[go: up one dir, main page]

EP1211761B1 - Verfahren und Einrichtung zur Bestimmung der Qualität einer Crimpverbindung - Google Patents

Verfahren und Einrichtung zur Bestimmung der Qualität einer Crimpverbindung Download PDF

Info

Publication number
EP1211761B1
EP1211761B1 EP02002743A EP02002743A EP1211761B1 EP 1211761 B1 EP1211761 B1 EP 1211761B1 EP 02002743 A EP02002743 A EP 02002743A EP 02002743 A EP02002743 A EP 02002743A EP 1211761 B1 EP1211761 B1 EP 1211761B1
Authority
EP
European Patent Office
Prior art keywords
crimping
force
crimp
sensor
force sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02002743A
Other languages
English (en)
French (fr)
Other versions
EP1211761A1 (de
Inventor
Claudio Dipl. El.-Ing. Meisser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komax Holding AG
Original Assignee
Komax Holding AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komax Holding AG filed Critical Komax Holding AG
Priority to EP02002743A priority Critical patent/EP1211761B1/de
Publication of EP1211761A1 publication Critical patent/EP1211761A1/de
Application granted granted Critical
Publication of EP1211761B1 publication Critical patent/EP1211761B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/04Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for forming connections by deformation, e.g. crimping tool
    • H01R43/048Crimping apparatus or processes
    • H01R43/0486Crimping apparatus or processes with force measuring means

Definitions

  • the invention relates to a method and a device for determining the quality of a crimp connection between a conductor and a contact, the device having a Crimp force generated by means of which the contact with the Ladder electrically and mechanically insoluble connectable.
  • crimping is internationally established and determined by standardization. In practice, however, will be also expressions like pressing, bruising, striking or Applying used. By crimping one understands the Production of a non-releasable electrical and mechanical connection between a conductor and a Contact. During crimping, the material to be joined becomes plastic, permanently deformed. In doing so, if present, poorly conductive surface layers broken up what the electrical conductivities favored. Correct crimping also prevents this Penetration of corrosive media even under difficult Operating conditions such as temperature changes or vibration.
  • the aim of crimping is to produce a good one mechanical and electrical connection in the long run qualitatively unchanged.
  • a sectional view of a faultless running Crimp connection shows the original single round Litz wires of the conductor compact to polygons against each other pressed.
  • the inner surface in the crimp area of the contact shows deformations of the contact points of the individual strands.
  • Crimp connection Important criteria for the evaluation of a Crimp connection are the crimp shape, the crimp height and the Drahtausreiss strength. These types of criteria are suitable but only when setting up the crimping machine and during the Production by sampling. To the today Quality requirements for all crimp connections too Sufficient means must be available, which over each Crimp connection during crimping Crimp data record, evaluate, save and result-oriented Machine data. To judge the Crimp connection (without mechanical destruction of the Crimped) is the crimp force in relation to Crimping path or set at crimping time. With appropriate Evaluation of the crimp data can be the goodness of a Crimp connection can be reliably assessed.
  • a method and a device for assessing the Quality of a crimped connection must be crimped as wrong Insulation crimp height, wrong wire crimp height, not detected strand wires at wire crimp, wrong or none Stripping length, incorrect insertion depth or stripping Detect cut stranded wires and corresponding Generate error messages.
  • the application EP 0 460 441 discloses a method for Detection of missing strands or of crimped ones Conductor insulation in a crimp connection using the Crimp force history has become known.
  • Crimping processes are value pairs consisting of crimping force and position of the crimper are measured and stored. The during the production of a crimped connection measured value pairs yield the crimp force curve of the Crimping with the crimping force in dependence of Position of the crimping die.
  • the curve section with strong Force increase is linearized and a point from the mean the minimum and maximum crimp force determined. The point is compared with a reference value. If the point within a predetermined deviation from the reference value is the crimp connection of acceptable quality.
  • the Crimping process will also increase the maximum crimping force taken into account. If the maximum crimping force over If a reference value deviates too much, the Crimp connection rejected as unusable. The point in the curve section with strong force increase and the maximum crimping force provides information about missing strands or via crimped conductor insulation in the Crimp.
  • a force sensor In a marketable crimping press detects a force sensor during the crimping process the force, in digital form is stored as a force-dependent curve. This is compared with a reference curve. Depending on Size of the deviation from the reference is based on the type of Crimp réelles closed.
  • a disadvantage of this device or in this method is that despite large computer, memory and Computational effort no differentiated statement about the Quality of the crimp connection is possible.
  • the invention aims to remedy this situation.
  • the invention as characterized in claim 1 solves the task to avoid the disadvantages of the known device and a method and a device with improved To create error sensitivity.
  • Figs. 1 to 3 show a crimping process in which the end a conductor 1 is connected to a contact 2.
  • a open crimping zone 3 of the contact 2 has a first Double lug 4 for the insulation crimp 5 and a second Double lug 6 for a wire crimp 7 on.
  • Fig. 1 shows Crimping dies 8, 9 in the top dead center, the end of Conductor insulation is in the first double lug 4 and the stripped conductor piece lies in the second double lug 6.
  • the double lugs 4, 6 means wedge-shaped recesses 10 of the crimping dies 8, 9 pressed against each other.
  • the edition is an Ambos 9.1.
  • a dome-shaped upper end of the recess 10 is the Double lug 4, 6 together with the conductor insulation or the Conductor wire the final shape.
