EP1213538B1 - Exhaust gas system with Helmholtz resonator - Google Patents
Exhaust gas system with Helmholtz resonator Download PDFInfo
- Publication number
- EP1213538B1 EP1213538B1 EP01811076A EP01811076A EP1213538B1 EP 1213538 B1 EP1213538 B1 EP 1213538B1 EP 01811076 A EP01811076 A EP 01811076A EP 01811076 A EP01811076 A EP 01811076A EP 1213538 B1 EP1213538 B1 EP 1213538B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- exhaust gas
- helmholtz resonator
- gas system
- helmholtz
- chimney
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J13/00—Fittings for chimneys or flues
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/30—Exhaust heads, chambers, or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M20/00—Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
- F23M20/005—Noise absorbing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/96—Preventing, counteracting or reducing vibration or noise
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2900/00—Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
- F23J2900/13003—Means for reducing the noise in smoke conducing ducts or systems
Definitions
- the invention relates to an exhaust system for industrial gas turbines with an exhaust pipe and an adjoining fireplace, according to the preamble of claim 1.
- absorption silencers have been incorporated into the exhaust gas system of the gas turbine plants, as mentioned, for example, in DE-A1-44 19 604 and DE-A1-40 09 072. This is intended to reduce the low-frequency noise at the place where its radiation into the environment takes place. But while sound in the high and medium frequency range can be absorbed relatively well with absorption silencers, low-frequency noise is difficult to control, since conventional silencers show only low sound attenuation at low frequencies. To be able to reduce the low-frequency noise, therefore, large absorption silencers with insulating mats of up to 800mm thickness must be installed in the exhaust system of the plants. This increases the footprint of the exhaust system, possibly reduces their performance due to pressure drop in the system and is also very expensive to install and maintain. The exhaust system is very expensive.
- the object of the invention is therefore to provide an exhaust system of the type mentioned, are efficiently reduced in the low-frequency noise emissions without the performance of the system is significantly impaired and is also easy and economical to install and Watung.
- a Helmholtz resonator is acoustically coupled to the flow channel.
- the Helmholtz resonator is exactly tuned to the low frequency that is to be damped. It takes up less space than an absorption silencer.
- the installation of a Helmholtz resonator is very simple and its durability at high flow rate in relation to absorption silencers much higher.
- the use of Helmholtz resonators causes no reduction in performance of the system. For these reasons, the exhaust system can be installed and maintained more easily and the entire system can be operated more economically.
- the Helmholtz resonator is arranged with its inlet opening in the range of a maximum pressure of an acoustic mode in the exhaust system, its efficiency is greatest
- the Helmholtz resonator it is very advantageous to arrange the Helmholtz resonator in the transition region between the exhaust duct and the chimney, since there are usually hardly any space problems. It is particularly advantageous to provide the Helmholtz resonator on the rear wall of the chimney which delimits the exhaust gas channel in the flow direction, since this allows a particularly simple assembly.
- the dimensions of the exhaust duct and the chimney are selected so that a pressure maximum of the acoustic mode occurs in the transition regions between the exhaust duct and the chimney. In this way, the Helmholtz resonator, as described above, can be mounted very easily and is also extremely efficient.
- a heat insulation of the Helmholtz resonator to the outside ensures an approximately constant temperature of the Helmholtz resonator and thus a frequency stability of its absorption properties.
- the Helmholtz resonator has a neck which is adjustable in its length and / or its cross section, the Helmholtz resonator can be better adjusted to the frequencies to be absorbed.
- the Helmholtz resonator has an adjustable volume. This also provides a simple possibility of adaptation to the frequencies to be absorbed.
- the adjustable volume can be realized very simply by making the height of the side walls adjustable by means of a sliding floor.
- the temperature of the Helmholtz resonator is adjustable, it can be particularly easily adapted to the frequency to be absorbed.
- the adjustability of the temperature can be realized, for example, simply by attaching heating elements to the outer walls of the Helmholtz resonator.
- Another cost-effective option is to make the Helmholtz resonator flow around, so that either hot exhaust gases are diverted from the exhaust system for temperature regulation and passed to the outer walls of the Helmholtz resonator or the same is flowed around with cold air.
- the Helmholtz resonator is acoustically transparent shielded from the flow in the flow channel. This allows a better sound absorption of the Helmholtz resonator.
- a shield can be implemented very simply and expediently by means of an absorption silencer arranged between the inlet opening of the Helmholtz resonator and the flow.
- an absorption silencer which has approximately the following structure: A first hole cover is part of a wall bounding the flow channel. A flow-resistant fabric arranged on the side of the hole covering facing away from the flow passage and a layer of damping material adjoin this first hole cover. This is followed by a second hole cover on the side facing away from the flow passage. Laterally, the absorption silencer is comprised of sidewalls. Such an absorption silencer has a good load capacity adjacent to a flow channel with high flow velocities.
- Helmholtz resonators in the exhaust system. These may then be located at different locations in the exhaust system, e.g. in each case where maxima of the sound modes occur. They can also be tuned to different, low frequencies and thus contribute to an even more effective reduction of low-frequency noise. For this they can be arranged at different locations of the exhaust system or also close to each other. To ensure good sound absorption, however, the Helmholtz resonators should be separated from each other in a gas-tight manner.
- FIG. 1 shows the sketch of an exhaust system 10 for a gas turbine plant (not shown) with an exhaust passage 12 and a chimney 14.
- the exhaust passage 12 and the chimney 14 together form a flow channel 16.
- the flow direction of the exhaust gas 18 in the flow channel 16 is indicated by arrows S.
- a transition region 20 between the exhaust duct 12 and the chimney 14 the exhaust duct 12 is bounded by a rear wall 22 of the chimney 14 in its flow direction S.
- a Helmholtz resonator 24 is arranged on the rear wall 22 of the chimney 14.
- the Helmholtz resonator 24 is shielded by the flow in the flow channel 16 through a hole cover 26, which forms part of the rear wall 22 of the chimney 14, and arranged behind the hole cover 26 from the flow channel 16, acoustically transparent tissue.
- the exhaust gas channel 12 and the chimney 14 are dimensioned such that a pressure maximum of a sound mode lies in the transition region 20 or in the inlet region 30 of the Helmholtz resonator 24.
- the Helmholtz resonator 24 is thermally insulated to the outside so that it assumes an approximately constant temperature during operation.
- absorption mufflers 32 are arranged to sound in the range of high and to absorb medium frequencies.
- the Helmholtz resonator 24 As indicated by dashed lines in Fig. 1, it is possible to the Helmholtz resonator 24 at other locations of the exhaust system 10 or even several Helmholtz resonators 24, 24 ', 24 ", ... to arrange at different locations of the exhaust system 10. In order to achieve good sound absorption efficiency, the Helmholtz resonator or resonators 24, 24 ', 24 ",... Should be arranged in the exhaust system 10 where a pressure maximum of a sound mode lies.
