EP1220976B1 - Oscillating cooling circuit - Google Patents
Oscillating cooling circuit Download PDFInfo
- Publication number
- EP1220976B1 EP1220976B1 EP00972722A EP00972722A EP1220976B1 EP 1220976 B1 EP1220976 B1 EP 1220976B1 EP 00972722 A EP00972722 A EP 00972722A EP 00972722 A EP00972722 A EP 00972722A EP 1220976 B1 EP1220976 B1 EP 1220976B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling medium
- unit
- component
- cooling
- heat generating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 title claims description 16
- 239000002826 coolant Substances 0.000 claims description 80
- 238000000034 method Methods 0.000 claims description 13
- 238000002485 combustion reaction Methods 0.000 claims description 12
- 238000005338 heat storage Methods 0.000 claims description 9
- 239000000446 fuel Substances 0.000 claims description 5
- 230000001105 regulatory effect Effects 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 4
- 230000002441 reversible effect Effects 0.000 claims description 2
- 230000002123 temporal effect Effects 0.000 claims 5
- 230000003247 decreasing effect Effects 0.000 claims 1
- 239000000498 cooling water Substances 0.000 description 11
- 238000009826 distribution Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000013021 overheating Methods 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 230000007704 transition Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012208 gear oil Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P5/00—Pumping cooling-air or liquid coolants
- F01P5/10—Pumping liquid coolant; Arrangements of coolant pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
- F01P7/164—Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P5/00—Pumping cooling-air or liquid coolants
- F01P5/10—Pumping liquid coolant; Arrangements of coolant pumps
- F01P5/12—Pump-driving arrangements
- F01P2005/125—Driving auxiliary pumps electrically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P2007/146—Controlling of coolant flow the coolant being liquid using valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
- F01P11/14—Indicating devices; Other safety devices
- F01P2011/205—Indicating devices; Other safety devices using heat-accumulators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2025/00—Measuring
- F01P2025/08—Temperature
- F01P2025/46—Engine parts temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2037/00—Controlling
- F01P2037/02—Controlling starting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2060/00—Cooling circuits using auxiliaries
- F01P2060/04—Lubricant cooler
- F01P2060/045—Lubricant cooler for transmissions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
- F01P7/167—Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
Definitions
- the present invention relates to a device with a heat generating unit and with a cooling system, such as internal combustion engines, Fuel cells and / or transmissions.
- a cooling system for example one Cooling water circuit in which the cooling medium in the circuit through the device for removing the there resulting heat is conducted.
- a water pump the water pump with the Starting the engine and pumping up Start on cooling water by the engine.
- DE 38 13 217 discloses C2 a temperature-controlled electromagnetic Diaphragm water pump, which only at a cylinder cooling water temperature of 80 ° C put into operation becomes. This avoids the during cold start Cooling by means of the cooling water circuit.
- a disadvantage of this method is that heat generating units, such as internal combustion engines, even during the warm-up phase an uneven heat distribution and so-called "hot spots", for example in the area of Have exhaust valves in which the engine is extremely is heated quickly.
- a shutdown of the cooling circuit here leads to a very local overheating of the engine and possibly to destroy the exhaust valves.
- a complete shutdown of the water pump, as disclosed in DE 38 13 217 C2 is therefore not meaningful.
- the object of the present invention is therefore a Device with a heat generating unit for To make available one of the respective operating status adapted to the device cooling the Unit is effected without local overheating to accept.
- the device has a heat generating unit and a cooling system with a cooling medium that flows in or along the unit, for example by an engine block.
- the flow rate of the cooling medium in or on the unit in size and / or direction can be modulated, the flow rate can be regulated twice.
- a first component the effective flow rate on average over time, which is a coolant transport through or along the heat-generating Unit and thus heat dissipation, corresponds, adjustable.
- it is possible to switch the cooling water circuit on or off, i.e. with a first component 0 or operate a certain value other than 0 or adjusted the cooling water circuit between these values the temperature and heat generation of the unit, to regulate.
- the flow rate of the cooling medium can continue with different amplitude of the second component can be modulated or undulated.
- the modulation amplitude of the second components for a short time regardless of the size of the first component be increased to make the "hot spots" more effective cool and to effectively equalize the To achieve heat distribution in the unit.
- adjustable electric pumps which advantageously switchable from forward to reverse are.
- adjustable mechanical pumps with only one Pumping direction can be used provided they a corresponding mechanical switch, for example a rotary valve, is connected downstream.
- a corresponding mechanical switch for example a rotary valve
- Controlling the modulation of the second component can be via a time program, for example for the Cold start operation, via a temperature sensor on any Location, for example in the cylinder head gasket, in their surroundings the "hot spots" Internal combustion engines are controlled.
- this device to be further trained in that a latent heat storage is provided over the front or a certain percentage during the cold start phase the cooling medium is heated and then possibly oscillating, in the heat generating Unit is transported.
- the latent Heat stores not the cooling medium of the whole Cooling water circuit, but only one Fraction of the cooling medium to be heated. This makes possible a higher efficiency of the latent heat storage.
- the heat accumulator can be arranged in this way be that the cooling medium from the unit into the heat accumulator and headed back to the unit becomes.
- the coolant flows from the coolant pump 2 via the feed lines 12 to the rotary valve 3 and there via an inlet 22, a passage 15 and an outlet 23 to a supply line 11.
- the supply line 11 is connected to the heat generating unit 1.
- the coolant enters the rotary valve 3 from the heat-generating unit 1 via a discharge line 10, an inlet 20 and flows through the rotary valve 3 via a connecting line 20 to its outlet 21, from where it flows back to the coolant pump 2 via a discharge line 13. If the coolant pump 2 is now put into operation, there is a constant coolant flow through the heat-generating unit 1.
- the volume of the coolant hatched in FIG. 1 is oscillated back and forth since the rotary valve 3 the flow direction in lines 10 and 11 periodically reverses. Depending on the speed of the rotary valve, the oscillation is faster or slower. If the individual positions of the rotary valve continue to be maintained for different lengths of time, an average flow rate can occur v (first component of the flow rate) in a direction in which an oscillating movement (second component of the flow rate) of the coolant is modulated.
- FIG. 2 shows a further device in the corresponding Components with corresponding reference numerals are provided as in Figure 1 and their description is therefore omitted.