  • Fig. 3 shows the finished Crimped connection with the insulation crimp 5, in which the first double lug 4 is pressed around the conductor insulation 11 and with the wire crimp 7, in which the second double tab 6 is pressed around a conductor wire 12.
  • FIG. 4 shows an error-free crimp connection in which a window 13, the insulation 11 of the conductor end 1 and the Individual strands of the conductor wire 12 are visible. At the contact-side end of the wire crimps 7 are the Individual strands visible again.
  • Fig. 5 shows how a fault-free Drahtcrimp 7 the second double tabs 6 with the trained as a stranded wire Conductor wire 12 are squeezed.
  • 14 is a stand without right Sidewall designated at which a motor 15 and an am Stand 14 mounted gear 16 is arranged. Moreover 14 first guides 17 are arranged on the stand, where a crimping rod 18 is guided. One from the transmission 16 driven shaft 19 has at one end an eccentric pin 20 on the other end is a resolver 21 for detecting the Angle of rotation coupled.
  • the Crimpbär 18 consists of a in the first guides 17 guided slider 22 and out a tool holder 23 with force sensor 23.1 and holding fork 24.
  • the slider 22 is in loose connection with the Eccentric pin 20, wherein the rotational movement of the Eccentric 20 in a linear movement of the slider 22 is implemented.
  • the maximum stroke of the slider 22nd is determined by top dead center and bottom dead center of the Eccentric 20 determined.
  • the tool holder 23 is actuated Usually a tool that works together with a for Tool belonging anvil 9.1 the crimp connection manufactures.
  • a crimping simulator 25 is used instead of the tool.
  • the stroke can be precise to be adjusted.
  • an operator terminal 27 is provided as interface between operator and Crimping press.
  • the operator terminal 27 has a rotary knob 29 and a Keyboard 30 on and to visualize data is one Display 31 is provided.
  • FIGS. 7, 8 and 9 show details of the crimping simulator 25 for calibration of the force sensor 23.1.
  • One in one Tool housing 32 guided punch 33 has a Carrier head 34 which in loose connection with the Holding fork 24 of the tool holder 23 is.
  • On one foot 35 of the tool housing 32 is for example by means of a Screw 36 a base plate 37 attached, the one Load cell 38 carries.
  • the power of the punch 33 is via an intermediate piece 39 on the force transducer 38th transfer.
  • the intermediate piece 39 is elastic and has the Consequence that in the calibration of the force increase in time is stretchable.
  • the force transducer 38 for example a Quartz force transducer, is expensive, calibratable and has a very linear characteristic.
  • the built-in tool holder 23 Force sensor 23.1 is cheaper and has a bigger one Linearity error.
  • For calibration of the force sensor 23.1 is the stamp 33 from the top dead center in the bottom dead center and back to the top dead center moves and a force in the course and in the order of magnitude a real crimping generated. It is the Force progression simultaneously and exclusively depending on Force sensor 23.1 and detected by the force transducer 38 and stored, wherein the force transducer 38 the calibratable Force history detected. This is also a force calibration at Force sensor 23.1 possible.
  • the force curve and the through the nonlinearity of the force sensor 23.1 conditional Force deviations from the measured force curve of Force transducer 38 are detected and in one Correction table filed.
  • Fig. 9a shows a voltage Crimpkraftverlauf the Force sensor 23.1.
  • Voltage U for example in Volts
  • crimp force CK for example, in kilonewtons.
  • undressed Line is the nonlinear voltage curve of the Force sensor 23.1 shown.
  • the broken line shows the linear voltage curve of the crimping simulator 25.
  • Fig. 10 shows the force sensor 23.1, as in the Tool holder 23 is installed.
  • Fig. 11 shows the Individual parts of the force sensor 23.1.
  • the force sensor 23.1 consists of a sensor housing 40 with an example plastic existing bottom 41 and cover 42.
  • the Inside the bottom 41 and the lid 42 are provided with a electrically conductive layer, for example one Copper layer 43, laminated.
  • the layer 43 of the floor 41 is by means of a lead wire 44 to the inner conductor a connection socket 45 connected.
  • the case of the Socket 45 is directly connected to the coating of the Cover 42 connected.
  • the sensor housing 40 has one Plastic existing intermediate bottom 46 with lesser Thickness than the sensors 48, on the recesses 47th are arranged, the holder of the sensors 48, For example, piezo ceramic discs serve.
  • the at Calibration or crimping on the lid 42 exerted force is exclusively on the sensors 48 and transferred from these to the ground 41.
  • the pressure on the sensors 48 generate an electrical charge which is at the Socke
  • Fig. 12 shows details of the controller 28 for the Crimping press.
  • One at the entrance with a net filter 49 Equipped Converter 50 puts the mains voltage in one DC voltage at which an inverter 51 is fed.
  • Controlled semiconductor switches Gu ... Gz of the inverter 51 chop up the DC voltage in one Pulse width modulation method in three pulsed AC voltages in the motor 15, for example, a Asynchronous motor ASM, sinusoidal currents of variable frequency produce.
  • the rotational movement is from the engine 15 to the Transmission 16 and then transferred to the shaft 19, at the one end of the eccentric pin 20 and at the other end the resolver 21 is arranged.
  • the eccentric pin 20 puts the crimping rod 18 in a linear motion.
  • One Pulse generator 52 generates in function of a Soll Anlagensverlaufes that for the control of Semiconductor switch Gu ... Gz necessary pulse pattern, the a driver stage 53 is fed to the output with the control lines of the semiconductor switches Gu ... Gz connected is.
