EP1255922A2 - Device and method for controlling operation of a multi-cylinder engine for motor vehicles having a multi-flow emission control system - Google Patents
Device and method for controlling operation of a multi-cylinder engine for motor vehicles having a multi-flow emission control systemInfo
- Publication number
- EP1255922A2 EP1255922A2 EP01902335A EP01902335A EP1255922A2 EP 1255922 A2 EP1255922 A2 EP 1255922A2 EP 01902335 A EP01902335 A EP 01902335A EP 01902335 A EP01902335 A EP 01902335A EP 1255922 A2 EP1255922 A2 EP 1255922A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- mode
- catalyst
- catalytic converter
- state
- exhaust
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 239000003054 catalyst Substances 0.000 claims abstract description 40
- 230000003197 catalytic effect Effects 0.000 claims description 33
- 239000003344 environmental pollutant Substances 0.000 claims description 25
- 231100000719 pollutant Toxicity 0.000 claims description 25
- 230000008929 regeneration Effects 0.000 claims description 19
- 238000011069 regeneration method Methods 0.000 claims description 19
- 238000006477 desulfuration reaction Methods 0.000 claims description 9
- 230000023556 desulfurization Effects 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 9
- 230000002452 interceptive effect Effects 0.000 claims description 9
- 230000001360 synchronised effect Effects 0.000 claims description 8
- 238000011068 loading method Methods 0.000 claims description 6
- 238000000746 purification Methods 0.000 claims description 5
- 230000006378 damage Effects 0.000 claims description 4
- 230000002427 irreversible effect Effects 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 2
- 238000012512 characterization method Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 34
- 238000004140 cleaning Methods 0.000 description 8
- 239000000446 fuel Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 108010001267 Protein Subunits Proteins 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000012041 precatalyst Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 150000003463 sulfur Chemical class 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/011—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/0275—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1439—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
- F02D41/1441—Plural sensors
- F02D41/1443—Plural sensors with one sensor per cylinder or group of cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/08—Other arrangements or adaptations of exhaust conduits
- F01N13/10—Other arrangements or adaptations of exhaust conduits of exhaust manifolds
- F01N13/107—More than one exhaust manifold or exhaust collector
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
- F01N2550/03—Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/08—Exhaust gas treatment apparatus parameters
- F02D2200/0808—NOx storage capacity, i.e. maximum amount of NOx that can be stored on NOx trap
Definitions
- the invention relates to a device and a method for controlling an operation of a multi-cylinder engine for motor vehicles with a multi-flow exhaust gas cleaning system with the features mentioned in the preambles of the independent claims.
- Multi-cylinder engines are often divided into sub-units, each of which groups a number of cylinders (bank). For example, a twelve-cylinder engine can be divided into three banks of four cylinders. Each bank is assigned a separate exhaust line, at least in certain areas, in which components of the exhaust gas cleaning system can be accommodated.
- Such components include, for example, particle filters and catalysts, which enable conversion of pollutants formed during a combustion process into less environmentally relevant products. Examples include oxidation catalysts for the oxidation of reducing agents, such as carbon monoxide CO and incompletely burned hydrocarbons HC, and reduction catalysts for reducing nitrogen oxides NO x .
- actuating means can be assigned to each bank, which allow the combustion process in the respective banks to be designed separately from one another.
- Such actuating means can comprise, for example, exhaust gas recirculation devices, injection systems or throttle valves arranged in separate intake pipes.
- a sensor system in the exhaust gas lines that makes it possible to detect the air conditions in the exhaust gas or also selected proportions of pollutants in the exhaust gas.
- the signals detected by the sensor system are read into a control device, which then specifies manipulated variables according to predefined models. In this way, for example, homogeneous or stratified lean operation, stoichiometric operation or rich operation of the multi-cylinder engine required at very high loads can be realized.
- NO x storage catalytic converter is integrated in each of the exhaust gas stretches of the exhaust gas purification system, this requires special operating modes in order to prevent undesirably high pollutant emissions and permanent damage to the catalytic converter.
- single-flow exhaust gas purification systems numerous procedures for carrying out the operating modes of the NO x storage catalytic converter are known.
- lean operation in particular in the consumption-optimized area for gasoline engines with lambda around 1.1, a raw NO x emission from the engine is greatly increased, and at the same time the reducing agents CO and HC required for conversion are greatly reduced.
- NO x is therefore absorbed as nitrate in a lean atmosphere in a NOx storage component of the catalyst, until either an NO ⁇ storage capacity is exhausted or a desorption temperature is exceeded.
- NO x regeneration must take place by changing to a stoichiometric or rich atmosphere.
- a procedure can be stored in a control unit with which a specification for the suitable actuating means takes place as a function of signals from a gas sensor detected downstream of the NO ⁇ storage catalytic converter.
- Other measures for example desulfurization or heating of the catalyst to a minimum operating temperature, can also be carried out in the same manner.
- the solutions shown cannot simply be transferred to multi-flow exhaust gas purification systems of the type mentioned above, since catalytic converter states and operating parameters can differ significantly from one another in the respective exhaust gas lines.
- the invention has for its object to provide a device and a method with which a coordinated control of the operating modes of each bank with regard to a low pollutant emission but also taking into account fuel consumption and operating parameters of the multi-cylinder engine is made possible.
- this object is achieved by a device and a method for controlling an operation of a multi-cylinder engine for motor vehicles with a multi-flow exhaust gas cleaning system with the features mentioned in the independent claims.
- the operating modes of each bank are set as a function of a coordination mode and a catalyst state and / or pollutant emission in all exhaust gas lines.
- the device according to the invention has means for carrying out the method steps, for example a control device, in which a procedure for coordinated control is stored in digitized form.
- the control unit can preferably be part of an engine control unit.
- the coordination mode preferably comprises an autonomous mode, a dominant mode, a weighted mode or an interactive mode, between which a change is made as a function of status and operating parameters of the motor vehicle and its aggregates during the operation of the multi-cylinder engine.
- the status and operating parameters can preferably include a driver's request, a load situation, a total NOx emission downstream of all exhaust gas lines, a raw NO ⁇ emission of the multi-cylinder engine and the catalytic converter status, so that, for example, an operating situation-optimized choice of the coordination mode is made possible with a complex map.
- the catalyst state in the form of a sulfur loading and / or a NO x loading and / or a catalyst temperature. It is also conceivable to estimate the catalytic converter state by comparing a current NO x storage capacity of the NO x storage catalytic converter with a measured or modeled NO 2 storage capacity of a fresh NO ⁇ storage catalytic converter.
- the operating modes of the banks preferably include procedures for performing NO ⁇ regeneration, desulfurization and catalyst heating. Overall, a large number of parameters are thus available for the control according to the invention, with which almost all measures necessary for optimal operation of the exhaust gas cleaning system can be taken.
- each bank is controlled in the autonomous mode only as a function of the catalytic converter state and / or the pollutant emission in the respectively assigned exhaust line. Under such a condition, the total emission of the multi-cylinder engine is particularly low, but in certain circumstances an increased fuel consumption has to be accepted.
- the catalytic converter status and / or the pollutant emission is only recorded in one of the exhaust gas lines and used for the synchronous control of all banks.
- Such a method is particularly easy to implement and requires only a relatively small amount of storage space and computing capacity.
- Such a control is always appropriate if one of the banks temporarily or permanently has a major share in the total emissions of the multi-cylinder engine.
- the state of the catalyst and / or the pollutant emission in each exhaust line is recorded and multiplied by a weighting factor. The weighted quantities are then combined into an average, and all banks are controlled synchronously on the basis of the average.
- the weighting factor can only take into account the number of cylinders per bank, so that, for example, in the case of a twelve-cylinder engine consisting of three banks of four cylinders, the weighting factor per bank is one third.
- the weighting factor is preferably determined as a function of the catalytic converter state, so that, for example, as irreversible damage to a NO x storage catalytic converter progresses, the weighting factor becomes smaller, so that overall the pollutant emission from a bank can increase slightly, but an increase in fuel consumption as a result of unnecessarily frequent regeneration the NO ⁇ storage catalysts of the other banks is avoided. It has also proven to be advantageous to determine the weighting factor separately for each procedure to be carried out.
- the catalytic converter status and / or the pollutant emission in each exhaust line is recorded and used for the synchronous control of all banks.