- a latent heat store 30 is present in FIG. 2, the coolant from the heat generating unit 1 is supplied via a coolant supply 31, the the latent heat storage via a coolant drain 32 leaves again and to the heat generating Unit 1 is returned.
- Figure 3 shows a further device, wherein in Figure 3 several heat generating units 1.1 and 1.2 are provided. Each of these units is unique Rotary valve 3.1 or 3.2 for independent control the modulation (first component) and flow velocity (second component) of the cooling medium for assigned to each of the heat generating units 1.1 and 1.2.
- the function of the individual components in Figure 3 corresponds to the function of the components in Figure 1, so that they have corresponding reference numerals are designated and for the description of the function reference is made to the description of FIG. 1.
- FIG. 4 shows various forms of periodic change in speed of the coolant in or on the heat-generating unit, as can be generated for example with the device according to FIG. 1.
- FIG. 4A shows a smooth back and forth movement of the coolant, the average speed v of the coolant, ie its first component is zero. This operation is carried out, for example, at the beginning of the cold start phase. The speed of the coolant is constant in one valve position and is reversed when the valve is turned to the next valve position. In this operation, almost all of the heat of the heat-generating unit 1 remains within this unit 1, but an equal heat distribution is brought about in the unit and so-called "hot spots" are cooled.
- FIG. 4B shows an asymmetrical speed distribution of the coolant, which results in an average speed v , that is, the first component of the dilution rate of the coolant is greater than 0.
- the rotary valve is left in one of the positions for a longer time than in the other position, so that the flow rate is maintained longer in one direction than in the other. This results in a certain heat removal from the heat generating unit 1, but due to the periodic fluctuations in the flow rate, ie its second component, good cooling of the "hot spots" is achieved.
- Such operation can occur, for example, in the transition from the cold start phase of an internal combustion engine to the continuous operation phase.
- Figure 4C shows such a transition of heat generating unit 1 from the cold start phase to Reaching the operating temperature.
- This example was made over time also resized the first component, where the second periodic component of flow rate was regulated independently of this.
- FIG. 4D shows the control of the coolant flow in FIG another example.
- the corresponding critical temperatures of the "hot spots "or the heat generating unit 1, for example an internal combustion engine, for example through temperature sensors in the cylinder head gasket can be arranged, detected.
- This data is then used to control the rotary valves and thus used to control the coolant flow.
- Figure 5 shows various forms of speed modulation (ie its direction and amount) of the coolant in or on the heat-generating unit, as can be generated for example by means of an electrically controllable pump instead of a mechanical pump with a rotary valve.
- Figure 5A shows a smooth oscillating reciprocation of the coolant, the mean speed v of the coolant is zero. This operation is carried out, for example, at the beginning of the cold start phase in order to leave the heat generated in the heat-generating unit 1 within the unit 1, but to bring about a uniform heat distribution in the unit and to effectively cool so-called "hot spots".
- FIG. 5B shows the operation during the normal operating state with the operating temperature, with here an even flow of the coolant v > 0, ie a modulation, ie a second component or part of the flow rate, is applied to the first component or part of the flow rate.
- FIG. 5C shows the modulation of a uniform coolant flow v > 0 with different amplitudes.
- Such an amplitude modulation is useful, for example, when the "hot spots" have to be cooled more by increased heat generation in the engine, for example with increased power, without actually requiring an increased flow of coolant through the heat-generating unit.
- FIG. 5D describes the transition of a heat-generating unit, for example an internal combustion engine, from a cold start to when the operating temperature is reached.
- the operating temperature is reached, there is an effective mean coolant flow, ie v > 0 which in turn, however, has a slight modulation, ie a second component for equalizing the temperatures within the engine block.
- Figure 5E shows the modulation of the coolant flow with a temperature-dependent control.
- the mean directional flow v of the cooling medium, but modulation is applied to this flow to cool the "hot spots". If the temperature T exceeds the limit temperature T G , the flow rate becomes v of the coolant is increased to dissipate a maximum of heat generated and the modulation is omitted.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air-Conditioning For Vehicles (AREA)
Description
Die vorliegende Erfindung bezieht sich auf eine Vorrichtung mit einer Wärme erzeugenden Einheit und mit einem Kühlsystem, wie beispielsweise Verbrennungskraftmaschinen, Brennstoffzellen und/oder Getrieben.The present invention relates to a device with a heat generating unit and with a cooling system, such as internal combustion engines, Fuel cells and / or transmissions.
Vorrichtungen mit Wärme erzeugenden Einheiten, wie beispielsweise Verbrennungsmotoren, die bei einer erhöhten Betriebstemperatur betrieben werden, weisen gewöhnlich ein Kühlsystem auf, beispielsweise einen Kühlwasserkreislauf, bei dem das Kühlmedium im Kreislauf durch die Vorrichtung zur Abführung der dort entstehenden Wärme geleitet wird. Nach dem Stand der Technik wird für Verbrennungsmotoren gewöhnlich Wasser als Kühlmedium verwendet und der Wasserkreislauf wird durch eine Wasserpumpe angetrieben. Dabei nimmt nach dem Stand der Technik die Wasserpumpe mit dem Anlassen des Motors ihren Betrieb auf und pumpt von Beginn an Kühlwasser durch den Motor. Devices with heat generating units, such as for example, internal combustion engines that are at an elevated Operating temperature usually a cooling system, for example one Cooling water circuit in which the cooling medium in the circuit through the device for removing the there resulting heat is conducted. According to the state of the Technology is usually water for internal combustion engines used as a cooling medium and the water cycle is powered by a water pump. It takes according to the prior art, the water pump with the Starting the engine and pumping up Start on cooling water by the engine.
Dies hat jedoch den Nachteil, daß auch ein kalter Motor in der Kaltstartphase völlig unnötig gekühlt wird und die Warmlaufphase des Motors verlängert wird, mit allen Nachteilen für den Schadstoffausstoß und den Kraftstoffverbrauch während der Warmlaufphase.However, this has the disadvantage that a cold engine is cooled unnecessarily in the cold start phase and the engine warm-up phase is extended with all disadvantages for pollutant emissions and Fuel consumption during the warm-up phase.
