EP1220285B1 - Ion source in which a UV/VUV light source is used for ionization - Google Patents
Ion source in which a UV/VUV light source is used for ionization Download PDFInfo
- Publication number
- EP1220285B1 EP1220285B1 EP01120299.1A EP01120299A EP1220285B1 EP 1220285 B1 EP1220285 B1 EP 1220285B1 EP 01120299 A EP01120299 A EP 01120299A EP 1220285 B1 EP1220285 B1 EP 1220285B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas
- vuv
- electron
- ion source
- ionization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 150000002500 ions Chemical class 0.000 claims description 51
- 238000004458 analytical method Methods 0.000 claims description 14
- 238000010894 electron beam technology Methods 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 8
- 229910052756 noble gas Inorganic materials 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 6
- 239000012528 membrane Substances 0.000 claims description 4
- 238000004020 luminiscence type Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 59
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 23
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 22
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 16
- 230000005855 radiation Effects 0.000 description 10
- 229910052786 argon Inorganic materials 0.000 description 9
- 238000004949 mass spectrometry Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 7
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 238000001819 mass spectrum Methods 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 6
- 229910052743 krypton Inorganic materials 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 4
- 150000002835 noble gases Chemical class 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 229910052805 deuterium Inorganic materials 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000010411 cooking Methods 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 229910052754 neon Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000001196 time-of-flight mass spectrum Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- -1 aliphatic organic compounds Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- MXCPYJZDGPQDRA-UHFFFAOYSA-N dialuminum;2-acetyloxybenzoic acid;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3].CC(=O)OC1=CC=CC=C1C(O)=O MXCPYJZDGPQDRA-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000000534 ion trap mass spectrometry Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005173 quadrupole mass spectroscopy Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 238000004454 trace mineral analysis Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/10—Ion sources; Ion guns
- H01J49/16—Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
- H01J49/161—Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
- H01J49/162—Direct photo-ionisation, e.g. single photon or multi-photon ionisation
Definitions
- the invention relates to an ion source for selective one-photon ionization of an analysis gas according to the preamble of patent claim 1, as well as their use.
- VUV - light can be generated by so-called micro hollow cathode lamps.
- one or more parallel burning discharges into small (typically 100 ⁇ m Druchmesser) openings are constricted in a dielectric. Since gas discharge parameters scale with the product of diameter and gas pressure, the arrangement, in turn, can maintain a stable glow discharge because of the small diameter with high gas pressure and generate VUV excimer light in the dense gas [1].
- Another alternative variant for generating brilliant UV / VUV radiation is a discharge in dense noble gases between pointed metal electrodes or a tip metal electrode and a metal surface. These variances of the corona discharge are operated both with high frequency and with direct voltage [ DE Murnick, M.Salvermoser, priv. Communication, Gaseous Electronics Conference “GEC” 2000, 24.-27. October, Houston, Texas, USA, accepted for publication s].
- a particularly suitable for ion sources UV / VUV light source is the electron beam pumped structure described below.
- the vacuum ultraviolet light generation in the light source which generates the ions in the ion source by photoionization, is effected by the excitation of a dense gas with an electron beam [2, 3].
- the gas usually consists of one of the noble gases He, Ne, Ar, Kr or Xe or a noble gas and the admixture of another gas, such as hydrogen.
- VUV generation process in a gas cell is very inefficient. Therefore, powerful and therefore very expensive, large solid-state lasers must be used (usually Nd: YAG laser with 355 nm). In operation, high incidental costs arise due to flash lamps (required for pumping the laser medium) and maintenance. Furthermore, with a solid-state laser in general, only a single VUV wavelength can be generated (118 nm using 355 nm laser radiation). Tunable solid-state lasers are extremely expensive and can not be used for practical analytical tasks. Frequency tripling is a very sensitive nonlinear process whose VUV yield scales with the cube of the primary radiation. This leads to a high instability of the system and to fluctuations in the VUV yield. Furthermore, a complex separation of the primary radiation 355 nm is necessary to prevent fragmentation of the ions formed by VUV absorption.
- deuterium lamps based on a gas discharge in a deuterium gas and when used with a vacuum ultraviolet light transmissive window, e.g. B consisting of MgF 2 or LiF, continuum radiation and the so-called Lyman and Werner molecular bands to emit 160 or 130 nm.
- Deuterium lamps are commercially available from various manufacturers.
- VUV light can be generated with so-called dielectrically impeded discharges, wherein in the case of a gas discharge at least one of the electrodes is provided with a non-conductive layer. [9].
- a gas discharge at least one of the electrodes is provided with a non-conductive layer.
- WIESER J ET AL "VACUUM ULTRAVIOLET RARE GAS EXCIMER LIGHT SOURCE", REVIEW OF SCIENTIFIC INSTRUMENTS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, Vol. 68, No. 3, March 1997 (1997-03), pages 1360-1364 , and SALVERMOSER M ET AL: "Energy flow and excimer yields in continuous wave rare gas-halogen systems", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, Vol. 88, No.
- EP 0 585 487 A discloses a device for photoionization of trace elements in a carrier gas and a corresponding detection.
- the light source is a flashlamp or a laser.
- the object of the invention is to provide an ion source with a light source of high useful photon density and to provide an advantageous use This object is achieved by the features of claims 1 and 6.
- the dependent claims describe advantageous embodiments of the invention.
- the FIG. 1 shows by way of example the configuration of the ionization region of a time-of-flight mass spectrometer with VUV eximer lamp ionization.
- the FIG. 2 shows a section of the beam injection and FIG. 3 the entire mass spectrometer with the VUV eximer lamp.
- the FIG. 4 shows different possibilities for coupling the UV / VUV light into the ionization chamber 14 or to the ionization site 23.
- Die Figures 5 and 6 show exemplary application results with the developed prototype.
- the VUV Eximerlampenech is coupled for example via a flange to the ionization chamber 14.
- the upper part of the lamp is used to generate an electron beam 8 with the electron gun 1 and has a vacuum.
- the electron tube 2 is evacuated via a getter pump 4 and a pump nozzle 5.
- the electron beam 8 is focused on the film 3.
- the film consists for example of ceramic silicon nitride and separates the high vacuum of the electron tube 2 from the gas space 9.
- the gas space 9 is cleaned via a getter 10.
- the lens 12 is made of UV / VUV transparent material (eg, MgF 2 or LiF) and separates the gas space 9 from the ionization space 14 of the time-of-flight mass spectrometer (TOFMS).
- TOFMS time-of-flight mass spectrometer
- the lens (12) focuses the UV / VUV light on the ionization site 23.
- the ionization site 23 is located behind the inlet needle 15 (in FIG molecular beam formed from the analysis gas) between the electrodes 18 and 16 of the TOFMS.
- a multimicro channel light guide 24 or 25 can be used.
- a multimicro channel light guide 24 consists of a bundle with a large number of narrow capillaries (analogous to a microchannel plate).
