (REMPI, SPI). Typically, the information of the laser ionization methods is recorded via a transient recorder while the information from the EI ionization is done via counting cards. The incorporation of electron impact ionization allows direct on-line measurement of the higher concentration compounds that can not be detected by REMPI or SPI.

Anwendungsbeispieleapplications

Das oben beschriebene Verfahren und die Vorrichtung kann prinzipiell für eine Vielzahl von Anwendungen eingesetzt werde. Im folgenden sind vier Anwendungsbeispiele gegeben:The method and apparatus described above can be used in principle for a variety of applications. In the following four application examples are given:

Anwendungsbeispiel 1: Überwachung von VerbrennungsprozessenApplication Example 1 Monitoring of Combustion Processes

REMPI hat sich als sehr mächtiges analytisches Verfahren zur on-line Analyse von aromatischen Kohlenwasserstoffen, Dioxin-Indikatoren (MCB) und anderen Verbindungen erwiesen 1. Parallel wären Information z.B. über Stickstoffverbindungen wie NO, NH3 oder über Aldehyde von Bedeutung. Diese Verbindungen können mit VUV nachgewiesen werden. Somit ergänzen sich die VUV-, SPI- und REMPI-Ionisationsmethoden und können zusammen vorteilhaft für eine gute Charakterisierung des Verbrennungsprozesses eingesetzt werden. Wird die parallele EI-Ionisierung implementiert, so kommt man schließlich zu einer sehr umfassenden Charakterisierung, da einige chemische Hauptparameter, wie z.B. Konzentrationen an CO2, 02 und kleineren organischen Molekülen wie Acetylen (wichtig für den Aufbau von polyzyklischen Aromaten und Ruß-Aerosolen) nicht mit den üblichen SPI VUV-Wellenlängen oder mit 2 Photonen-REMPI Prozessen erfaßt werden können. Das Verfahren mit einer Vorrichtung der gattungsgemäßen Art ist geeignet um Verbrennungs- und Pyrolyseprozesse aller Art zu charakterisieren und analysieren. Die Figur 3 zeigt die Konzentrationsverläufe von Naphthalin und NO im Rauchgas einer Hausmüllverbrennungsanlage (Rohgas bei 700 °C) aufgenommen mit paralleler VUV-SPI und REMPI-Ionisierung.REMPI has proven to be a very powerful analytical method for on-line analysis of aromatic hydrocarbons, dioxin indicators (MCB) and other compounds. 1. In parallel, information such as nitrogen compounds such as NO, NH3 or aldehydes would be important. These compounds can be detected with VUV. Thus, the VUV, SPI and REMPI ionization methods complement each other and together can be used advantageously for a good characterization of the combustion process. Finally, implementing parallel EI ionization results in a very comprehensive characterization, as some key chemical parameters, such as concentrations of CO2, O2 and smaller organic molecules such as acetylene (important for the construction of polycyclic aromatics and carbon black aerosols) are not can be detected with the usual SPI VUV wavelengths or with 2 photon REMPI processes. The method with a device of the generic type is suitable for characterizing and analyzing combustion and pyrolysis processes of all kinds. The FIG. 3 shows the concentration curves of naphthalene and NO in the flue gas of a household waste incineration plant (raw gas at 700 ° C) recorded with parallel VUV-SPI and REMPI ionization.

Anwendungsbeispiel 2: On-line Analyse von Prozeßgasen in der LebensmitteltechnologieApplication example 2: On-line analysis of process gases in food technology