Zur Lösung dieser Probleme offenbart die DE 38 13 217 C2 eine temperaturabhängig geregelte elektromagnetische Membranwasserpumpe, die erst bei einer Zylinderkühlwassertemperatur von 80 °C in Betrieb gesetzt wird. Dadurch unterbleibt während des Kaltstarts die Kühlung mittels des Kühlwasserkreislaufes.To solve these problems, DE 38 13 217 discloses C2 a temperature-controlled electromagnetic Diaphragm water pump, which only at a cylinder cooling water temperature of 80 ° C put into operation becomes. This avoids the during cold start Cooling by means of the cooling water circuit.
Nachteilig an diesem Verfahren ist nunmehr, daß Wärme erzeugende Einheiten, wie beispielsweise Verbrennungsmotoren, auch schon bereits während der Warmlaufphase eine ungleichmäßige Wärmeverteilung und sogenannte "hot spots", beispielsweise im Bereich der Auslaßventile, aufweisen, in denen der Motor äußerst rasch erhitzt wird. Ein Abstellen des Kühlkreislaufes führt hier zu einer sehr lokalen Überhitzung des Motors und gegebenenfalls zur Zerstörung der Auslaßventile. Eine vollständige Abstellung der Wasserpumpe, wie in der DE 38 13 217 C2 offenbart, ist daher nicht sinnvoll.A disadvantage of this method is that heat generating units, such as internal combustion engines, even during the warm-up phase an uneven heat distribution and so-called "hot spots", for example in the area of Have exhaust valves in which the engine is extremely is heated quickly. A shutdown of the cooling circuit here leads to a very local overheating of the engine and possibly to destroy the exhaust valves. A complete shutdown of the water pump, as disclosed in DE 38 13 217 C2 is therefore not meaningful.
Aufgabe der vorliegenden Erfindung ist es daher, eine Vorrichtung mit einer Wärme erzeugenden Einheit zur Verfügung zu stellen, bei der eine den jeweiligen Betriebszustand der Vorrichtung angepaßte Kühlung der Einheit bewirkt wird, ohne dabei lokale Überhitzung in Kauf zu nehmen.The object of the present invention is therefore a Device with a heat generating unit for To make available one of the respective operating status adapted to the device cooling the Unit is effected without local overheating to accept.
Diese Aufgabe wird durch die Vorrichtung nach Anspruch
1 sowie das Verfahren nach Anspruch 11 gelöst. This object is achieved by the device according to claim
1 and the method according to
Vorteilhafte Weiterbildungen der erfindungsgemäßen Vorrichtungen und des erfindungsgemäßen Verfahrens werden in den jeweiligen abhängigen Ansprüchen beschrieben.Advantageous further developments of the invention Devices and the method according to the invention are described in the respective dependent claims.
Die Vorrichtung nach der vorliegenden Erfindung weist eine Wärme erzeugende Einheit und ein Kühlsystem mit einem Kühlmedium auf, das in oder an der Einheit entlangströmt, beispielsweise durch einen Motorblock. Erfindungsgemäß sind dabei die Flußgeschwindigkeit des Kühlmediums in oder an der Einheit in Größe und/oder Richtung modulierbar, wobei die Fließgeschwindigkeit zweifach regelbar ist. Zum einen ist eine erste Komponente, die der effektiven Fließgeschwindigkeit im zeitlichen Mittel, die einen Kühlmitteltransport durch oder entlang der wärmeerzeugenden Einheit und damit einen Wärmeabtransport bewirkt, entspricht, einstellbar. So ist es beispielsweise möglich, den Kühlwasserkreislauf ein- oder auszuschalten, d.h. mit einer ersten Komponente = 0 oder einen bestimmten Wert ungleich 0 zu betreiben oder den Kühlwasserkreislauf zwischen diesen Werten, angepaßt an die Temperatur und Wärmeerzeugung der Einheit, zu regeln. Zum anderen ist unabhängig hiervon eine zweite periodische Komponente der Fließgeschwindigkeit einstellbar, deren zeitliches Mittel = 0 ist, d.h. keinen effektiven Kühlmitteltransport bewirkt. Diese zweite Komponente, die als "Modulation" der ersten Komponente überlagert wird, führt lediglich zu einer Gleichverteilung der Wärme innerhalb der Einheit. Die gesamten zeitlichen Mittel können dabei vorteilhafterweise über eine Periode der Modulation der zweiten Komponente oder ein beliebiges Vielfaches hiervon bestimmt werden. Andere zeitliche Mittel sind jedoch ebenfalls möglich. The device according to the present invention has a heat generating unit and a cooling system with a cooling medium that flows in or along the unit, for example by an engine block. According to the invention, the flow rate of the cooling medium in or on the unit in size and / or direction can be modulated, the flow rate can be regulated twice. For one thing a first component, the effective flow rate on average over time, which is a coolant transport through or along the heat-generating Unit and thus heat dissipation, corresponds, adjustable. For example, it is possible to switch the cooling water circuit on or off, i.e. with a first component = 0 or operate a certain value other than 0 or adjusted the cooling water circuit between these values the temperature and heat generation of the unit, to regulate. Second, it is independent of this a second periodic component of the flow rate adjustable, whose time average = 0, i.e. no effective coolant transport. This second component, called "modulation" of the first Component is superimposed only leads to an even distribution of heat within the unit. All of the time means can be used advantageously over a period of modulation the second component or any multiple be determined by this. Other time means are however also possible.
Der Kühlwasserkreislauf wird beispielsweise in der Startphase im wesentlichen ausgeschaltet (erste Komponente = 0) und lediglich eine oszillierende Bewegung (= zweite Komponente) des Kühlmediums durchgeführt. Dadurch verbleibt fast die gesamte in der Vorrichtung erzeugte Wärme innerhalb der Einheit, da das Kühlmedium sich lediglich geringfügig hin- und herbewegt. Dennoch ist eine Gleichverteilung der erzeugten Wärme innerhalb der Einheit, beispielsweise des Motorblocks gewährleistet, so daß für eine wirksame Kühlung der "hot spots" gesorgt ist. Insgesamt wird damit eine sehr rasche Durchwärmung der Einheit beim Start bewirkt, wobei die gefürchteten "hot spots" bei stehendem oder langsamem Kühlwasserkreislauf vermieden werden.The cooling water circuit is used, for example, in the Start phase essentially switched off (first component = 0) and only an oscillating movement (= second component) of the cooling medium. This leaves almost all of it in the device generated heat within the unit because that Coolant only moves back and forth slightly. Nevertheless, an even distribution of the generated Heat within the unit, such as the engine block guaranteed so that for effective Cooling of the "hot spots" is ensured. Overall will so that the unit heats up very quickly Start causes, with the dreaded "hot spots" at stationary or slow cooling water circuit avoided become.