- an initial impulse for NO für regeneration, desulfurization or catalyst heating is set if there is a need for these measures in one of the exhaust gas lines.
- An ending impulse for the NO x regeneration, the desulfurization or the catalyst heating is present when the measure in each of the exhaust lines is finished. In this way it can be ensured, similarly as in the self-sufficient mode, that the measures are carried out completely for each of the catalysts.
- such simultaneous implementation of the measures can be implemented much more easily and integrated into the existing engine control system and is therefore the preferred mode in the case of rapidly changing operating situations.
- Figure 1 is a schematic diagram for controlling an operation of a
- FIG. 2 shows a course of the air conditions in different exhaust gas lines of the multi-cylinder engine over time
- Figure 3 is a schematic diagram for controlling the operation of the
- FIG. 4 shows a course of pollutant emissions in the exhaust gas lines over time
- Figure 5 is a schematic diagram for controlling the operation of the
- Figure 6 is a flow chart for coordinated control.
- FIG. 1 shows a schematic diagram of a multi-cylinder engine 10.
- the multi-cylinder engine 10 is divided into a total of three banks 1, 2, 3, each with four cylinders 50.
- An exhaust gas cleaning system 60 is arranged downstream of the multi-cylinder engine 10.
- Each of the banks 1, 2, 3 opens into an exhaust line 11, 12, 13 that is separate at least at the beginning.
- the NOx storage catalytic converters 21, 22, 23 each integrate the exhaust gas lines 11, 12, 13.
- other components for purifying the exhaust gas such as pre-catalysts and particle filters, can also be present in the exhaust lines 11, 12, 13, but have not been included here for reasons of clarity.
- the sensors include, for example, temperature sensors with which a catalyst temperature or an exhaust gas temperature can be detected.
- the sensor system can include gas sensors which make it possible to determine an air ratio downstream and upstream of the NO x storage catalytic converters 21, 22, 23 or also a proportion of one Determine pollutant on the exhaust gas.
- the gas sensors are then designed, for example, as lambda sensors or NO x sensors.
- the individual banks 1, 2, 3 are assigned control units, which detect signals provided by the sensor system and, depending on these signals, output control variables for the actuating means assigned to the individual banks 1, 2, 3.
- the control units can be part of a control unit with which a coordinated control of the individual banks 1, 2, 3, which will be explained in more detail below, is carried out.
- the actuating means include, for example, separate injection systems, exhaust gas recirculation devices or throttle valves arranged in separate intake pipes. For the sake of clarity, the positioning means and the control device or the control units are not shown.
- a catalytic converter state K of the NO x storage catalytic converters 11, 12, 13 can be determined, for example, on the basis of its sulfur loading, NO x loading,
- Catalyst temperature or its irreversible degree of damage can be characterized.
- the necessary sensors and the corresponding methods for determining the catalytic converter state K are known and are therefore not to be explained in more detail here.
- the measures M j are also known, which must be taken for optimal and permanent operation of the NO x storage catalytic converters 21, 22, 23. In this way, procedures can be stored in the control unit which are used to carry out NO x regeneration, desulfurization and catalyst heating. In the configuration of the control for multi-flow exhaust gas cleaning systems 60 according to the invention, these procedures are accompanied by a change in the operating modes of banks 1, 2, 3.
- FIG. 1 and FIGS. 3 and 5 to be explained in more detail below also contain a time window in which it is shown which measures Mj are currently being taken in the individual banks 1, 2, 3.
- Triangles stand for an end of the catalyst heating, hexahedra for a start of NO ⁇ regeneration and diamonds for a start of desulfurization. Filled areas indicate when the measures Mj were actually taken, while unfilled characters indicate when the respective measure Mj was taken in completely self-sufficient banks 1, 2, 3.
- FIG. 1 and FIGS. 3 and 5 to be explained in more detail below also contain a time window in which it is shown which measures Mj are currently being taken in the individual banks 1, 2, 3.
- Triangles stand for an end of the catalyst heating, hexahedra for a start of NO ⁇ regeneration and diamonds for a start of desulfurization. Filled areas indicate when the measures Mj were actually taken, while unfilled characters indicate when the respective measure Mj was taken in completely self-sufficient banks 1, 2, 3.
- FIG. 6 shows a flowchart for a method for controlling the operation of the multi-cylinder engine 10, in which the operating modes of each bank 1, 2, 3 as a function of a coordination mode and the catalytic converter state K and / or a pollutant emission EM in all exhaust lines 11, 12, 13 can be carried out (coordinated control).
- First, status and operating parameters P of the motor vehicle and its aggregates are read into the control unit.
- the slaughtersund operating parameters P can be, for example, a driver's request FW, a load situation LS, a total NOx emissions GE downstream of all the exhaust pipes 11, 12, 13, a NO x -Rohemission RE of the multi-cylinder engine 10 and the catalyst state K.
- the parameters P mentioned are recorded, for example, in a map which is used to determine the coordination mode.
- the coordination mode can be an autonomous mode A, a dominant mode D, a weighted mode G or an interactive mode I. Each of these modes determines how the recorded catalyst states or pollutant emissions are to be evaluated.
- a pulse that initiates or ends the measure Mj is determined.
- the introductory pulse can be determined in such a way that a characteristic value KW j D is initially specified in accordance with the determined mode, which is compared with a threshold value SW j D. If the characteristic value KWj b exceeds the threshold value SW, D , the measure Mj is initiated. Measure Mj is terminated in an almost equivalent manner after a stop pulse has been issued.
- characteristic values KWj e and threshold values SWj e are compared with one another.
- the self-sufficient mode A corresponds to the unfilled character or the dashed outline.
- Such a mode is always preferred when relatively constant operating conditions of the motor vehicle are present and the lowest possible emission of pollutants is desired. Since such a mode can only be coordinated with existing engine control systems for drive control with a considerable amount of computation, this mode is particularly advantageous when there are phases of constant load.
- the catalytic converter state K and / or the pollutant emission EM in each exhaust line 11, 12, 13 is recorded and used for the synchronous control of all banks 1, 2, 3.
- the catalyst heating is only ended, when a minimum operating temperature of the NO x storage catalytic converters 21, 22, 23 is reached in all exhaust lines 11, 12, 13. All measures Mj are consequently initiated and ended simultaneously in all banks 1, 2, 3, so that it can be ensured that optimum conditions prevail for the operation of the exhaust gas cleaning system 60.
- FIG. 2 shows a course of the air conditions in the individual exhaust lines 11, 12, 13 downstream of the catalysts 21, 22, 23 in the case of NO ⁇ regeneration.
- T- j there is a need for regeneration for all three catalysts 21, 22, 23, and the composition of the exhaust gas is changed in accordance with a rich target specification.
- the lambda value downstream of the catalysts 21, 22, 23 initially remains at a stoichiometric value.
- Banks 1 and 3 would already have a pulse ending the regeneration at times T2 and T3, namely after reaching a rich threshold value SWf, but instead of going straight back to normal operation, banks 1 and 3 remain in stoichiometric operation, even in Bank 2 the regeneration is completed at time T4.
- FIG. 3 shows, inter alia, a time window of a weighted mode G.
- the characters in the lower three rows which have not been filled in again show the self-sufficient mode A for clarification, while the characters in the upper row which are filled in characterize the times at which the measure Mj in each of banks 1, 2, 3 is taken.
- the catalytic converter state K and / or the pollutant emission in each exhaust line 11, 12, 13 is recorded and multiplied by a weighting factor F w .
- the weighted quantities are then averaged (mean value MW), the mean value MW then being used for synchronous control of all banks 1, 2, 3. It then corresponds to the characteristic values KW j D and KWj e of FIG. 6.
- the weighting factor F w can only take into account a ratio of the number of cylinders 50 in the individual banks 1, 2, 3 to one another, so that in this case it would be one third each.
- FIG. 4 shows the profiles of NO x emissions in the exhaust gas lines 11, 12, 13 downstream of the catalysts 21, 22, 23 (curves 76, 78, 80) and an average profile according to the weighted mode G (curve 82) .
- NO x regeneration measures would already be initiated at points T5 and T5 if a threshold value SWR N ⁇ D for the NO ⁇ regeneration in the respective bank was exceeded. If the NO x emissions are averaged as described, the regeneration is initiated from a time T7, even if NO x storage capacity is still present in one of the banks.
