EP1266396B1 - Method and device for detecting compounds in a gas stream - Google Patents
Method and device for detecting compounds in a gas stream Download PDFInfo
- Publication number
- EP1266396B1 EP1266396B1 EP01962408A EP01962408A EP1266396B1 EP 1266396 B1 EP1266396 B1 EP 1266396B1 EP 01962408 A EP01962408 A EP 01962408A EP 01962408 A EP01962408 A EP 01962408A EP 1266396 B1 EP1266396 B1 EP 1266396B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- laser
- laser pulse
- mass spectrometer
- ionization
- ionization chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 150000001875 compounds Chemical class 0.000 title claims abstract description 24
- 238000001514 detection method Methods 0.000 claims abstract description 7
- 150000002500 ions Chemical class 0.000 claims abstract description 7
- 230000003287 optical effect Effects 0.000 claims description 10
- 238000002156 mixing Methods 0.000 claims description 4
- 238000011049 filling Methods 0.000 claims description 3
- 238000010894 electron beam technology Methods 0.000 claims description 2
- 230000001788 irregular Effects 0.000 claims 1
- 238000001561 resonance enhanced multiphoton ionisation spectroscopy Methods 0.000 description 28
- 239000007789 gas Substances 0.000 description 17
- 230000005855 radiation Effects 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 11
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 10
- 239000000126 substance Substances 0.000 description 8
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000001819 mass spectrum Methods 0.000 description 6
- 238000000752 ionisation method Methods 0.000 description 5
- 239000010453 quartz Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- -1 O 2 Chemical class 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 239000003546 flue gas Substances 0.000 description 3
- 238000004949 mass spectrometry Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 238000001269 time-of-flight mass spectrometry Methods 0.000 description 2
- 238000004056 waste incineration Methods 0.000 description 2
- HGUFODBRKLSHSI-UHFFFAOYSA-N 2,3,7,8-tetrachloro-dibenzo-p-dioxin Chemical compound O1C2=CC(Cl)=C(Cl)C=C2OC2=C1C=C(Cl)C(Cl)=C2 HGUFODBRKLSHSI-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000012569 chemometric method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 150000004827 dibenzo-1,4-dioxins Chemical class 0.000 description 1
- 150000004826 dibenzofurans Chemical class 0.000 description 1
- 239000010791 domestic waste Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 150000002240 furans Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 238000000513 principal component analysis Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/10—Ion sources; Ion guns
- H01J49/107—Arrangements for using several ion sources
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/10—Ion sources; Ion guns
- H01J49/16—Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
- H01J49/161—Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
- H01J49/162—Direct photo-ionisation, e.g. single photon or multi-photon ionisation
Definitions
- the invention relates to a method and an apparatus for detecting compounds in a gas stream according to the preambles of claims 1 and 8, as known from the publication 3.
- the resonance-enhanced multiphoton ionization technique (REMPI), the UV laser pulses for the selective ionization of z. B. aromatics is used as a selective and soft ionization method for mass spectrometry.
- the selectivity is determined, inter alia, by the UV spectroscopic properties and the position of the ionization potentials.
- a typical application is the on-line detection of aromatic compounds from combustion exhaust gases 1 .
- a disadvantage of the REMPI method is that it is limited to some classes of substances and the ionization cross-section can also be extremely different for similar compounds.
- Single photon ionization (SPI) with VUV laser light allows for a partially selective and soft ionization 2 .
- the selectivity is determined by the position of the ionization potentials.
- a typical application is the detection of compounds that can not be detected by REMPI.
- a disadvantage of the SPI method is that some substance classes can not be detected.
- the selectivity is smaller than in the REMPI method, so that interference can occur more intensively with complex samples.
- Electron impact ionization (EI) with an electron beam is the standard technique for ionization in the mass spectrometry of volatile inorganic and organic compounds. It is very universal (ie non-selective) and results in many molecules often leads to a very strong fragmentation, but is very well suited for a direct measurement of compounds such as O 2, N 2, CO 2, SO 2, CO, C 2 H 2, etc., which can not be detected so well with VUV or REMPI.
- the object of the invention is to design a method and a device of the generic type such that a multiplicity of compounds in the analysis gas can be characterized almost simultaneously. This object is achieved by the features of claims 1 and 8.
- FIG. 1 shows by way of example the ionization region of the mass spectrometer 14 and the gas cell 9.
- FIG. 2 schematically shows an optical delegation for generating a UV laser pulse 10 and a VUV laser pulse.
- FIG. 3 shows an on-line measurement of NO and naphthalene in the flue gas of a waste incineration plant taken with alternating SPI ionization (VUV for NO) and REMPI ionization (UV for naphthalene).
- FIG. 1 shows the ionization region of the time of flight (TOF) mass spectrometer.
- TOF time of flight
- the gas stream to be analyzed flows effusively through the inlet needle 12 into the ionization chamber 14 1 .
- supersonic molecular beam inlet systems (described, for example, in Figure 3 ) may also be employed.
- Analytes from the gas stream are irradiated directly below the inlet needle 12 alternately with UV laser pulses (266 nm) 10 and VUV laser pulses (118 nm) 2.
- the laser pulse length can be between 1 fs and 100 ns.
- the ions produced by multiphoton ionization (REMPI, 266 nm) or one-photon ionization (SPI, 118 nm) are drawn off through the opening of the discharge aperture 13 into the TOF mass spectrometer and mass analyzed there.
- REMPI, 266 nm multiphoton ionization
- SPI, 118 nm one-photon ionization
- the VUV laser beams (118 nm) 2 are generated in the gas cell 9, which is filled with inert gas (Xe and Ar) 3, by frequency tripling 355 nm laser pulses 1.
- the 355 nm laser pulses 1 are focused with a quartz lens 6 and through a quartz window 5 into the gas cell 9.
- the resulting VUV radiation and the remaining 355 nm Radiation 1 enters the ionization cube 14 of the TOF mass spectrometer through the MgF 2 lens 4.
- the offset irradiation of the 355 nm laser beam 1 relative to the center of the MgF 2 lens 4 causes a local separation of the 355 nm laser radiation 1 and 118 nm radiation in the ionization chamber 14.
- the 355 nm radiation can be intercepted before the ionization. This leads to fragmented SPI mass spectra.
- the alternating generation of the 266 nm 10 and 118 nm 1 ionization laser pulses is carried out with a special optical structure, as it FIG. 2 is shown.
- the Nd: YAG laser 15 generates 1064 nm laser radiation 23, which are guided via two dichroic mirrors 16 through a frequency doubling crystal 17.
- the resulting laser beam 24 consists of 1064 nm 23 and 532 nm 25 laser radiation.