- the UV / VUV light passing through the capillaries may enter the ionization space 14 which has a vacuum. If the capillaries are sufficiently long and thin, the gas flow from the gas space 9 through the multi-microchannel light guide 24 into the ionization space 14 is very low (ie the vacuum in 14 is not overburdened).
- the UV / VUV light falls either directly through the clear width of the capillary or is passed through one or more total reflections through the capillaries of the multimicro channel light guide 24.
- a multi-microchannel light guide 25 can be used, which allows a focusing of the transmitted UV / VUV light beam 22 to the ionization 23 by a conical taper of the capillary bundles.
- the main advantage of using multichannel light guides 24 or 25 is that they can transmit these VUV light with wavelengths smaller than 110 nm.
- Optical lenses 12 or windows for decoupling can be used only up to about this wavelength due to the incipient intrinsic absorption of the material (LiF, MgF 2 ).
- the entire optical system for coupling the UV / VUV radiation into the ionization chamber 14 consists of the parabolic mirror 11 and the lens 12 or a multimicro channel light guide 24 or 25. Furthermore, a combination of a lens 12 or a multimicro channel light guide 25 with a hollow optical waveguide is also possible 26, which leads the UV / VUV light via total reflections directly to the ionization 25, possible.
- the inlet of the analysis gas into the mass spectrometer takes place effusively via an inlet needle 15 [10].
- Other sample gas inlet techniques such as pulsed [11] or continuous supersonic molecular beams [12], can also be used.
- FIG. 3 shows a schematic representation of a time-of-flight mass spectrometer (TOFMS, without depiction of the vacuum pumps, the reflectron ion mirror and other details) with electron-beam-pumped excimer lamp ionization.
- TOFMS time-of-flight mass spectrometer
- the UV / VUV light from the electron beam pumped excimer lamp 20 is focused through the optical elements described above into the effusive molecular beam emerging from the inlet needle 15.
- the voltages in the ion source (simplified here with the Elektoden18,16 and 17 shown) are chosen so that the ionization space is field-free.
- the ions formed by single-photon absorption of VUV photons are therefore not influenced by electric fields.
- the ions formed accumulate at and around the ionization site 23.
- This ion accumulation can be operated for about several ⁇ s, after which the ions again leave the acceptance volume of the time-of-flight mass spectrometer (ie the volume that can be imaged on the ion detector 21) due to space charge effects and the intrinsic velocity of the particles from the effusive molecular beam.
- the ions In order to detect the enriched ions, abruptly suitable potentials are applied to the electrodes 18, 16 and 17 via the controlled, pulsable high-voltage supply 19. The rising edges of the voltage pulses are usually in the range of a few ns.
- the ions are accelerated to the detector 21. In the field-free drift space (space between aperture 17 and detector 21), the ions separate according to their mass.
- the time-of-flight mass spectrum is registered at the detector 21 with suitable electronics (not shown).
- the panels 16 and 17 may consist of pinholes with or without networks or even networks.
- the mass resolution and sensitivity in the above-described operation of the TOFMS with ionization by continuous radiating VUV excimer lamps is limited, since due to the continuous operation of the lamp new ions are formed during the extraction of ions. These "post-formed” ions reach the detector later than ions of equal mass formed during the enrichment time (ie, peak spreads and increased background signal occur).
- the electron beam 8 is directed in a pulsed manner (for example by pulsed diaphragms in the electron gun or by deflection plates) onto the foil 3.
- the electron density can be increased without thermally overloading the film 3.
- the VUV light emission 22 collapses within 500 to 1000 ns. This can be exploited to extract the ions from the ion source at already significantly reduced VUV light intensity.
- the FIG. 5 shows measured parameters of VUV excimer lamp ionization TOFMS (prototype) in pulsed mode.
- the upper trace shows the light pulse of the excimer lamp measured with a photodetector.
- the middle track shows the trigger pulse of the ion source and the bottom track shows the ion detector signal.
- Piperidine 85 m / z
- toluene 92 m / z
- VUV excimer lamp ionization An important advantage of the VUV excimer lamp ionization is that 9 different wavelengths can be set by the choice of the gas in the gas space.
- the selectivity of one-photon ionization is due to the fact that only molecules can be ionized whose ionization energy is below the photon energy of the irradiated VUV light lies. This allows the suppression of ionization of compounds such as oxygen, nitrogen or noble gases, which have very high ionization energies. Therefore, VUV ionization is very well suited for on-line analysis of trace compounds from air or process gases (exhaust gases) since the main components of the gas mixture are not ionized. Furthermore, by using different wavelengths, a more accurate statement about the composition of the observed peaks in the mass spectrum can be obtained. For example, at photon energies of about 9 eV, participation of aliphatic organic compounds in the mass spectrum can be ruled out.
- FIG. 6 shows the emission profiles of the VUV excimer lamp for argon (left, top) and krypton (left, bottom). Also marked are the ionization energies of benzene and toluene.
- the associated measured TOFMS mass spectra of a mixture of benzene (92 m / z) and toluene are shown.
- the argon excimer emission (top) is 128 nm (9.7 eV). Both benzene and toluene are therefore efficiently ionized.
- the krypton excimer emission (below) is 150 nm (8.2 eV).
- toluene lies directly in the center of the emission curve, whereas benzene is only detected by a "shoulder emission" on the high-energy side. In the mass spectrum, therefore, the toluene peak is orders of magnitude more intense than the benzene peak.
- the selectivity is only mediocre. With monochromatic radiation, a higher selectivity could be achieved. This can be achieved in several ways. By adding certain gases, the emission can be transferred to a narrow-band emission line. For example, a narrow band emission of 121.57 nm can be achieved with a mixture of hydrogen and neon (see Table 1). Alternatively, a narrow region can be cut out of the broadband emission spectrum. This is z. B. by filter / mirror with dichroic coating (interference filter) possible.
- the FIG. 7 shows a first application measurement with the developed prototype of a time-of-flight mass spectrometer with VUV excimer lamp ionization.
- Exhaust gas from a motorcycle was introduced into the mass spectrum via the inlet needle 15 via an on-line sampling system.
- the lamp was operated with argon (128 nm).
- the figure shows a 3D plot of mass spectrometric information (mass, time, intensity) taken during a motorcycle launch.
- Various aromatic compounds (benzene and methylated benzenes) exhibit a highly dynamic, fluctuating time course due to transient combustion conditions during the startup phase of the engine.
- Mass spectrometers with VUV excimer lamp ionization can advantageously be used for fast time-resolved on-line analysis of process gases or for headspace analysis.
- Possible fields of application are, for example, in the area of the food industry (monitoring of roasting, baking, cooking or ripening etc.) of the chemical industry (monitoring of syntheses, waste streams, mineral oil processing, etc.), monitoring of combustion processes and other production processes.