- FIG. 5 shows a time window for dominant mode D.
- the catalytic converter state K and / or the pollutant emission EM is only detected in one of the exhaust gas lines 11, 12 or 13 and is used for synchronous control of all banks 1, 2, 3.
- Bank 1 has been given such a dominant position as an example. Such a measure can always be taken if, due to an operational situation or due to permanent structural changes, the pollutant emissions of Bank 1 far exceed those of the other banks.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
Vorrichtung und Verfahren zur Steuerung eines Betriebes eines Device and method for controlling an operation of a
Mehrzylindermotors für Kraftfahrzeuge mit einer mehrflutigenMulti-cylinder engine for motor vehicles with a multi-flow
Abgasreinigungsanlageemission control system
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Steuerung eines Betriebes eines Mehrzylindermotors für Kraftfahrzeuge mit einer mehrflutigen Abgasreinigungsanlage mit den in den Oberbegriffen der unabhängigen Ansprüche genannten Merkmalen.The invention relates to a device and a method for controlling an operation of a multi-cylinder engine for motor vehicles with a multi-flow exhaust gas cleaning system with the features mentioned in the preambles of the independent claims.
Mehrzylindermotoren werden häufig in Untereinheiten aufgeteilt, die jeweils eine Anzahl von Zylindern (Bank) zusammenfassen. So kann beispielsweise ein Zwölfzylindermotor in drei Bänke ä vier Zylinder aufgeteilt werden. Jeder Bank ist ein zumindest bereichsweise separater Abgasstrang zugeordnet, in dem jeweils Komponenten der Abgasreinigungsanlage untergebracht werden können. Dererlei Komponenten umfassen beispielsweise Partikelfilter als auch Katalysatoren, die eine Konvertierung von während eines Verbrennungsvorganges gebildeten Schadstoffen in weniger umweltrelevante Produkte ermöglichen. Beispielhaft seien hier aufgezählt Oxidationskatalysatoren zur Oxidation von Reduktionsmitteln, wie Kohlenmonoxid CO und unvollständig verbrannte Kohlenwasserstoffe HC, und Reduktionskatalysatoren zur Reduzierung von Stickoxiden NOx.Multi-cylinder engines are often divided into sub-units, each of which groups a number of cylinders (bank). For example, a twelve-cylinder engine can be divided into three banks of four cylinders. Each bank is assigned a separate exhaust line, at least in certain areas, in which components of the exhaust gas cleaning system can be accommodated. Such components include, for example, particle filters and catalysts, which enable conversion of pollutants formed during a combustion process into less environmentally relevant products. Examples include oxidation catalysts for the oxidation of reducing agents, such as carbon monoxide CO and incompletely burned hydrocarbons HC, and reduction catalysts for reducing nitrogen oxides NO x .
Weiterhin können jeder Bank Stellmittel zugeordnet werden, die es erlauben, den Verbrennungsvorgang in den jeweiligen Bänken separat voneinander zu gestalten. Dererlei Stellmittel können beispielsweise Abgasrückführeinrichtungen, Einspritzsysteme oder auch in separierten Saugrohren angeordnete Drosselklappen umfassen. Ferner ist bekannt, in den Abgassträngen eine Sensorik zu implementieren, die es ermöglicht, die Luftverhältnisse im Abgas oder auch ausgewählte Anteile von Schadstoffen am Abgas zu erfassen. Üblicherweise werden die von der Sensorik erfaßten Signale in ein Steuergerät eingelesen, das dann entsprechend vorgegebenen Modellen den Stellmitteln Stellgrößen vorgibt. Auf diese Weise läßt sich beispielsweise ein homogener oder geschichteter Magerbetrieb, ein stöchiometrischer Betrieb oder ein bei sehr hohen Lasten erforderlicher Fettbetrieb des Mehrzylindermotors realisieren. Ist jeweils in den Abgassträngen der Abgasreinigungsanlage ein NOx- Speicherkatalysator integriert, so erfordert dies spezielle Betriebsmodi, um unerwünscht hohe Schadstoffemissionen und dauerhafte Schädigungen des Katalysators zu verhindern. Bei einflutigen Abgasreinigungsanlagen sind zahlreiche Prozeduren zur Durchführung der Betriebsmodi des NOx-Speicherkatalysators bekannt. So ist im Magerbetrieb, insbesondere im verbrauchsoptimierten Bereich für Ottomotoren bei Lambda zirka 1,1, eine NOx-Rohemission des Motors stark erhöht, und gleichzeitig sind die zur Konvertierung benötigten Reduktionsmittel CO und HC stark gemindert. Zur Abhilfe wird daher in magerer Atmosphäre das NOx in einer NOx-Speicherkomponente des Katalysators als Nitrat absorbiert, und zwar solange, bis entweder eine NOχ- Speicherfähigkeit erschöpft oder eine Desorptionstemperatur überschritten wird. Vor diesem Zeitpunkt muß daher nach Möglichkeit eine NOx-Regeneration durch Wechsel in eine stöchiometrische oder fette Atmosphäre erfolgen. Dazu kann in einem Steuergerät eine Prozedur hinterlegt werden, mit der in Abhängigkeit von stromab des NOχ-Speicherkatalysators erfaßten Signalen eines Gassensors eine Vorgabe für die geeigneten Stellmittel erfolgt. In an sich gleicher Art und Weise können auch andere Maßnahmen, beispielsweise eine Entschwefelung oder eine Aufheizung des Katalysators auf eine Mindest-Betriebstemperatur, durchgeführt werden. Die aufgezeigten Lösungen lassen sich jedoch nicht einfach auf mehrflutige Abgasreinigungsanlagen der oben genannten Art übertragen, da sich Katalysatorzustände und Betriebsparameter in den jeweiligen Abgassträngen deutlich voneinander unterscheiden können.Furthermore, actuating means can be assigned to each bank, which allow the combustion process in the respective banks to be designed separately from one another. Such actuating means can comprise, for example, exhaust gas recirculation devices, injection systems or throttle valves arranged in separate intake pipes. Furthermore, it is known to implement a sensor system in the exhaust gas lines that makes it possible to detect the air conditions in the exhaust gas or also selected proportions of pollutants in the exhaust gas. Usually, the signals detected by the sensor system are read into a control device, which then specifies manipulated variables according to predefined models. In this way, for example, homogeneous or stratified lean operation, stoichiometric operation or rich operation of the multi-cylinder engine required at very high loads can be realized. If a NO x storage catalytic converter is integrated in each of the exhaust gas stretches of the exhaust gas purification system, this requires special operating modes in order to prevent undesirably high pollutant emissions and permanent damage to the catalytic converter. In single-flow exhaust gas purification systems, numerous procedures for carrying out the operating modes of the NO x storage catalytic converter are known. In lean operation, in particular in the consumption-optimized area for gasoline engines with lambda around 1.1, a raw NO x emission from the engine is greatly increased, and at the same time the reducing agents CO and HC required for conversion are greatly reduced. To remedy this, the NO x is therefore absorbed as nitrate in a lean atmosphere in a NOx storage component of the catalyst, until either an NOχ storage capacity is exhausted or a desorption temperature is exceeded. Before this point in time, therefore, if possible, NO x regeneration must take place by changing to a stoichiometric or rich atmosphere. For this purpose, a procedure can be stored in a control unit with which a specification for the suitable actuating means takes place as a function of signals from a gas sensor detected downstream of the NO χ storage catalytic converter. Other measures, for example desulfurization or heating of the catalyst to a minimum operating temperature, can also be carried out in the same manner. However, the solutions shown cannot simply be transferred to multi-flow exhaust gas purification systems of the type mentioned above, since catalytic converter states and operating parameters can differ significantly from one another in the respective exhaust gas lines.
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung und ein Verfahren zur Verfügung zu stellen, mit denen eine koordinierte Steuerung der Betriebsmodi jeder Bank mit Hinsicht auf eine niedrige Schadstoffemission aber auch unter Berücksichtigung eines Kraftstoffverbrauches und von Betriebsparametern des Mehrzylindermotors ermöglicht wird.The invention has for its object to provide a device and a method with which a coordinated control of the operating modes of each bank with regard to a low pollutant emission but also taking into account fuel consumption and operating parameters of the multi-cylinder engine is made possible.