- a movably mounted on an arm dichroid mirror 18, which can be computer controlled via a galvanometer quickly and precisely swung in the beam path is used to redirect the laser pulses alternately or pass.
- the laser radiation 24 is passed through the sum difference mixed crystal 19 and generates 355 nm laser light 1 separated by the dichroic mirror 20 from the collinear 532nm and 1064nm radiation and into the gas cell 9 to produce the 118 nm VUV laser radiation 2 is used. If the mirror arm 18 is in the beam path, the 532 nm portion of the radiation 24 is directed through the dichroic mirror by a doubling crystal 17. The resulting 266 nm laser radiation 10 is separated from the 532 nm radiation by the dichroic mirrors 22 and then used for REMPI ionization in the inlet block 14 of the TOF mass spectrometer.
- the data acquisition system records the REMPI and VUV-SPI mass spectra separately. If a sufficiently intense YAG laser is used, then a partially transparent mirror (dichroid beam splitter) can be used instead of a folding mirror. The suppression of the respectively unneeded beam can be realized via a Pockels cell or a chopper wheel. In addition to the Nd: YAG laser, other pulsed third-party lasers such as Ti: sapphire lasers can be used.
- naphthalene and its methylated derivatives can be detected particularly efficiently at 213 nm.
- chemometric methods for pattern recognition eg principal component analysis
- Raman shifters e.g., Raman shifters, with optical parametric Oscillator crystal, with dye laser unit
- a frequency can also be converted to a desired frequency for a selective REMPI detection of a particular substance, for example, one wavelength can be tuned to a resonance of monochlorobenzene (eg at about 266 nm or at about 269.82 nm 4 ).
- Monochlorobenzene is an indicator of the presence of toxic polychlorinated dibenzo-p-dioxins and -furans (PCDD / F) and may be associated with REMPI on-line in flue gases from z. B. technical combustion processes are detected 5 . With a wavelength of about 269.82 nm is a detection of monochlorobenzene (MCB) and a number of other aromatics such. As benzene, naphthalene or pyrene possible. Alternatively, MCB can be detected at a resonance that is close to four times the Nd: YAG wavelength 4 . For this purpose, it may be sufficient in certain cases, the fundamental wave of the Nd: YAG laser, z. B. by manipulation of the laser resonator, easy to detune.
- MCB monochlorobenzene
- VUV laser wavelength parallel compounds such as NH3, NO many aldehydes and ketones etc. can be detected, which are not detectable with the REMPI at the MCB resonance.
- An analytical laser mass spectrometer can also be advantageously designed for certain applications with an inlet system for generating a supersonic molecular beam (jet).
- the resulting adiabatic cooling increases the selectivity of the REMPI-TOFMS method 6 and reduces the fragmentation in SPI and EI ionization.
- the EI ionization achieves only much smaller cross sections than the laser ionization (with common pulse energies), however, the repetition rate of the laser ionization processes, which are indeed pulsed, limited in many compact laser systems to 10-20 Hz. Since the absorption of a mass spectrum after the ionization pulse takes only a few 10 ⁇ s, the mass spectrometer is not used for most of the time.
- the EI ionization uses an electron gun that accelerates electrons with kinetic energies of 2-200 eV to the sample molecules. Using pulsed electron guns and pulsed extraction fields, the normally continuous EI method can also be used with time-of-flight mass spectrometry. This is also possible in parallel with the use of laser ionization methods (REMPI, SPI).
- the information of the laser ionization methods is recorded via a transient recorder while the information from the EI ionization is done via counting cards.
- the incorporation of electron impact ionization allows direct on-line measurement of the higher concentration compounds that can not be detected by REMPI or SPI.
- REMPI has proven to be a very powerful analytical method for on-line analysis of aromatic hydrocarbons, dioxin indicators (MCB) and other compounds. 1. In parallel, information such as nitrogen compounds such as NO, NH3 or aldehydes would be important. These compounds can be detected with VUV. Thus, the VUV, SPI and REMPI ionization methods complement each other and together can be used advantageously for a good characterization of the combustion process.
- FIG. 3 shows the concentration curves of naphthalene and NO in the flue gas of a household waste incineration plant (raw gas at 700 ° C) recorded with parallel VUV-SPI and REMPI ionization.
- Application example 2 On-line analysis of process gases in food technology
- the method can be used with a device of the generic type for the analysis of complex substance mixture (solid, solution / liquid, gas phase).
- Suitable auxiliary devices headspace samples, thermal desorbers, etc.
- process solutions from the chemical industry, mineral oil products but also end products such as perfume or deodorant can be analyzed and monitored.
- the method can be used with a device of the generic type for analyzing the breathing air (exhaled breath) of patients and control persons. Certain volatile substances, such as acetone, indicate illness or general health out. Furthermore, the headspace can be analyzed via medical samples (blood, urine, etc.).
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Optics & Photonics (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Electron Tubes For Measurement (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Nachweis von Verbindungen in einem Gasstrom nach den Oberbegriffen der Patentansprüche 1 und 8, wie sie aus der Veröffentlichung 3 bekannt ist.The invention relates to a method and an apparatus for detecting compounds in a gas stream according to the preambles of
Die resonanzverstärkte Multiphotonenionisations-Technik (resonance-enhanced multiphoton ionization - REMPI), die UV-Laserpulse zur selektiven Ionisation von z. B. Aromaten einsetzt, wird als selektive und weiche Ionisationsmethode für die Massenspektrometrie verwendet. Die Selektivität wird u.a. durch die UV spektroskopischen Eigenschaften und die Lage der Ionisationspotentiale bestimmt. Eine typische Anwendung ist der on-line Nachweis aromatischer Verbindungen aus Verbrennungsabgasen1. Nachteilig bei der REMPI-Methode ist, dass es auf einige Substanzklassen beschränkt ist und der Ionisationsquerschnitt auch für ähnliche Verbindungen teilweise extrem unterschiedlich sein kann.The resonance-enhanced multiphoton ionization technique (REMPI), the UV laser pulses for the selective ionization of z. B. aromatics is used as a selective and soft ionization method for mass spectrometry. The selectivity is determined, inter alia, by the UV spectroscopic properties and the position of the ionization potentials. A typical application is the on-line detection of aromatic compounds from combustion exhaust gases 1 . A disadvantage of the REMPI method is that it is limited to some classes of substances and the ionization cross-section can also be extremely different for similar compounds.