- the VUV excimer lamp ionization can also be used with other non-pulsed mass spectrometer types such as the TOFMS.
- the FIG. 8 shows a constructed according to the invention VUV excimer lamp with optical elements for focusing the VUV light on the ionization region of a quadrupole mass spectrometer.
- the VUV excimer lamp 20 is advantageously operated continuously.
- the ion source 29 generates a continuous ion beam.
- the alternating electric fields applied to the quadrupole rods 27 (generated by the controller 28) allow only ions of a mass to pass from the ion beam to the detector 30.
- the quadrupole mass spectrometer can be successively set to a transmission set different masses and so a Massesnspektrum can be recorded.
- Possible fields of application of quadrupole mass spectrometry with VUV excimer lamps Ionisation is in the area of the food industry (monitoring of roast, baking, cooking or maturing etc.) of the chemical industry (monitoring of syntheses, waste streams, mineral oil processing, etc.), during monitoring combustion processes and other production processes.
- GC-MS is a standard technique of organic trace analysis.
- VUV light for ionization for mass spectrometry in a gas chromatography-mass spectrometry coupling brings another level of selectivity to mass spectrometry.
- Certain compounds with higher ionization energies can be excluded from ionization.
- a fragment-free ionization compared to the standard technique of electron impact ionization (EI) is achieved.
- EI electron impact ionization
- Various mass spectrometer types ion trap MS, sector field MS, Qudrupol MS, time of flight MS can be used for this purpose.
- FIG. 9 shows the schematic structure of an ionization cell detector with the VUV excimer lamp 20 of the generic type.
- the ionization cell ie the Ionisationsraum 14
- a suitable pull-off voltage is applied via a voltage supply 33.
- the sample gas passes through an inlet 15 between the electrodes 31 and 32 to the ionization zone.
- the photocurrent Photoionenstrom and photoelectron current
- Such a detector has approximately the properties of a flame ionization detector, so it responds to most organic compounds and to some inorganic species. Due to the different wavelengths that can be provided with different gas fillings / optical systems, some selectivity can be achieved.
- a VUV excimer lamp ionization cell detector can thus be used advantageously for various applications. For example, it can be used as a detector for gas chromatography. Another possible application is the use as a sensor for the occurrence of organic compounds in gas mixtures.
- FIG. 10 shows by way of example the structure of an excimer VUV lamp in which by means of an electron gun 1 one of the two excimer light sources 36 of the generic type depending on the applied electric field between the deflection electrodes 35 is pumped and thus brought to light. If the gas spaces 9 of the two excimer light sources are filled with different gases or gas mixtures (see Table 1), the photons of the generated light of the two excimer light sources have a different photon energy.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Electron Sources, Ion Sources (AREA)
Description
Gegenstand der Erfindung ist eine Ionenquelle zur selektiven Einphotonenionisation eines Analysegases nach dem Oberbegriff des Patentanspruchs 1, sowie deren Verwendung.The invention relates to an ion source for selective one-photon ionization of an analysis gas according to the preamble of patent claim 1, as well as their use.
VUV - Licht kann durch sogenannte Mikrohohlkathodenlampen erzeugt werden. Dabei werden eine oder mehrere parallel brennende Entladungen in kleine (typisch 100 µm Druchmesser) Öffnungen in einem Dielektrikum eingeschnürt. Da Gasentladungsparameter mit dem Produkt aus Durchmesser und Gasdruck skalieren, kann mit der Anordnung wiederum, wegen des kleinen Durchmessers mit hohem Gasdruck eine stabile Glimmentladung aufrechterhalten und in dem dichten Gas VUV-Excimerlicht erzeugt werden [1].VUV - light can be generated by so-called micro hollow cathode lamps. In this case one or more parallel burning discharges into small (typically 100 μ m Druchmesser) openings are constricted in a dielectric. Since gas discharge parameters scale with the product of diameter and gas pressure, the arrangement, in turn, can maintain a stable glow discharge because of the small diameter with high gas pressure and generate VUV excimer light in the dense gas [1].
Eine weitere alternative Variante zur Erzeugung brillanter UV/VUV Strahlung ist eine Entladung in dichten Edelgasen zwischen spitzen Metallelektroden bzw. einer Spitzen Metallelektrode und einer Metallfläche. Diese Varinaten der Koronaentladung werden sowohl mit Hochfrequenz als auch Gleichspannung betrieben [
Eine besonders für Ionenquellen geeignete UV/VUV-Lichtquelle ist der im folgenden beschriebene elektronenstrahlgepumpte Aufbau.A particularly suitable for ion sources UV / VUV light source is the electron beam pumped structure described below.
Die Vakuumultraviolettlichterzeugung in der Lichtquelle, die in der Ionenquelle die Ionen durch Photoionisation erzeugt, erfolgt durch die Anregung eines dichten Gases mit einem Elektronenstrahl [2, 3]. Das Gas besteht in der Regel aus einem der Edelgase He, Ne, Ar, Kr oder Xe bzw. einem Edelgas und der Beimischung eines anderen Gases, wie zum Beispiel Wasserstoff.The vacuum ultraviolet light generation in the light source, which generates the ions in the ion source by photoionization, is effected by the excitation of a dense gas with an electron beam [2, 3]. The gas usually consists of one of the noble gases He, Ne, Ar, Kr or Xe or a noble gas and the admixture of another gas, such as hydrogen.
Massenspektrometrie mit laserbasierter VUV Einphotonenionisation wobei das VUV Licht aus UV-Laserpulsen durch Frequenzverdreifachung in einer Gaszelle erzeugt wird, und deren Einsatz für die chemische Analytik ist in der Literatur beschrieben [5-8]. Allerdings weist die laserbasierte Generation von VUV Licht einig gravierende Nachteile auf.Mass spectrometry using laser-based VUV single-photon ionization where the VUV light from UV laser pulses by frequency tripling in a gas cell, and their use for chemical analysis is described in the literature [5-8]. However, the laser-based generation of VUV Licht has some serious disadvantages.