Erfindungsgemäß wird diese Aufgabe durch eine Vorrichtung und ein Verfahren zur Steuerung eines Betriebes eines Mehrzylindermotors für Kraftfahrzeuge mit einer mehrflutigen Abgasreinigungsanlage mit den in den unabhängigen Ansprüchen genannten Merkmalen gelöst. Beim erfindungsgemäßen Verfahren werden die Betriebsmodi jeder Bank in Abhängigkeit von einem Koordinationsmodus sowie einem Katalysatorzustand und/oder einer Schadstoffemission in allen Abgassträngen eingestellt. Die erfindungsgemäße Vorrichtung besitzt zur Durchführung der Verfahrensschritte Mittel wie beispielsweise ein Steuergerät, in dem eine Prozedur zur koordinierten Steuerung in digitalisierter Form hinterlegt ist. In bevorzugter Weise kann das Steuergerät Teil eines Motorsteuergerätes sein.According to the invention, this object is achieved by a device and a method for controlling an operation of a multi-cylinder engine for motor vehicles with a multi-flow exhaust gas cleaning system with the features mentioned in the independent claims. In the method according to the invention, the operating modes of each bank are set as a function of a coordination mode and a catalyst state and / or pollutant emission in all exhaust gas lines. The device according to the invention has means for carrying out the method steps, for example a control device, in which a procedure for coordinated control is stored in digitized form. The control unit can preferably be part of an engine control unit.
Der Koordinationsmodus umfaßt bevorzugt einen autarken Modus, einen dominanten Modus, einen gewichteten Modus oder einen interaktiven Modus, zwischen denen in Abhängigkeit von Zustands- und Betriebsparametern des Kraftfahrzeuges und seiner Aggregate während des Betriebs des Mehrzylindermotors gewechselt wird. Die Zustands- und Betriebsparameter können vorzugsweise einen Fahrerwunsch, eine Lastsituation, eine NOx-Gesamtemission stromab aller Abgasstränge, eine NOχ- Rohemission des Mehrzylindermotors und den Katalysatorzustand umfassen, so daß beispielsweise mit einem komplexen Kennfeld eine betriebssituationsoptimierte Wahl des Koordinationsmodus ermöglicht wird.The coordination mode preferably comprises an autonomous mode, a dominant mode, a weighted mode or an interactive mode, between which a change is made as a function of status and operating parameters of the motor vehicle and its aggregates during the operation of the multi-cylinder engine. The status and operating parameters can preferably include a driver's request, a load situation, a total NOx emission downstream of all exhaust gas lines, a raw NOχ emission of the multi-cylinder engine and the catalytic converter status, so that, for example, an operating situation-optimized choice of the coordination mode is made possible with a complex map.
Ferner ist es bevorzugt, den Katalysatorzustand in Form einer Schwefelbeladung und/oder einer NOx-Beladung und/oder einer Katalysatortemperatur zu charakterisieren. Denkbar ist auch, den Katalysatorzustand anhand eines Vergleichs einer aktuellen NOx-Speicherfähigkeit des NOx-Speicherkatalysators mit einer gemessenen oder modellierten NOχ-Speicherfähigkeit eines frischen NOχ- Speicherkatalysators abzuschätzen. Die Betriebsmodi der Bänke umfassen vorzugsweise Prozeduren zur Durchführung einer NOχ-Regeneration, einer Entschwefelung und einer Katalysatorheizung. Insgesamt stehen damit eine Vielzahl von Parametern für die erfindungsgemäße Steuerung zur Verfügung, mit denen nahezu alle zum optimalen Betrieb der Abgasreinigungsanlage notwendigen Maßnahmen ergriffen werden können.It is further preferred to characterize the catalyst state in the form of a sulfur loading and / or a NO x loading and / or a catalyst temperature. It is also conceivable to estimate the catalytic converter state by comparing a current NO x storage capacity of the NO x storage catalytic converter with a measured or modeled NO 2 storage capacity of a fresh NO χ storage catalytic converter. The operating modes of the banks preferably include procedures for performing NOχ regeneration, desulfurization and catalyst heating. Overall, a large number of parameters are thus available for the control according to the invention, with which almost all measures necessary for optimal operation of the exhaust gas cleaning system can be taken.
In einer bevorzugten Ausgestaltung des Verfahrens wird im autarken Modus jede Bank nur in Abhängigkeit von dem Katalysatorzustand und/oder der Schadstoffemission in dem jeweils zugeordneten Abgasstrang gesteuert. Unter solchen Bedingung ist die Gesamtemission des Mehrzylindermotors besonders niedrig, jedoch muß unter bestimmten Umständen ein Kraftstoff mehrverbrauch in Kauf genommen werden.In a preferred embodiment of the method, each bank is controlled in the autonomous mode only as a function of the catalytic converter state and / or the pollutant emission in the respectively assigned exhaust line. Under such a condition, the total emission of the multi-cylinder engine is particularly low, but in certain circumstances an increased fuel consumption has to be accepted.
Im dominanten Modus wird der Katalysatorzustand und/oder die Schadstoffemission nur in einem der Abgasstränge erfaßt und zur synchronen Steuerung aller Bänke herangezogen. Ein solches Verfahren läßt sich besonders einfach realisieren und benötigt nur relativ geringen Speicherplatz und Rechenkapazität. Eine solche Steuerung bietet sich immer dann an, wenn eine der Bänke temporär oder dauerhaft einen Hauptanteil an der Gesamtemission des Mehrzylindermotors besitzt. Im gewichteten Modus wird der Katalysatorzustand und/oder die Schadstoffemission in jedem Abgasstrang erfaßt und mit einem Wichtungsfaktor multipliziert. Die gewichteten Größen werden anschließend zu einem Mittelwert zusammengefaßt, und anhand des Mittelwertes erfolgt eine synchrone Steuerung aller Bänke. Der Wichtungsfaktor kann im einfachsten Falle nur die Anzahl der Zylinder pro Bank berücksichtigen, so daß beispielsweise bei einem Zwölfzylindermotor - bestehend aus drei Bänken ä vier Zylinder - der Wichtungsfaktor pro Bank ein Drittel beträgt. In bevorzugter Weise wird der Wichtungsfaktor jedoch in Abhängigkeit vom Katalysatorzustand bestimmt, so daß beispielsweise mit fortschreitender irreversibler Schädigung eines NOx- Speicherkatalysators der Wichtungsfaktor geringer wird, so daß zwar insgesamt die Schadstoffemission aus einer Bank leicht ansteigen kann, aber ein Kraftstoffmehrverbrauch infolge unnötig häufiger Regenerationen der NOχ- Speicherkatalysatoren der anderen Bänke vermieden wird. Es hat sich weiterhin als vorteilhaft erwiesen, den Wichtungsfaktor für jede durchzuführende Prozedur gesondert zu bestimmen.In the dominant mode, the catalytic converter status and / or the pollutant emission is only recorded in one of the exhaust gas lines and used for the synchronous control of all banks. Such a method is particularly easy to implement and requires only a relatively small amount of storage space and computing capacity. Such a control is always appropriate if one of the banks temporarily or permanently has a major share in the total emissions of the multi-cylinder engine. In the weighted mode, the state of the catalyst and / or the pollutant emission in each exhaust line is recorded and multiplied by a weighting factor. The weighted quantities are then combined into an average, and all banks are controlled synchronously on the basis of the average. In the simplest case, the weighting factor can only take into account the number of cylinders per bank, so that, for example, in the case of a twelve-cylinder engine consisting of three banks of four cylinders, the weighting factor per bank is one third. However, the weighting factor is preferably determined as a function of the catalytic converter state, so that, for example, as irreversible damage to a NO x storage catalytic converter progresses, the weighting factor becomes smaller, so that overall the pollutant emission from a bank can increase slightly, but an increase in fuel consumption as a result of unnecessarily frequent regeneration the NOχ storage catalysts of the other banks is avoided. It has also proven to be advantageous to determine the weighting factor separately for each procedure to be carried out.