  • a computer 54 controls all the functions of Crimping press. For the exchange of data between the computer and the peripheral modules is the bus system 55 to Available.
  • An automatically different Network adaptive power supply 56 also generates the necessary for the operation of the controller 28 Auxiliary voltages.
  • a battery-backed write-read memory 57 is used for Calculator 54 as a working memory.
  • a read memory 58 the program for controlling the crimping press is stored.
  • Other machines involved in the crimping process such as for example, conductor feed or contact feed, Control devices, safety circuits, etc. are with the Reference numeral 59 denotes and communicate for example, for synchronization via bus system 55 with the Control 28.
  • the control terminal 27 is by means of a serial interface 60 connected to the computer 54. If the crimp press to a parent Jardinkonfedictioniertechnik 63 heard takes place the Communication of the controller 28 with the assembly unit 63 also via the serial interface 60.
  • a Evaluation unit 61 detects the measured values of the force sensor 23.1 and the force transducer 38 and processes the Measurement data as shown above.
  • menu-guided user-specific Data such as password, language, units, etc.
  • operation-specific data such as acceleration, deceleration, Frequency of the motor, position points along the stroke to the Synchronization of the peripherals involved in the crimping process Machinery and equipment are entered.
  • service-relevant data such as service-relevant data, statistical evaluations, Log data of the communication, drive data etc. be accessed.
  • Operating modes such as calibration of the Starting position of the crimping rod 18, calibration of the Force sensor 23.1, Einricht religion to specify the for the respective tool necessary stroke, triggering a one-time crimping process for testing the crimped connection, Crimping with intermediate stop for positioning the Contact and subsequent pressing of the contact, Crimping with preselected stroke, etc. can also menu guided via operating terminal 27 of the controller 28 given, wherein the Crimpbär 18 and thus the Crimping tool can be positioned by means of knob 39.
  • the resolver 21 used in the crimp press serves the Measurement of angular positions. He delivers an absolute Signal per revolution and is insensitive to Vibration loads and temperature. Because of his Mechanical construction also maintains its angle information received in case of power failure.
  • the resolver 21 consists of a stator and a driven by the shaft 19 Rotor. At the stator is a first stator winding and a second stator winding and a rotor winding on the rotor arranged.
  • the rotor winding is replaced by a Alternating voltage U1 with constant amplitude and frequency, For example, 5000 Hz excited.
  • the second stator winding is shifted from the first stator winding by 90 ° arranged.
  • Fig. 13 to 15 show the course of the crimping force of a typical contact family at different Crimpsciencen.
  • the Crimping force is CK and on the horizontal graph axis the time, the deflection angle or the Crimpweg applied.
  • the Crimpweg CW is the deflection angle ⁇ of Resolver 21 derived.
  • the curve with a solid line is one out of, say, ten faultless crimps determined and the mean of these crimping forces representative reference curve. With broken line shown is the force curve of a faulty Crimping.
  • Fig. 13 shows the force curve of a crimping, in the Drahtcrimp 7 three of nineteen single strands of the Conductor wire 12 is missing. The three individual strands are either pushed back when positioning the conductor been and / or cut off during stripping. In a first zone Z1 of the force curve, which is about the Closing operation of the double tabs 4, 6 reproduces lie the reference curve and the faulty crimp curve on each other, which is represented by the sign + -.
  • a second zone Z2 of the force curve which is about the Pressing the first double lug 4 in the conductor insulation 11 and the pressing of the second double lug 6 in the Conductor 12 reproduces, the values of the faulty crimping well below the reference values, what is represented by the sign ---.
  • a third zone Z3 of the force curve which is about the final plastic deformation of the double lugs 4, 6 reproduces, the values of the faulty crimping are still something below the reference values, what about the signs is shown.
  • the area to the right of the third zone Z3 reflects the force curve during the opening process of the tool. In this area, the curves cover largely independent of the error of crimping.
  • Fig. 14 shows the force curve of a crimp, in which the Conductor insulation 11 extends into the wire crimp 7.
  • the Force curve of the faulty crimping a significant Elevation compared to the reference curve on what with the Sign ++++ is shown.
  • the closing of the second Double lug 6 requires 11 more because of the conductor insulation Force.
  • Fig. 15 shows the force curve of a crimp, in which the Lead wire 12 only partially extends into the wire crimp 7.
  • the Force curve of the faulty crimping clearly below the reference curve, what with the sign - or with the Sign --- is shown.
  • the deformation of the Double lugs 4, 6 in case of incomplete filling Insulation crimp 4 and wire crimp 6 requires less force.
  • the crimping force CK is determined by means of a Force sensor 23.1 measured.
  • the crimping force CK divides into the crimping dies 8, 9 on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Einrichtung zur Bestimmung der Qualität einer Crimpverbindung zwischen einem Leiter und einem Kontakt, wobei die Einrichtung eine Crimpkraft erzeugt, mittels welcher der Kontakt mit dem Leiter elektrisch und mechanisch unlösbar verbindbar sind.
Der Begriff "Crimpen" ist international eingeführt und normungstechnisch festgelegt. In der Praxis werden aber auch Ausdrücke wie Pressen, Quetschen, Anschlagen oder Ansetzen benutzt. Unter Crimpen versteht man die Herstellung einer nicht lösbaren elektrischen und mechanischen Verbindung zwischen einem Leiter und einem Kontakt. Beim Crimpvorgang wird das zu verbindende Material plastisch, dauerhaft verformt. Dabei werden, falls vorhanden, schlecht leitende Oberflächenschichten aufgebrochen, was die elektrische Leitfähigkeiten begünstigt. Eine korrekte Crimpung verhindert aber auch das Eindringen korrosiver Medien selbst unter erschwerten Betriebsbedingungen wie Temperaturwechsel oder Vibration.