Der VUV Erzeugungsprozeß in einer Gaszelle ist sehr ineffizient. Daher müssen leistungsstarke und damit auch sehr teure, große Festkörperlaser eingesetzt werden (meist Nd:YAG Laser mit 355 nm). Im Betrieb entstehen hohe Nebenkosten durch Blitzlampen (zum Pumpen des Lasermediums benötigt) und Wartung. Weiterhin kann mit einem Festkörperlaser im allgemeinen nur eine einzige VUV Wellenlänge erzeugt werden (118 nm bei Verwendung von 355 nm Laserstrahlung). Abstimmbare Festkörperlaser sind extrem aufwendig und für praktische analytische Aufgaben nicht einsetzbar. Die Frequenzverdreifachung ist ein sehr empfindlicher nichtlinearer Prozeß, dessen VUV-Ausbeute mit der dritten Potenz der Primärstrahlung skaliert. Dies führt zu einer hohen Instabilität des Systems und zu Schwankungen in der VUV-Ausbeute. Weiterhin ist eine aufwendige Separation der Primärstrahlung 355 nm notwendig um eine Fragmentierungen der durch VUV-Absorption gebildeten Ionen zu verhindern.The VUV generation process in a gas cell is very inefficient. Therefore, powerful and therefore very expensive, large solid-state lasers must be used (usually Nd: YAG laser with 355 nm). In operation, high incidental costs arise due to flash lamps (required for pumping the laser medium) and maintenance. Furthermore, with a solid-state laser in general, only a single VUV wavelength can be generated (118 nm using 355 nm laser radiation). Tunable solid-state lasers are extremely expensive and can not be used for practical analytical tasks. Frequency tripling is a very sensitive nonlinear process whose VUV yield scales with the cube of the primary radiation. This leads to a high instability of the system and to fluctuations in the VUV yield. Furthermore, a complex separation of the primary radiation 355 nm is necessary to prevent fragmentation of the ions formed by VUV absorption.
Neben der laserbasierten VUV Einphotonenionisation ist prinzipiell auch der Einsatz von konventionellen Niederdruck Emissionslampen (z.B. Quecksilberdampf-Lampe) zur Ionenerzeugung für die Massenspektrometrie möglich.In addition to laser-based VUV single-photon ionization, the use of conventional low-pressure emission lamps (for example mercury vapor lamps) for ion generation for mass spectrometry is also possible in principle.
Außerdem können Deuteriumlampen verwendet werden, die auf einer Gasentladung in einem Deuteriumgas basieren und wenn sie mit einem für vakuumultraviolettes Licht durchlässigen Fenster, z. B bestehend aus MgF2 oder LiF versehen sind, Kontinuumsstrahlung sowie die sogenannten Lyman- und Werner-Molekülbanden um 160 bzw. 130 nm emittieren. Deuteriumlampen sind von verschiedenen Herstellern kommerziell erhältlich.In addition, deuterium lamps based on a gas discharge in a deuterium gas and when used with a vacuum ultraviolet light transmissive window, e.g. B consisting of MgF 2 or LiF, continuum radiation and the so-called Lyman and Werner molecular bands to emit 160 or 130 nm. Deuterium lamps are commercially available from various manufacturers.
Des weiteren kann VUV Licht mit sogenannter dielektrisch behinderten Entladungen erzeugt werden, wobei bei einer Gasentladung mindestens eine der Elektroden mit einer nichtleitenden Schicht versehen ist. [9]. Bei dieser Anordnung kann, zum Beispiel in dichten, kalten Edelgasen durch Anlegen einer mittelfrequenten Wechselspannung an die Elektroden Excimerlicht im VUV-Bereich erzeugt werden.Furthermore, VUV light can be generated with so-called dielectrically impeded discharges, wherein in the case of a gas discharge at least one of the electrodes is provided with a non-conductive layer. [9]. In this arrangement, for example, in dense, cold noble gases by applying a medium-frequency AC voltage to the electrodes excimer light in the VUV range can be generated.
Diese Lampen erzeugen jedoch ein breites Spektrum an Wellenlängen (erfordert Wellenlängenseparation und bedingt eine geringe Nutzphotonendichte) und sind wenig brilliant (das bedingt beispielsweise eine schlechte Fokussierbarkeit).
Aufgabe der Erfindung ist es, eine Ionenquelle mit einer Lichtquelle hoher Nutzphotonendichte zur Verfügung zu stellen sowie eine vorteilhafte Verwendung anzugeben Gelöst wird diese Aufgabe durch die Merkmale der Patentansprüche 1 und 6. Die Unteransprüche beschreiben vorteilhafte Ausgestaltungen der Erfindung.The object of the invention is to provide an ion source with a light source of high useful photon density and to provide an advantageous use This object is achieved by the features of
Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen und den Figuren näher erläutert. Dabei zeigen:
-
Figur 1
Ionisationsraum eines Flugzeitmassenspektrometers mit elektronenstrahlgepumpter Excimer VUV-Lampe. -
Figur 2
Detaildarstellung eines Teils der Excimer-VUV-Lampe mit einem Parabolspiegel zur Zusammenfassung des UV/VUV-Lichtes. -
Figur 3
Übersichtsdarstellung des Flugzeitmassenspektrometers (TOFMS) mit Excimer-VUV-Lampen-Ionisation. -
Figur 4
Optische Aufbauten zur Einkopplung des UV/VUV-Lichtes in die Ionisationsregion des Flugzeitmassenspektrometers (TOFMS). -
Figur 5
Gemessene Zeitabläufe während eines Nachweiszyklus mit einem Excimer-VUV-Lampen-Ionisations Flugzeitmassenspektrometer (Prototyp). Dargestellt sind der VUV-Lichtimpuls (Kr), Abzugspannungsimpuls und das Ionendetektorsignal. -
Figur 6
Wellenlängenselektivität der Massenspektrometrie mit Excimer-VUV-Lampen-Ionisation. Dargestellt ist das Wellenlängenspektrum der Argon bzw. Krypton Excimer-Emission sowie die korrespondierenden Excimer-VUV-Lampen-Ionisation Flugzeitmassenspektren einer Mischung aus Benzol und Toluol. -
Figur 7
Mit einem Excimer-VUV-Lampen-Ionisations Flugzeitmassenspektrometer (Prototyp) durchgeführte on-line Messung von Abgas eines Motorrads während der Startphase (Excimergas: Argon) -
Figur 8
Schematische Übersichtsdarstellung des Quadrupol-Massenspektrometers (QMS) mit Excimer-VUV-Lampen-Ionisation. -
Figur 9
Schematische Übersichtsdarstellung eines Detektors für Gase auf Basis einer Ionisationskammer mit Excimer-VUV-Lampen-Ionisation und Detektion der erzeugten Ladungen. -
Figur 10
Schematische Übersichtsdarstellung einer VUV-Lampe, bei der durch Ablenkung des Elektronenstrahls auf verschiedene Eximer-VUV-Lichtquellen mit unterschiedlicher Gasfüllung die Wellenlänge des emittierten Lichts verändert werden kann.