Auch im Dauerbetrieb, nach Erreichen der Betriebstemperatur, kann die Strömungsgeschwindigkeit des Kühlmediums mittels der zweiten Komponente periodisch moduliert (onduliert) werden. Dadurch kann beispielsweise die effektive, mittlere Strömungsgeschwindigkeit des Kühlmediums (= erste Komponente) abgesenkt und folglich die Betriebstemperatur der Einheit erhöht werden, wobei durch die Modulation der Strömungsgeschwindigkeit (= zweite Komponente) dennoch eine wirksame Kühlung der "hot spots" bewirkt wird.Even in continuous operation, after reaching the operating temperature, can the flow rate of the cooling medium periodically modulated by means of the second component (undulated). This can, for example the effective, average flow velocity of the cooling medium (= first component) lowered and consequently increases the operating temperature of the unit be, by modulating the flow rate (= second component) nevertheless effective cooling of the "hot spots" is effected.
Durch die Modulation oder Ondulation der Strömungsgeschwindigkeit bei Betriebstemperatur kann weiterhin die Temperaturdifferenz zwischen dem Einlauf und dem Auslauf des Kühlmittels in oder an der Einheit reduziert werden.By modulating or undulating the flow velocity at operating temperature can continue the temperature difference between the inlet and the Leakage of coolant in or on the unit reduced become.
Die Strömungsgeschwindigkeit des Kühlmediums kann weiterhin auch mit unterschiedlicher Amplitude der zweiten Komponente moduliert bzw. onduliert werden. The flow rate of the cooling medium can continue with different amplitude of the second component can be modulated or undulated.
So kann beispielsweise bei erhöhter Wärmeproduktion kurzfristig die Modulationsamplitude der zweiten Komponenten unabhängig von der Größe der ersten Komponente erhöht werden, um die "hot spots" wirksamer zu kühlen und um eine wirksame Vergleichmäßigung der Wärmeverteilung in der Einheit zu erreichen.For example, with increased heat production the modulation amplitude of the second components for a short time regardless of the size of the first component be increased to make the "hot spots" more effective cool and to effectively equalize the To achieve heat distribution in the unit.
Um eine derartige Modulation (Ondulation) zu realisieren, eignen sich für den Kühlwasserkreislauf beispielsweise regelbare elektrische Pumpen, die vorteilhafterweise von Vorlauf auf Rücklauf umschaltbar sind. Auch regelbare mechanische Pumpen mit nur einer Pumprichtung können verwendet werden, sofern ihnen ein entsprechender mechanischer Umschalter, beispielsweise ein Drehventil, nachgeschaltet ist. In letzterem Falle können beispielsweise annähernd rechteckförmige Verläufe der Fließgeschwindigkeit des Kühlmediums erzeugt werden, während mit einer regelbaren elektrischen Pumpe beliebige Verläufe der Fließgeschwindigkeit des Kühlmediums, beispielsweise aus sinusförmige, realisiert werden können.In order to implement such a modulation (ondulation), are suitable for the cooling water circuit, for example adjustable electric pumps, which advantageously switchable from forward to reverse are. Also adjustable mechanical pumps with only one Pumping direction can be used provided they a corresponding mechanical switch, for example a rotary valve, is connected downstream. In the latter case, for example, approximately rectangular curves of the flow velocity of the Cooling medium are generated while using an adjustable electric pump any course of the Flow rate of the cooling medium, for example from sinusoidal, can be realized.
Die Steuerung der Modulation der zweiten Komponente kann über ein Zeitprogramm, beispielsweise für den Kaltstartbetrieb, über einen Temperatursensor an beliebiger Stelle, beispielsweise in der Zylinderkopfdichtung, in deren Umgebung sich die "hot spots" bei Verbrennungskraftmaschinen befinden, gesteuert werden.Controlling the modulation of the second component can be via a time program, for example for the Cold start operation, via a temperature sensor on any Location, for example in the cylinder head gasket, in their surroundings the "hot spots" Internal combustion engines are controlled.
In einer vorteilhaften Weiterbildung kann diese Vorrichtung dahingehend weitergebildet werden, daß ein latenter Wärmespeicher vorgesehen ist, über den vor oder während der Kaltstartphase ein bestimmter Anteil des Kühlmediums erwärmt wird und dieses anschließend, gegebenenfalls oszillierend, in die Wärme erzeugende Einheit transportiert wird. Dadurch muß von dem latenten Wärmespeicher nicht das Kühlmedium des gesamten Kühlwasserkreislaufs, sondern lediglich ein Bruchteil des Kühlmediums erwärmt werden. Dies ermöglicht eine höhere Effizienz des latenten Wärmespeichers. Der Wärmespeicher kann dabei so angeordnet sein, daß das Kühlmedium aus der Einheit in den Wärmespeicher und wieder zurück in die Einheit geleitet wird. Idealerweise befindet sich dabei der latente Wärmespeicher in der Mitte der Fließstrecke bzw. des Fließweges des Kühlmediums innerhalb der Wärme erzeugenden Einheit. Durch eine oszillierende Hin- und Herbewegung des Kühlmittels ist es dadurch möglich, die Wärme erzeugende Einheit vor oder während des Kaltstartbetriebs zu erwärmen, wobei die Verluste durch Totvolumina des Kühlmittels minimiert sind.In an advantageous development, this device to be further trained in that a latent heat storage is provided over the front or a certain percentage during the cold start phase the cooling medium is heated and then possibly oscillating, in the heat generating Unit is transported. This means that the latent Heat stores not the cooling medium of the whole Cooling water circuit, but only one Fraction of the cooling medium to be heated. this makes possible a higher efficiency of the latent heat storage. The heat accumulator can be arranged in this way be that the cooling medium from the unit into the heat accumulator and headed back to the unit becomes. Ideally, there is the latent Heat storage in the middle of the flow section or Flow path of the cooling medium within the heat generating Unit. Through an oscillating back and forth Moving the coolant it is possible the heat generating unit before or during the Cold start operation to heat up the losses are minimized by dead volumes of the coolant.