Die Einphotonenionisation (single photon ionization -SPI) mit VUV-Laserlicht erlaubt eine teilselektive und weiche Ionisation2. Die Selektivität wird durch die Lage der Ionisationspotentiale bestimmt. Eine typische Anwendung ist der Nachweis von Verbindungen, die nicht mit REMPI nachgewiesen werden können. Nachteilig bei der SPI Methode ist, dass einige Substanzklassen nicht nachgewiesen werden können. Weiterhin ist die Selektivität kleiner als bei der REMPI-Methode, sodass bei komplexen Proben verstärkt Interferenzen auftreten können. Single photon ionization ( SPI) with VUV laser light allows for a partially selective and soft ionization 2 . The selectivity is determined by the position of the ionization potentials. A typical application is the detection of compounds that can not be detected by REMPI. A disadvantage of the SPI method is that some substance classes can not be detected. Furthermore, the selectivity is smaller than in the REMPI method, so that interference can occur more intensively with complex samples.
Die Elektronenstoßionisation (EI) mit einem Elektronenstrahl ist die Standardtechnik zur Ionisation in der Massenspektrometrie flüchtiger anorganischer und organischer Verbindungen. Sie ist sehr universell (d.h. nicht selektiv) und führt bei vielen Molekülen häufig zu einer sehr starken Fragmentierung, ist aber sehr gut für eine direkte Messung von Verbindungen wie 02, N2, CO2, SO2, CO, C2H2 etc. geeignet, die mit VUV oder REMPI nicht so gut erfaßt werden können.Electron impact ionization (EI) with an electron beam is the standard technique for ionization in the mass spectrometry of volatile inorganic and organic compounds. It is very universal (ie non-selective) and results in many molecules often leads to a very strong fragmentation, but is very well suited for a direct measurement of compounds such as
Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrichtung der gattungsgemäßen Art so auszugestalten, dass eine Vielzahl von Verbindungen im Analysengas nahezu gleichzeitig charakterisiert werden können. Gelöst wird diese Aufgabe durch die Merkmale der Patentansprüche 1 und 8. Die Unteransprüche beschrieben vorteilhafte Ausgestaltungen der Erfindung.The object of the invention is to design a method and a device of the generic type such that a multiplicity of compounds in the analysis gas can be characterized almost simultaneously. This object is achieved by the features of
Die Kombination von (quasi-) simultan durchgeführter SPI- und REMPI-Ionisation in einem Massenspektrometer bringt eine Reihe von Vorteilen. Beide Methoden erfassen mit einer unterschiedlichen Selektivität unterschiedliche Teilmengen des komplexen Analysengases. Insgesamt können so mehr Verbindungen aus der Probe identifiziert werden.The combination of (quasi) simultaneous SPI and REMPI ionization in a mass spectrometer has a number of advantages. Both methods detect different subsets of the complex analysis gas with different selectivity. Overall, more compounds from the sample can be identified.
Wird die EI-Ionisationstechnik noch hinzugezogen, so können noch weitere Verbindungen wie CO2, H2O oder CH4 nachgewiesen werden, die weder mit SPI- noch mit REMPI sinnvoll nachgewiesen werden können. Die Vereinigung der Methoden und die Vorrichtung zum quasi- parallelen Gebrauch derselben in einem Gerät erlaubt den Bau besonders kompakter analytischer MS-Systeme für z. B. on-line analytische Feldanwendungen (Prozeßanalyse), die trotzdem eine sehr große Leistungsfähigkeit aufweisen. Die parallel erhaltenen REMPI- und/oder VUV- und/oder EI- massenspektropmetrische Daten können auch einer chemometrischen Analyse durch mustererkennende Verfahren (z. B. einer Hauptkomponenentanalyse) zugeführt werden.If the EI ionization technique is still used, further compounds such as CO2, H2O or CH4 can be detected, which can not be sensibly detected with either SPI or REMPI. The combination of the methods and the device for quasi-parallel use of the same in one device allows the construction of particularly compact analytical MS systems for z. B. on-line analytical field applications (process analysis), which nevertheless have a very high performance. The parallel obtained REMPI and / or VUV and / or EI mass spectropetric data can also be supplied to a chemometric analysis by pattern recognizing methods (eg a main component analysis).
Die Erfindung wird im folgenden anhand von Ausführungsbeispielen mit Hilfe der Figuren näher erläutert.The invention will be explained in more detail below with reference to exemplary embodiments with the aid of the figures.
Die
Die
Die
Die (quasi-)parallele Nutzung der Ionisierung mit REMPI und SPI erlaubt somit die gleichzeitige Verfolgung komplexer chemischer Proben. Aufgrund der unterschiedlichen Selektivität der beiden Methoden werden verschiedene Massenspektren mit den jeweiligen Methoden erhalten. Die
Die abwechselnde Erzeugung der 266 nm 10 und 118 nm 1 Ionisationslaserpulse erfolgt mit einem speziellen optischen Aufbau, wie er in
Das Datenaufnahmesystem nimmt die REMPI und VUV-SPI Massenspektren getrennt auf. Wenn ein genügend intensiver YAG Laser angewendet wird so kann anstatt eines Umklappspiegels auch ein teildurchlässiger Spiegel (dichroider Strahlteiler) verwendet werden. Die Ausblendung des jeweils nicht benötigten Strahls kann über eine Pockelszelle oder ein Chopperrad realisiert werden. Neben dem Nd:YAG Laser sind auch andere gepulst betreibare Festkörperlaser wie z.B. Ti:Saphir-Laser einsetzbar.The data acquisition system records the REMPI and VUV-SPI mass spectra separately. If a sufficiently intense YAG laser is used, then a partially transparent mirror (dichroid beam splitter) can be used instead of a folding mirror. The suppression of the respectively unneeded beam can be realized via a Pockels cell or a chopper wheel. In addition to the Nd: YAG laser, other pulsed third-party lasers such as Ti: sapphire lasers can be used.