Ziel der Crimpung ist die Herstellung einer guten mechanischen und elektrischen Verbindung, die auf die Dauer qualitativ unverändert bleibt.
Zum Crimpen werden kontaktspezifische Crimpwerkzeuge verwendet mit einem feststehenden Crimpamboss unten und vertikal verschiebbaren Crimpstempeln oben. (Fig. 1 bis Fig. 3). Im Crimpwerkzeug sind der Drahtcrimper und der Isolationscrimper montiert, welche meistens über Rasterscheiben mit unterschiedlichen Höhennocken unabhängig voneinander in vertikaler Richtung auf den Drahtdurchmesser bzw. Isolationsdurchmesser eingestellt werden können. Diese Einstellungen beeinflussen direkt die Qualität der Crimpverbindung.
Bei offenen Crimpkontakten (Fig. 4 und Fig. 5) erfolgt die Leiterzuführung oberhalb des Kontaktes. Der zuvor abisolierte Leiter wird üblicherweise von Automaten gleichzeitig in radialer und axialer Richtung gegenüber dem Kontakt korrekt für den Crimpvorgang positioniert. Durch die Abwärtsbewegung des Crimpstempels wird zuerst der Leiter über eine Mechanik in die nach oben geöffneten Draht- und Isolationscrimpkrallen abgesenkt, danach beginnt der eigentliche Crimpvorgang mit Umformen der Laschen entsprechend der Crimpstempelformen. Nach dem Hub des Crimpstempels hat der Crimp die gewollte Form-Verpressung. (Fig. 5), die wiederum vom verwendeten Kontaktblech, vom Drahtquerschnitt, vom Kupfer des Drahtes und von der Abisolierung abhängig ist. Bei geschlossenen Kontakten muss nach radialer Ausrichtung axial in den als Rohr ausgeformten Crimpbereich eingefahren werden.
Ein Schnittbild einer fehlerfrei ausgeführten Crimpverbindung zeigt die ursprünglich einzelnen runden Litzendrähte des Leiters kompakt zu Vielecken gegeneinander gepresst. Die innere Fläche im Crimpbereich des Kontaktes zeigt Verformungen der Berührungsstellen der Einzellitzen. Beim Drahtcrimp müssen alle Einzeldrähte umfasst sein. Am vorderen Ende des Drahtcrimps müssen die Einzeldrähte je nach Querschnitt etwa 0,5 mm herausragen und dürfen nicht im Crimp verschwinden. In dem zwischen Drahtcrimp und Isolationscrimp liegenden Fenster müssen Leiter und Leiterisolation sichtbar sein. Der Isolationscrimp muss die Isolation umschliessen ohne in diese einzudringen.
Wichtige Kriterien für die Beurteilung einer Crimpverbindung sind die Crimpform, die Crimphöhe und die Drahtausreiss-Festigkeit. Diese Art Kriterien eignen sich aber nur beim Einrichten der Crimpmaschine und während der Produktion bei Stichproben. Um den heutigen Qualitätsanforderungen für sämtliche Crimpverbindungen zu genügen, müssen Mittel zur Verfügung sein, welche über jede Crimpverbindung während des Crimpvorganges Crimpdaten aufnehmen, auswerten, speichern und ergebnisorientiert Maschinendaten beeinflussen können. Zur Beurteilung der Crimpverbindung (ohne mechanische Zerstörung der Crimpverbindung) wird die Crimpkraft in Relation zum Crimpweg oder zur Crimpzeit gesetzt. Mit entsprechender Auswertung der Crimpdaten kann die Güte einer Crimpverbindung verlässlich beurteilt werden.
Eine Verfahren bzw. eine Einrichtung zur Beurteilung der Qualität einer Crimpverbindung muss Crimpfehler wie falsche Isolationscrimp-Höhe, falsche Drahtcrimp-Höhe, nicht erfasste Litzendrähte beim Drahtcrimp, falsche oder keine Abisolierlänge, falsche Einlegetiefe oder beim Abisolieren abgeschnittene Litzendrähte erkennen und entsprechende Fehlermeldungen erzeugen.
Aus der Anmeldeschrift EP 0 460 441 ist ein Verfahren zur Detektion von fehlenden Litzen oder von eingecrimpter Leiterisolation in einer Crimpverbindung anhand des Crimpkraftverlaufes bekannt geworden. Während eines Crimpvorganges werden Wertepaare bestehend aus Crimpkraft und Position des Crimpstempels gemessen und gespeichert. Die während der Herstellung einer Crimpverbindung gemessenen Wertepaare ergeben den Crimpkraftverlauf des Crimpvorganges mit der Crimpkraft in Abhängigkeit der Position des Crimpstempels. Der Kurvenabschnitt mit starkem Kraftanstieg wird linearisiert und ein Punkt aus dem Mittel der minimalen und maximalen Crimpkraft bestimmt. Der Punkt wird mit einem Referenzwert verglichen. Falls der Punkt innerhalb einer vorbestimmten Abweichung vom Referenzwert liegt, ist die Crimpverbindung von akzeptabler Qualität. Bei der Auswertung des Crimpkraftverlaufes des Crimpvorganges wird auch die maximale Crimpkraft mitberücksichtigt. Falls die maximale Crimpkraft gegenüber einem Referenzwert übermässig abweicht, wird die Crimpverbindung als unbrauchbar zurückgewiesen. Der Punkt im Kurvenabschnitt mit starkem Kraftanstieg und die maximale Crimpkraft geben Aufschluss über fehlende Litzen bzw. über eingecrimpte Leiterisolation in der Crimpverbindung.