Im folgenden werden einige Beispiele einer erfindungsgemäßen Vorrichtung beschrieben werden.The following are some examples of an inventive one Device will be described.
Es zeigen:
- Figur 1
- eine Wärme erzeugende Vorrichtung;
Figur 2- eine weitere Wärme erzeugende Vorrichtung mit latentem Wärmespeicher;
Figur 3- Wärme erzeugende Vorrichtungen;
- Figur 4
- verschiedene Modulationsweisen für die Fließgeschwindigkeit des Kühlmediums;
- Figur 5
- verschiedene Modulationsweisen für die Flußgeschwindigkeit des Kühlmediums.
- Figure 1
- a heat generating device;
- Figure 2
- another heat generating device with latent heat storage;
- Figure 3
- Heat generating devices;
- Figure 4
- different modes of modulation for the flow rate of the cooling medium;
- Figure 5
- different modes of modulation for the flow rate of the cooling medium.
Figur 1 zeigt eine erfindungsgemäße Vorrichtung mit
einer Wärme erzeugenden Einheit 1, einer Kühlmittelpumpe
2 sowie einem Drehventil 3. Das Kühlmittel
fließt von der Kühlmittelpumpe 2 über die Zuleitungen
12 zu dem Drehventil 3 und dort über einen Einlaß 22,
einen Durchlaß 15 und einen Auslaß 23 zu einer Zuleitung
11. Die Zuleitung 11 ist mit der Wärme erzeugenden
Einheit 1 verbunden. Das Kühlmittel tritt aus der
Wärme erzeugenden Einheit 1 über eine Ableitung 10,
einen Einlaß 20 in das Drehventil 3 ein und fließt
durch das Drehventil 3 über eine Verbindungsleitung
20 zu dessen Auslaß 21, von wo es über eine Ableitung
13 zur Kühlmittelpumpe 2 zurückfließt. Wird nun die
Kühlmittelpumpe 2 in Betrieb gesetzt, so ergibt sich
ein konstanter Kühlmittelstrom durch die Wärme erzeugende
Einheit 1. Wird weiterhin das Drehventil 3 in
Betrieb genommen, so wird das in Figur 1 schraffiert
gezeichnete Volumen des Kühlmittels oszillierend hinund
herbewegt, da das Drehventil 3 die Strömungsrichtung
in den Leitungen 10 und 11 periodisch umkehrt.
Je nach Geschwindigkeit des Drehventiles ergibt sich
eine raschere oder langsamere Oszillation. Werden
weiterhin die einzelnen Stellungen des Drehventils
unterschiedlich lange aufrechterhalten, so kann sich
eine mittlere Strömungsgeschwindigkeit
Figur 2 zeigt eine weitere Vorrichtung, bei der entsprechende
Bestandteile mit entsprechenden Bezugszeichen
wie in Figur 1 versehen sind und deren Beschreibung
daher ausgelassen wird. Zusätzlich zu Figur 1
ist in Figur 2 ein latenter Wärmespeicher 30 vorhanden,
dem aus der Wärme erzeugenden Einheit 1 Kühlmittel
über eine Kühlmittelzufuhr 31 zugeführt wird, das
den latenten Wärmespeicher über eine Kühlmittelableitung
32 wieder verläßt und zu der Wärme erzeugenden
Einheit 1 zurückgeleitet wird. Wird während oder vor
dem Kaltstartbetrieb und der Aufwärmphase durch die
Kühlmittelpumpe 2 und das Drehventil 3 ein gleichmäßig
oszillierender Kühlmittelfluß in den Leitungen 10
und 11 bewirkt, wobei die mittlere Strömungsgeschwindigkeit
des Kühlmittels gleich Null betragen soll, so
wird der in Figur 2 schraffiert eingezeichnete Anteil
des Kühlmittels zwischen der Wärme erzeugenden Einheit
1 und dem latenten Wärmespeicher 30 hin- und
herbewegt und kann so die Wärme erzeugende Einheit
aufwärmen. Nach Beendigung der Warmlaufphase kann der
latente Wärmespeicher durch entsprechend angeordnete
Ventile (hier nicht dargestellt) aus dem Kühlwasserkreislauf
ausgekoppelt werden.Figure 2 shows a further device in the corresponding
Components with corresponding reference numerals
are provided as in Figure 1 and their description
is therefore omitted. In addition to Figure 1
a
Figur 3 zeigt eine weitere Vorrichtung, wobei in Figur 3 mehrere Wärme erzeugende Einheiten 1.1 und 1.2 vorgesehen sind. Jeder dieser Einheiten ist ein eigenes Drehventil 3.1 bzw. 3.2 zur unabhängigen Regelung der Modulation (erste Komponente) und Strömungsgeschwindigkeit (zweite Komponente) des Kühlmediums für jede der Wärme erzeugenden Einheiten 1.1 bzw. 1.2 zugeordnet. Die Funktion der einzelnen Bauelemente in Figur 3 entspricht der Funktion der Bauelemente in Figur 1, so daß sie mit entsprechenden Bezugszeichen bezeichnet sind und für die Beschreibung der Funktion auf die Beschreibung der Figur 1 verwiesen wird.Figure 3 shows a further device, wherein in Figure 3 several heat generating units 1.1 and 1.2 are provided. Each of these units is unique Rotary valve 3.1 or 3.2 for independent control the modulation (first component) and flow velocity (second component) of the cooling medium for assigned to each of the heat generating units 1.1 and 1.2. The function of the individual components in Figure 3 corresponds to the function of the components in Figure 1, so that they have corresponding reference numerals are designated and for the description of the function reference is made to the description of FIG. 1.
Figur 4 zeigt verschiedene Formen der periodischen
Änderung der Geschwindigkeit des Kühlmittels in
oder an der Wärme erzeugenden Einheit, wie sie beispielsweise
mit der Vorrichtung nach Figur 1 erzeugt
werden können.