- FIGS. 2 and 3 a portion of an exhaust system 10 is shown in various views, in which three Helmholtz resonators 24, 24 ', 24 "are arranged side by side in the transition region 20 between the exhaust duct 12 and the chimney 14 on the rear wall 22 of the chimney 14
- the exhaust gas channel 12 and the chimney 14 are in turn dimensioned such that the maximum pressure of a sound mode lies in the transition region 20 or in the inlet region 30 of the Helmholtz resonators 24, 24 ', 24 ".
- an intermediate wall 38 is arranged in the hollow cylinder 34, which encloses a gap 44 together with the absorption silencer 36.
- the hollow cylinder 34 is closed by a bottom 40 against the outside gas-tight. The entire hollow cylinder 34 and the bottom 40 are thermally insulated from the outside, so that the hollow cylinder 34 assumes approximately the temperature in operation, which prevails in the flow channel 16.
- the absorption silencer 36 has essentially the usual structure: Against the flow channel 16 of the absorption silencer 36 is delimited by a hole cover 26, which forms part of the rear wall 22 of the chimney 14.
- the hole cover 26 is backed with a flow resistant and wear resistant fabric 28 that is acoustically transparent, such as a metal mesh.
- the layer 28 is followed on the fabric 28 by a layer of damping material 46, which can be constructed in one or more layers adapted to the frequency range to be absorbed. The material and the thickness of the damping material 46 are determined as required.
- a further hole cover 48 is arranged against the gap 44 through a further hole cover 48 arranged.
- the jacket of the hollow cylinder 34 also forms the side walls for the absorption silencer 36.
- the remaining between the intermediate wall 38 and the bottom 40 cavity of the hollow cylinder 34 is divided by means of walls 42 into three sectors, which form the volumes 25, 25 ', 25 "of the three Helmholtz resonators 24, 24', 24".
- the walls 42 close off the Helmholtz resonators 24, 24 ', 24 "in a gastight manner against each other.
- Each Helmholtz resonator 24, 24', 24" is acoustically connected to the one between the two through a tubular neck 47, which is guided through the intermediate wall 38 connected upstream absorption silencer 36 and the intermediate wall 38 intermediate space 44.
- Low-frequency sound that is not absorbed by the absorption silencer 36 is conducted into the gap 44 and further into the three Helmholtz resonators 24, 24 ', 24 ".
- the number and shape of the Helmholtz resonators 24, 24', 24" shown here can be changed as needed.
- a Helmholtz resonator 24, two, three, four, or even more resonators 24, 24 ', 24 ", ... can be arranged side by side, and the shape can also vary as desired
- one or more Helmholtz resonators 24, 24 ', 24 ",... can be arranged next to one another at other locations of the exhaust system 10 as well.
- the three Helmholtz resonators 24, 24 ', 24 "by means of adjustable in length and / or in cross-section necks 47 and by means of an adjustable volume 25, 25', 25" set to slightly different, low frequencies , which preferably also differ from the frequency which is attenuated in the intermediate space 44. In this way, the low-frequency noise can be reduced with high efficiency.
- FIG. 4 shows in section the principle of an adaptable Helmholtz resonator 24a.
- the neck 47a has two tubes 50, 52 inserted into one another. But it can also be chosen any other cross-sectional shapes.
- the outer tube 50 with the larger diameter is firmly anchored in the intermediate wall 30. It may be welded to the intermediate wall 30, for example.
- the outer tube 50 has on its inside, in its two end regions in each case on circular discs, radially inwardly extending projections 54. Between the projections 54, a seal 56 is arranged, which comprises the inner tube 52 with the slightly smaller diameter gas-tight.
- the inner tube 52 is concentric in the outer tube 50 and slidably mounted against the resistance of the seal 56.
- the inner tube 52 has radially outwardly bent ends 53 which, brought into abutment with the projections 54, prevent the inner tube 52 from being pulled too far out of the outer tube 50.
- the neck 47a of the Helmholtz resonator 24a is slidable in length.
- An adjustability of the neck diameter can be established, for example, by forming the neck with a polygonal cross-section and by pivoting the side walls of the polygon towards one another.
- the volume 25a of the Helmholtz resonator 24a is adjustable by means of height-adjustable side walls 58.
- the height of the side walls 58 is variable by means of a sliding floor 60.
- the displaceable bottom 60 is cup-shaped and comprises a bottom plate 62 and of this approximately perpendicular protruding bottom walls 64 which engage around the side walls 58 of the Helmholtz resonator 24a side.
- the bottom walls 64 are bent radially inwardly. Distanced from the bent ends 66, a radially inwardly extending collar 68 is provided on the bottom walls 64.
- a bottom seal 70 is arranged, which comprises the side walls 58 of the Helmholtz resonator 24 a gas-tight.
- the side walls 58 have on their the bottom 60 side facing radially outwardly bent edges 72, which can be brought into abutment with the collar 68, and thus prevent the bottom of the side walls 58 of the Helmholtz resonator 24a is deductible.
- the volume 25a of the Helmholtz resonator 24a is thus in the context of the displacement of the bottom 60 from the stop of the bottom plate 62 to the edges 72 of the side walls 58 up to stop the edges 72 of the side walls 58 with the collar 68 of the bottom walls 64 adjustable.
- the Helmholtz resonator 24a can be adjusted very precisely to the frequency to be damped by the adjustable neck 47a and the adjustable volume 25a.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Exhaust Silencers (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Chimneys And Flues (AREA)
Description
Die Erfindung bezieht sich auf ein Abgassystem für Industriegasturbinen mit einer Abgasleitung und einem daran anschliessenden Kamin, gemäss dem Oberbegriff des Patentanspruches 1.The invention relates to an exhaust system for industrial gas turbines with an exhaust pipe and an adjoining fireplace, according to the preamble of claim 1.
Siedlungszonen und Anlagen, die mit Gasturbinen betrieben werden, wie beispielsweise Wärmekraftwerke, rücken immer näher zusammen. Um die Lärmbelästigung der Bevölkerung gering zu halten, sind in den letzten Jahren die Grenzwerte für Lärmemissionen immer weiter verschärft worden. Zu den bestehenden Grenzwerten für hohe und mittlere Frequenzen sind vielerorts zusätzliche Grenzwerte für den tieffrequenten Lärm eingeführt worden. Die Lärmemissionen einer Gasturbinenanlage erfolgt vornehmlich über ihr Abgassystem. Die Entstehung des schwer zu beherrschenden tieffrequenten Lärmes hat vielfältige Ursachen und ist unter anderem auf Pulsationen im Brennraum zurückzuführen.Settlement areas and facilities that run on gas turbines, such as thermal power plants, are moving closer together. In order to minimize the noise pollution of the population, the limit values for noise emissions have been tightened in recent years. In addition to the existing limits for high and medium frequencies, additional limits for low-frequency noise have been introduced in many places. The noise emissions of a gas turbine plant mainly takes place via its exhaust system. The emergence of the difficult to control low-frequency noise has many causes and is due among other things to pulsations in the combustion chamber.