Aus der Primärwelle des Nd:YAG Lasers (1064 nm) können folgende harmonischen Frequenzen erzeugt werden: 523 nm (verdoppelt), 355 nm (verdreifacht), 266 nm (vervierfacht), 213 nm (verfünffacht) und 118 nm (verneunfacht). In Erweiterung zum oben beschrieben Zweistrahlverfahren (266 nm für REMPI und 118 nm für VUV) können auch mehrere Wellenlängen alternierend eingestrahlt werden. Bei einer Kombination von 266, 213 und 118 nm werden beispielsweise neben der VUV-Selektivität simultan (d.h. leicht versetzt) noch zwei unterschiedliche REMPI-Selektivitäten ausgenutzt. Beispielsweise können Naphthalin und seine methylierten Derivate (diese Verbindungen sind Indikatoren für die Effizienz von Verbrennungsprozessen) besonders effizient mit 213 nm nachgewiesen werden. Je nach Festkörperlasertyp lassen sich somit 2, 3 oder mehr Wellenlängen parallel zur Ionisation von Verbindungen aus der Probe einsetzen. Die unterschiedlichen Selektivitäten die durch die verschiedenen REMPI und oder VUV Wellenlängen induziert werden führen zu jeweils verscheiden Massenspektren (d.h. jeweils andere Verbindungen kommen hinzu oder verschwinden aus dem Massenspektrum. Falls bei sehr komplexen Proben oder unbekannten Proben keine Zuordnung der jeweils beobachteten Verbindungen möglich ist, kann ein Einsatz von chemometrischen Verfahren zur Mustererkennung (z. B. Hauptkomponentenanalyse) und damit z. B. zur phänomenologischen Charakterisierung eingesetzt werden. Durch Einsatz von fest eingestellten Frequenzverschiebeeinheiten (z. B. über optoakustische Kopplung, mit Raman-Shifter, mit Optischer-Parametrischem-Oszillator Kristall, mit Farbstofflasereinheit) kann eine Frequenz auch in eine gewünschte Frequenz für einen selektiven REMPI-Nachweis einer bestimmten Substanz umgewandelt werden. Beispielsweise kann eine Wellenlänge auf eine Resonanz von Monochlorbenzol abgestimmt werden (z. B. bei ca. 266 nm oder bei etwa 269,82 nm 4). Monochlorbenzol ist ein Indikator für das Vorkommen toxischer polychlorierter Dibenzo-p-dioxine und -furane (PCDD/F) und kann mit REMPI on-line in Rauchgasen von z. B. technischen Verbrennungsprozessen nachgewiesen werden 5. Mit einer Wellenlänge von ca. 269.82 nm ist eine Nachweis von Monochlorbenzol (MCB) sowie einer Reihe weiterer Aromaten wie z. B. Benzol, Naphthalin oder Pyren möglich. Alternativ kann MCB bei einer Resonanz die ganz knapp neben der vervierfachten Nd:YAG Wellenlänge liegt nachgewiesen werden 4. Hierzu kann es in bestimmten Fällen ausreichend sein, die Grundwelle des Nd:YAG Lasers, z. B. durch Manipulation des Laserresonators, leicht zu verstimmen.From the primary wave of the Nd: YAG laser (1064 nm), the following harmonic frequencies can be generated: 523 nm (doubled), 355 nm (tripled), 266 nm (quadrupled), 213 nm (quintupled), and 118 nm (nine times). As an extension to the two-beam method described above (266 nm for REMPI and 118 nm for VUV), several wavelengths can also be irradiated alternately. In a combination of 266, 213 and 118 nm, for example, in addition to the VUV selectivity simultaneously (ie slightly offset) still exploited two different REMPI selectivities. For example, naphthalene and its methylated derivatives (these compounds are indicators of the efficiency of combustion processes) can be detected particularly efficiently at 213 nm. Depending on the solid-state laser type, it is thus possible to use 2, 3 or more wavelengths in parallel with the ionization of compounds from the sample. The different selectivities induced by the different REMPI and / or VUV wavelengths lead to different mass spectra (ie different compounds are added or disappear from the mass spectrum.) If very complex samples or unknown samples can not be assigned to the observed compounds, then use of chemometric methods for pattern recognition (eg principal component analysis) and thus, for example, for the phenomenological characterization, by using fixed frequency-shifting units (eg via optoacoustic coupling, with Raman shifters, with optical parametric Oscillator crystal, with dye laser unit), a frequency can also be converted to a desired frequency for a selective REMPI detection of a particular substance, for example, one wavelength can be tuned to a resonance of monochlorobenzene (eg at about 266 nm or at about 269.82 nm 4 ). Monochlorobenzene is an indicator of the presence of toxic polychlorinated dibenzo-p-dioxins and -furans (PCDD / F) and may be associated with REMPI on-line in flue gases from z. B. technical combustion processes are detected 5 . With a wavelength of about 269.82 nm is a detection of monochlorobenzene (MCB) and a number of other aromatics such. As benzene, naphthalene or pyrene possible. Alternatively, MCB can be detected at a resonance that is close to four times the Nd: YAG wavelength 4 . For this purpose, it may be sufficient in certain cases, the fundamental wave of the Nd: YAG laser, z. B. by manipulation of the laser resonator, easy to detune.
Mit den VUV-Laserwellenlänge können dann parallel Verbindungen wie NH3, NO viele Aldehyde und Ketone etc. nachgewiesen werden, die mit REMPI bei der MCB Resonanz nicht nachweisbar sind.With the VUV laser wavelength parallel compounds such as NH3, NO many aldehydes and ketones etc. can be detected, which are not detectable with the REMPI at the MCB resonance.
Ein analytischer Lasermassenspektrometer kann weiterhin für bestimmte Anwendungen vorteilhaft mit einem Einlaßsystem zur Erzeugung eines Überschallmolekularstrahles (Jet) ausgestaltet werden. Die dadurch erreichbare adiabatische Kühlung erhöht die Selektivität der REMPI-TOFMS Methode 6 und verringert die Fragmentation bei SPI und EI-Ionisierung.An analytical laser mass spectrometer can also be advantageously designed for certain applications with an inlet system for generating a supersonic molecular beam (jet). The resulting adiabatic cooling increases the selectivity of the REMPI-
Die EI-Ionisierung erreicht nur viel geringere Wirkungsquerschnitte als die Laserionisation (bei üblichen Pulsenergien) allerdings ist die Wiederholrate der Laserionisationsprozesse, die ja gepulst ablaufen, bei vielen kompakten Lasersystemen auf 10-20 Hz. beschränkt. Da die Aufnahme eines Massenspektrums nach dem Ionisationspuls nur einige 10 µs dauert ist das Massenspektrometer für die meiste Zeit nicht genutzt. Die EI-Ionisation verwendet eine Elektronenkanone die Elektronen mit kinetischen Energien von 2-200 eV zu den Probenmolekülen beschleunigt. Über gepulste Elektronenkanonen und gepulste Abzugsfelder kann die normalerweise kontinuierlich arbeitende EI-Methode auch mit der Flugzeitmassenspektrometrie verwendet werden. Dies ist auch parallel mit der Verwendung der Laserionisationsmethoden (REMPI, SPI) möglich. Typischerweise wird die Information der Laserionisationsmethoden über einen Transientenrekorder aufgezeichnet währen die Information aus der EI-Ionisation über Zählkarten erfolgt. Die Einbindung der Elektronenstoßionisation erlaubt die direkte on-line Messung der in höheren Konzentrationen vorliegenden Verbindungen die nicht mit REMPI oder SPI erfaßt werden können.The EI ionization achieves only much smaller cross sections than the laser ionization (with common pulse energies), however, the repetition rate of the laser ionization processes, which are indeed pulsed, limited in many compact laser systems to 10-20 Hz. Since the absorption of a mass spectrum after the ionization pulse takes only a few 10 μs, the mass spectrometer is not used for most of the time. The EI ionization uses an electron gun that accelerates electrons with kinetic energies of 2-200 eV to the sample molecules. Using pulsed electron guns and pulsed extraction fields, the normally continuous EI method can also be used with time-of-flight mass spectrometry. This is also possible in parallel with the use of laser ionization methods (REMPI, SPI). Typically, the information of the laser ionization methods is recorded via a transient recorder while the information from the EI ionization is done via counting cards. The incorporation of electron impact ionization allows direct on-line measurement of the higher concentration compounds that can not be detected by REMPI or SPI.