In zur Überwachung lebensmitteltechnologischer Prozesse (Trocknungsprozesse, Röst- oder Garprozesse etc.) sowie zur Qualitätskontrolle von Rohstoffen (Schimmelbefall, Qualität) oder Evaluierung der sensorischen Qualität können on-line massenspektrometrische Verfahren eingesetzt werden. Erste Erfahrungen wurden mit der REMPI Methode auf dem Gebiet der Kaffeeröstung bereits gemacht 7. Mit REMPI (266 nm) kann der Röstgrad über die Zusammensetzung unterschiedlich substituierter ermittelt werden. Viele aromarelevante Verbindungen (aliphatische Aldehyde und Ketone, Furanderivate, Stickstoffheterozyklen etc.) können hingegen sehr gut mit VUV-Ionisierung nachgewiesen werden. Die Elektronenstoßionisation erlaubt die Verfolgung der primären Kaffeeröstprodukte CO2 und H2O. Eine Vielzahl solcher Prozesse sind prinzipiell mit dem Verfahren und einer Vorrichtung der gattungsgemäßen Art umfassend zu kontrollieren und validieren.In order to monitor food technology processes (drying processes, roasting or cooking processes, etc.) as well as quality control of raw materials (mold, quality) or evaluation of sensory quality, on-line mass spectrometric methods can be used. First experiences have already been made with the REMPI method in the field of coffee roasting. 7. With REMPI (266 nm) the degree of roasting can be determined by the composition of different substituted ones. Many aroma-relevant compounds (aliphatic aldehydes and ketones, furan derivatives, nitrogen heterocycles, etc.), however, can be detected very well with VUV ionization. Electron impact ionization allows tracking of the primary coffee roast products CO2 and H2O. In principle, a large number of such processes must be comprehensively controlled and validated with the method and a device of the generic type.

Anwendungsbeispiel 3: On-line Analyse von Headspace-Proben komplexer MischungenApplication Example 3: On-line analysis of headspace samples of complex mixtures

Das Verfahren kann mit einer Vorrichtung der gattungsgemäßen Art zur Analyse komplexer Substanzmischung eingesetzt werden (Feststoff, Lösung/Flüssigkeit, Gasphase). Geeignete Hilfsgeräte (Headspaceprobeneahme, Thermodesorber etc.) können zur Gewinnung einer repräsentativen Gasprobe eingesetzt werden. Beispielhaft können Prozeßlösungen aus der chemischen Industrie, Mineralölprodukte aber auch Endprodukte wie Parfüm oder Deodorant analysiert und überwacht werden.The method can be used with a device of the generic type for the analysis of complex substance mixture (solid, solution / liquid, gas phase). Suitable auxiliary devices (headspace samples, thermal desorbers, etc.) can be used to obtain a representative gas sample. By way of example, process solutions from the chemical industry, mineral oil products but also end products such as perfume or deodorant can be analyzed and monitored.

Anwendungsbeispiel 4: On-line Analyse medizinisch relevanter Proben:Example 4: On-line analysis of medically relevant samples:

Das Verfahren kann mit einer Vorrichtung der gattungsgemäßen Art zur Analyse der Atemluft (ausgeatmet) von Patienten und Kontrollpersonen verwendet werden. Bestimmte flüchtige Stoffe wie Aceton/weisen auf Erkrankungen oder den allgemeine Gesundheitszustand hin. Ferner kann der Gasraum (Headspace) über medizinischen Proben (Blut, Urin etc.) analysiert werden.The method can be used with a device of the generic type for analyzing the breathing air (exhaled breath) of patients and control persons. Certain volatile substances, such as acetone, indicate illness or general health out. Furthermore, the headspace can be analyzed via medical samples (blood, urine, etc.).

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

11
55 nm Laserstrahl55 nm laser beam
22
18 nm Laserstrahl18 nm laser beam
33
asfüllung (z.B. 0.001 bar Xe)as filling (e.g., 0.001 bar Xe)
44
Sammellinse aus MgF2 Lens of MgF 2
55
Eintrittsfenster für 355 nm aus QuarzEntry window for 355 nm quartz
66
Sammellinse aus QuarzCondensing lens made of quartz
77
Dichtungsringsealing ring
88th
Stutzen zur Befüllung/Evakuierung der Gaszelle 9Connecting piece for filling / evacuation of the gas cell 9
99
Gaszellegas cell
1010
266 nm Laser266 nm laser
1111
Eintrittsfenster für 266 nm aus QuarzEntry window for 266 nm of quartz
1212
Gaseinlaß (Nadel)Gas inlet (needle)
1313
Abzugsblende des TOF-MassenspektrometersExhaust orifice of the TOF mass spectrometer
1414
Ionisationswürfel des TOF-MassenspektrometersIonization cube of the TOF mass spectrometer
1515
Nd:YAG LaserNd: YAG laser
1616
Dichroider Spiegel für 1064 nmDichroic mirror for 1064 nm
1717
Kristall zur FrequenzverdopplungCrystal for frequency doubling
1818
Computergesteuerter klappbarer Arm mit dichroidem Spiegel für 532 nmComputer-controlled folding arm with dichroic mirror for 532 nm
1919
Kristall zur SummenfrequenzmischungCrystal to sum frequency mixing
2020
Dichroider Spiegel für 355 nmDichroic mirror for 355 nm
2121
Dichroider Spiegel für 532 nmDichroic mirror for 532 nm
2222
Dichroider Spiegel für 266 nmDichroic mirror for 266 nm
2323
1064 nm Laserstrahl1064 nm laser beam
2424
Colineare 1064 nm und 532 nm LaserstrahlenColinear 1064 nm and 532 nm laser beams
2525
532 nm Laserstrahl532 nm laser beam
Referenzenreferences