Um die Grenzwerte für tieffrequente Lärmemissionen einhalten zu können, hat man Absorptionsschalldämpfer in das Abgassystem der Gasturbinenanlagen eingebaut, wie dies beispielsweise in der DE-A1-44 19 604 und DE-A1-40 09 072 erwähnt ist. Damit soll der tieffrequente Lärm, an dem Ort an dem seine Abstrahlung in die Umgebung stattfindet, reduziert werden. Während aber Schall im hohen und mittleren Frequenzbereich relativ gut mit Absorptionsschalldämpfern absorbiert werden kann, ist tieffrequenter Lärm schwer zu beherrschen, da konventionelle Schalldämpfer bei tiefen Frequenzen nur eine geringe Schalldämpfung zeigen. Um den tieffrequenten Lärm reduzieren zu können, müssen daher grosse Absorptionsschalldämpfer mit Dämmmatten von bis zu 800mm Dicke in das Abgassystem der Anlagen eingebaut werden. Dies erhöht den Platzbedarf der Abgasanlage, reduziert unter Umständen deren Leistung aufgrund von Druckabfall im System und ist zudem sehr aufwendig in der Montage und Wartung. Das Abgassystem wird dadurch sehr teuer.In order to be able to comply with the limits for low-frequency noise emissions, absorption silencers have been incorporated into the exhaust gas system of the gas turbine plants, as mentioned, for example, in DE-A1-44 19 604 and DE-A1-40 09 072. This is intended to reduce the low-frequency noise at the place where its radiation into the environment takes place. But while sound in the high and medium frequency range can be absorbed relatively well with absorption silencers, low-frequency noise is difficult to control, since conventional silencers show only low sound attenuation at low frequencies. To be able to reduce the low-frequency noise, therefore, large absorption silencers with insulating mats of up to 800mm thickness must be installed in the exhaust system of the plants. This increases the footprint of the exhaust system, possibly reduces their performance due to pressure drop in the system and is also very expensive to install and maintain. The exhaust system is very expensive.
Aufgabe der Erfindung ist es daher, ein Abgassystem der eingangs genannten Art zu schaffen, in dem tieffrequente Lärmemissionen effizient reduziert werden, ohne dass die Leistung der Anlage wesentlich beeinträchtigt wird und das zudem einfach und wirtschaftlich in Montage und Watung ist.The object of the invention is therefore to provide an exhaust system of the type mentioned, are efficiently reduced in the low-frequency noise emissions without the performance of the system is significantly impaired and is also easy and economical to install and Watung.
Diese Aufgabe wird gelöst durch ein Abgassystem mit den Merkmalen des Patentanspruches 1.This object is achieved by an exhaust system with the features of claim 1.
In einem Abgassystem für Industriegasturbinen bilden eine Abgasleitung und ein daran anschliessender Kamin zusammen einen durchgängigen Strömungskanal. In dem Abgassystem ist ein Helmholtz-Resonator akustisch gekoppelt am Strömungskanal angeordnet. Der Helmholtz-Resonator ist genau auf die tiefen Frequenz, die gedämpft werden soll, abgestimmt. Er beansprucht dabei weniger Raum als ein Absorptionsschalldämpfer. Die Montage eines Helmholtz-Resonators ist sehr einfach und seine Dauerhaftigkeit bei grossen Strömungsgeschwindigkeit im Verhältnis zu Absorptionsschalldämpfern viel höher. Ausserdem ist bewirkt der Einsatz von Helmholtz-Resonatoren keine Leistungsminderung der Anlage. Das Abgassystem kann aus diesen Gründen einfacher montiert und gewartet und die gesamte Anlage wirtschaftlicher betrieben werden.In an exhaust gas system for industrial gas turbines, an exhaust pipe and a chimney adjoining it together form a continuous flow channel. In the exhaust system, a Helmholtz resonator is acoustically coupled to the flow channel. The Helmholtz resonator is exactly tuned to the low frequency that is to be damped. It takes up less space than an absorption silencer. The installation of a Helmholtz resonator is very simple and its durability at high flow rate in relation to absorption silencers much higher. Moreover, the use of Helmholtz resonators causes no reduction in performance of the system. For these reasons, the exhaust system can be installed and maintained more easily and the entire system can be operated more economically.
Wird der Helmholtz-Resonator mit seiner Eintrittsöffnung im Bereich eines Druckmaximums einer akustischen Mode im Abgassystem angeordnet, so ist seine Effizienz am grösstenIf the Helmholtz resonator is arranged with its inlet opening in the range of a maximum pressure of an acoustic mode in the exhaust system, its efficiency is greatest
Sehr vorteilhaft ist es den Helmholtz-Resonator im Übergangsbereich zwischen Abgaskanal und Kamin anzuordnen, da hier in der Regel kaum Platzprobleme vorhanden sind. Besonders günstig ist es, den Helmholtz-Resonator an der den Abgaskanal in Strömungsrichtung begrenzenden Rückwand des Kamins vorzusehen, da dies eine besonders einfache Montage erlaubt.It is very advantageous to arrange the Helmholtz resonator in the transition region between the exhaust duct and the chimney, since there are usually hardly any space problems. It is particularly advantageous to provide the Helmholtz resonator on the rear wall of the chimney which delimits the exhaust gas channel in the flow direction, since this allows a particularly simple assembly.
Bei einer bevorzugten Ausführungsform sind die Dimensionen des Abgaskanals und des Kamins so gewählt sind, dass ein Druckmaximum der akustischen Mode im Übergangsbereiche zwischen Abgaskanal und Kamin auftritt. Auf diese Weise kann der Helmholtz-Resonator, wie oben beschrieben, sehr einfach montiert werden und ist noch dazu äusserst effizient.In a preferred embodiment, the dimensions of the exhaust duct and the chimney are selected so that a pressure maximum of the acoustic mode occurs in the transition regions between the exhaust duct and the chimney. In this way, the Helmholtz resonator, as described above, can be mounted very easily and is also extremely efficient.
Eine Hitzeisolierung des Helmholtz-Resonators gegen aussen gewährleistet eine etwa konstante Temperatur des Helmholtz-Resonators und damit eine Frequenzstabilität seiner Absorptionseigenschaften.A heat insulation of the Helmholtz resonator to the outside ensures an approximately constant temperature of the Helmholtz resonator and thus a frequency stability of its absorption properties.
Weist der Helmholtz-Resonator einen Hals aufweist, der in seiner Länge und/oder seinem Querschnitt verstellbar ist so kann der Helmholtz-Resonator besser auf die zu absorbierenden Frequenzen eingestellt werden.If the Helmholtz resonator has a neck which is adjustable in its length and / or its cross section, the Helmholtz resonator can be better adjusted to the frequencies to be absorbed.
In einer weiteren bevorzugten Ausführungsform weist der Helmholtz-Resonator ein verstellbares Volumen auf. Auch dies verschafft eine einfachen Anpassungsmöglichkeit an die zu absorbierenden Frequenzen. Sehr einfach lässt sich das verstellbare Volumen realisieren, indem man mittels eines verschiebbaren Bodens die Höhe der Seitenwände verstellbar gestaltet.In a further preferred embodiment, the Helmholtz resonator has an adjustable volume. This also provides a simple possibility of adaptation to the frequencies to be absorbed. The adjustable volume can be realized very simply by making the height of the side walls adjustable by means of a sliding floor.