-
FIG. 1
Ionization chamber of a time-of-flight mass spectrometer with electron beam-pumped excimer VUV lamp. -
FIG. 2
Detail view of a part of the excimer VUV lamp with a parabolic mirror to summarize the UV / VUV light. -
FIG. 3
Overview of Time of Flight Mass Spectrometer (TOFMS) with Excimer VUV Lamp Ionization. -
FIG. 4
Optical structures for coupling the UV / VUV light into the ionization region of the time-of-flight mass spectrometer (TOFMS). -
FIG. 5
Measured timings during a detection cycle with an excimer VUV lamp ionization time-of-flight mass spectrometer (prototype). Shown are the VUV light pulse (Kr), pull-off voltage pulse and the ion detector signal. -
FIG. 6
Wavelength selectivity of mass spectrometry with excimer VUV lamp ionization. Shown is the wavelength spectrum of the argon or krypton excimer emission and the corresponding excimer VUV lamp ionization time-of-flight mass spectra of a mixture of benzene and toluene. -
FIG. 7
Using an excimer VUV lamp ionization time-of-flight mass spectrometer (prototype) on-line measurement of exhaust gas of a motorcycle during start-up (excimer gas: argon) -
FIG. 8
Schematic overview of the quadrupole mass spectrometer (QMS) with excimer VUV lamp ionization. -
FIG. 9
Schematic overview of a detector for gases based on an ionization chamber with excimer VUV lamp ionization and detection of the generated charges. -
FIG. 10
Schematic overview of a VUV lamp in which the wavelength of the emitted light can be changed by deflecting the electron beam to different Eximer VUV light sources with different gas filling.
Die
Die VUV-Eximerlampeneinheit ist z.B. über eine Flansch an den Ionisationsraum 14 gekoppelt. Der obere Teil der Lampe dient zur Erzeugung eines Elektronenstrahls 8 mit der Elektronenkanone 1 und weist ein Vakuum auf. Die Elektronenröhre 2 wird über eine Getterpumpe 4 bzw. einen Pumpstutzen 5 evakuiert. Der Elektronenstrahl 8 wird auf die Folie 3 fokussiert. Die Folie besteht z.B. aus keramischen Siliziumnitrid und trennt das Hochvakuum der Elektronenröhre 2 vom Gasraum 9 ab. Im Gasraum 9 befindet sich eine Gasmischung, die über den elektronenstrahlgepumten Excimerprozeß im UV/VUV Spektralbereich leuchtet (radiativer Zerfall der Excimere). Der Gasraum 9 wird über einen Getter 10 gereinigt. Im Gasraum 9 befindet sich ein geeignet beschichteter Parabolspiegel 11, der das im Lumineszenzvolumen 13 gebildete UV/VUV-Licht zu einem parallelen Strahlbündel zusammenfaßt und diesen auf die Linse 12 wirft. Dieser Aufbau ermöglicht eine gute Ausnutzung des 360 Grad Abstrahlungsraumwinkels. Eine reflektierende Beschichtung der zum Gasraum 9 gerichteten Seite der Folie 3 kann die Ausbeute der UV/VUV-Nutzstrahlung weiter verbessern. Die Linse 12 besteht aus UV/VUV transparentem Material (z.B. aus MgF2 oder LiF) und trennt den Gasraum 9 vom Ionisationsraum 14 des Flugzeitmassenspektrometers (TOFMS). Die Linse (12) fokussiert das UV/VUV-Licht auf den Ionisationsort 23. Bei Verwendung eines Nadeleinlasses 15 befindet sich der Ionisationsort 23 hinter der Einlaßnadel 15 (im aus dem Analysengas gebildeten Molekularstrahl) zwischen den Elektroden 18 und 16 des TOFMS.The VUV Eximerlampeneinheit is coupled for example via a flange to the
Alternativ zur Linse 12 kann ein Multimikrokanallichtleiter 24 oder 25 eingesetzt werden. Ein Multimikrokanallichtleiter 24 besteht aus einem Bündel mit sehr vielen engen Kapillaren (analog zu einer Mikrokanalplatte). Das UV/VUV Licht, das durch die Kapillaren fällt, kann in den Ionisationsraum 14 gelangen der ein Vakuum aufweist. Sind die Kapillaren hinreichend lang und dünn, so ist der Gasfluß aus dem Gasraum 9 durch den Multimikrokanallichtleiter 24 in den Ionisationsraum 14 sehr gering (d.h. das Vakuum in 14 wird nicht zu stark belastet). Das UV/VUV-Licht fällt entweder direkt durch die lichte Weite der Kapillare oder wird durch eine oder mehrere Totalreflektionen durch die Kapillaren des Multimikrokanallichtleiters 24 geleitet. Weiterhin kann ein Multimikrokanallichtleiter 25 eingesetzt werden, der durch eine konische Verjüngung der Kapillarenbündel eine Fokussierung des transmittierten UV/VUV Lichtstrahls 22 auf den Ionisationsort 23 erlaubt. Hauptvorteil des Einsatzes von Multimikrokanallichtleitern 24 oder 25 ist, das diese VUV-Licht mit Wellenlängen kleiner als 110 nm transmittieren können. Optische Linsen 12 oder Fenster zur Auskopplung können aufgrund der einsetzenden Eigenabsorption des Materials (LiF, MgF2) nur bis zu etwa dieser Wellenlänge eingesetzt werden.As an alternative to the
Das gesamte optische System zur Einkopplung der UV/VUV-Strahlung in die Ionisationskammer 14 besteht im vorgestellten Beispiel aus dem Parabolspiegel 11 und der Linse 12 oder einem Multimikrokanallichtleiter 24 oder 25. Weiterhin ist auch eine Kombination einer Linse 12 öder eines Multimikrokanallichtleiter 25 mit einem Hohllichtwellenleiter 26, welcher das UV/VUV-Licht über Totalreflektionen direkt zum Ionisationsort 25 führt, möglich.In the example presented, the entire optical system for coupling the UV / VUV radiation into the
Wichtig ist bei der Ausgestaltung der Einkopplung der UV/VUV-Strahlung in die Ionisationskammer 14, daß eine hohe Strahldichte am Ionisationsort 23 erreicht wird.It is important in the design of the coupling of the UV / VUV radiation in the
Im in
Die
Die oben beschriebenen Nachteile der kontinuierlichen Arbeitsweise der VUV-Excimer-Lampe können durch den gepulsten Betrieb der VUV-Excimer-Lampe vermieden werden.The above-described disadvantages of the continuous operation of the VUV excimer lamp can be avoided by the pulsed operation of the VUV excimer lamp.
Dabei wird der Elektronenstrahl 8 gepulst (z. B. durch gepulste Blenden in der Elektronenkanone oder durch Ablenkplatten) auf die Folie 3 gelenkt. Bei einem gepulsten Betrieb der Lampe 20 kann die Elektronendichte erhöht werden ohne die Folie 3 thermisch zu überlasten. Wenn der Elektronenstrahl 8 abgestellt wird, bricht die VUV-Lichtemission 22 innerhalb 500 bis 1000 ns zusammen. Dies kann ausgenutzt werden um die Ionen aus der Ionenquelle bei bereits signifikant reduzierter VUV-Lichtintensität abzuziehen. Die
Ein wichtiger Vorteil der VUV-Excimer-Lampen-Ionisation ist, daß durch die Wahl des Gases im Gasraum 9 verschiedene Wellenlängen eingestellt werden können.An important advantage of the VUV excimer lamp ionization is that 9 different wavelengths can be set by the choice of the gas in the gas space.