  1. (1) Heger, H. J.; Zimmermann, R.; Dorfner, R.; Beckmann, M.; Griebel, H.; Kettrup, A.; Boesl, U. Anal. Chem. 1999, 71, 46-57 .(1) Heger, HJ; Zimmermann, R .; Dorfner, R .; Beckmann, M .; Griebel, H .; Kettrup, A .; Boesl, U. Anal. Chem. 1999, 71, 46-57 ,
  2. (2) Butcher, D. J.; Goeringer, D. E.; Hurst, G. B. Anal. Chem. 1999, 71, 489-496 .(2) Butcher, DJ; Goeringer, DE; Hurst, GB Anal. Chem. 1999, 71, 489-496 ,
  3. (3) Rohlfing, E. A. In 22nd Symposium (International) on Combustion; The Combustion Institute: Pittsburgh, 1988, pp 1843-1850 .(3) Rohlfing, EA In 22nd Symposium (International) on Combustion; The Combustion Institute: Pittsburgh, 1988, pp 1843-1850 ,
  4. (4) Heger, H. J.; Boesl, U.; Zimmermann, R.; Dorfner, R.; Kettrup, A. Eur. Mass Spectrom. 1999, 5, 51-57 .(4) Heger, HJ; Boesl, U .; Zimmermann, R .; Dorfner, R .; Kettrup, A. Eur. Mass Spectrom. 1999, 5, 51-57 ,
  5. (5) Zimmermann, R.; Heger, H. J.; Blumeristock, M.; Dorfner, R.; Schramm, K.-W.; Boesl, U.; Kettrup, A. Rapid Comm. Mass. Spectrom. 1999, 13, 307-314 .(5) Zimmermann, R .; Heger, HJ; Blumeristock, M .; Dorfner, R .; Schramm, K.-W .; Boesl, U .; Kettrup, A. Rapid Comm. Mass. Spectrom. 1999, 13, 307-314 ,
  6. (6) Tembreull, R.; Lubman, D. M. Anal. Chem. 1984, 56, 1962-1967 .(6) Tembreull, R .; Lubman, DM Anal. Chem. 1984, 56, 1962-1967 ,
  7. (7) Zimmermann, R.; Heger, H. J.; Yeretzian, C.; Nagel, H.; Boesl, U. Rapid Comm. Mass. Spectrom. 1996, 10, 1975-1979 .(7) Zimmermann, R .; Heger, HJ; Yeretzian, C .; Nagel, H .; Boesl, U. Rapid Comm. Mass. Spectrom. 1996, 10, 1975-1979 ,

Claims (10)