Ist die Temperatur des Helmholtz-Resonators einstellbar, so kann er besonders einfach an die zu absorbierende Frequenz angepasst werden. Einfach lässt sich die Einstellbarkeit der Temperatur beispielsweise durch das Anbringen von Heizelementen an den Aussenwänden des Helmholtz-Resonator realisieren. Eine andere kostengünstige Möglichkeit besteht darin, den Helmholtz-Resonator umströmbar zu gestalten, so dass zur Temperaturregulierung entweder heisse Abgase aus dem Abgassystem abgezweigt und um die Aussenwände des Helmholtz-Resonators geleitet werden oder derselbe mit kalter Luft umströmt wird.If the temperature of the Helmholtz resonator is adjustable, it can be particularly easily adapted to the frequency to be absorbed. The adjustability of the temperature can be realized, for example, simply by attaching heating elements to the outer walls of the Helmholtz resonator. Another cost-effective option is to make the Helmholtz resonator flow around, so that either hot exhaust gases are diverted from the exhaust system for temperature regulation and passed to the outer walls of the Helmholtz resonator or the same is flowed around with cold air.
In einer weiteren bevorzugten Ausführungsform ist der Helmholtz-Resonator akustisch transparent von der Strömung im Strömungskanal abgeschirmt ist. Dies erlaubt eine bessere Schallabsorption des Helmholtz-Resonators. Sehr einfach und zweckdienlich lässt sich eine solche Abschirmung durch einen zwischen der Eintrittsöffnung des Helmholtz-Resonators und der Strömung angeordneten Absorptionsschalldämpfer realisieren.In a further preferred embodiment, the Helmholtz resonator is acoustically transparent shielded from the flow in the flow channel. This allows a better sound absorption of the Helmholtz resonator. Such a shield can be implemented very simply and expediently by means of an absorption silencer arranged between the inlet opening of the Helmholtz resonator and the flow.
Besonders vorteilhaft ist es einen Absorptionsschalldämpfer zu verwenden, der ungefähr den folgenden Aufbau hat: Eine erste Lochabdeckung ist Teil einer den Strömungskanal begrenzenden Wand. An diese erste Lochabdeckung schliesst ein auf der dem Strömungskanal abgewandten Seite der Lochabdeckung angeordnetes strömungsresistentes Gewebe und eine Schicht Dämpfungsmaterial an Dieser folgt auf der dem Strömungskanal abgewandten Seite eine zweite Lochabdeckung. Seitlich wird der Absorptionsschalldämpfer von Seitenwänden umfasst. Ein solcher Absorptionsschalldämpfer weist angrenzend an einen Strömungskanal mit hohen Strömungsgeschwindigkeiten eine gute Belastbarkeit auf.It is particularly advantageous to use an absorption silencer, which has approximately the following structure: A first hole cover is part of a wall bounding the flow channel. A flow-resistant fabric arranged on the side of the hole covering facing away from the flow passage and a layer of damping material adjoin this first hole cover. This is followed by a second hole cover on the side facing away from the flow passage. Laterally, the absorption silencer is comprised of sidewalls. Such an absorption silencer has a good load capacity adjacent to a flow channel with high flow velocities.
Ist zwischen dem Absorptionsschalldämpfer und der Eintrittsöffnung des Helmholtz-Resonators ein Hohlraum angeordnet ist, so wirkt sich dies positiv auf das Schwingverhalten des Helmholtz-Resonators und damit auf seine Absorptionsfähigkeit aus.If a cavity is arranged between the absorption silencer and the inlet opening of the Helmholtz resonator, this has a positive effect on the oscillation behavior of the Helmholtz resonator and thus on its absorption capacity.
Sehr vorteilhaft ist es, mehrere Helmholtz-Resonatoren in dem Abgassystem vorzusehen. Diese können dann an verschiedenen Orten im Abgassystem angeordnet sein, z.B. jeweils dort wo Maxima der Schallmoden auftreten. Sie können auch auf unterschiedliche, tiefe Frequenzen abgestimmt sein und so zu einer noch wirksameren Reduzierung des tieffrequenten Lärms beitragen. Dazu können sie an unterschiedlichen Orten des Abgassystems oder auch dicht beieinander angeordnet sein. Um eine gute Schallabsorption zu gewährleisten sollten die Helmholtz-Resonatoren aber gasdicht voneinander getrennt sein.It is very advantageous to provide a plurality of Helmholtz resonators in the exhaust system. These may then be located at different locations in the exhaust system, e.g. in each case where maxima of the sound modes occur. They can also be tuned to different, low frequencies and thus contribute to an even more effective reduction of low-frequency noise. For this they can be arranged at different locations of the exhaust system or also close to each other. To ensure good sound absorption, however, the Helmholtz resonators should be separated from each other in a gas-tight manner.
Weitere bevorzugte Ausführungsformen sind Gegenstand weiterer abhängigen Patentansprüche.Further preferred embodiments are the subject of further dependent claims.
Im folgenden wird der Erfindungsgegenstand anhand von bevorzugten Ausführungsbeispielen, welche in den beiliegenden Zeichnungen dargestellt sind, näher erläutert. Es zeigen rein schematisch:
- Fig. 1
- ein erfindungsgemässes Abgassystem mit Helmholtz-Resonator;
- Fig. 2
- in einem schematischen Schnitt entlang der Längsachse des Strömungskanals einen Teil eines erfindungsgemässen Abgassystems mit nebeneinander angeordneten Helmholtz-Resonatoren;
- Fig.3
- eine Ansicht der nebeneinander angeordneten Helmholtz-Resonator aus Fig. 2 gemäss dem Schnitt III-III in Fig. 2; und
- Fig. 4
- in einem schematischen Schnitt einen Helmholtz-Resonator mit Längenverstellbarem Hals und verstellbarem Volumen.
- Fig. 1
- an inventive exhaust system with Helmholtz resonator;
- Fig. 2
- in a schematic section along the longitudinal axis of the flow channel, a part of an inventive exhaust system with juxtaposed Helmholtz resonators;
- Figure 3
- a view of the juxtaposed Helmholtz resonator of Figure 2 along the section III-III in Fig. 2. and
- Fig. 4
- in a schematic section a Helmholtz resonator with adjustable length neck and adjustable volume.
Die in den Zeichnungen verwendeten Bezugszeichen und deren Bedeutung sind in der Bezugszeichenliste zusammengefasst aufgelistet. Grundsätzlich sind in den Figuren gleiche Teile mit gleichen Bezugszeichen versehen. Die beschriebenen Ausführungsformen stehen beispielhaft für den Erfindungsgegenstand und haben keine beschränkende Wirkung.The reference numerals used in the drawings and their meaning are listed in the list of reference numerals. Basically, the same parts are provided with the same reference numerals in the figures. The described embodiments are exemplary of the subject invention and have no limiting effect.