Figur 4A zeigt dabei eine gleichmäßige Hin- und Herbewegung
des Kühlmittels, wobei die mittlere Geschwindigkeit
FIG. 4A shows a smooth back and forth movement of the coolant, the average speed
Figur 4B zeigt eine asymmetrische Geschwindigkeitsverteilung
des Kühlmittels, wodurch sich eine mittlere
Geschwindigkeit
Figur 4C zeigt einen derartigen Übergang einer Wärme erzeugenden Einheit 1 aus der Kaltstartphase bis zum Erreichen der Betriebstemperatur. Zu Beginn oszilliert die Fließgeschwindigkeit des Kühlmittels wie in Figur 4A gezeigt, hin und her, wodurch die Wärme in der Wärme erzeugenden Einheit belassen wird und lediglich die "hot spots" gekühlt werden. Erreicht die Temperatur der Wärme erzeugenden Einheit 1 die Dauerbetriebstemperatur, so wird das Drehventil in eine Stellung gebracht und dort festgehalten, bei der ein konstanter Kühlmittelstrom, der einer positiven ersten Komponente entspricht durch die Wärme erzeugende Einheit erfolgt. In diesem Beispiel wurde im Zeitablauf auch die Größe der ersten Komponente geändert, wobei die zweite periodische Komponente der Fließgeschwindigkeit von dieser unabhängig geregelt wurde.Figure 4C shows such a transition of heat generating unit 1 from the cold start phase to Reaching the operating temperature. Initially oscillates the flow rate of the coolant as in Figure 4A shown back and forth, causing the heat in the heat generating unit is left and only the "hot spots" are cooled. Reaches that Temperature of the heat generating unit 1 the continuous operating temperature, so the rotary valve turns into one Positioned and held there at the one constant coolant flow, that of a positive first Component corresponds through the heat generating Unity takes place. This example was made over time also resized the first component, where the second periodic component of flow rate was regulated independently of this.
Figur 4D zeigt die Steuerung des Kühlmittelflusses in einem weiteren Beispiel. In diesem Falle erfolgt ganz zu Beginn der Kaltstartphase keinerlei Bewegung des Kühlmediums, so daß die gesamte Wärme, die von der Wärme erzeugenden Einheit 1 erzeugt wird, in dieser Einheit 1 verbleibt (d.h. erste Komponente = 0, zweite Komponente = 0). Bei Erreichen einer kritischen Temperatur an den sogenannten "hot spots" wird eine oszillierende Hin- und Herbewegung des Kühlmittels eingeleitet, indem das Drehventil in Drehung versetzt wird (d.h. erste Komponente = 0, Amplitude der zweiten Komponente ungleich 0). Bei Erreichen der Dauerbetriebstemperatur wird das Drehventil in einer Stellung gehalten, bei der ein konstanter Kühlmittelfluß durch die Wärme erzeugende Einheit 1 erfolgt (d.h. erste Komponente ungleich 0, zweite Komponente = 0).FIG. 4D shows the control of the coolant flow in FIG another example. In this case it is done entirely at the beginning of the cold start phase, no movement of the Cooling medium so that all the heat from the Heat generating unit 1 is generated in this Unit 1 remains (i.e. first component = 0, second Component = 0). When a critical one is reached The temperature at the so-called "hot spots" becomes one oscillating coolant reciprocation initiated by rotating the rotary valve (i.e. first component = 0, amplitude of the second Component not equal to 0). When the continuous operating temperature is reached the rotary valve is in one position kept at a constant coolant flow by the heat generating unit 1 (i.e. first component not equal to 0, second component = 0).
Die entsprechenden kritischen Temperaturen der "hot spots" oder der Wärme erzeugenden Einheit 1, beispielsweise eines Verbrennungsmotores, können beispielsweise durch Temperatursensoren, die in der Zylinderkopfdichtung angeordnet sein können, erfaßt. The corresponding critical temperatures of the "hot spots "or the heat generating unit 1, for example an internal combustion engine, for example through temperature sensors in the cylinder head gasket can be arranged, detected.
Diese Daten werden dann zur Steuerung der Drehventile und damit zur Regelung des Kühlmittelflusses verwendet.This data is then used to control the rotary valves and thus used to control the coolant flow.
Figur 5 zeigt verschiedene Formen der Modulation der
Geschwindigkeit
Figur 5A zeigt eine gleichmäßige oszillierende Hinund
Herbewegung des Kühlmittels, wobei die mittlere
Geschwindigkeit
Figur 5B zeigt den Betrieb während des normalen Betriebszustandes
mit Betriebstemperatur, wobei hier
auf einen gleichmäßigen Fluß des Kühlmittels mit
Figur 5C zeigt die Modulation eines gleichmäßigen
Kühlmittelflusses mit
Figur 5D beschreibt den Übergang einer Wärme erzeugenden
Einheit, beispielsweise eines Verbrennungsmotores,
vom Kaltstart bis zum Erreichen der Betriebstemperatur.
Zu Beginn des Kaltstarts wird die Kühlmittelgeschwindigkeit
lediglich in hin- und herbewegender
Weise oszillierend moduliert, d.h. die erste
Komponente
Figur 5E zeigt die Modulation des Kühlmittelflusses bei einer temperaturabhängigen Regelung.Figure 5E shows the modulation of the coolant flow with a temperature-dependent control.
Liegt die Temperatur T des Motors unterhalb einer
Grenztemperatur TG, so ist der mittlere gerichtete
Fluß
Zusammenfassend sollen noch einmal die Vorteile der erfindungsgemäßen Vorrichtung und des erfindungsgemäßen Verfahrens beschrieben werden. Zum einen kann eine rasche Durchwärmung der Wärme erzeugenden Einheit bewirkt werden mit allen damit verbundenen Vorteilen, beispielsweise beim Verbrennungsmotor bezüglich der Kraftstoffausbeute und des Schadstoffausstoßes, bei einer Brennstoffzelle bzgl. des Wirkungsgrades oder bei einem Getriebe bzgl. der Viskosität des Getriebeöls und damit ebenfalls des Wirkungsgrades. Dabei werden jedoch lokale Überhitzungen innerhalb der Einheit wirksam vermieden und insgesamt das Temperaturniveau innerhalb der Wärme erzeugenden Einheit nivelliert und die Temperaturdifferenz zwischen dem Einlauf und dem Auslauf des Kühlmittels im Dauerbetrieb reduziert. Nicht zuletzt ist es mit der erfindungsgemäßen Vorrichtung und dem erfindungsgemäßen Verfahren möglich, unter Vermeidung lokaler Überhitzungen die Wärme erzeugende Einheit bei einer erhöhten Betriebstemperatur zu betreiben.In summary, the advantages of device according to the invention and of the invention Procedure are described. For one, one can rapid heating of the heat generating unit be achieved with all the associated advantages, for example in the case of the internal combustion engine with regard to Fuel yield and pollutant emissions, at a fuel cell in terms of efficiency or for a gear unit with regard to the viscosity of the gear oil and thus also the efficiency. there however, there will be local overheating within the unit effectively avoided and overall the temperature level leveled within the heat generating unit and the temperature difference between the inlet and the coolant outlet in continuous operation reduced. Last but not least, it is with the invention Device and the method according to the invention possible, while avoiding local overheating Heat generating unit at an elevated operating temperature to operate.