Die Selektivität der Einphotonenionisation liegt darin begründet, daß nur Moleküle ionisiert werden können, deren Ionisationsenergie unterhalb der Photonenenergie des eingestrahlten VUV-Lichtes liegt. Das erlaubt die Unterdrückung der Ionisation von Verbindungen wie Sauerstoff, Stickstoff oder von Edelgasen, die sehr hohe Ionisationsenergien aufweisen. Daher ist die VUV-Ionisation sehr gut zur on-line Analyse von Spurenverbindungen aus Luft oder Prozeßgasen (Abgasen) geeignet, da die Hauptbestandteile der Gasmischung nicht ionisiert werden. Weiterhin kann durch den Einsatz unterschiedlicher Wellenlängen auch eine genauere Aussage über die Zusammensetzung der beobachteten Peaks im Massesnspektrum erzielt werden. Beispielsweise kann bei Photonenenergien von etwa 9 eV eine Beteiligung von aliphatischen organischen Verbindungen am Massesnspektrum ausgeschlossen werden. In der Tabelle 1 sind verschieden Gase bzw. Gasmischungen mit den entsprechenden Emissionswellenlängen (Maximalwerte) gegeben. Die
Aufgrund der relativ breiten Emissionsspektren (
Die VUV-Excimer-Lampen-Ionisation kann auch mit anderen Massenspektrometer-Typen, die nicht gepulst wie das TOFMS arbeiten, eingesetzt werden. Die
GC-MS ist eine Standardtechnik der organischen Spurenanalyse. Die Verwendung von VUV Licht zur Ionisation für die Massenspektrometrie in einer Gaschromatographie-Massenspektrometrie Kopplung bringt eine weitere Selektivitätsstufe in die Massenspektrometrie. Bestimmte Verbindungen mit höherliegenden Ionisationsenergien können von der Ionisation ausgeschlossen werden. Außerdem wird eine fragmentfreiere Ionisation im Vergleich zur Standardtechnik Elektronenstoßionisation (EI) erzielt. Verschiedene Massenspektrometer-Typen (Ionenfallen-MS, Sektorfeld-MS, Qudrupol-MS, Flugzeit-MS) können für diesen Zweck eingesetzt werden.GC-MS is a standard technique of organic trace analysis. The use of VUV light for ionization for mass spectrometry in a gas chromatography-mass spectrometry coupling brings another level of selectivity to mass spectrometry. Certain compounds with higher ionization energies can be excluded from ionization. In addition, a fragment-free ionization compared to the standard technique of electron impact ionization (EI) is achieved. Various mass spectrometer types (ion trap MS, sector field MS, Qudrupol MS, time of flight MS) can be used for this purpose.
Zur Bestimmung ob organische Verbindungen (und/oder anorganische Verbindungen mit niedriger Ionisationsschwelle) in einer Luftprobe vorkommen benötigt man nicht unbedingt ein Massenspektrometer. Es reicht aus, in einem Ionisationsraum durch Einstrahlung des VUV Lichtes Ionen und Elektronen zu erzeugen und diese beispielsweise über den Ladungsfluß mittels eines Amperemeters 34 oder an einem Widerstand mittels eines Oszilloskops nachzuweisen. Die
Ein solcher Detektor hat in etwa die Eigenschaften eines Flammenionisationsdetektors, er reagiert also auf die meisten organischen Verbindungen und auf einige anorganische Spezies. Durch die unterschiedliche Wellenlängen, die mit verschiedenen Gasfüllungen/optischen Systemen bereitgestellt werden können, kann eine gewisse Selektivität erreicht werden. Ein VUV-Excimer-Lampen-Ionisationszellendetektor kann damit vorteilhaft für verschiedene Anwendungen eingesetzt werden. Beispielsweise kann er als Detektor für ein Gaschromatographie eingesetzt werden. Eine andere mögliche Anwendung ist der Einsatz als Sensor für das Auftreten organischer Verbindungen in Gasgemischen.Such a detector has approximately the properties of a flame ionization detector, so it responds to most organic compounds and to some inorganic species. Due to the different wavelengths that can be provided with different gas fillings / optical systems, some selectivity can be achieved. A VUV excimer lamp ionization cell detector can thus be used advantageously for various applications. For example, it can be used as a detector for gas chromatography. Another possible application is the use as a sensor for the occurrence of organic compounds in gas mixtures.
Bedingt durch das Ionisationspotential lassen sich somit bei der Analyse eines komplexen Probengases mittels Lichtstrahl von der einen öder anderen Lichtquelle Substanzen im Massenspektrum ein- oder ausblenden. Ebenso können durch geeignete Wahl des Gas oder Gasgemisches und somit der Photonenenergie isobare Verbindungen getrennt voneinander nachgewiesen werden.Due to the ionization potential, substances in the mass spectrum can thus be faded in or out in the analysis of a complex sample gas by means of a light beam from one or the other light source. Likewise, by appropriate choice of the Gas or gas mixture and thus the photon energy isobaric compounds are detected separately.