Figur 1 zeigt die Skizze eines Abgassystems 10 für eine Gasturbinenanlage (nicht dargestellt) mit einem Abgaskanal 12 und einem Kamin 14. Abgaskanal 12 und Kamin 14 bilden zusammen einen Strömungskanal 16. Die Strömungsrichtung des Abgases 18 im Strömungskanal 16 ist durch Pfeile S gekennzeichnet. In einem Übergangsbereich 20 zwischen Abgaskanal 12 und Kamin 14 ist der Abgaskanal 12 durch eine Rückwand 22 des Kamins 14 in seiner Strömungsrichtung S begrenzt. Im Übergangsbereich 20 ist an der Rückwand 22 des Kamins 14 ein Helmholtz-Resonator 24 angeordnet. Der Helmholtz-Resonator 24 ist durch eine Lochabdeckung 26, das einen Teil der Rückwand 22 des Kamins 14 bildet, und durch ein vom Strömungskanal 16 aus gesehen hinter der Lochabdeckung 26 angeordneten, akustisch transparenten Gewebe 28 von der Strömung im Strömungskanal 16 abgeschirmt.Figure 1 shows the sketch of an
Der Abgaskanal 12 und der Kamin 14 sind so dimensioniert, dass ein Druckmaximum einer Schallmode im Übergangsbereich 20 bzw. im Eintrittbereich 30 des Helmholtz-Resonators 24 liegt. Der Helmholtz-Resonator 24 ist gegen aussen wärmeisoliert, so dass er während des Betriebes eine etwa konstante Temperatur annimmt, Zusätzlich zu dem Helmholtz-Resonator 24 sind in dem Abgassystem 10 in bekannter Art und Weise Absorptionsschalldämpfer 32 angeordnet, um Schall im Bereich der hohen und mittleren Frequenzen zu absorbieren.The
Wie durch gestrichelte Linien in Fig. 1 angedeutet, ist es möglich den Helmholtz-Resonator 24 auch an anderen Orten des Abgassystems 10 oder auch mehrere Helmholtz-Resonatoren 24, 24', 24", ... an verschiedenen Orten des Abgassystems 10 anzuordnen. Um einen guten Wirkungsgrad bei der Schallabsorption zu erreichen, sollten der oder die Helmholtz-Resonatoren 24, 24', 24", ... im Abgassystem 10 dort angeordnet sein, wo ein Druckmaximum einer Schallmode liegt.As indicated by dashed lines in Fig. 1, it is possible to the
In den Fig. 2 und 3 ist in verschiedenen Ansichten ein Teil eines Abgassystems 10 gezeigt, bei dem im Übergangsbereich 20 zwischen Abgaskanal 12 und Kamin 14 an der Rückwand 22 des Kamins 14 drei Helmholtz-Resonatoren 24, 24', 24" nebeneinander angeordnet sind. Der Abgaskanal 12 und der Kamin 14 sind in ihren Dimensionen wiederum so ausgelegt, dass das Druckmaximum einer Schallmode im Übergangsbereich 20 bzw. im Eintrittsbereich 30 der Helmholtz-Resonatoren 24, 24', 24" liegt. Die drei Helmholtz-Resonatoren 24, 24', 24" sind in einem zylindrischen Hohlkörper 34 ausgebildet. Gegen den Strömungskanal 16 ist der Hohlzylinder 34 durch einen vorgeschalteten Absorptionsschalldämpfer 36, abgeschirmt.In FIGS. 2 and 3, a portion of an
Beabstandet zu diesem Absorptionsschalldämpfer 36 ist im Hohlzylinder 34 eine Zwischenwand 38 angeordnet, die zusammen mit dem Absorptionsschalldämpfer 36 einen Zwischenraum 44 einschliesst. Auf der der Zwischenwand 38 gegenüberliegenden Seite ist der Hohlzylinder 34 durch einen Boden 40 gegen aussen gasdicht abgeschlossen. Der gesamte Hohlzylinder 34 und auch der Boden 40 sind gegen aussen wärmeisoliert, so dass der Hohlzylinder 34 im Betrieb etwa die Temperatur annimmt, die im Strömungskanal 16 herrscht.Spaced to this
Der Absorptionsschalldämpfer 36 hat im wesentlichen den üblichen Aufbau: Gegen den Strömungskanal 16 ist der Absorptionsschalldämpfer 36 durch eine Lochabdeckung 26, das einen Teil der Rückwand 22 des Kamins 14 bildet abgegrenzt. Die Lochabdeckung 26 ist hinterlegt mit einem strömungsresistenten und verschleissfesten Gewebe 28, das aber akustisch transparent ist, wie beispielsweise ein Metallgewebe. Auf das Gewebe 28 folgt im Schichtaufbau eine Schicht Dämpfungsmaterial 46, die angepasst an den zu absorbierenden Frequenzbereich ein- oder mehrlagig aufgebaut sein kann. Das Material und die Dicke des Dämpfungsmaterials 46 bestimmen sich je nach Anforderung. Abschliessend gegen den Zwischenraum 44 hin ist eine weitere Lochabdeckung 48 angeordnet. Der Mantel des Hohlzylinders 34 bildet zugleich die Seitenwände für den Absorptionsschalldämpfer 36.The
Der zwischen der Zwischenwand 38 und dem Boden 40 verbleibende Hohlraum des Hohlzylinders 34 ist mit Hilfe von Wänden 42 in drei Sektoren unterteilt, welche die Volumen 25, 25', 25" der drei Helmholtz-Resonatoren 24, 24', 24" bilden. Die Wände 42 schliessen die Helmholtz-Resonatoren 24, 24', 24" gasdicht gegeneinander ab. Jeder Helmholtz-Resonator 24, 24', 24" ist durch einen rohrförmigen Hals 47, der durch die Zwischenwand 38 geführt ist, akustisch mit dem zwischen dem vorgeschalteten Absorptionsschalldämpfer 36 und der Zwischenwand 38 liegenden Zwischenraum 44 verbunden. Tieffrequenter Schall der vom Absorptionsschalldämpfer 36 nicht absorbiert wird, wird in den Zwischenraum 44 und weiter in die drei Helmholtz-Resonatoren 24, 24', 24" geleitet. Die hier gezeigte Anzahl und Form der Helmholtz-Resonatoren 24, 24', 24" kann nach Bedarf geändert werden. Es können also ein Helmholtz-Resonator 24, zwei, drei, vier oder auch mehr Resonatoren 24, 24', 24", ... nebeneinander angeordnet sein. Auch die Form kann beliebig variieren. Es können meherer Zylinder nebeneinander angeordnet sein statt der Zylindersektoren oder aber auch beliebige Polygonformen. Zusätzlich können auch an anderen Orten des Abgassystems 10 ein oder mehrere Helmholtz-Resonatoren 24, 24', 24", ... nebeneinander angeordnet sein.The remaining between the
In einer besonderen Ausführungsform sind die drei Helmholtz-Resonatoren 24, 24', 24" mit Hilfe von in Länge und/oder im Querschnitt anpassbaren Hälsen 47 sowie mit Hilfe eines verstellbaren Volumens 25, 25', 25" auf leicht unterschiedliche, tiefe Frequenzen eingestellt, die sich vorzugsweise auch von der Frequenz, welche im Zwischenraum 44 gedämpft wird, unterscheiden. Auf diese Weise kann der tieffrequente Lärm mit hohem Wirkungsgrad reduziert werden.In a particular embodiment, the three