Das oben beschriebene Verfahren und die Vorrichtung kann prinzipiell für eine Vielzahl von Anwendungen eingesetzt werde. Im folgenden sind vier Anwendungsbeispiele gegeben:The method and apparatus described above can be used in principle for a variety of applications. In the following four application examples are given:
REMPI hat sich als sehr mächtiges analytisches Verfahren zur on-line Analyse von aromatischen Kohlenwasserstoffen, Dioxin-Indikatoren (MCB) und anderen Verbindungen erwiesen 1. Parallel wären Information z.B. über Stickstoffverbindungen wie NO, NH3 oder über Aldehyde von Bedeutung. Diese Verbindungen können mit VUV nachgewiesen werden. Somit ergänzen sich die VUV-, SPI- und REMPI-Ionisationsmethoden und können zusammen vorteilhaft für eine gute Charakterisierung des Verbrennungsprozesses eingesetzt werden. Wird die parallele EI-Ionisierung implementiert, so kommt man schließlich zu einer sehr umfassenden Charakterisierung, da einige chemische Hauptparameter, wie z.B. Konzentrationen an CO2, 02 und kleineren organischen Molekülen wie Acetylen (wichtig für den Aufbau von polyzyklischen Aromaten und Ruß-Aerosolen) nicht mit den üblichen SPI VUV-Wellenlängen oder mit 2 Photonen-REMPI Prozessen erfaßt werden können. Das Verfahren mit einer Vorrichtung der gattungsgemäßen Art ist geeignet um Verbrennungs- und Pyrolyseprozesse aller Art zu charakterisieren und analysieren. Die
In zur Überwachung lebensmitteltechnologischer Prozesse (Trocknungsprozesse, Röst- oder Garprozesse etc.) sowie zur Qualitätskontrolle von Rohstoffen (Schimmelbefall, Qualität) oder Evaluierung der sensorischen Qualität können on-line massenspektrometrische Verfahren eingesetzt werden. Erste Erfahrungen wurden mit der REMPI Methode auf dem Gebiet der Kaffeeröstung bereits gemacht 7. Mit REMPI (266 nm) kann der Röstgrad über die Zusammensetzung unterschiedlich substituierter ermittelt werden. Viele aromarelevante Verbindungen (aliphatische Aldehyde und Ketone, Furanderivate, Stickstoffheterozyklen etc.) können hingegen sehr gut mit VUV-Ionisierung nachgewiesen werden. Die Elektronenstoßionisation erlaubt die Verfolgung der primären Kaffeeröstprodukte CO2 und H2O. Eine Vielzahl solcher Prozesse sind prinzipiell mit dem Verfahren und einer Vorrichtung der gattungsgemäßen Art umfassend zu kontrollieren und validieren.In order to monitor food technology processes (drying processes, roasting or cooking processes, etc.) as well as quality control of raw materials (mold, quality) or evaluation of sensory quality, on-line mass spectrometric methods can be used. First experiences have already been made with the REMPI method in the field of coffee roasting. 7. With REMPI (266 nm) the degree of roasting can be determined by the composition of different substituted ones. Many aroma-relevant compounds (aliphatic aldehydes and ketones, furan derivatives, nitrogen heterocycles, etc.), however, can be detected very well with VUV ionization. Electron impact ionization allows tracking of the primary coffee roast products CO2 and H2O. In principle, a large number of such processes must be comprehensively controlled and validated with the method and a device of the generic type.
Das Verfahren kann mit einer Vorrichtung der gattungsgemäßen Art zur Analyse komplexer Substanzmischung eingesetzt werden (Feststoff, Lösung/Flüssigkeit, Gasphase). Geeignete Hilfsgeräte (Headspaceprobeneahme, Thermodesorber etc.) können zur Gewinnung einer repräsentativen Gasprobe eingesetzt werden. Beispielhaft können Prozeßlösungen aus der chemischen Industrie, Mineralölprodukte aber auch Endprodukte wie Parfüm oder Deodorant analysiert und überwacht werden.The method can be used with a device of the generic type for the analysis of complex substance mixture (solid, solution / liquid, gas phase). Suitable auxiliary devices (headspace samples, thermal desorbers, etc.) can be used to obtain a representative gas sample. By way of example, process solutions from the chemical industry, mineral oil products but also end products such as perfume or deodorant can be analyzed and monitored.
Das Verfahren kann mit einer Vorrichtung der gattungsgemäßen Art zur Analyse der Atemluft (ausgeatmet) von Patienten und Kontrollpersonen verwendet werden. Bestimmte flüchtige Stoffe wie Aceton/weisen auf Erkrankungen oder den allgemeine Gesundheitszustand hin. Ferner kann der Gasraum (Headspace) über medizinischen Proben (Blut, Urin etc.) analysiert werden.The method can be used with a device of the generic type for analyzing the breathing air (exhaled breath) of patients and control persons. Certain volatile substances, such as acetone, indicate illness or general health out. Furthermore, the headspace can be analyzed via medical samples (blood, urine, etc.).