Claims (18)
- Device with a heat generating unit (1) with increased operating temperature in an operating phase, and a cooling system (2, 10, 11, 12, 13) with a cooling medium which flows along in or on the unit (1), characterised in that a first component of the flow speed of the cooling medium, which corresponds with the temporal means of transport of cooling medium through or along the unit (1), is superposed by a second component of the flow speed which periodically fluctuates in its volume and/or direction and which in the temporal means does not cause transport of cooling medium through or along the unit, and the second component is in direction and/or volume controllable independently from the direction of volume of the first component.
- Device according to the above claim, characterised in that the first component has a value of 0 m/s, is changeable between 0 m/s and a predetermined value or has a specified value other than 0.
- Device according to one of the above claims, characterised in that the flow speed can be modulated by a pump which can be switched over in the pump direction and/or by a switching device for the flow direction.
- Device according to the above claim, characterised in that the switching device is a rotary valve.
- Device according to one of the above claims, characterised in that the flow direction of the cooling medium is alternately reversible and/or the flow speed of the cooling medium is alternately decreasable and increasable.
- Device according to one of the above claims, characterised in that it comprises a latent heat storage for heating a specified volume of cooling medium prior to and/or during heating of the unit to operating temperature.
- Device according to one of the above claims, characterised in that on or in the heat generating unit is arranged a temperature sensor.
- Device according to one of the above claims, characterised in that the heat generating unit is a combustion engine
- Device according to the above claim, characterised in that the combustion engine comprises a cylinder block, a cylinder head and between cylinder block and cylinder head a cylinder head gasket.
- Device according to the above claim, characterised in that a temperature sensor is arranged in or on the cylinder head gasket.
- Method of cooling a heat generating unit which has an increased operating temperature in an operational phase, with cooling by means of a cooling medium which flows along in or on the unit,
characterised in that
the flow speed is regulated in such a manner that it comprises a first component which corresponds with a temporal mean transport of cooling medium through or along the unit (1), and a second component which periodically fluctuates in its size and/or direction which in temporal means does not cause transport of cooling medium through or along the unit (1), and the second component is in size and direction regulated independently of size and direction of the first component. - Method according to the above claim, characterised in that the unit is during a cold-start phase heated to operating temperature, and at least during part of the cold-start phase the first component of the flow speed is regulated to 0 m/s.
- Method according to one of the two above claims, characterised in that at least during a part of the cold-start phase the flow speed is alternately reversed in such a manner that the cooling medium portion flowing along on or in the unit (1) is in temporal means stationary.
- Method according to one of Claims 11 to 13, characterised in that prior to or during the cold-start phase a predetermined volume of cooling medium is heated and subsequently flows along in or on the unit.
- Method according to the above claim, characterised in that the predetermined volume of cooling medium is heated by a separate heating device, for example a latent heat storage.
- Method according to one of Claims 11 to 15, characterised in that in the operating phase the flow speed is at least temporarily alternately decreased and increased and/or the flow direction is alternately reversed.
- Method according to one of Claims 11 to 16, characterised in that the period and/or the amplitude of the second component is controlled, for example by a time program and/or a temperature sensor in/on the unit and/or in/on the cooling medium.
- Use of a device according to one of Claims 1 to 10 and/or a method according to one of Claims 11 to 17 during the cold-start phase and/or during the operating phase for cooling a combustion engine, a fuel cell and/or a gearing as heat generating device.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19948890A DE19948890A1 (en) | 1999-10-11 | 1999-10-11 | Oscillating cooling water circuit |
DE19948890 | 1999-10-11 | ||
PCT/EP2000/009966 WO2001027448A1 (en) | 1999-10-11 | 2000-10-10 | Oscillating cooling circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1220976A1 EP1220976A1 (en) | 2002-07-10 |
EP1220976B1 true EP1220976B1 (en) | 2004-08-11 |
Family
ID=7925203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00972722A Expired - Lifetime EP1220976B1 (en) | 1999-10-11 | 2000-10-10 | Oscillating cooling circuit |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1220976B1 (en) |
DE (2) | DE19948890A1 (en) |
WO (1) | WO2001027448A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6532911B2 (en) * | 2000-07-26 | 2003-03-18 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine having heat accumulator, control of heat supply system and control method of internal combustion engine |
DE10211060B4 (en) * | 2002-03-13 | 2005-03-17 | Siemens Ag | Method and device for controlling the coolant volume flow in an internal combustion engine |
DE10226928A1 (en) * | 2002-06-17 | 2004-01-08 | Siemens Ag | Method for operating a liquid-cooled internal combustion engine |
KR100589140B1 (en) * | 2003-09-20 | 2006-06-12 | 현대자동차주식회사 | Vehicle Cooling System Control Method |
DE102004039417A1 (en) * | 2004-08-13 | 2006-02-23 | Daimlerchrysler Ag | Fuel cell system and method for operating a fuel cell system |
DE102007017172A1 (en) * | 2007-04-12 | 2008-10-16 | Bayerische Motoren Werke Aktiengesellschaft | Cooling system for cooling e.g. battery of hybrid vehicle, has cooling circuit formed such that circulating direction of medium is reversible after time interval or in accordance to regulation based on temperature of cooling-needy unit |
DE102016012629A1 (en) * | 2016-10-21 | 2018-04-26 | Man Truck & Bus Ag | Cooling circuit for a motor vehicle |