In Fig. 4 ist das Prinzip eines anpassbaren Helmholtz-Resonators 24a im Schnitt gezeigt. Wie aus Fig. 4 erkennbar, weist der Hals 47a zwei ineinander gesteckte Rohre 50, 52 auf. Es können aber auch beliebige andere Querschnittsformen gewählt werden. Das äussere Rohr 50 mit dem grösseren Durchmesser ist fest in der Zwischenwand 30 verankert. Es kann beispielsweise mit der Zwischenwand 30 verschweisst sein. Das äussere Rohr 50 weist auf seiner Innenseite, in seinen beiden Endbereichen jeweils auf Kreisscheiben liegende, sich radial nach innen erstreckende Vorsprünge 54 auf. Zwischen den Vorsprüngen 54 ist eine Dichtung 56 angeordnet, die das innere Rohr 52 mit dem etwas kleineren Durchmesser gasdicht umfasst. Das innere Rohr 52 ist im äusseren Rohr 50 konzentrisch und gegen den Widerstand der Dichtung 56 verschiebbar gelagert. Das innere Rohr 52 weist radial gegen aussen umgebogene Enden 53 auf, die mit den Vorsprüngen 54 in Anschlag gebracht, verhindern, dass das innere Rohr 52 zu weit aus dem äusseren Rohr 50 herausziehbar ist. Durch verschieben des inneren Rohres 52 im äusseren Rohr 50 ist der Hals 47a des Helmholtz-Resonators 24a in seiner Länge verschiebbar. Eine Verstellbarkeit des Halsdurchmessers kann beispielsweise dadurch erricht werden, dass der Hals mit einem polygonen Querschnitt ausgebildet ist und die Seitenwände des Polygons mittels Gelenken gegeneinander bewegbar sind.FIG. 4 shows in section the principle of an
Das Volumen 25a des Helmholtz-Resonators 24a ist mit Hilfe von in ihrer Höhe verstellbaren Seitenwänden 58 einstellbar. Die Höhe der Seitenwände 58 ist mit Hilfe eines verschiebbaren Bodens 60 veränderbar. Der verschiebbare Boden 60 ist topfförmig ausgebildet und umfasst eine Bodenplatte 62 und von dieser etwa senkrecht abstehende Bodenwände 64, welche die Seitenwände 58 des Helmholtz-Resonators 24a seitlich umgreifen. An Ihrem der Bodenplatte 62 entgegengesetzten Ende 66 sind die Bodenwände 64 radial nach innen umgebogen. Beabstandet von den umgebogenen Enden 66 ist an den Bodenwänden 64 ein sich radial nach innen erstreckender Kragen 68 vorgesehen. Zwischen dem Kragen 68 und den umgebogenen Enden 66 der Bodenwände 64 ist eine Bodendichtung 70 angeordnet, die die Seitenwände 58 des Helmholtz-Resonators 24a gasdicht umfasst. Die Seitenwände 58 weisen auf ihrer dem Boden 60 zugewandten Seite radial nach aussen umgebogene Ränder 72 auf, die mit dem Kragen 68 in Anschlag bringbar sind, und so verhindern, dass der Boden von den Seitenwänden 58 des Helmholtz-Resonators 24a abziehbar ist. Das Volumen 25a des Helmholtz-Resonators 24a ist damit im Rahmen der Verschiebung des Bodens 60 vom Anschlag der Bodenplatte 62 an die Ränder 72 der Seitenwände 58 bis zu Anschlag der Ränder 72 der Seitenwände 58 mit dem Kragen 68 der Bodenwände 64 verstellbar. Somit kann der Helmholtz-Resonator 24a durch den verstellbaren Hals 47a und das verstellbare Volumen 25a sehr genau auf die zu dämpfende Frequenz eingestellt werden.The
Der Abstand der beiden Rohre 54, 56 sowie der Bodenwände 64 und der Seitenwände 58 des Helmholtz-Resonators 24a sind in Fig. 4 zwecks grösserer Anschaulichkeit übertrieben gross dargestellt.The distance between the two
- 1010
- Abgassystemsexhaust system
- 1212
- Abgaskanalexhaust duct
- 1414
- Kaminfireplace
- 1616
- Strömungskanalflow channel
- 1818
- Abgasexhaust
- 2020
- ÜbergangsbereichTransition area
- 2222
- Rückwandrear wall
- 24, 24', 24"24, 24 ', 24 "
- Helmholtz-ResonatorHelmholtz resonator
- 25, 25', 25"25, 25 ', 25 "
- Volumenvolume
- 2626
- Lochabdeckunghole cover
- 2828
- Gewebetissue
- 3030
- Eintrittbereichentry area
- 3232
- Absorptionsschalldämpferabsorption silencer
- 3434
- Hohlzylinderhollow cylinder
- 3636
- vorgeschalteter Absorptionsschalldämpferupstream absorption silencer
- 3838
- Zwischenwandpartition
- 4040
- Bodenground
- 4242
- Wändewalls
- 4444
- Zwischenraumgap
- 4646
- Dämpfungsmaterialdamping material
- 4848
- weitere Lochabdeckungfurther hole cover
- 5050
- Rohr aussenPipe outside
- 5252
- Rohr innenPipe inside
- 5454
- Vorsprunghead Start
- 5656
- Dichtungpoetry
- 5858
- Seitenwändeside walls
- 6060
- verschiebbarer Bodensliding floor
- 6262
- Bodenplattebaseplate
- 6464
- Bodenwändebottom walls
- 6666
- umgebogene Endenbent ends
- 6868
- Kragencollar
- 7070
- Bodendichtungfloor seal
- 7272
- umgebogene Ränderbent edges
Claims (11)
- Exhaust gas system for industrial gas turbines with an exhaust gas conduit (12) and a chimney (14) connected to it, which together form a continuous flow duct (16), and having a device for noise reduction, characterized in that a Helmholtz resonator (24, 24', 24", 24a), is provided for suppressing the low frequencies of the noise, the inlet region (30) of which resonator is arranged in the region of a pressure maximum of an acoustic mode in this frequency range.
- Exhaust gas system according to claim 1, characterized in that the dimensions of the exhaust gas duct (12) and the chimney (14) are selected in such a way that the pressure maximum of the acoustic mode occurs in the transition region (20) between exhaust gas duct (12) and chimney (14).
- Exhaust gas system according to one of claims 1 or 2, characterized in that the Helmholtz resonator (24, 24', 24", 24a) is located in the transition region (20) between exhaust gas duct (12) and chimney (14) and, in fact, preferably on the chimney (14) rear wall (22), which bounds the exhaust gas duct (12) in the flow direction (S).
- Exhaust gas system according to one of the preceding claims, characterized in that the Helmholtz resonator (24, 24', 24", 24a) is thermally insulated from the outside.
- Exhaust gas system according to one of the preceding claims, characterized in that the Helmholtz resonator (24, 24', 24", 24a) has a throat (47, 47a) which can be adjusted in its length and/or its cross section and/or in that the Helmholtz resonator (24, 24', 24", 24a) has a volume (25, 25', 25", 25a) which is adjustable and, in fact, preferably by the height of its side walls (58) being adjusted by means of a displaceable base (40, 60).