  1. Process for the detection of compounds in a gas flow, in which
    a) the gas flow with the compounds is passed into the ionization chamber (14) of a mass spectrometer,
    b) the gas flow is irradiated by an UV laser pulse (10) in the ionization chamber (14), and
    c) the resulting ions are detected in the mass spectrometer, characterized by
    d) the gas flow in the ionization chamber being irradiated by a vacuum ultraviolet (VUV) laser pulse (2) at regular or irregular intervals alternately with irradiation by UV laser pulses (10) and the thus generated ions being detected in the mass spectrometer.
  2. Process according to Claim 1, characterized by the UV laser pulse (10) and the VUV laser pulse (2) being generated with the help of a solid-state laser (15).
  3. Process according to Claim 1 or 2, characterized by the UV laser pulse being generated from the solid-state laser pulse by frequency mixing and/or frequency multiplication.
  4. Process according to Claim 3, characterized by the UV laser pulse (10) being adjusted by using a dye laser or an optical parametric oscillator.
  5. Process according to one of Claims 1 through 4, characterized by the VUV laser pulse (2) being generated from the solid-state laser pulse (23, 24) by frequency mixing and/or frequency doubling with subsequent frequency tripling in a gas cell (9).
  6. Process according to one of Claims 1 through 5, characterized by the wavelength of the VUV laser pulse (2) being adjusted by using a dye laser or an optical parametric oscillator prior to frequency tripling in the gas cell (9).
  7. Process according to one of Claims 1 though 6, characterized by the gas flow in the ionization chamber (14) being irradiated by an electron beam for electron impact ionization in-between the VUV laser pulses (2) or UV laser pulses (10) and the resulting ions being detected in the mass spectrometer.
  8. System for the detection of compounds in a gas flow, consisting of
    a) a mass spectrometer with a gas inlet that opens out into the ionization chamber (14) of the ion source of the mass spectrometer,
    b) a solid-state laser (15) with optical elements for mixing and/or multiplying a basic frequency of the solid-state laser (23), with an UV laser pulse (10) being generated from the basic frequency (23) and irradiated into the area in front of the gas inlet (12) of the ionization chamber (14),
    c) a data acquisition and processing system for the mass spectrometer, and
    d) an optical component (18) to split the laser pulse into two partial beams (24, 25), with the UV laser pulse (10) being generated from one partial beam (25) with the help of other optical elements (21, 17, 22) and irradiated into the area in front of the gas inlet (12) of the ionization chamber (14), characterized by
    e) other optical components (19, 20) and a gas cell (9) with an appropriate filling (3), in which the frequency-doubled and guided partial beam (24) in the gas cell (9) generates a VUV laser pulse (2) by frequency tripling and irradiates it into (14) the area in front of the gas inlet (12) of the ionization chamber.
  9. System according to Claim 8, characterized by a dye laser or an optical parametric oscillator being arranged in one or several of the beam paths (23), (24) or (25).
  10. System according to Claim 8 or 9, characterized by a pulsing electron gun for electron impact ionization of the compounds being installed in the gas flow in front of the gas inlet (12) of the ionization chamber (14) of the mass spectrometer.
EP01962408A 2000-03-24 2001-01-26 Method and device for detecting compounds in a gas stream Expired - Lifetime EP1266396B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10014847A DE10014847A1 (en) 2000-03-24 2000-03-24 Method and device for the detection of connections in a gas stream
DE10014847 2000-03-24
PCT/EP2001/000848 WO2001073816A1 (en) 2000-03-24 2001-01-26 Method and device for detecting compounds in a gas stream

Publications (2)

Publication Number Publication Date
EP1266396A1 EP1266396A1 (en) 2002-12-18
EP1266396B1 true EP1266396B1 (en) 2008-04-16

Family

ID=7636327

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01962408A Expired - Lifetime EP1266396B1 (en) 2000-03-24 2001-01-26 Method and device for detecting compounds in a gas stream

Country Status (9)

Country Link
US (1) US6727499B2 (en)
EP (1) EP1266396B1 (en)
JP (1) JP3764680B2 (en)
AT (1) ATE392708T1 (en)
CA (1) CA2401967C (en)
DE (2) DE10014847A1 (en)
DK (1) DK1266396T3 (en)
ES (1) ES2304392T3 (en)
WO (1) WO2001073816A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102103971B (en) * 2009-12-18 2012-11-07 中国科学院大连化学物理研究所 Hollow cathode discharge vacuum ultraviolet light ionization source inside minitype mass spectrograph