Bei einer marktgängigen Crimppresse erfasst ein Kraftsensor während des Crimpvorganges die Kraft, die in digitaler Form als kraftabhängiger Kurvenverlauf abgespeichert wird. Dieser wird mit einer Referenzkurve verglichen. Je nach Grösse der Abweichung zur Referenz wird auf den Typ des Crimpfehlers geschlossen.
Nachteilig bei dieser Einrichtung bzw. bei diesem Verfahren ist, dass trotz grossem Rechner-, Speicher- und Rechenaufwand keine differenzierte Aussage über die Qualität der Crimpverbindung möglich ist.
Hier will die Erfindung Abhilfe schaffen. Die Erfindung, wie sie in Anspruch 1 gekennzeichnet ist, löst die Aufgabe, die Nachteile der bekannten Einrichtung zu vermeiden und ein Verfahren und eine Einrichtung mit verbesserter Fehlersensibilität zu schaffen.
Die durch die Erfindung erreichten Vorteile sind im wesentlichen darin zu sehen, dass mit der besseren Auflösung der Fehler eine Qualitätssteigerung möglich ist, dass mit der sensibleren Fehlerdiagnose weniger Ausschuss entsteht und dass Folgefehler, beispielsweise eine Panne eines Personenwagens wegen Wackelkontaktes in einer Steckerverbindung vermieden werden.
Im folgenden wird die Erfindung anhand von lediglich einen Ausführungsweg darstellenden Zeichnungen näher erläutert. Es zeigen:
Fig. 1 bis Fig. 3
eine schematische Darstellung eines Crimpvorganges,
Fig. 4
eine Crimpverbindung zwischen einem Leiter und einem Kontakt,
Fig. 5
Einzelheiten eines Drahtcrimps,
Fig. 6
eine Crimppresse mit einem Crimpsimulator zur Kalibrierung eines Kraftsensors,
Fig. 7
den Crimpsimulator mit einem Stempel in der unteren Totpunktlage,
Fig. 8
den Crimpsimulator mit dem Stempel in der oberen Totpunktlage,
Fig. 9
Einzelheiten des Crimpsimulators,
Fig. 9a
einen Spannungs-Crimpkraftverlauf des Kraftsensors,
Fig. 10 und Fig. 11
Einzelheiten des Kraftsensors,
Fig. 12
Einzelheiten einer Pressensteuerung,
Fig. 13 bis Fig. 15
den Verlauf der Crimpkraft bei unterschiedlichen Crimpfehlern,
Fig. 16
den Crimpkraftverlauf mit einer Zoneneinteilung,
Fig. 17
Zonenabhängige Mess- und Rechenwerte und
Fig. 18a bis Fig. 18c
Grenzwerte für Fehlertypen.
Fig. 1 bis 3 zeigen einen Crimpvorgang, bei dem das Ende eines Leiters 1 mit einem Kontakt 2 verbunden wird. Eine offene Crimpzone 3 des Kontaktes 2 weist eine erste Doppellasche 4 für den Isolationscrimp 5 und eine zweite Doppellasche 6 für einen Drahtcrimp 7 auf. Fig. 1 zeigt Crimpstempel 8, 9 in der oberen Totpunktlage, das Ende der Leiterisolation liegt in der ersten Doppellasche 4 und das abisolierte Leiterstück liegt in der zweiten Doppellasche 6. Wie in Fig. 2 gezeigt werden beim Absenken der Crimpstempel 8, 9 die Doppellaschen 4, 6 mittels keilförmigen Ausnehmungen 10 der Crimpstempel 8, 9 gegeneinander gepresst. Als Auflage dient ein Ambos 9.1. Ein kuppelförmiges oberes Ende der Ausnehmung 10 gibt der Doppellasche 4, 6 zusammen mit der Leiterisolation bzw. dem Leiterdraht die endgültige Form. Fig. 3 zeigt die fertige Crimpverbindung mit dem Isolationscrimp 5, bei dem die erste Doppellasche 4 um die Leiterisolation 11 gepresst ist und mit dem Drahtcrimp 7, bei dem die zweite Doppellasche 6 um einen Leiterdraht 12 gepresst ist.
Fig. 4 zeigt eine fehlerfreie Crimpverbindung, bei der in einem Fenster 13 die Isolation 11 des Leiterendes 1 und die Einzellitzen des Leiterdrahtes 12 sichtbar sind. Am kontaktseitigen Ende des Drahtcrimps 7 sind die Einzellitzen erneut sichtbar.
Fig. 5 zeigt wie bei einem fehlerfreien Drahtcrimp 7 die zweiten Doppellaschen 6 mit dem als Litze ausgebildeten Leiterdraht 12 verquetscht sind.