- 11
- 55 nm Laserstrahl55 nm laser beam
- 22
- 18 nm Laserstrahl18 nm laser beam
- 33
- asfüllung (z.B. 0.001 bar Xe)as filling (e.g., 0.001 bar Xe)
- 44
- Sammellinse aus MgF2 Lens of MgF 2
- 55
- Eintrittsfenster für 355 nm aus QuarzEntry window for 355 nm quartz
- 66
- Sammellinse aus QuarzCondensing lens made of quartz
- 77
- Dichtungsringsealing ring
- 88th
-
Stutzen zur Befüllung/Evakuierung der Gaszelle 9Connecting piece for filling / evacuation of the
gas cell 9 - 99
- Gaszellegas cell
- 1010
- 266 nm Laser266 nm laser
- 1111
- Eintrittsfenster für 266 nm aus QuarzEntry window for 266 nm of quartz
- 1212
- Gaseinlaß (Nadel)Gas inlet (needle)
- 1313
- Abzugsblende des TOF-MassenspektrometersExhaust orifice of the TOF mass spectrometer
- 1414
- Ionisationswürfel des TOF-MassenspektrometersIonization cube of the TOF mass spectrometer
- 1515
- Nd:YAG LaserNd: YAG laser
- 1616
- Dichroider Spiegel für 1064 nmDichroic mirror for 1064 nm
- 1717
- Kristall zur FrequenzverdopplungCrystal for frequency doubling
- 1818
- Computergesteuerter klappbarer Arm mit dichroidem Spiegel für 532 nmComputer-controlled folding arm with dichroic mirror for 532 nm
- 1919
- Kristall zur SummenfrequenzmischungCrystal to sum frequency mixing
- 2020
- Dichroider Spiegel für 355 nmDichroic mirror for 355 nm
- 2121
- Dichroider Spiegel für 532 nmDichroic mirror for 532 nm
- 2222
- Dichroider Spiegel für 266 nmDichroic mirror for 266 nm
- 2323
- 1064 nm Laserstrahl1064 nm laser beam
- 2424
- Colineare 1064 nm und 532 nm LaserstrahlenColinear 1064 nm and 532 nm laser beams
- 2525
- 532 nm Laserstrahl532 nm laser beam
-
(1)
Heger, H. J.; Zimmermann, R.; Dorfner, R.; Beckmann, M.; Griebel, H.; Kettrup, A.; Boesl, U. Anal. Chem. 1999, 71, 46-57 Heger, HJ; Zimmermann, R .; Dorfner, R .; Beckmann, M .; Griebel, H .; Kettrup, A .; Boesl, U. Anal. Chem. 1999, 71, 46-57 -
(2)
Butcher, D. J.; Goeringer, D. E.; Hurst, G. B. Anal. Chem. 1999, 71, 489-496 Butcher, DJ; Goeringer, DE; Hurst, GB Anal. Chem. 1999, 71, 489-496 -
(3)
Rohlfing, E. A. In 22nd Symposium (International) on Combustion; The Combustion Institute: Pittsburgh, 1988, pp 1843-1850 Rohlfing, EA In 22nd Symposium (International) on Combustion; The Combustion Institute: Pittsburgh, 1988, pp 1843-1850 -
(4)
Heger, H. J.; Boesl, U.; Zimmermann, R.; Dorfner, R.; Kettrup, A. Eur. Mass Spectrom. 1999, 5, 51-57 Heger, HJ; Boesl, U .; Zimmermann, R .; Dorfner, R .; Kettrup, A. Eur. Mass Spectrom. 1999, 5, 51-57 -
(5)
Zimmermann, R.; Heger, H. J.; Blumeristock, M.; Dorfner, R.; Schramm, K.-W.; Boesl, U.; Kettrup, A. Rapid Comm. Mass. Spectrom. 1999, 13, 307-314 Zimmermann, R .; Heger, HJ; Blumeristock, M .; Dorfner, R .; Schramm, K.-W .; Boesl, U .; Kettrup, A. Rapid Comm. Mass. Spectrom. 1999, 13, 307-314 -
(6)
Tembreull, R.; Lubman, D. M. Anal. Chem. 1984, 56, 1962-1967 Tembreull, R .; Lubman, DM Anal. Chem. 1984, 56, 1962-1967 -
(7)
Zimmermann, R.; Heger, H. J.; Yeretzian, C.; Nagel, H.; Boesl, U. Rapid Comm. Mass. Spectrom. 1996, 10, 1975-1979 Zimmermann, R .; Heger, HJ; Yeretzian, C .; Nagel, H .; Boesl, U. Rapid Comm. Mass. Spectrom. 1996, 10, 1975-1979
Claims (10)
- Process for the detection of compounds in a gas flow, in whicha) the gas flow with the compounds is passed into the ionization chamber (14) of a mass spectrometer,b) the gas flow is irradiated by an UV laser pulse (10) in the ionization chamber (14), andc) the resulting ions are detected in the mass spectrometer, characterized byd) the gas flow in the ionization chamber being irradiated by a vacuum ultraviolet (VUV) laser pulse (2) at regular or irregular intervals alternately with irradiation by UV laser pulses (10) and the thus generated ions being detected in the mass spectrometer.
- Process according to Claim 1, characterized by the UV laser pulse (10) and the VUV laser pulse (2) being generated with the help of a solid-state laser (15).
- Process according to Claim 1 or 2, characterized by the UV laser pulse being generated from the solid-state laser pulse by frequency mixing and/or frequency multiplication.
- Process according to Claim 3, characterized by the UV laser pulse (10) being adjusted by using a dye laser or an optical parametric oscillator.
- Process according to one of Claims 1 through 4, characterized by the VUV laser pulse (2) being generated from the solid-state laser pulse (23, 24) by frequency mixing and/or frequency doubling with subsequent frequency tripling in a gas cell (9).
- Process according to one of Claims 1 through 5, characterized by the wavelength of the VUV laser pulse (2) being adjusted by using a dye laser or an optical parametric oscillator prior to frequency tripling in the gas cell (9).
- Process according to one of Claims 1 though 6, characterized by the gas flow in the ionization chamber (14) being irradiated by an electron beam for electron impact ionization in-between the VUV laser pulses (2) or UV laser pulses (10) and the resulting ions being detected in the mass spectrometer.
- System for the detection of compounds in a gas flow, consisting ofa) a mass spectrometer with a gas inlet that opens out into the ionization chamber (14) of the ion source of the mass spectrometer,b) a solid-state laser (15) with optical elements for mixing and/or multiplying a basic frequency of the solid-state laser (23), with an UV laser pulse (10) being generated from the basic frequency (23) and irradiated into the area in front of the gas inlet (12) of the ionization chamber (14),c) a data acquisition and processing system for the mass spectrometer, andd) an optical component (18) to split the laser pulse into two partial beams (24, 25), with the UV laser pulse (10) being generated from one partial beam (25) with the help of other optical elements (21, 17, 22) and irradiated into the area in front of the gas inlet (12) of the ionization chamber (14), characterized bye) other optical components (19, 20) and a gas cell (9) with an appropriate filling (3), in which the frequency-doubled and guided partial beam (24) in the gas cell (9) generates a VUV laser pulse (2) by frequency tripling and irradiates it into (14) the area in front of the gas inlet (12) of the ionization chamber.