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803563B2 (en) 2002-08-02 2004-10-12 Flender Service Gmbh Method and apparatus for monitoring the quality of lubricant
DE10235612B4 (en) * 2002-08-02 2012-06-21 Siemens Aktiengesellschaft Method and device for monitoring the quality of lubricating oil
US7161145B2 (en) * 2004-04-21 2007-01-09 Sri International Method and apparatus for the detection and identification of trace organic substances from a continuous flow sample system using laser photoionization-mass spectrometry
US20070187591A1 (en) * 2004-06-10 2007-08-16 Leslie Bromberg Plasma ion mobility spectrometer
US7829843B2 (en) * 2004-07-09 2010-11-09 The Trustees Of Dartmouth College Electronic time-of-flight mass selector
DE102005039269B4 (en) * 2005-08-19 2011-04-14 Helmholtz Zentrum München Deutsches Forschungszentrum Für Gesundheit Und Umwelt (Gmbh) Method and apparatus for the mass spectrometric detection of compounds
JP4825028B2 (en) * 2006-03-17 2011-11-30 浜松ホトニクス株式会社 Ionizer
JP4958258B2 (en) * 2006-03-17 2012-06-20 株式会社リガク Gas analyzer
CN101752174B (en) * 2008-12-19 2011-11-30 中国科学院大连化学物理研究所 Ionization device of vacuum UV lamp
JP5278130B2 (en) * 2009-04-15 2013-09-04 新日鐵住金株式会社 Ionization analyzer and ionization analysis method
EP2302372A1 (en) * 2009-09-18 2011-03-30 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH Method and device for repetitive chemical analysis of a gas flow
CN102479661B (en) 2010-11-30 2014-01-29 中国科学院大连化学物理研究所 Combined ionization source for vacuum ultraviolet photoionization and chemical ionization for mass spectrometry
JP5541232B2 (en) * 2011-06-02 2014-07-09 新日鐵住金株式会社 Vacuum ultraviolet light generation and ultraviolet light separation apparatus and method
DE102012209324A1 (en) * 2012-06-01 2013-12-05 Helmholtz Zentrum München Optical fiber device for an ionization device and method for ionizing atoms and / or molecules
CN105552694B (en) * 2016-02-18 2018-10-23 绍兴文理学院 A kind of vacuum optical waveguide calibrating installation
CN105762054B (en) * 2016-04-07 2017-11-28 绍兴文理学院 Controllable gas at rest target assembly and its application method outside a kind of vacuum chamber
AU2019354730B2 (en) * 2018-10-03 2025-02-06 The Regents Of The University Of Michigan Integrated micro-photoionization detector with an ultrathin ultraviolet transmission window

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2942386C2 (en) * 1979-10-19 1984-01-12 Ulrich Dr. 8000 München Boesl Ion source
US5206594A (en) * 1990-05-11 1993-04-27 Mine Safety Appliances Company Apparatus and process for improved photoionization and detection
DE4108462C2 (en) * 1991-03-13 1994-10-13 Bruker Franzen Analytik Gmbh Method and device for generating ions from thermally unstable, non-volatile large molecules
FR2720747B1 (en) 1994-06-02 1996-07-12 Roussel Uclaf New process for the preparation of a 16-beta-methyl steroid and new intermediates.
DE19608963C2 (en) * 1995-03-28 2001-03-22 Bruker Daltonik Gmbh Process for ionizing heavy molecules at atmospheric pressure
US5940418A (en) * 1996-06-13 1999-08-17 Jmar Technology Co. Solid-state laser system for ultra-violet micro-lithography
DE19754161C2 (en) * 1997-12-06 1999-11-25 Gsf Forschungszentrum Umwelt Methods for the detection of substances and substance classes
DE19756444C1 (en) * 1997-12-18 1999-07-08 Deutsch Zentr Luft & Raumfahrt Method and device for the detection of sample molecules in a carrier gas
US6002697A (en) * 1998-04-03 1999-12-14 Lambda Physik Gmbh Diode pumped laser with frequency conversion into UV and DUV range
DE19820626C2 (en) * 1998-05-08 2000-09-07 Deutsch Zentr Luft & Raumfahrt Method and device for the detection of sample molecules

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BUTCHER D.J.; GOERINGER D.E.; HURST G.B.: "REAL-TIME DETERMINATION OF AROMATICS IN AUTOMOBILE EXHAUST BY SINGLE-PHOTON IONIZATION ION TRAP MASS SPECTROMETRY", ANALYTICAL CHEMISTRY, vol. 71, no. 2, 15 January 1999 (1999-01-15), AMERICAN CHEMICAL SOCIETY. COLUMBUS, US, pages 489 - 496, XP000825702 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102103971B (en) * 2009-12-18 2012-11-07 中国科学院大连化学物理研究所 Hollow cathode discharge vacuum ultraviolet light ionization source inside minitype mass spectrograph

Also Published As

Publication number Publication date
DE50113862D1 (en) 2008-05-29
JP3764680B2 (en) 2006-04-12
US20030020014A1 (en) 2003-01-30
ATE392708T1 (en) 2008-05-15
CA2401967C (en) 2010-11-02
DK1266396T3 (en) 2008-08-11
EP1266396A1 (en) 2002-12-18
US6727499B2 (en) 2004-04-27
ES2304392T3 (en) 2008-10-16
JP2004502136A (en) 2004-01-22
WO2001073816A1 (en) 2001-10-04
DE10014847A1 (en) 2001-10-04
CA2401967A1 (en) 2001-10-04