In den Fig. 6 bis 12 ist mit 14 ein Ständer ohne rechte Seitenwand bezeichnet, an dem ein Motor 15 und ein am Ständer 14 gelagertes Getriebe 16 angeordnet ist. Ausserdem sind am Ständer 14 erste Führungen 17 angeordnet, an denen ein Crimpbär 18 geführt ist. Eine vom Getriebe 16 angetriebene Welle 19 weist einenends einen Exzenterzapfen 20 auf, anderenends ist ein Resolver 21 zur Erfassung des Drehwinkels angekoppelt. Der Crimpbär 18 besteht aus einem in den ersten Führungen 17 geführtes Gleitstück 22 und aus einem Werkzeughalter 23 mit Kraftsensor 23.1 und Haltegabel 24. Das Gleitstück 22 steht in loser Verbindung mit dem Exzenterzapfen 20, wobei die Rotationsbewegung des Exzenterzapfens 20 in eine Linearbewegung des Gleitstückes 22 umgesetzt wird. Der maximale Hub des Gleitstückes 22 wird durch den oberen Totpunkt und den unteren Totpunkt des Exzenterzapfens 20 bestimmt. Der Werkzeughalter 23 betätigt üblicherweise ein Werkzeug, das zusammen mit einem zum Werkzeug gehörenden Amboss 9.1 die Crimpverbindung herstellt. Zur Kalibrierung des Kraftsensors 23.1 ist anstelle des Werkzeugs ein Crimpsimulator 25 eingesetzt. Mittels einer Justierschraube 26 kann der Hub präzise justiert werden. Als Schnittstelle zwischen Bediener und Crimppresse ist ein Bedienterminal 27 vorgesehen. Zur Eingabe von Betriebsdaten und Befehlen an eine Steuerung 28 weist das Bedienterminal 27 einen Drehknopf 29 und eine Tastatur 30 auf und zur Visualisierung von Daten ist eine Anzeige 31 vorgesehen.
Fig. 7, 8 und 9 zeigen Einzelheiten des Crimpsimulators 25 zur Kalibrierung des Kraftsensors 23.1. Ein in einem Werkzeuggehäuse 32 geführter Stempel 33 weist einen Trägerkopf 34 auf, der in loser Verbindung mit der Haltegabel 24 des Werkzeughalters 23 steht. An einem Fuss 35 des Werkzeuggehäuses 32 ist beispielsweise mittels einer Schraube 36 eine Grundplatte 37 befestigt, die einen Kraftaufnehmer 38 trägt. Die Kraft des Stempels 33 wird über ein Zwischenstück 39 auf den Kraftaufnehmer 38 übertragen. Das Zwischenstück 39 ist elastisch und hat zur Folge, dass bei der Kalibrierung der Kraftanstieg zeitlich dehnbar ist. Der Kraftaufnehmer 38, beispielsweise ein Quarz-Kraftaufnehmer, ist teuer, eichbar und hat eine sehr lineare Kennlinie. Der im Werkzeughalter 23 eingebaute Kraftsensor 23.1 ist billiger und hat einen grösseren Linearitätsfehler. Zur Kalibrierung des Kraftsensors 23.1 wird der Stempel 33 von der oberen Totpunktlage in die untere Totpunktlage und wieder in die obere Totpunktlage bewegt und eine Kraft im Verlauf und in der Grössenordnung eines echten Crimpvorganges erzeugt. Dabei wird der Kraftverlauf gleichzeitig und ausschliesslich je vom Kraftsensor 23.1 und vom Kraftaufnehmer 38 erfasst und gespeichert, wobei der Kraftaufnehmer 38 den eichbaren Kraftverlauf erfasst. Damit ist auch eine Krafteichung beim Kraftsensor 23.1 möglich. Der Kraftverlauf und die durch die Nichtlinearität des Kraftsensors 23.1 bedingten Kraftabweichungen gegenüber dem gemessenen Kraftverlauf des Kraftaufnehmers 38 werden erfasst und in einer Korrekturtabelle abgelegt. Nach dem Kalibriervorgang wird der Crimpsimulator 25 ausgebaut und das übliche Crimpwerkzeug eingesetzt. Falls der Kraftsensor 23.1 ersetzt wird, muss der Kalibriervorgang wiederholt werden. Zur Messung der Crimpkraft bei der Herstellung von Crimpverbindungen genügt der Kraftsensor 23.1, weil der Kraftsensor 23.1 geeicht ist und die durch die Nichtlinearität des Kraftsensors 23.1 bedingten Messabweichungen mittels der Korrekturtabelle korrigiert werden. Auf diese Weise kann mit einem billigen, an sich ungenauen Kraftsensor der Crimpkraftverlauf genau und absolut bestimmt werden. Weiter vorteilhaft ist, dass ein Hersteller von Crimpverbindungen für seinen üblicherweise aus mehreren gleichen Crimppressen bestehenden Maschinenpark nur einen teuren Crimpsimulator für die Kalibrierung sämtlicher Crimppressen braucht.
Fig. 9a zeigt einen Spannungs-Crimpkraftverlauf des Kraftsensors 23.1. Auf der vertikalen Diagrammachse ist die Spannung U, beispielsweise in Volts und auf der horizontalen Diagrammachse ist die Crimpkraft CK, beispielsweise in Kilonewton aufgetragen. Mit ausgezogener Linie ist der nichtlineare Spannungsverlauf des Kraftsensors 23.1 dargestellt. Die unterbrochene Linie zeigt den linearen Spannungsverlauf des Crimpsimulators 25. In einem Kalibriervorgang werden bei beispielsweise hundert Kraftwerten die jeweils zugehörigen Spannungsdifferenzen zwischen ausgezogener Linie und unterbrochener Linie festgehalten und in der oben genannten Korrekturtabelle als Kraft/Spannungs-Wertepaar abgelegt. Bei der Herstellung von Crimpverbindungen werden die entsprechenden Kraftwerte aus der Korrekturtabelle gelesen und die jeweils zugehörigen Spannungsdifferenzen zu den entsprechenden aktuell gemessenen Spannungen addiert.