- 11
- Elektronenkanoneelectron gun
- 22
- Raum der Elektronenkanone (Vakuum)Space of the electron gun (vacuum)
- 33
- Membran (z.B. 1x1 mm2, Dicke =300 nm aus SiNx-Keramik)Membrane (eg 1x1 mm 2 , thickness = 300 nm made of SiNx ceramic)
- 44
- Getter-PumpeGetter pump
- 55
- Ventil zum AbpumpenValve for pumping
- 66
- Gaseinlaßgas inlet
- 77
- Gasauslaßgas outlet
- 88th
- Elektronenstrahlelectron beam
- 99
- Gasraum (z.B. Gefüllt mit 500 mbar Argon)Gas space (e.g., filled with 500 mbar argon)
- 1010
- Getter-PatroneGetter cartridge
- 1111
- Reflektor (z.B. Aluminium Parabolspiegel mit MgF2 Beschich tung)Reflector (eg aluminum parabolic mirror with MgF 2 coating)
- 1212
- Linse (z.B. aus MgF2)Lens (eg made of MgF 2 )
- 1313
- UV/VUV-Licht emittierendes GasvolumenUV / VUV light emitting gas volume
- 1414
- Ionisationskammerionization chamber
- 1515
- GaseinlaßnadelGas inlet needle
- 1616
- erste Abzugselektrodefirst withdrawal electrode
- 1717
- zweite Abzugselektrodesecond extraction electrode
- 1818
- Repeller-ElektrodeRepeller electrode
- 1919
-
pulsbare Spannungsversorgung für die Elektroden 16,17 und 18 und SteuerungPulsable power supply for the
16,17 and 18 and controlelectrodes - 2020
- gesamte UV/VUV Lichtquelleentire UV / VUV light source
- 2121
- Detektordetector
- 2222
- UV/VUV-StrahlUV / VUV beam
- 2323
- Ionisationsortionization
- 2424
- nicht fokussierender Multimikrokanallichtleiternon-focusing multimicro channel light guide
- 2525
- fokussierender Multimikrokanallichtleiterfocusing multimicro channel light guide
- 2626
- HohllichtwellenleiterHollow fiber
- 2727
- QuardrupolstäbeQuardrupolstäbe
- 2828
- Steuerung des QuardrupolionenfiltersControl of the Quardrupolionenfilters
- 2929
- kontinuierliche Ionenquelle für das Quadrupol-Massenspektrometercontinuous ion source for the quadrupole mass spectrometer
- 3030
- Ionendetektorion detector
- 3131
- Elektrode des Meßkondensators (positive Spannung, Photelektronenfänger)Electrode of the measuring capacitor (positive voltage, photon trap)
- 3232
- Elektrode des Meßkondensators (negative Spannung, Photoio nenfänger)Electrode of the measuring capacitor (negative voltage, photoio-catcher)
- 3333
- Spannungsversorgungpower supply
- 3434
- Elektrometerelectrometer
- 3535
- Ablenkelektrodendeflection
- 3636
- UV/VUV LichtquelleUV / VUV light source
-
[1]
El-Habachi, A., K. Schoenbach; Appl. Phys. Lett. 72, 22 (1998 El-Habachi, A., K. Schoenbach; Appl. Phys. Lett. 72, 22 (1998 -
[2]
Wieser, J., D.E. Murnick, A. Ulrich, H.A. Huggins, A. Liddle, W.L. Brown; Rev. Sci. Instrum. 68(3), 1360-1364 (1997 Wieser, J., DE Murnick, A. Ulrich, HA Huggins, A. Liddle, WL Brown; Rev. Sci. Instrum. 68 (3), 1360-1364 (1997 -
[3]
Salvermoser, M., D.E. Murnick; Journal of Applied Physics 88(1), 453-459 (2000 Salvermoser, M., DE Murnick; Journal of Applied Physics 88 (1), 453-459 (2000 - [4] Wieser, J., M. Salvermoser, L.H. Shaw, A. Ulrich, D.E. Murick, H. Dahi; 31, 4589-4597 (1998)[4] Wieser, J., Salvermoser, LH Shaw, A. Ulrich, DE Murick, H. Dahi; 31, 4589-4597 (1998)
-
[5]
Butcher, D.J., D.E. Goeringer, G.B. Hurst; Anal. Chem. 71(2), 489-496 (1999 Butcher, DJ, DE Goeringer, GB Hurst; Anal. Chem. 71 (2), 489-496 (1999 -
[6]
Becker, C.H.; Fresen. J. Anal. Chem. 341, 3-6 (1991 Becker, CH; Fresen. J. Anal. Chem. 341, 3-6 (1991 -
[7]
Van Bramer, S.E., M.V. Johnston; J. Am. Soc. Mass Spectr. 1, 419-426 (1990 Van Bramer, SE, MV Johnston; J. Am. Soc. Mass Spectr. 1, 419-426 (1990 -
[8]
Shi, Y.J., X.K. Hu, D.M. Mao, S.S. Dimov, R.H. Lipson; Anal. Chem. 70, 4534-4539 (1998 Shi, YJ, XK Hu, DM Mao, SS Dimov, RH Lipson; Anal. Chem. 70, 4534-4539 (1998 -
[9]
Gellert, B.B., U. Kogelschatz; Applied Physics B 52, 14 (1991 Gellert, BB, U. Kogelschatz; Applied Physics B 52, 14 (1991 -
[10]
Heger, H.J., R. Zimmermann, R. Dorfner, M. Beckmann, H. Griebel, A. Kettrup, U. Boesl; Anal. Chem. 71, 46-57 (1999 Heger, HJ, R. Zimmermann, R. Dorfner, M. Beckmann, H. Griebel, A. Kettrup, U. Boesl; Anal. Chem. 71, 46-57 (1999 -
[11]
Pepich, B.V., J.B. Callis, J.D.S. Danielson, M. Gouterman; Rev. Sci. Instrum. 57, 878-887 (1986 Pepich, BV, JB Callis, JDS Danielson, M. Gouterman; Rev. Sci. Instrum. 57, 878-887 (1986 -
[12]
Fricke, J.; Phys. Unserer Zeit 1, 21-27 (1973 Fricke, J .; Phys. Our time 1, 21-27 (1973
Claims (10)
- Ion source for selective single-ion ionisation of an analysis gas, comprising:an ionisation chamber (14) for accommodating the analysis gas; andan electron-ray-operated UV/VUV excimer lamp (20) for generating ions from the analysis gas in the ionisation chamber (14) by means of UV/VUV light, the electron-ray-operated UV/VUV excimer lamp having- an electron cannon (1) for generating an electron ray (8) ;- an electron tube (2) comprising the electron cannon (1) ;- a gas chamber (9) having a noble gas or a gas mixture containing noble gas in the gas chamber (9);- a membrane (3) for closing off the electron tube (2) from the gas chamber (9), through which membrane the electron ray (8) passes, the electron ray which passes through the membrane (3) generating UV/VUV light in the gas chamber (9);- a parabolic mirror (11) arranged in the gas chamber (9) for combining UV/VUV light formed in a luminescence volume (13) of the gas chamber (9) into a parallel beam; and- a lens (12) arranged in the gas chamber (9) or a multi-microchannel light guide (2, 5) arranged in the gas chamber (9) for focussing the parallel beam of UV/VUV light, formed by the parabolic mirror, onto an ionisation site (23) in the ionisation chamber (14).
- Ion source according to claim 1, characterised by a Getter pump (4) in the chamber of the electron cannon (1).
- Ion source according to either claim 1 or claim 2, characterised by a gas inlet and outlet (6, 7) at the gas chamber (9).
- Ion source according to any one of claims 1 to 3, characterised by a Getter cartridge (1) which is connected to the gas chamber (9).
- Ion source according to any one of claims 1 to 4, characterised by at least one electrode for pulsing the electron beam (8) of the electron cannon (1).
- Use of the ion source according to any one of claims 1 to 5 for generating ions, in connection with the detection thereof in an ion detection device.
- Use of the ion source according to claim 6, wherein the ion detection device is a mass spectrometer.
- Use of the ion source according to claim 7, characterised in that a time-of-flight mass spectrometer (TOFMS) is used as the mass spectrometer.
- Use of the ion source according to claim 7, characterised in that a quadrupole mass spectrometer is used as the mass spectrometer.