Im interaktiven Modus wird der Katalysatorzustand und/oder die Schadstoffemission in jedem Abgasstrang erfaßt und zur synchronen Steuerung aller Bänke herangezogen. In einer bevorzugten Ausgestaltung des Modus wird ein einleitender Impuls für die NOχ- Regeneration, die Entschwefelung oder die Katalysatorheizung gesetzt, wenn in einem der Abgasstränge eine Notwendigkeit für diese Maßnahmen besteht. Ein beendender Impuls für die NOx-Regeneration, die Entschwefelung oder die Katalysatorheizung liegt dann vor, wenn in jedem der Abgasstränge die Maßnahme beendet ist. Auf diese Weise kann ähnlich wie im autarken Modus sichergestellt werden, daß die Maßnahmen jeweils vollständig für jeden der Katalysatoren durchgeführt werden. Im Gegensatz zum autarken Modus läßt sich eine solche gleichzeitige Durchführung der Maßnahmen sehr viel einfacher realisieren und im bestehenden Motorsteuersystem integrieren und ist daher der bevorzugte Modus bei schnell wechselnden Betriebssituationen.In the interactive mode, the catalytic converter status and / or the pollutant emission in each exhaust line is recorded and used for the synchronous control of all banks. In a preferred embodiment of the mode, an initial impulse for NO für regeneration, desulfurization or catalyst heating is set if there is a need for these measures in one of the exhaust gas lines. An ending impulse for the NO x regeneration, the desulfurization or the catalyst heating is present when the measure in each of the exhaust lines is finished. In this way it can be ensured, similarly as in the self-sufficient mode, that the measures are carried out completely for each of the catalysts. In contrast to the self-sufficient mode, such simultaneous implementation of the measures can be implemented much more easily and integrated into the existing engine control system and is therefore the preferred mode in the case of rapidly changing operating situations.
Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.Further preferred embodiments of the invention result from the other features mentioned in the subclaims.
Die Erfindung wird nachfolgend in einem Ausführungsbeispiel anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen: Figur 1 eine Prinzipskizze für eine Steuerung eines Betriebs einesThe invention is explained in more detail in an exemplary embodiment with reference to the accompanying drawings. Show it: Figure 1 is a schematic diagram for controlling an operation of a
Mehrzylindermotors nach einem autarken und einem interaktiven Modus;Multi-cylinder engine after a self-sufficient and an interactive mode;
Figur 2 einen Verlauf der Luftverhältnisse in verschiedenen Abgassträngen des Mehrzylindermotors mit der Zeit;FIG. 2 shows a course of the air conditions in different exhaust gas lines of the multi-cylinder engine over time;
Figur 3 eine Prinzipskizze zur Steuerung des Betriebs desFigure 3 is a schematic diagram for controlling the operation of the
Mehrzylindermotors in einem gewichteten Modus;Multi-cylinder engine in a weighted mode;
Figur 4 einen Verlauf von Schadstoffemissionen in den Abgassträngen mit der Zeit;FIG. 4 shows a course of pollutant emissions in the exhaust gas lines over time;
Figur 5 eine Prinzipskizze zur Steuerung des Betriebs desFigure 5 is a schematic diagram for controlling the operation of the
Mehrzylindermotors nach einem dominanten Modus undMulti-cylinder engine after a dominant mode and
Figur 6 eine Ablaufdiagramm zur koordinierten Steuerung.Figure 6 is a flow chart for coordinated control.
Die Figur 1 zeigt in einer Prinzipskizze einen Mehrzylindermotor 10. Der Mehrzylindermotor 10 ist insgesamt in drei Bänke 1, 2, 3 mit jeweils vier Zylindern 50 aufgeteilt. Dem Mehrzylindermotor 10 ist eine Abgasreinigungsanlage 60 nachgeordnet. Dabei mündet jede der Bänke 1 , 2, 3 in einen zumindest zu Beginn separaten Abgasstrang 11, 12, 13. Zur Reinigung eines Abgases, das während eines Verbrennungsvorganges eines Luft-Kraftstoff-Gemisches in den Bänken 1, 2, 3 entsteht, ist in den Abgassträngen 11, 12, 13 jeweils ein NOx-Speicherkatalysator 21, 22, 23 integriert. Selbstverständlich können in den Abgassträngen 11, 12, 13 auch andere Komponenten zur Reinigung des Abgases, wie Vorkatalysatoren und Partikelfilter, vorhanden sein, sind hier aber aus Gründen der Übersichtlichkeit nicht mit aufgenommen worden.1 shows a schematic diagram of a multi-cylinder engine 10. The multi-cylinder engine 10 is divided into a total of three banks 1, 2, 3, each with four cylinders 50. An exhaust gas cleaning system 60 is arranged downstream of the multi-cylinder engine 10. Each of the banks 1, 2, 3 opens into an exhaust line 11, 12, 13 that is separate at least at the beginning. For cleaning an exhaust gas that arises during the combustion process of an air-fuel mixture in the banks 1, 2, 3, FIG The NOx storage catalytic converters 21, 22, 23 each integrate the exhaust gas lines 11, 12, 13. Of course, other components for purifying the exhaust gas, such as pre-catalysts and particle filters, can also be present in the exhaust lines 11, 12, 13, but have not been included here for reasons of clarity.
Ebenso wurde aus Gründen der Übersichtlichkeit auf eine Darstellung einer, der jeweiligen Abgasstränge 11 , 12, 13 zugeordneten Sensorik verzichtet. Die Sensorik umfaßt dabei beispielsweise Temperatursensoren, mit denen eine Katalysatortemperatur oder eine Abgastemperatur erfaßt werden kann. Weiterhin kann die Sensorik Gassensoren beinhalten, die es ermöglichen, ein Luftverhältnis stromab und stromauf der NOx-Speicherkatalysatoren 21, 22, 23 oder auch einen Anteil eines Schadstoffes am Abgas zu bestimmen. Die Gassensoren sind dann beispielsweise als Lambdasonden oder NOx-Sensoren ausgelegt.Likewise, for the sake of clarity, a representation of a sensor system assigned to the respective exhaust lines 11, 12, 13 has been dispensed with. The sensors include, for example, temperature sensors with which a catalyst temperature or an exhaust gas temperature can be detected. Furthermore, the sensor system can include gas sensors which make it possible to determine an air ratio downstream and upstream of the NO x storage catalytic converters 21, 22, 23 or also a proportion of one Determine pollutant on the exhaust gas. The gas sensors are then designed, for example, as lambda sensors or NO x sensors.
Ferner sind den einzelnen Bänken 1, 2, 3 Steuereinheiten zugeordnet, die von der Sensorik bereitgestellte Signale erfassen und in Abhängigkeit von diesen Signalen Stellgrößen für den einzelnen Bänken 1, 2, 3 zugeordnete Stellmittel ausgeben. Die Steuereinheiten können Teil eines Steuergerätes sein, mit denen eine im folgenden noch näher zu erläuternde koordinierte Steuerung der einzelnen Bänke 1, 2, 3 durchgeführt wird. Die Stellmittel umfassen beispielsweise separate Einspritzsysteme, Abgasrückführeinrichtungen oder in separaten Ansaugrohren angeordnete Drosselklappen. Auf die Darstellung der Stellmittel und des Steuergerätes beziehungsweise der Steuereinheiten ist zur besseren Übersichtlichkeit verzichtet worden.Furthermore, the individual banks 1, 2, 3 are assigned control units, which detect signals provided by the sensor system and, depending on these signals, output control variables for the actuating means assigned to the individual banks 1, 2, 3. The control units can be part of a control unit with which a coordinated control of the individual banks 1, 2, 3, which will be explained in more detail below, is carried out. The actuating means include, for example, separate injection systems, exhaust gas recirculation devices or throttle valves arranged in separate intake pipes. For the sake of clarity, the positioning means and the control device or the control units are not shown.