- Exhaust gas system according to one of the preceding claims, characterized in that the temperature of the Helmholtz resonator (24) can be adjusted.
- Exhaust gas system according to one of the preceding claims, characterized in that the inlet region (30) of the Helmholtz resonator (24, 24', 24", 24a) is screened in an acoustically transparent manner from the flow in the flow duct (16) and, in fact, preferably by means of an absorption noise suppressor (36) located between the throat (47, 47a) of the Helmholtz resonator (24, 24', 24", 24a) and the flow (S).
- Exhaust gas system according to claim 7, characterized in that the absorption noise suppressor (36) has a first perforated cover (26), which preferably forms a part of a wall (22) bounding the flow duct (16), and in that it comprises a flow-resistant fabric (28) located on the side of the perforated cover (26) facing away from the flow duct (16), a layer of absorption material (46) adjacent to the fabric (28), a second perforated cover (48) opposite to the first perforated cover (26) and side walls.
- Exhaust gas system according to claim 7 or 8, characterized in that an intermediate space (44) is located between the absorption noise suppressor (36) and the throat (47, 47a) of the Helmholtz resonator (24, 24', 24", 24a).
- Exhaust gas system according to one of the preceding claims, characterized in that a plurality of Helmholtz resonators (24, 24', 24", 24a) are provided which are preferably tuned to different frequencies or modes.
- Exhaust gas system according to claim 10, characterized in that the Helmholtz resonators (24, 24', 24", 24a) are separated from one another in a gas-tight manner.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH24002000 | 2000-12-08 | ||
CH20002400 | 2000-12-08 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1213538A2 EP1213538A2 (en) | 2002-06-12 |
EP1213538A3 EP1213538A3 (en) | 2002-07-31 |
EP1213538B1 true EP1213538B1 (en) | 2006-09-06 |
Family
ID=4569022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01811076A Expired - Lifetime EP1213538B1 (en) | 2000-12-08 | 2001-11-08 | Exhaust gas system with Helmholtz resonator |
Country Status (3)
Country | Link |
---|---|
US (1) | US6705428B2 (en) |
EP (1) | EP1213538B1 (en) |
DE (1) | DE50110932D1 (en) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10247550A1 (en) * | 2002-10-11 | 2004-04-22 | Werner, Jürgen | Radial fan for leaf and waste vacuum, leaf blower or Laubladegeräte |
US6698390B1 (en) | 2003-01-24 | 2004-03-02 | Visteon Global Technologies, Inc. | Variable tuned telescoping resonator |
ITTO20031013A1 (en) * | 2003-12-16 | 2005-06-17 | Ansaldo Energia Spa | THERMO ACOUSTIC INSTABILITY DAMPING SYSTEM IN A COMBUSTOR DEVICE FOR A GAS TURBINE. |
EP1559874B1 (en) * | 2004-02-02 | 2013-07-31 | Siemens Aktiengesellschaft | Diffuser and turbine |
US20060059801A1 (en) * | 2004-09-15 | 2006-03-23 | Quality Research Development & Consulting, Inc. | Acoustically intelligent structures with resonators |
US7104243B2 (en) | 2005-02-17 | 2006-09-12 | Ford Global Technologies, Llc | Reducing acoustic noise of an engine having electromechanical valves |
EP1913242B1 (en) * | 2005-08-08 | 2008-10-29 | Alstom Technology Ltd | Sound absorber for gas turbine installations |
US7413053B2 (en) * | 2006-01-25 | 2008-08-19 | Siemens Power Generation, Inc. | Acoustic resonator with impingement cooling tubes |
US7412889B2 (en) * | 2006-02-28 | 2008-08-19 | Caterpillar Inc. | System and method for monitoring a filter |
DE102006026969A1 (en) * | 2006-06-09 | 2007-12-13 | Rolls-Royce Deutschland Ltd & Co Kg | Gas turbine combustor wall for a lean-burn gas turbine combustor |
DE202007017770U1 (en) * | 2007-12-20 | 2009-04-23 | Kutzner + Weber Gmbh | Gas discharge arrangement |
US9275628B2 (en) * | 2008-05-05 | 2016-03-01 | Bonnie S. Schnitta | Tunable frequency acoustic structures |
CH699322A1 (en) * | 2008-08-14 | 2010-02-15 | Alstom Technology Ltd | METHOD FOR SETTING A Helmholtz resonator AND HELMHOLTZ RESONATOR FOR IMPLEMENTING THE PROCESS. |
RU2468217C2 (en) * | 2011-01-21 | 2012-11-27 | Закрытое акционерное общество "Концерн "Струйные технологии" | Resonant sound damper of reflecting type |
US10548439B2 (en) | 2011-04-07 | 2020-02-04 | Excel Dryer, Inc. | Sanitizing hand dryer |
US9421291B2 (en) | 2011-05-12 | 2016-08-23 | Fifth Third Bank | Hand dryer with sanitizing ionization assembly |
EP2623732A1 (en) * | 2012-02-02 | 2013-08-07 | Siemens Aktiengesellschaft | Assembly and method for dampening acoustic vibrations in such an assembly |
US9039352B2 (en) | 2012-11-05 | 2015-05-26 | General Electric Company | Sound attenuating chimney element for a turbomachine system |
US9284963B2 (en) | 2013-01-28 | 2016-03-15 | American Dryer, Inc. | Blower assembly for hand dryer, with helmholtz motor mount |
GB2516286B (en) * | 2013-07-18 | 2016-08-17 | Rolls Royce Plc | A duct and method for damping pressure waves caused by thermoacoustic instability |
CN105091006B (en) * | 2014-05-15 | 2017-08-11 | 厦门嘉达声学技术有限公司 | Rain-proof noise elimination blast cap |
CN107166822A (en) * | 2017-07-06 | 2017-09-15 | 中国计量大学 | The adjusting method of air conditioner electronic expansion valve noise |
US10815894B2 (en) * | 2017-10-19 | 2020-10-27 | General Electric Company | Modular acoustic blocks and acoustic liners constructed therefrom |
US10626886B2 (en) * | 2018-04-18 | 2020-04-21 | Honeywell International Inc. | Sound attenuation apparatus and methods |
US11713904B2 (en) * | 2019-10-01 | 2023-08-01 | Johnson Controls Tyco IP Holdings LLP | Tunable sound attenuating modules |
RU200098U1 (en) * | 2020-01-10 | 2020-10-06 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный энергетический университет" | STEAM EMISSION SILENCER |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE892216C (en) | 1943-03-28 | 1953-10-05 | Siemens Ag | Device for regulating the voltage on the electrodes of a high-frequency treatment system |
US2940537A (en) | 1957-01-04 | 1960-06-14 | Gen Sound Control Inc | Means and techniques for silencing sound energy |
US3688865A (en) | 1970-11-17 | 1972-09-05 | Cloyd D Smith | Jet engine noise suppressor |
US3762498A (en) | 1971-07-22 | 1973-10-02 | Gen Electric | Gas turbine exhaust silencer |
FR2152372A1 (en) * | 1971-09-08 | 1973-04-27 | Sncf | |
US3709319A (en) | 1971-10-06 | 1973-01-09 | Gen Electric | Resonator chamber silencer for gas turbine |
US3738448A (en) | 1971-12-13 | 1973-06-12 | Bolt Beranek & Newman | Sound silencing method and apparatus |
US4106587A (en) | 1976-07-02 | 1978-08-15 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Sound-suppressing structure with thermal relief |
FR2378176A1 (en) * | 1977-01-19 | 1978-08-18 | Bertin & Cie | Gas turbine exhaust silencer - has diverging entry and discharge sections with intermediate straight section having centrally supported blunt-ended tube |