Fig. 10 zeigt den Kraftsensor 23.1, wie er im Werkzeughalter 23 eingebaut ist. Fig. 11 zeigt die Einzelteile des Kraftsensors 23.1. Der Kraftsensor 23.1 besteht aus einem Sensorgehäuse 40 mit einem beispielsweise aus Kunststoff bestehendem Boden 41 und Deckel 42. Die Innenseite des Bodens 41 und des Deckels 42 sind mit einer elektrisch leitenden Schicht, beispielsweise einer Kupferschicht 43, kaschiert. Die Schicht 43 des Bodens 41 ist mittels eines Anschlussdrahtes 44 mit dem Innenleiter einer Anschlussbuchse 45 verbunden. Das Gehäuse der Anschlussbuchse 45 ist direkt mit der Beschichtung des Deckels 42 verbunden. Das Sensorgehäuse 40 weist einen aus Kunststoff bestehenden Zwischenboden 46 mit geringerer Dicke als die Sensoren 48 auf, an dem Ausnehmungen 47 angeordnet sind, die der Halterung der Sensoren 48, beispielsweise Piezo-Keramikscheiben, dienen. Die beim Kalibriervorgang oder beim Crimpvorgang auf den Deckel 42 ausgeübte Kraft wird ausschliesslich auf die Sensoren 48 und von diesen auf den Boden 41 übertragen. Der Druck auf die Sensoren 48 erzeugt eine elektrische Ladung, die an der Anschlussbuchse 45 messbar ist.
Fig. 12 zeigt Einzelheiten der Steuerung 28 für die Crimppresse. Ein am Eingang mit einem Netzfilter 49 ausgerüsteter Converter 50 setzt die Netzspannung in eine Gleichspannung um, mit der ein Inverter 51 gespeist wird. Gesteuerte Halbleiterschalter Gu ... Gz des Inverters 51 zerhacken die Gleichspannung in einem Pulsbreitenmodulationsverfahren in drei gepulste Wechselspannungen, die im Motor 15, beispielsweise ein Asynchronmotor ASM, sinusförmige Ströme variabler Frequenz erzeugen. Die Rotationsbewegung wird vom Motor 15 auf das Getriebe 16 und dann auf die Welle 19 übertragen, an deren einen Ende der Exzenterzapfen 20 und an deren anderen Ende der Resolver 21 angeordnet ist. Der Exzenterzapfen 20 versetzt den Crimpbär 18 in eine Linearbewegung. Ein Pulsgenerator 52 erzeugt in Funktion eines Sollgeschwindigkeitsverlaufes das für die Ansteuerung der Halbleiterschalter Gu ... Gz notwendige Pulsmuster, das einer Treiberstufe 53 eingespeist wird, die am Ausgang mit den Steuerleitungen der Halbleiterschalter Gu ... Gz verbunden ist. Ein Rechner 54 steuert alle Funktionen der Crimppresse. Für den Datenaustausch zwischen dem Rechner und den Peripheriebausteinen steht das Bussystem 55 zur Verfügung. Ein sich automatisch an unterschiedliche Netzsituationen anpassendes Netzgerät 56 erzeugt auch die für den Betrieb der Steuerung 28 notwendigen Hilfsspannungen.
Ein batteriegestützter Schreib- Lesespeicher 57 dient dem Rechner 54 als Arbeitsspeicher. In einem Lesespeicher 58 ist das Programm zur Steuerung der Crimppresse abgelegt. Andere am Crimpvorgang beteiligte Maschinen, wie beispielsweise Leiterzuführung oder Kontaktzuführung, Steuereinrichtungen, Sicherheitskreise usw. sind mit dem Bezugszeichen 59 bezeichnet und kommunizieren beispielsweise zur Synchronisation via Bussystem 55 mit der Steuerung 28. Das Bedienterminal 27 ist mittels einer seriellen Schnittstelle 60 mit dem Rechner 54 verbunden. Falls die Crimppresse zu einer übergeordneten Kabelkonfektioniereinheit 63 gehört, erfolgt die Kommunikation der Steuerung 28 mit der Konfektioniereinheit 63 auch über die serielle Schnittstelle 60. Eine Auswerteeinheit 61 erfasst die Messwerte des Kraftsensors 23.1 und des Kraftaufnehmers 38 und verarbeitet die Messdaten wie oben dargestellt.
Am Bedienterminal 27 können menugeführt anwenderspezifische Daten wie Passwort, Sprache, Einheiten usw., betriebsspezifische Daten wie Beschleunigung, Verzögerung, Frequenz des Motors, Positionspunkte entlang des Hubes zur Synchronisation der am Crimpvorgang beteiligten peripheren Maschinen und Einrichtungen eingegeben werden. Ausserdem kann via Bedienterminal 27 auf Systeminformationen, servicerelevante Daten, statistische Auswertungen, Protokolldaten der Kommunikation, Antriebsdaten usw. zugegriffen werden. Betriebsarten wie Kalibrierung der Ausgangsposition des Crimpbärs 18, Kalibrierung des Kraftsensors 23.1, Einrichtbetrieb zur Vorgabe des für das jeweilige Werkzeug notwendigen Hubes, Auslösung eines einmaligen Crimpvorganges zur Prüfung der Crimpverbindung, Crimpvorgang mit Zwischenhalt zur Positionierung des Kontaktes und anschliessendem Verpressen des Kontaktes, Crimpvorgang mit vorgewähltem Hub usw. können auch menugeführt via Bedienterminal 27 der Steuerung 28 vorgegeben, wobei der Crimpbär 18 und somit das Crimpwerkzeug mittels Drehknopf 39 positionierbar ist.