- System according to Claim 8, characterized by a dye laser or an optical parametric oscillator being arranged in one or several of the beam paths (23), (24) or (25).
- System according to Claim 8 or 9, characterized by a pulsing electron gun for electron impact ionization of the compounds being installed in the gas flow in front of the gas inlet (12) of the ionization chamber (14) of the mass spectrometer.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10014847A DE10014847A1 (en) | 2000-03-24 | 2000-03-24 | Method and device for the detection of connections in a gas stream |
DE10014847 | 2000-03-24 | ||
PCT/EP2001/000848 WO2001073816A1 (en) | 2000-03-24 | 2001-01-26 | Method and device for detecting compounds in a gas stream |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1266396A1 EP1266396A1 (en) | 2002-12-18 |
EP1266396B1 true EP1266396B1 (en) | 2008-04-16 |
Family
ID=7636327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01962408A Expired - Lifetime EP1266396B1 (en) | 2000-03-24 | 2001-01-26 | Method and device for detecting compounds in a gas stream |
Country Status (9)
Country | Link |
---|---|
US (1) | US6727499B2 (en) |
EP (1) | EP1266396B1 (en) |
JP (1) | JP3764680B2 (en) |
AT (1) | ATE392708T1 (en) |
CA (1) | CA2401967C (en) |
DE (2) | DE10014847A1 (en) |
DK (1) | DK1266396T3 (en) |
ES (1) | ES2304392T3 (en) |
WO (1) | WO2001073816A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102103971B (en) * | 2009-12-18 | 2012-11-07 | 中国科学院大连化学物理研究所 | Hollow cathode discharge vacuum ultraviolet light ionization source inside minitype mass spectrograph |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6803563B2 (en) | 2002-08-02 | 2004-10-12 | Flender Service Gmbh | Method and apparatus for monitoring the quality of lubricant |
DE10235612B4 (en) * | 2002-08-02 | 2012-06-21 | Siemens Aktiengesellschaft | Method and device for monitoring the quality of lubricating oil |
US7161145B2 (en) * | 2004-04-21 | 2007-01-09 | Sri International | Method and apparatus for the detection and identification of trace organic substances from a continuous flow sample system using laser photoionization-mass spectrometry |
US20070187591A1 (en) * | 2004-06-10 | 2007-08-16 | Leslie Bromberg | Plasma ion mobility spectrometer |
US7829843B2 (en) * | 2004-07-09 | 2010-11-09 | The Trustees Of Dartmouth College | Electronic time-of-flight mass selector |
DE102005039269B4 (en) * | 2005-08-19 | 2011-04-14 | Helmholtz Zentrum München Deutsches Forschungszentrum Für Gesundheit Und Umwelt (Gmbh) | Method and apparatus for the mass spectrometric detection of compounds |
JP4825028B2 (en) * | 2006-03-17 | 2011-11-30 | 浜松ホトニクス株式会社 | Ionizer |
JP4958258B2 (en) * | 2006-03-17 | 2012-06-20 | 株式会社リガク | Gas analyzer |
CN101752174B (en) * | 2008-12-19 | 2011-11-30 | 中国科学院大连化学物理研究所 | Ionization device of vacuum UV lamp |
JP5278130B2 (en) * | 2009-04-15 | 2013-09-04 | 新日鐵住金株式会社 | Ionization analyzer and ionization analysis method |
EP2302372A1 (en) * | 2009-09-18 | 2011-03-30 | Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH | Method and device for repetitive chemical analysis of a gas flow |
CN102479661B (en) | 2010-11-30 | 2014-01-29 | 中国科学院大连化学物理研究所 | Combined ionization source for vacuum ultraviolet photoionization and chemical ionization for mass spectrometry |
JP5541232B2 (en) * | 2011-06-02 | 2014-07-09 | 新日鐵住金株式会社 | Vacuum ultraviolet light generation and ultraviolet light separation apparatus and method |
DE102012209324A1 (en) * | 2012-06-01 | 2013-12-05 | Helmholtz Zentrum München | Optical fiber device for an ionization device and method for ionizing atoms and / or molecules |
CN105552694B (en) * | 2016-02-18 | 2018-10-23 | 绍兴文理学院 | A kind of vacuum optical waveguide calibrating installation |
CN105762054B (en) * | 2016-04-07 | 2017-11-28 | 绍兴文理学院 | Controllable gas at rest target assembly and its application method outside a kind of vacuum chamber |
AU2019354730B2 (en) * | 2018-10-03 | 2025-02-06 | The Regents Of The University Of Michigan | Integrated micro-photoionization detector with an ultrathin ultraviolet transmission window |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2942386C2 (en) * | 1979-10-19 | 1984-01-12 | Ulrich Dr. 8000 München Boesl | Ion source |
US5206594A (en) * | 1990-05-11 | 1993-04-27 | Mine Safety Appliances Company | Apparatus and process for improved photoionization and detection |
DE4108462C2 (en) * | 1991-03-13 | 1994-10-13 | Bruker Franzen Analytik Gmbh | Method and device for generating ions from thermally unstable, non-volatile large molecules |
FR2720747B1 (en) | 1994-06-02 | 1996-07-12 | Roussel Uclaf | New process for the preparation of a 16-beta-methyl steroid and new intermediates. |
DE19608963C2 (en) * | 1995-03-28 | 2001-03-22 | Bruker Daltonik Gmbh | Process for ionizing heavy molecules at atmospheric pressure |
US5940418A (en) * | 1996-06-13 | 1999-08-17 | Jmar Technology Co. | Solid-state laser system for ultra-violet micro-lithography |
DE19754161C2 (en) * | 1997-12-06 | 1999-11-25 | Gsf Forschungszentrum Umwelt | Methods for the detection of substances and substance classes |
DE19756444C1 (en) * | 1997-12-18 | 1999-07-08 | Deutsch Zentr Luft & Raumfahrt | Method and device for the detection of sample molecules in a carrier gas |
US6002697A (en) * | 1998-04-03 | 1999-12-14 | Lambda Physik Gmbh | Diode pumped laser with frequency conversion into UV and DUV range |
DE19820626C2 (en) * | 1998-05-08 | 2000-09-07 | Deutsch Zentr Luft & Raumfahrt | Method and device for the detection of sample molecules |
-
2000
- 2000-03-24 DE DE10014847A patent/DE10014847A1/en not_active Ceased
-
2001
- 2001-01-26 AT AT01962408T patent/ATE392708T1/en active
- 2001-01-26 WO PCT/EP2001/000848 patent/WO2001073816A1/en active IP Right Grant
- 2001-01-26 EP EP01962408A patent/EP1266396B1/en not_active Expired - Lifetime
- 2001-01-26 JP JP2001571447A patent/JP3764680B2/en not_active Expired - Fee Related
- 2001-01-26 DE DE50113862T patent/DE50113862D1/en not_active Expired - Lifetime
- 2001-01-26 ES ES01962408T patent/ES2304392T3/en not_active Expired - Lifetime
- 2001-01-26 CA CA2401967A patent/CA2401967C/en not_active Expired - Fee Related
- 2001-01-26 DK DK01962408T patent/DK1266396T3/en active
-
2002
- 2002-09-14 US US10/243,536 patent/US6727499B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
BUTCHER D.J.; GOERINGER D.E.; HURST G.B.: "REAL-TIME DETERMINATION OF AROMATICS IN AUTOMOBILE EXHAUST BY SINGLE-PHOTON IONIZATION ION TRAP MASS SPECTROMETRY", ANALYTICAL CHEMISTRY, vol. 71, no. 2, 15 January 1999 (1999-01-15), AMERICAN CHEMICAL SOCIETY. COLUMBUS, US, pages 489 - 496, XP000825702 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102103971B (en) * | 2009-12-18 | 2012-11-07 | 中国科学院大连化学物理研究所 | Hollow cathode discharge vacuum ultraviolet light ionization source inside minitype mass spectrograph |