US4371054A (en) | 1978-03-16 | 1983-02-01 | Lockheed Corporation | Flow duct sound attenuator |
US4645032A (en) | 1985-09-05 | 1987-02-24 | The Garrett Corporation | Compact muffler apparatus and associated methods |
SE8800867L (en) * | 1988-03-10 | 1989-09-11 | Infrasonik Ab | sound reflector |
US5162620A (en) | 1989-11-28 | 1992-11-10 | Allied-Signal Inc. | Dual flow turbine engine muffler |
DE4009072A1 (en) | 1990-03-21 | 1991-09-26 | Kaefer Isoliertechnik | Steel chimney fitted with silencer - has under chamber mounted with axis horizontal |
EP0576717A1 (en) | 1992-07-03 | 1994-01-05 | Abb Research Ltd. | Gas turbine combustor |
US5276291A (en) | 1992-07-10 | 1994-01-04 | Norris Thomas R | Acoustic muffler for high volume fluid flow utilizing Heimholtz resonators with low flow resistance path |
DE4330129C2 (en) | 1993-09-06 | 2002-08-29 | Bayerische Motoren Werke Ag | Exhaust system of an internal combustion engine |
DE4414232A1 (en) * | 1994-04-23 | 1995-10-26 | Abb Management Ag | Device for damping thermoacoustic vibrations in a combustion chamber |
DE4419604A1 (en) | 1994-06-06 | 1995-12-07 | Werner Siegle | Chimney with rain collector for silencers, gas turbines and recuperators |
US5644918A (en) | 1994-11-14 | 1997-07-08 | General Electric Company | Dynamics free low emissions gas turbine combustor |
NL9500116A (en) * | 1995-01-23 | 1996-09-02 | Fasto Nefit Bv | Sound-damped combustion system, and silencer intended for use in such a system. |
CH692095A5 (en) * | 1995-03-23 | 2002-01-31 | Vaillant Gmbh | Central heating, fuel burning heater |
CA2218711C (en) * | 1995-08-17 | 2001-08-14 | Arvin Industries, Inc. | Sound attenuator with throat tuner |
GB9522724D0 (en) * | 1995-11-06 | 1996-01-10 | Acts Ltd | A noise attenuator for an induction system or an exhaust system |
DE19747245C1 (en) | 1997-10-25 | 1999-04-29 | Bayerische Motoren Werke Ag | Internal combustion engine with an exhaust gas recirculation device, in particular a diesel internal combustion engine |
US6082487A (en) * | 1998-02-13 | 2000-07-04 | Donaldson Company, Inc. | Mufflers for use with engine retarders; and methods |
EP0974788B1 (en) | 1998-07-23 | 2014-11-26 | Alstom Technology Ltd | Device for directed noise attenuation in a turbomachine |
-
2001
- 2001-11-08 DE DE50110932T patent/DE50110932D1/en not_active Expired - Lifetime
- 2001-11-08 EP EP01811076A patent/EP1213538B1/en not_active Expired - Lifetime
- 2001-11-26 US US09/991,967 patent/US6705428B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP1213538A2 (en) | 2002-06-12 |
US6705428B2 (en) | 2004-03-16 |
DE50110932D1 (en) | 2006-10-19 |
EP1213538A3 (en) | 2002-07-31 |
US20020108810A1 (en) | 2002-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1213538B1 (en) | Exhaust gas system with Helmholtz resonator | |
DE2907320C2 (en) | Silencer for the exhaust pipe of an internal combustion engine | |
DE2822971C2 (en) | Exhaust device for internal combustion engines | |
EP2394033B1 (en) | Muffler with helical inserts | |
DE3839242C2 (en) | heater | |
EP1426557A1 (en) | Casing for turbo charger | |
WO2011047852A1 (en) | Exhaust gas silencer | |
DE69824426T2 (en) | NOISE DAMPING DEVICE | |
EP1510667A2 (en) | Silencer | |
DE3517859A1 (en) | Heating boiler | |
DE2131410A1 (en) | SILENCER | |
EP1321639B2 (en) | Silencer arrangement | |
DE2521416A1 (en) | SILENT AXIAL FAN | |
DE102006060388A1 (en) | vehicle heater | |
EP0256416A1 (en) | Exhaust gas cleaning device | |
EP1442905B1 (en) | Silencer for a heater, in particular for a vehicle heating device | |
DE29919767U1 (en) | Damper insert | |
DE19520157A1 (en) | Motor vehicle exhaust silencer with choke flap | |
DE1426202A1 (en) | Exhaust silencer | |
DE10103739B4 (en) | silencer | |
DE10219964A1 (en) | Damper for high frequency vibrations in IC engine turbocharger comprises corrugated sleeve, width of outer corrugations being less than that of inner corrugations | |
CH694776A5 (en) | Silencer for attenuating noises that occur during leakage of exhaust gases from an exhaust opening. | |
EP1329605B1 (en) | Exhaust system for an internal combustion engine comprising a flow diverter | |
DE1200007B (en) | Sound absorber with a backdrop for attenuating noise emitted from a wall opening or the like | |
DE1294393B (en) | Muffler for motor vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RIC1 | Information provided on ipc code assigned before grant |
Free format text: 7F 23J 13/06 A, 7F 01D 25/30 B, 7F 23J 13/00 B |
|
17P | Request for examination filed |
Effective date: 20021209 |
|
AKX | Designation fees paid |
Designated state(s): CH DE FR GB LI NL |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM TECHNOLOGY LTD |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB LI NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 50110932 Country of ref document: DE Date of ref document: 20061019 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ALSTOM TECHNOLOGY LTD |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20061016 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070607 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD, CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50110932 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 50110932 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH Ref country code: DE Ref legal event code: R081 Ref document number: 50110932 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: HC Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH; CH Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), VERANDERING VAN NAAM VAN DE EIGENAAR(S); FORMER OWNER NAME: ALSTOM TECHNOLOGY LTD Effective date: 20161006 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: ALSTOM TECHNOLOGY LTD, CH Effective date: 20161110 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20161121 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: PD Owner name: ANSALDO ENERGIA IP UK LIMITED; GB Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT Effective date: 20170301 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50110932 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 50110932 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20170824 AND 20170830 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Effective date: 20171221 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20171121 Year of fee payment: 17 Ref country code: DE Payment date: 20171121 Year of fee payment: 17 Ref country code: NL Payment date: 20171120 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20171123 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171130 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50110932 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20181201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20181108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190601 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181108 |