Similar Documents

Publication Publication Date Title
EP1266396B1 (en) Method and device for detecting compounds in a gas stream
DE19822672B4 (en) Method and device for producing a directional gas jet
DE102013103954A1 (en) Method and device for the detection and identification of hazardous substances with at least one optical system
DE10392663T5 (en) A photo-acoustic detection method for measuring the concentration of non-hydrocarbon components of a methane-containing gas mixture
DE19805569C1 (en) Method for the detection of substance traces with solvent-assisted dosing and ion mobility spectrometer to carry out the method
EP0465720B1 (en) Analysing device with an electrothermal atomiser, and mass spectrometer for atomic and molecular analysis
EP2511703A1 (en) Method for measuring emitting volatile materials from wooden materials and device for measuring volatile materials emitted from wooden materials
DE102004031643A1 (en) Non-dispersive infrared gas analyzer
EP2483911B1 (en) Ionization method, ion source and uses of the same in ion mobility spectrometry
DE102009004398A1 (en) Gas analysis method and gas analysis device
US11923182B2 (en) Substantially simultaneous resonance-enhanced multiphoton and laser desorption ionization for single particle mass spectroscopy
EP1220285B1 (en) Ion source in which a UV/VUV light source is used for ionization
DE10306900B4 (en) Spectrometer with laser arrangement for gas analysis
EP2220485B1 (en) Laser multi-sensor system for the selective trace analysis of organic material
EP0499277A2 (en) Method for detecting gaseous substances
EP3457125A1 (en) Device and method for detecting hazardous gases
DE10132735A1 (en) Method and device for detecting the chemical composition of aerosol particles
JP2003121416A (en) Method and apparatus for measuring molecular concentration of trace components
JP2007171064A (en) Jet-REMPI system for gas analysis
DE102011121669B9 (en) Identification of analytes with an ion mobility spectrometer to form dimer analytes
EP2256479A2 (en) Method for detecting multiple substances of a gas mixture by means of subsequent determination of individual substance concentrations
JPH11352104A (en) Method and apparatus for monitoring trace components in gas
DE2837799A1 (en) METHOD AND DEVICE FOR ANALYZING FLUIDS LEAVING A CHROMATOGRAPH
EP1193497A2 (en) Method and device for characterising surface properties of gasborne aerosol particles
Gullett Application of Jet REMPI and LIBS to Air Toxic Monitoring

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020618

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HAFNER, KLAUS

Inventor name: MUEHLBERGER, FABIAN

Inventor name: KETTRUP, ANTONIUS

Inventor name: HEGER, JOERG

Inventor name: BOESL, ULRICH

Inventor name: ZIMMERMANN, RALF

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KETTRUP, ANTONIUS

Inventor name: ZIMMERMANN, RALF

Inventor name: MUEHLBERGER, FABIAN

Inventor name: BOESL, ULRICH

Inventor name: HAFNER, KLAUS

Inventor name: HEGER, JOERG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES F

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50113862

Country of ref document: DE

Date of ref document: 20080529

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2304392

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080416

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080916

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES F

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090119

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES

Effective date: 20090218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080416

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZE

Free format text: HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH#INGOLSTAEDTER LANDSTRASSE 1#85764 NEUHERBERG (DE) -TRANSFER TO- HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH#INGOLSTAEDTER LANDSTRASSE 1#85764 NEUHERBERG (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20140128

Year of fee payment: 14

Ref country code: NL

Payment date: 20140121

Year of fee payment: 14

Ref country code: BE

Payment date: 20140121

Year of fee payment: 14

Ref country code: DK

Payment date: 20140121

Year of fee payment: 14

Ref country code: SE

Payment date: 20140121

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140129

Year of fee payment: 14

Ref country code: ES

Payment date: 20140129

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150801

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20150131

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150126

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150126

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160121

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: GARTENSTRASSE 28 A, 5400 BADEN (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 392708

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170126

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200123

Year of fee payment: 20

Ref country code: DE

Payment date: 20200131

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200121

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200121

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50113862

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210125