- Use of the ion source according to claim 8, characterised in that the ionisation chamber is additionally irradiated with a laser so as to generate ions by a REMPI (resonance-enhanced multi-photon ionisation) process.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2000144655 DE10044655A1 (en) | 2000-09-09 | 2000-09-09 | Ion source using UV/VUV light for ionisation has light source provided with electron gun separated by membrane from gas space in which light is generated by electron beam |
DE10044655 | 2000-09-09 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1220285A2 EP1220285A2 (en) | 2002-07-03 |
EP1220285A3 EP1220285A3 (en) | 2005-03-16 |
EP1220285B1 true EP1220285B1 (en) | 2014-08-20 |
Family
ID=7655651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01120299.1A Expired - Lifetime EP1220285B1 (en) | 2000-09-09 | 2001-08-24 | Ion source in which a UV/VUV light source is used for ionization |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1220285B1 (en) |
DE (1) | DE10044655A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10236344B4 (en) | 2002-08-08 | 2007-03-29 | Bruker Daltonik Gmbh | Ionize to atmospheric pressure for mass spectrometric analysis |
DE102005039269B4 (en) | 2005-08-19 | 2011-04-14 | Helmholtz Zentrum München Deutsches Forschungszentrum Für Gesundheit Und Umwelt (Gmbh) | Method and apparatus for the mass spectrometric detection of compounds |
US8721836B2 (en) | 2008-04-22 | 2014-05-13 | Micron Technology, Inc. | Plasma processing with preionized and predissociated tuning gases and associated systems and methods |
CN102103971B (en) * | 2009-12-18 | 2012-11-07 | 中国科学院大连化学物理研究所 | Hollow cathode discharge vacuum ultraviolet light ionization source inside minitype mass spectrograph |
DE102012209324A1 (en) * | 2012-06-01 | 2013-12-05 | Helmholtz Zentrum München | Optical fiber device for an ionization device and method for ionizing atoms and / or molecules |
CZ2015815A3 (en) | 2015-11-16 | 2017-03-15 | Univerzita Tomáše Bati ve Zlíně | A device for generating UV radiation and the method of generating this radiation |
CN107014892B (en) * | 2017-05-15 | 2019-06-18 | 清华大学 | A Micron-Scale Spatially Resolved Mass Spectrometry Imaging System Based on Vacuum Ultraviolet Laser |
CN111929354B (en) * | 2020-07-02 | 2021-09-17 | 东华理工大学 | Rare earth ore sample ionization analytical instrument in order |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0578953A1 (en) * | 1992-07-06 | 1994-01-19 | Heraeus Noblelight GmbH | High power emitting device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5206594A (en) * | 1990-05-11 | 1993-04-27 | Mine Safety Appliances Company | Apparatus and process for improved photoionization and detection |
US6052401A (en) * | 1996-06-12 | 2000-04-18 | Rutgers, The State University | Electron beam irradiation of gases and light source using the same |
DE19754161C2 (en) * | 1997-12-06 | 1999-11-25 | Gsf Forschungszentrum Umwelt | Methods for the detection of substances and substance classes |
DE19820626C2 (en) * | 1998-05-08 | 2000-09-07 | Deutsch Zentr Luft & Raumfahrt | Method and device for the detection of sample molecules |
-
2000
- 2000-09-09 DE DE2000144655 patent/DE10044655A1/en not_active Ceased
-
2001
- 2001-08-24 EP EP01120299.1A patent/EP1220285B1/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0578953A1 (en) * | 1992-07-06 | 1994-01-19 | Heraeus Noblelight GmbH | High power emitting device |
Also Published As
Publication number | Publication date |
---|---|
EP1220285A3 (en) | 2005-03-16 |
DE10044655A1 (en) | 2002-04-04 |
EP1220285A2 (en) | 2002-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1297554B1 (en) | Atmospheric pressure photoionizer for mass spectrometry | |
EP2428796B1 (en) | Method and device for identifying and ionising gases by means of UV-radiation and electrons | |
US6974957B2 (en) | Ionization device for aerosol mass spectrometer and method of ionization | |
EP0503748B1 (en) | Method for generating ions, specially for a mass spectrometer such as a time-of-flight mass spectrometer, from thermally instable, non-volatile, large molecules | |
EP1557667B1 (en) | Gas analysis method and ionisation detector for carrying out said method | |
DE102006050136B4 (en) | Method and device for generating positive and / or negative ionized gas analytes for gas analysis | |
DE112009001323T5 (en) | collision cell | |
DE102016124889B4 (en) | Mass spectrometer with laser system for generating photons of different energy | |
DE102009027516A1 (en) | Variable energy photoionization unit and mass spectrometry method | |
DE10256488A1 (en) | Mass spectrometer and mass analysis methods | |
DE19523860A1 (en) | Ion trap mass spectrometer with vacuum-external ion generation | |
DE4442348A1 (en) | Device and method for improved mass resolution of a time-of-flight mass spectrometer with ion reflector | |
EP1915770B1 (en) | Method and device for the mass spectrometric detection of compounds | |
Smith et al. | Time‐of‐flight mass spectrometry of aromatic molecules subjected to high intensity laser beams | |
DE3938314A1 (en) | MASS SPECTROMETRY | |
EP1220285B1 (en) | Ion source in which a UV/VUV light source is used for ionization | |
EP0000865B1 (en) | Ion source comprising an ionisation chamber for chemical ionisation | |
Penache | Study of high-pressure glow discharges generated by micro-structured electrode (MSE) arrays | |
DE69835610T2 (en) | METHOD FOR OPERATING A MASS SPECTROMETER WITH A LOW-RESOLUTION INPUT SIGNAL FOR IMPROVING THE SIGNAL / NOISE RATIO | |
DE2048862C3 (en) | Apparatus for spectrophotometric analysis | |
CN113383406A (en) | Phase locked Fourier transform linear ion trap mass spectrometry | |
DE3533364A1 (en) | METHOD AND DEVICE FOR EXAMINING A GAS MIXTURE | |
WO2010031387A1 (en) | Distinguishing an enantiomers with the aid of broadband femtosecond circular-dichroism mass spectrometry | |
DE112014005577T5 (en) | Microwave cavity | |
Lehr et al. | Separation of neutral versus cationic dissociation processes in an ultracompact double time-of-flight spectrometer: first results on CH3I |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7H 01J 49/16 A Ipc: 7H 01J 27/24 B |
|
17P | Request for examination filed |
Effective date: 20050219 |
|
AKX | Designation fees paid |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES F |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES F |
|
17Q | First examination report despatched |
Effective date: 20100429 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140320 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 683852 Country of ref document: AT Kind code of ref document: T Effective date: 20140915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 50116419 Country of ref document: DE Effective date: 20141002 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: HEPP WENGER RYFFEL AG, CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20140820 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141121 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140820 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140820 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141222 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140820 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140820 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20140829 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140831 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140820 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 50116419 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140820 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20150521 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140824 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 683852 Country of ref document: AT Kind code of ref document: T Effective date: 20140824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140820 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150824 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140820 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140824 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20190822 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20190821 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20190821 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200831 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 50116419 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200824 |