Ein Katalysatorzustand K der NOx-Speicherkatalysatoren 11, 12, 13 kann beispielsweise anhand seiner Schwefelbeladung, NOx-Beladung,A catalytic converter state K of the NO x storage catalytic converters 11, 12, 13 can be determined, for example, on the basis of its sulfur loading, NO x loading,
Katalysatortemperatur oder seines irreversiblen Schädigungsgrades charakterisiert werden. Die notwendige Sensorik und die entsprechenden Verfahren zur Ermittlung des Katalysatorzustandes K sind bekannt und sollen daher an dieser Stelle nicht mehr näher erläutert werden. Bekannt sind auch die Maßnahmen Mj, die zum optimalen und dauerhaften Betrieb der NOx-Speicherkatalysatoren 21, 22, 23 ergriffen werden müssen. So können in dem Steuergerät Prozeduren hinterlegt werden, die zur Durchführung einer NOx-Regeneration, einer Entschwefelung und einer Katalysatorheizung dienen. Diese Prozeduren gehen bei der erfindungsgemäßen Ausgestaltung der Steuerung für mehrflutige Abgasreinigungsanlagen 60 einher mit einer Änderung der Betriebsmodi der Bänke 1, 2, 3.Catalyst temperature or its irreversible degree of damage can be characterized. The necessary sensors and the corresponding methods for determining the catalytic converter state K are known and are therefore not to be explained in more detail here. The measures M j are also known, which must be taken for optimal and permanent operation of the NO x storage catalytic converters 21, 22, 23. In this way, procedures can be stored in the control unit which are used to carry out NO x regeneration, desulfurization and catalyst heating. In the configuration of the control for multi-flow exhaust gas cleaning systems 60 according to the invention, these procedures are accompanied by a change in the operating modes of banks 1, 2, 3.
Die Figur 1 sowie die im folgenden noch näher zu erläuternden Figuren 3 und 5 beinhalten ferner ein Zeitfenster, in dem jeweils dargestellt ist, welche Maßnahmen Mj in den einzelnen Bänken 1, 2, 3 jeweils gerade ergriffen werden. Dabei stehen Dreiecke für ein Ende der Katalysatorheizung, Hexaeder für einen Beginn der NOχ-Regeneration und Rauten für einen Beginn der Entschwefelung. Ausgefüllte Flächen zeigen an, wann die Maßnahmen Mj jeweils tatsächlich ergriffen wurden, während nicht ausgefüllte Zeichen anzeigen, wann die jeweilige Maßnahme Mj in völlig autarken Bänken 1, 2, 3 ergriffen wurde. Die Figur 6 zeigt ein Ablaufdiagramm für ein Verfahren zur Steuerung des Betriebs des Mehrzylindermotors 10, bei dem die Betriebsmodi jeder Bank 1, 2, 3 in Abhängigkeit von einem Koordinationsmodus sowie dem Katalysatorzustand K und/oder einer Schadstoffemission EM in allen Abgassträngen 11, 12, 13 durchgeführt werden können (koordinierte Steuerung). Zunächst werden Zustands- und Betriebsparameter P des Kraftfahrzeuges und seiner Aggregate in das Steuergerät eingelesen. Die Zustandsund Betriebsparameter P können beispielsweise einen Fahrerwunsch FW, eine Lastsituation LS, eine NOx-Gesamtemission GE stromab aller Abgasstränge 11, 12, 13, eine NOx-Rohemission RE des Mehrzylindermotors 10 und den Katalysatorzustand K umfassen. Die genannten Parameter P werden beispielsweise in ein Kennfeld aufgenommen, das der Bestimmung des Koordinationsmodus dient.FIG. 1 and FIGS. 3 and 5 to be explained in more detail below also contain a time window in which it is shown which measures Mj are currently being taken in the individual banks 1, 2, 3. Triangles stand for an end of the catalyst heating, hexahedra for a start of NO χ regeneration and diamonds for a start of desulfurization. Filled areas indicate when the measures Mj were actually taken, while unfilled characters indicate when the respective measure Mj was taken in completely self-sufficient banks 1, 2, 3. FIG. 6 shows a flowchart for a method for controlling the operation of the multi-cylinder engine 10, in which the operating modes of each bank 1, 2, 3 as a function of a coordination mode and the catalytic converter state K and / or a pollutant emission EM in all exhaust lines 11, 12, 13 can be carried out (coordinated control). First, status and operating parameters P of the motor vehicle and its aggregates are read into the control unit. The Zustandsund operating parameters P can be, for example, a driver's request FW, a load situation LS, a total NOx emissions GE downstream of all the exhaust pipes 11, 12, 13, a NO x -Rohemission RE of the multi-cylinder engine 10 and the catalyst state K. The parameters P mentioned are recorded, for example, in a map which is used to determine the coordination mode.
Ohne an dieser Stelle bereits näher darauf einzugehen, kann der Koordinationsmodus ein autarker Modus A, ein dominanter Modus D, ein gewichteter Modus G oder ein interaktiver Modus I sein. Jeder dieser Modi bestimmt, wie die erfaßten Katalysatorzustände beziehungsweise Schadstoffemissionen zu bewerten sind. Dazu wird jeweils ein die Maßnahme Mj einleitender beziehungsweise beendender Impuls ermittelt. Der einleitende Impuls kann derart bestimmt werden, daß zunächst entsprechend dem ermittelten Modus ein Kennwert KWj D vorgegeben wird, der mit einem Schwellenwert SWj D verglichen wird. Übersteigt der Kennwert KWj b den Schwellenwert SW, D, so wird die Maßnahme Mj initiiert. Ein Abbruch der Maßnahme Mj erfolgt in nahezu äquivalenter Weise nach Ausgabe eines Stopimpulses. Dazu werden Kennwerte KWj e beziehungsweise Schwellenwerte SWj e miteinander verglichen.Without going into more detail at this point, the coordination mode can be an autonomous mode A, a dominant mode D, a weighted mode G or an interactive mode I. Each of these modes determines how the recorded catalyst states or pollutant emissions are to be evaluated. For this purpose, a pulse that initiates or ends the measure Mj is determined. The introductory pulse can be determined in such a way that a characteristic value KW j D is initially specified in accordance with the determined mode, which is compared with a threshold value SW j D. If the characteristic value KWj b exceeds the threshold value SW, D , the measure Mj is initiated. Measure Mj is terminated in an almost equivalent manner after a stop pulse has been issued. For this purpose, characteristic values KWj e and threshold values SWj e are compared with one another.
Dem Zeitfenster der Figur 1 läßt sich sowohl der interaktive Modus I als auch der autarke Modus A für die exemplarisch gewählten Maßnahmen Mj entnehmen. Der autarke Modus A entspricht dabei dem nicht ausgefüllten Zeichen beziehungsweise dem gestrichelt umrandeten ausgefüllten Zeichen. Ein solcher Modus ist immer dann bevorzugt, wenn relativ konstante Betriebsbedingungen des Kraftfahrzeuges vorliegen und eine möglichst geringe Schadstoffemission erwünscht ist. Da sich ein solcher Modus nur unter einem erheblichen Rechenaufwand mit vorhandenen Motorsteuersystemen zur Antriebssteuerung koordinieren läßt, ist dieser Modus besonders vorteilhaft, wenn Phasen konstanter Last vorliegen.Both the interactive mode I and the autonomous mode A for the measures Mj selected as an example can be seen from the time window in FIG. The self-sufficient mode A corresponds to the unfilled character or the dashed outline. Such a mode is always preferred when relatively constant operating conditions of the motor vehicle are present and the lowest possible emission of pollutants is desired. Since such a mode can only be coordinated with existing engine control systems for drive control with a considerable amount of computation, this mode is particularly advantageous when there are phases of constant load.
Im interaktiven Modus I wird der Katalysatorzustand K und/oder die Schadstoffemission EM in jedem Abgasstrang 11, 12, 13 erfaßt und zur synchronen Steuerung aller Bänke 1, 2, 3 herangezogen. So wird beispielsweise das Katalysatorheizen erst beendet, wenn eine Mindest-Betriebstemperatur der NOx-Speicherkatalysatoren 21, 22, 23 in allen Abgassträngen 11, 12, 13 erreicht ist. Alle Maßnahmen Mj werden demzufolge gleichzeitig in allen Bänken 1, 2, 3 eingeleitet und beendet, so daß sichergestellt werden kann, daß zum Betrieb der Abgasreinigungsanlage 60 optimale Bedingungen herrschen.In interactive mode I, the catalytic converter state K and / or the pollutant emission EM in each exhaust line 11, 12, 13 is recorded and used for the synchronous control of all banks 1, 2, 3. For example, the catalyst heating is only ended, when a minimum operating temperature of the NO x storage catalytic converters 21, 22, 23 is reached in all exhaust lines 11, 12, 13. All measures Mj are consequently initiated and ended simultaneously in all banks 1, 2, 3, so that it can be ensured that optimum conditions prevail for the operation of the exhaust gas cleaning system 60.