Also Published As
Publication number | Publication date |
---|---|
DE50113862D1 (en) | 2008-05-29 |
JP3764680B2 (en) | 2006-04-12 |
US20030020014A1 (en) | 2003-01-30 |
ATE392708T1 (en) | 2008-05-15 |
CA2401967C (en) | 2010-11-02 |
DK1266396T3 (en) | 2008-08-11 |
EP1266396A1 (en) | 2002-12-18 |
US6727499B2 (en) | 2004-04-27 |
ES2304392T3 (en) | 2008-10-16 |
JP2004502136A (en) | 2004-01-22 |
WO2001073816A1 (en) | 2001-10-04 |
DE10014847A1 (en) | 2001-10-04 |
CA2401967A1 (en) | 2001-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1266396B1 (en) | Method and device for detecting compounds in a gas stream | |
DE19822672B4 (en) | Method and device for producing a directional gas jet | |
DE102013103954A1 (en) | Method and device for the detection and identification of hazardous substances with at least one optical system | |
DE10392663T5 (en) | A photo-acoustic detection method for measuring the concentration of non-hydrocarbon components of a methane-containing gas mixture | |
DE19805569C1 (en) | Method for the detection of substance traces with solvent-assisted dosing and ion mobility spectrometer to carry out the method | |
EP0465720B1 (en) | Analysing device with an electrothermal atomiser, and mass spectrometer for atomic and molecular analysis | |
EP2511703A1 (en) | Method for measuring emitting volatile materials from wooden materials and device for measuring volatile materials emitted from wooden materials | |
DE102004031643A1 (en) | Non-dispersive infrared gas analyzer | |
EP2483911B1 (en) | Ionization method, ion source and uses of the same in ion mobility spectrometry | |
DE102009004398A1 (en) | Gas analysis method and gas analysis device | |
US11923182B2 (en) | Substantially simultaneous resonance-enhanced multiphoton and laser desorption ionization for single particle mass spectroscopy | |
EP1220285B1 (en) | Ion source in which a UV/VUV light source is used for ionization | |
DE10306900B4 (en) | Spectrometer with laser arrangement for gas analysis | |
EP2220485B1 (en) | Laser multi-sensor system for the selective trace analysis of organic material | |
EP0499277A2 (en) | Method for detecting gaseous substances | |
EP3457125A1 (en) | Device and method for detecting hazardous gases | |
DE10132735A1 (en) | Method and device for detecting the chemical composition of aerosol particles | |
JP2003121416A (en) | Method and apparatus for measuring molecular concentration of trace components | |
JP2007171064A (en) | Jet-REMPI system for gas analysis | |
DE102011121669B9 (en) | Identification of analytes with an ion mobility spectrometer to form dimer analytes | |
EP2256479A2 (en) | Method for detecting multiple substances of a gas mixture by means of subsequent determination of individual substance concentrations | |
JPH11352104A (en) | Method and apparatus for monitoring trace components in gas | |
DE2837799A1 (en) | METHOD AND DEVICE FOR ANALYZING FLUIDS LEAVING A CHROMATOGRAPH | |
EP1193497A2 (en) | Method and device for characterising surface properties of gasborne aerosol particles | |
Gullett | Application of Jet REMPI and LIBS to Air Toxic Monitoring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020618 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HAFNER, KLAUS Inventor name: MUEHLBERGER, FABIAN Inventor name: KETTRUP, ANTONIUS Inventor name: HEGER, JOERG Inventor name: BOESL, ULRICH Inventor name: ZIMMERMANN, RALF |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KETTRUP, ANTONIUS Inventor name: ZIMMERMANN, RALF Inventor name: MUEHLBERGER, FABIAN Inventor name: BOESL, ULRICH Inventor name: HAFNER, KLAUS Inventor name: HEGER, JOERG |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES F |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50113862 Country of ref document: DE Date of ref document: 20080529 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2304392 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080416 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080916 |
|
ET | Fr: translation filed | ||
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES F |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20090119 |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES Effective date: 20090218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080416 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080717 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080416 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZE Free format text: HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH#INGOLSTAEDTER LANDSTRASSE 1#85764 NEUHERBERG (DE) -TRANSFER TO- HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH#INGOLSTAEDTER LANDSTRASSE 1#85764 NEUHERBERG (DE) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20140128 Year of fee payment: 14 Ref country code: NL Payment date: 20140121 Year of fee payment: 14 Ref country code: BE Payment date: 20140121 Year of fee payment: 14 Ref country code: DK Payment date: 20140121 Year of fee payment: 14 Ref country code: SE Payment date: 20140121 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20140129 Year of fee payment: 14 Ref country code: ES Payment date: 20140129 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150131 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20150801 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20150131 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150801 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150126 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150126 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150131 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20160226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150127 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20160121 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: NEW ADDRESS: GARTENSTRASSE 28 A, 5400 BADEN (CH) |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 392708 Country of ref document: AT Kind code of ref document: T Effective date: 20170126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170126 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20200123 Year of fee payment: 20 Ref country code: DE Payment date: 20200131 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20200121 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200121 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 50113862 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20210125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20210125 |