DE102020213093A1 (en) | 2020-10-16 | 2022-04-21 | Avl Software And Functions Gmbh | Cooling device for cooling at least two electrical components of an electric drive of a vehicle |
DE102020127420A1 (en) | 2020-10-19 | 2022-04-21 | Bayerische Motoren Werke Aktiengesellschaft | Method for operating a cooling circuit and motor vehicle |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE136289C (en) * | ||||
DE2656361A1 (en) * | 1976-12-13 | 1978-06-15 | Skf Kugellagerfabriken Gmbh | Cooling water pump for vehicle IC engine - is controlled by infinitely variable speed control from electric temp. detector |
DD216984A1 (en) * | 1983-07-26 | 1985-01-02 | Seefahrt Inghochschule | METHOD AND DEVICE FOR REDUCING THE THERMAL ENGINE COMPONENT LOAD |
DE3813217A1 (en) | 1988-04-20 | 1989-11-02 | Wolfgang Meinhard | Temperature-dependent, electromagnetically controlled diaphragm water pump for motor vehicles |
DE8805218U1 (en) * | 1988-04-20 | 1988-08-25 | Meinhard, Wolfgang, 2308 Preetz | Temperature-dependent, electromagnetically controlled diaphragm water pump for motor vehicles |
GB8922399D0 (en) * | 1989-10-04 | 1989-11-22 | Lotus Group Plc | Cooling engines |
DE4207403A1 (en) * | 1992-03-09 | 1993-09-30 | Goetze Ag | Cylinder head seal for internal combustion engine - contains sealing support as temp. sensitive element between combustion chamber openings |
DE4431351A1 (en) * | 1994-09-02 | 1996-03-07 | Bayerische Motoren Werke Ag | Vehicle with IC engine, transmission and heat store |
JPH08338245A (en) * | 1995-06-08 | 1996-12-24 | Hino Motors Ltd | Engine cooling system |
JP3555269B2 (en) * | 1995-08-31 | 2004-08-18 | 株式会社デンソー | Vehicle cooling water temperature control system |
DE19540591C2 (en) * | 1995-10-31 | 1999-05-20 | Behr Gmbh & Co | Method for regulating the volume flow distribution in a coolant circuit for motor vehicles with an engine and device for carrying out the method |
DE19601319A1 (en) * | 1996-01-16 | 1997-07-17 | Wilo Gmbh | Radiator of an automobile engine |
DE19809123B4 (en) * | 1998-03-04 | 2005-12-01 | Daimlerchrysler Ag | Water pump for the cooling circuit of an internal combustion engine |
DE19925986A1 (en) * | 1999-06-08 | 2000-12-14 | Bosch Gmbh Robert | Cooling circulation for cooling an internal combustion engine with one or more cooling channels has a cooler, upper and lower coolant pipes and a pump built into the lower coolant pipe driven by a variable RPM electric motor |
-
1999
- 1999-10-11 DE DE19948890A patent/DE19948890A1/en not_active Ceased
-
2000
- 2000-10-10 EP EP00972722A patent/EP1220976B1/en not_active Expired - Lifetime
- 2000-10-10 WO PCT/EP2000/009966 patent/WO2001027448A1/en active IP Right Grant
- 2000-10-10 DE DE50007401T patent/DE50007401D1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE19948890A1 (en) | 2001-04-19 |
DE50007401D1 (en) | 2004-09-16 |
EP1220976A1 (en) | 2002-07-10 |
WO2001027448A1 (en) | 2001-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1220976B1 (en) | Oscillating cooling circuit | |
EP1925806A2 (en) | System with an organic Rankine cycle for operating at least one expansion machine, heat exchanger for operating one expansion machine, method for operating at least one expansion machine | |
DE102005024074A1 (en) | Thermoelectric energy generation system | |
EP1947308A1 (en) | Integrated motor cooling system | |
DE10318744B4 (en) | cooling system | |
DE2841555A1 (en) | LIQUID-COOLED COMBUSTION ENGINE | |
EP1900919A1 (en) | Coolant circuit | |
DE102004036224B4 (en) | Engine system with a thermal storage device and engine temperature increase method | |
DE10319762A1 (en) | Charge air cooling circuit and method of operating such a circuit | |
DE3245026A1 (en) | Method and heat-exchanger arrangement for controlling the temperature in motor vehicles with an internal combustion engine | |
DE10226928A1 (en) | Method for operating a liquid-cooled internal combustion engine | |
DE4432292B4 (en) | Distribution device for the cooling or heating system of vehicles with internal combustion engines | |
DE9013459U1 (en) | Cooling system for internal combustion engines | |
DE112017003850T5 (en) | Cooling system and control device for the cooling system | |
DE3517567A1 (en) | Drive system for appliances and vehicles, especially motor vehicles | |
DE102019208161A1 (en) | Electric machine, in particular an electric machine for a motor vehicle | |
EP1523612B1 (en) | Method and device for regulating the temperature of a coolant in an internal combustion engine | |
DE102008020637B4 (en) | Hot water supply system with a hot water tank | |
DE102014108175B4 (en) | Coolant control method for a transmission temperature control vehicle | |
DE60214515T2 (en) | DEVICE AND METHOD FOR COOLING A CONTROL DEVICE OF AN INTERNAL COMBUSTION ENGINE | |
DE3708192A1 (en) | Spring or damper device for a vehicle with operating medium flowing through restrictors | |
DE10211060B4 (en) | Method and device for controlling the coolant volume flow in an internal combustion engine | |
DD280252A1 (en) | METHOD AND DEVICE FOR CONTROLLING CONTINUOUS WORKING TEMPERING MACHINES | |
DE10023508A1 (en) | Cooling system for liquid-cooled combustion engine has coupling device for coupling cooling liquid pump's drive shaft to combustion engine output, motor/generator with controler | |
DE202015100531U1 (en) | Internal combustion engine with split cooling system and cylinder deactivation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020502 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17Q | First examination report despatched |
Effective date: 20031007 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: REINZ-DICHTUNGS-GMBH |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20040811 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040811 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50007401 Country of ref document: DE Date of ref document: 20040916 Kind code of ref document: P |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20040811 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050512 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20071130 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20071017 Year of fee payment: 8 Ref country code: GB Payment date: 20071029 Year of fee payment: 8 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20081010 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20090630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081010 |