Die Figur 2 zeigt einen Verlauf der Luftverhältnisse in den einzelnen Abgassträngen 11 , 12, 13 stromab der Katalysatoren 21, 22, 23 bei einer NOχ-Regeneration. Es herrschen in allen Bänken 1 , 2, 3 magere Bedingungen. Zu einem Zeitpunkt T-j besteht eine Regenerationsnotwendigkeit für alle drei Katalysatoren 21, 22, 23, und die Zusammensetzung des Abgases wird entsprechend einer fetten Sollvorgabe verändert. Während der Regeneration verharrt der Lambdawert stromab der Katalysatoren 21, 22, 23 zunächst auf einem stöchiometrischen Wert. In den Bänken 1 und 3 würde ein die Regeneration beendender Impuls bereits zu den Zeitpunkten T2 und T3 vorliegen, nämlich nach Erreichen eines fetten Schwellenwertes SWf Statt aber direkt wieder in einen Normalbetrieb überzugehen, verharren die Bänke 1 und 3 im stöchiometrischen Betrieb, bis auch in der Bank 2 zum Zeitpunkt T4 die Regeneration abgeschlossen ist.FIG. 2 shows a course of the air conditions in the individual exhaust lines 11, 12, 13 downstream of the catalysts 21, 22, 23 in the case of NOχ regeneration. There are lean conditions in all banks 1, 2, 3. At a time T- j there is a need for regeneration for all three catalysts 21, 22, 23, and the composition of the exhaust gas is changed in accordance with a rich target specification. During the regeneration, the lambda value downstream of the catalysts 21, 22, 23 initially remains at a stoichiometric value. Banks 1 and 3 would already have a pulse ending the regeneration at times T2 and T3, namely after reaching a rich threshold value SWf, but instead of going straight back to normal operation, banks 1 and 3 remain in stoichiometric operation, even in Bank 2 the regeneration is completed at time T4.
Die Figur 3 zeigt unter anderem ein Zeitfenster eines gewichteten Modus G. Die nicht ausgefüllten Zeichen der unteren drei Reihen zeigen zur Verdeutlichung wieder den autarken Modus A, während die in der oberen Reihe aufgezeigten, ausgefüllten Zeichen die Zeitpunkte charakterisieren, an denen die Maßnahme Mj in jeder der Bänke 1, 2, 3 ergriffen wird. Im gewichteten Modus G wird der Katalysatorzustand K und/oder die Schadstoffemission in jedem Abgasstrang 11, 12, 13 erfaßt und mit einem Wichtungsfaktor Fw multipliziert. Die gewichteten Größen werden anschließend gemittelt (Mittelwert MW), wobei der Mittelwert MW dann zur Synchronsteuerung aller Bänke 1, 2, 3 herangezogen wird. Er entspricht dann jeweils den Kennwerten KWj D beziehungsweise KWj e der Figur 6.FIG. 3 shows, inter alia, a time window of a weighted mode G. The characters in the lower three rows which have not been filled in again show the self-sufficient mode A for clarification, while the characters in the upper row which are filled in characterize the times at which the measure Mj in each of banks 1, 2, 3 is taken. In the weighted mode G, the catalytic converter state K and / or the pollutant emission in each exhaust line 11, 12, 13 is recorded and multiplied by a weighting factor F w . The weighted quantities are then averaged (mean value MW), the mean value MW then being used for synchronous control of all banks 1, 2, 3. It then corresponds to the characteristic values KW j D and KWj e of FIG. 6.
Der Wichtungsfaktor Fw kann im einfachsten Falle bloß ein Verhältnis der Anzahl der Zylinder 50 in den einzelnen Bänken 1, 2, 3 zueinander berücksichtigen, so daß er in diesem Falle je ein Drittel betragen würde. Zusätzlich ist aber auch denkbar, daß er in Abhängigkeit von Katalysatorzustand K und gegebenenfalls der jeweils durchzuführenden Prozedur bestimmt wird. Auf diese Weise kann den tatsächlichen Verhältnissen besonders einfach Rechnung getragen werden. Ist beispielsweise der Katalysator 21 der Bank 1 aufgrund einer thermischen Schädigung in seiner Speicherkapazität bereits stark eingeschränkt, so würde dies zu sehr häufigen Regenerationen und damit erheblichen Kraftstoffmehrverbräuchen führen. In einem solchen Fall wird sinnvollerweise der Wichtungsfaktor Fw für die Bank 1 verkleinert, so daß der Einfluß der verbleibenden Bänke 2 und 3 größer wird.In the simplest case, the weighting factor F w can only take into account a ratio of the number of cylinders 50 in the individual banks 1, 2, 3 to one another, so that in this case it would be one third each. In addition, it is also conceivable that it is determined depending on the catalyst state K and, if appropriate, the procedure to be carried out in each case. In this way, the actual conditions can be taken into account particularly easily. For example, if the catalytic converter 21 of bank 1 is already severely limited in its storage capacity due to thermal damage, this would become too frequent Lead to regeneration and thus considerable additional fuel consumption. In such a case, the weighting factor F w for bank 1 is expediently reduced, so that the influence of the remaining banks 2 and 3 is greater.
In der Figur 4 sind die Verläufe einer NOx-Emission in den Abgassträngen 11, 12, 13 stromab der Katalysatoren 21, 22, 23 (Kurven 76, 78, 80) und ein gemittelter Verlauf nach dem gewichteten Modus G (Kurve 82) dargestellt. In einem autarken System würden bereits in den Punkten T5 und T5 NOx-Regenerationsmaßnahmen eingeleitet werden, wenn nämlich ein Schwellenwert SWR N<D fur die NOχ-Regeneration in der jeweiligen Bank überschritten ist. Werden die NOx-Emissionen wie geschildert gemittelt, wird ab einem Zeitpunkt T7 die Regeneration initiiert, auch wenn in einer der Bänke noch NOx-Speicherkapazität vorhanden ist.FIG. 4 shows the profiles of NO x emissions in the exhaust gas lines 11, 12, 13 downstream of the catalysts 21, 22, 23 (curves 76, 78, 80) and an average profile according to the weighted mode G (curve 82) , In a self-sufficient system, NO x regeneration measures would already be initiated at points T5 and T5 if a threshold value SWR N <D for the NOχ regeneration in the respective bank was exceeded. If the NO x emissions are averaged as described, the regeneration is initiated from a time T7, even if NO x storage capacity is still present in one of the banks.
Der Figur 5 ist ein Zeitfenster für den dominanten Modus D zu entnehmen. Im dominanten Modus D wird der Katalysatorzustand K und/oder die Schadstoffemission EM nur in einem der Abgasstränge 11, 12 oder 13 erfaßt und zur Synchronsteuerung aller Bänke 1, 2, 3 herangezogen. In diesem Fall ist exemplarisch der Bank 1 eine solche dominante Stellung eingeräumt worden. Eine solche Maßnahme kann immer dann ergriffen werden, wenn infolge einer betriebsbedingten Situation oder durch dauerhafte bauliche Veränderungen die Schadstoffemission der Bank 1 die der anderen Bänke bei weitem übersteigt. FIG. 5 shows a time window for dominant mode D. In the dominant mode D, the catalytic converter state K and / or the pollutant emission EM is only detected in one of the exhaust gas lines 11, 12 or 13 and is used for synchronous control of all banks 1, 2, 3. In this case, Bank 1 has been given such a dominant position as an example. Such a measure can always be taken if, due to an operational situation or due to permanent structural changes, the pollutant emissions of Bank 1 far exceed those of the other banks.
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10003903 | 2000-01-29 | ||
DE2000103903 DE10003903B4 (en) | 2000-01-29 | 2000-01-29 | Device and method for controlling an operation of a multi-cylinder engine for motor vehicles with a multi-flow exhaust gas purification system |
PCT/EP2001/000542 WO2001055574A2 (en) | 2000-01-29 | 2001-01-18 | Device and method for controlling operation of a multi-cylinder engine for motor vehicles having a multi-flow emission control system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1255922A2 true EP1255922A2 (en) | 2002-11-13 |
EP1255922B1 EP1255922B1 (en) | 2010-10-06 |
Family
ID=7629171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01902335A Expired - Lifetime EP1255922B1 (en) | 2000-01-29 | 2001-01-18 | Device and method for controlling operation of a multi-cylinder engine for motor vehicles having a multi-flow emission control system |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1255922B1 (en) |
AU (1) | AU2001230194A1 (en) |
DE (2) | DE10003903B4 (en) |
WO (1) | WO2001055574A2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2003220076A1 (en) | 2002-03-07 | 2003-09-22 | Honeywell International Inc. | System to improve after-treatment regeneration |
FR2846036B1 (en) * | 2002-10-21 | 2009-03-06 | Volkswagen Ag | METHOD FOR EXECUTING NOx REGENERATION AND MULTI-CYLINDER ENGINE WITH MULTI-FLOW EXHAUST GAS PURIFYING DEVICE |
DE10260886B4 (en) * | 2002-10-21 | 2012-10-11 | Volkswagen Ag | Method for carrying out a NOx regeneration and multi-cylinder engine with multi-flow exhaust gas purification system |
US6882928B2 (en) * | 2003-04-08 | 2005-04-19 | General Motors Corporation | Enhanced diagnosis of a multi-banked catalyst exhaust system |
DE10347446B4 (en) * | 2003-10-13 | 2010-01-07 | Audi Ag | Method for heating and desulfating a main catalytic converter of a multi-flow exhaust gas layer of a multi-cylinder internal combustion engine of a vehicle, in particular of a motor vehicle |
DE10349855B4 (en) * | 2003-10-22 | 2013-09-05 | Volkswagen Ag | Method and device for desulfurization of a catalyst |
FR2976973B1 (en) * | 2011-06-22 | 2016-02-05 | Delphi Automotive Systems Lux | METHOD OF CONTROLLING AN INTERNAL COMBUSTION ENGINE |
CN106909801A (en) * | 2017-04-17 | 2017-06-30 | 中国神华能源股份有限公司 | Calculate the method and system of the effective small hourly value of gaseous contaminant |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3740238A1 (en) * | 1986-12-04 | 1988-06-23 | Audi Ag | EXHAUST SYSTEM FOR AN INTERNAL COMBUSTION ENGINE WITH TWO CYLINDER BENCHES |
DE3717141A1 (en) * | 1987-05-21 | 1988-12-15 | Webasto Ag Fahrzeugtechnik | EXHAUST SYSTEM FOR MULTI-CYLINDER DIESEL INTERNAL COMBUSTION ENGINES |
DE3721810A1 (en) * | 1987-07-02 | 1989-01-12 | Audi Ag | Exhaust system for an internal combustion engine with two banks of cylinders |
DE3821357A1 (en) * | 1988-06-24 | 1990-02-15 | Bosch Gmbh Robert | METHOD AND DEVICE FOR LAMB CONTROL WITH SEVERAL PROBES |
DE4334557A1 (en) * | 1993-10-11 | 1995-04-13 | Bayerische Motoren Werke Ag | Device for idle control of a motor vehicle internal combustion engine |
DE19503852C2 (en) * | 1994-02-09 | 2000-01-27 | Fuji Heavy Ind Ltd | Air-fuel ratio control device and method for controlling the air-fuel ratio of an engine |
JPH07224703A (en) * | 1994-02-09 | 1995-08-22 | Fuji Heavy Ind Ltd | Air-fuel ratio control method |
DE4444098A1 (en) * | 1994-12-10 | 1996-06-13 | Opel Adam Ag | Internal combustion engine with two cylinder banks |
DE69636436T2 (en) * | 1995-11-17 | 2007-08-16 | Toyota Jidosha Kabushiki Kaisha, Toyota | EXHAUST EMISSION CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINES |
-
2000
- 2000-01-29 DE DE2000103903 patent/DE10003903B4/en not_active Expired - Lifetime
-
2001
- 2001-01-18 WO PCT/EP2001/000542 patent/WO2001055574A2/en active Application Filing
- 2001-01-18 DE DE50115654T patent/DE50115654D1/en not_active Expired - Lifetime
- 2001-01-18 EP EP01902335A patent/EP1255922B1/en not_active Expired - Lifetime
- 2001-01-18 AU AU2001230194A patent/AU2001230194A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO0155574A2 * |
Also Published As
Publication number | Publication date |
---|---|
WO2001055574A2 (en) | 2001-08-02 |
WO2001055574A3 (en) | 2002-01-17 |
DE10003903B4 (en) | 2009-12-17 |
AU2001230194A1 (en) | 2001-08-07 |
DE10003903A1 (en) | 2001-08-02 |
DE50115654D1 (en) | 2010-11-18 |
EP1255922B1 (en) | 2010-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19816276C2 (en) | Method and device for operating an internal combustion engine | |
EP1630394A2 (en) | Diesel engine | |
DE10126455B4 (en) | Process for desulfating a nitrogen oxide storage catalyst | |
EP1194683B1 (en) | Method for controlling the operating mode of an internal combustion engine | |
WO2001061162A1 (en) | Device and method for determining the need for regeneration in a nox storage catalyst | |
DE4325307C2 (en) | Method for controlling the fuel supply in a mixture-compressing internal combustion engine | |
EP1255922B1 (en) | Device and method for controlling operation of a multi-cylinder engine for motor vehicles having a multi-flow emission control system | |
DE10114456B4 (en) | Apparatus and method for coordinating exhaust gas-relevant measures | |
DE19926146A1 (en) | Method for initiating and monitoring desulfurization of at least one NOx storage catalytic converter arranged in an exhaust gas duct of an internal combustion engine | |
DE10226873B4 (en) | Method for controlling the mode selection of an internal combustion engine | |
DE10153901B4 (en) | Method and device for desulfurization of a diesel engine downstream NOx storage catalyst | |
EP1297249B1 (en) | Method for operating an internal combustion engine in particular in a motor vehicle | |
EP1111208B1 (en) | Method for regulating a work mode of an internal combustion engine during regeneration of a storage type catalytic converter arranged in an exhaust channel | |
DE102016215386A1 (en) | Method for optimizing NOx emissions in a combined exhaust aftertreatment system | |
DE10029504A1 (en) | Operating diesel engine comprises after-injecting fuel temporarily offset from main injection in special operation mode so that injected fuel is combusted with fuel already dosed and ignited | |
DE10318116A1 (en) | Method for operating an internal combustion engine, in particular a motor vehicle | |
DE10330367A1 (en) | Method and device for desulfurization of a catalyst | |
DE19939988A1 (en) | Method for operating a diesel engine | |
DE10115962B4 (en) | Process for the desulfurization of an arranged in the exhaust line of an internal combustion engine NOx storage catalyst | |
DE10130053B4 (en) | Method and device for desulphurisation of a NOX storage catalytic converter | |
DE10018062A1 (en) | Multiple cylinder engine used for vehicles comprises multiple flooding exhaust gas purifier consisting of exhaust gas pipes into which one or more cylinders open, nitrogen oxides storage catalysts and gas sensor, and suction device | |
DE10010031B4 (en) | Method and device for carrying out a NOx regeneration of an arranged in an exhaust passage of an internal combustion engine NOx storage catalyst | |
DE10249609B4 (en) | Method for controlling a NOx storage catalytic converter | |
DE10115968A1 (en) | Process for heating a catalyst | |
DE10260886B4 (en) | Method for carrying out a NOx regeneration and multi-cylinder engine with multi-flow exhaust gas purification system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020829 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: POTT, EKKEHARD Inventor name: OTTE, JUERGEN Inventor name: SPIEGEL, LEO |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: POTT, EKKEHARD Inventor name: OTTE, JUERGEN Inventor name: SPIEGEL, LEO |
|
17Q | First examination report despatched |
Effective date: 20081124 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAC | Information related to communication of intention to grant a patent modified |
Free format text: ORIGINAL CODE: EPIDOSCIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50115654 Country of ref document: DE Date of ref document: 20101118 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50115654 Country of ref document: DE |
|
26N | No opposition filed |
Effective date: 20110707 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110118 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110131 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 50115654 Country of ref document: DE Effective date: 20110707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101006 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20130131 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50115654 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50115654 Country of ref document: DE Effective date: 20140801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140801 |