Der in der Crimppresse eingesetzte Resolver 21 dient der Messung von Winkelpositionen. Er liefert ein absolutes Signal pro Umdrehung und ist unempfindlich gegenüber Vibrationsbelastungen und Temperatur. Aufgrund seines mechanischen Aufbaus bleibt seine Winkelinformation auch bei Spannungsausfall erhalten. Der Resolver 21 besteht aus einem Stator und einem von der Welle 19 angetriebenen Rotor. Am Stator ist eine erste Statorwicklung und eine zweite Statorwicklung sowie am Rotor eine Rotorwicklung angeordnet. Die Rotorwicklung wird durch eine Wechselspannung U1 mit konstanter Amplitude und Frequenz, beispielsweise 5000 Hz erregt. Die zweite Statorwicklung ist gegenüber der ersten Statorwicklung um 90° verschoben angeordnet. Durch elektromagnetische Kopplung erzeugt die Wechselspannung U1 an den Klemmen der Statorwicklungen die beiden Spannungen Usin bzw. Ucos. Diese beiden Spannungen haben die gleiche Frequenz wie U1. Die Amplitude ist aber proportional zum Sinus bzw. Cosinus des mechanischen Auslenkwinkels . Die Speisung der Rotorwicklung erfolgt über einen Oszillator. Bei einem Resolver mit einem Polpaar durchläuft die Amplitude der beiden Spannungen Usin und Ucos jeweils eine Sinusschwingung pro mechanische Umdrehung. Eine Resolverschnittstelle 62 wertet das Sinussignal und das Cosinussignal des Resolvers 21 mit beispielsweise einer Auflösung von 0,35° aus und konvertiert den Winkel  in einen digitalen Wert.
Fig. 13 bis 15 zeigen den Verlauf der Crimpkraft einer typischen Kontaktfamilie bei unterschiedlichen Crimpfehlern. Auf der vertikalen Diagrammachse ist die Crimpkraft CK und auf der horizontalen Diagrammachse ist die Zeit, der Auslenkwinkel oder der Crimpweg aufgetragen. Der Crimpweg CW ist vom Auslenkwinkel  des Resolvers 21 abgeleitet. Die Kurve mit ausgezogener Linie ist eine aus beispielsweise zehn fehlerfreien Crimpungen ermittelte und den Mittelwert dieser Crimpkräfte darstellende Referenzkurve. Mit unterbrochener Linie dargestellt ist der Kraftverlauf einer fehlerhaften Crimpung.
Fig. 13 zeigt den Kraftverlauf einer Crimpung, bei der im Drahtcrimp 7 drei von neunzehn Einzellitzen des Leiterdrahtes 12 fehlen. Die drei Einzellitzen sind entweder beim Positionieren des Leiters zurückgeschoben worden und/oder beim Abisolieren abgeschnitten worden. In einer ersten Zone Z1 des Kraftverlaufs, die etwa den Schliessvorgang der Doppellaschen 4, 6 wiedergibt, liegen die Referenzkurve und die Kurve der fehlerhaften Crimpung aufeinander, was mit den Vorzeichen +- dargestellt ist. In einer zweiten Zone Z2 des Kraftverlaufs, die etwa das Einpressen der ersten Doppellasche 4 in die Leiterisolation 11 und das Einpressen der zweiten Doppellasche 6 in den Leiterdraht 12 wiedergibt, liegen die Werte der fehlerhaften Crimpung deutlich unterhalb der Referenzwerte, was mit den Vorzeichen --- dargestellt ist. In einer dritten Zone Z3 des Kraftverlaufs, die etwa das endgültige plastische Verformen der Doppellaschen 4, 6 wiedergibt, liegen die Werte der fehlerhaften Crimpung immer noch etwas unterhalb der Referenzwerte, was mit den Vorzeichen dargestellt ist. Der Bereich rechts der dritten Zone Z3 wiedergibt den Kraftverlauf während des Öffnungsvorganges des Werkzeuges. In diesem Bereich decken sich die Kurven weitgehend unabhängig vom Fehler der Crimpung.
Fig. 14 zeigt den Kraftverlauf einer Crimpung, bei der die Leiterisolation 11 bis in den Drahtcrimp 7 reicht. In der ersten Zone Z1 und zu Beginn der zweiten Zone Z2 weist der Kraftverlauf der fehlerhaften Crimpung eine deutliche Überhöhung gegenüber der Referenzkurve auf, was mit den Vorzeichen ++++ dargestellt ist. Das Schliessen der zweiten Doppellasche 6 erfordert wegen der Leiterisolation 11 mehr Kraft.
Fig. 15 zeigt den Kraftverlauf einer Crimpung, bei der der Leiterdraht 12 nur teilweise in den Drahtcrimp 7 reicht. In der zweiten Zone Z2 und in der dritten Zone Z3 liegt der Kraftverlauf der fehlerhaften Crimpung deutlich unterhalb der Referenzkurve, was mit den Vorzeichen -- bzw. mit dem Vorzeichen --- dargestellt ist. Die Verformung der Doppellaschen 4, 6 bei unvollständig gefülltem Isolationscrimp 4 und Drahtcrimp 6 benötigt weniger Kraft.
Wie oben erwähnt wird die Crimpkraft CK mittels eines Kraftsensors 23.1 gemessen. Die Crimpkraft CK teilt sich in den Crimpstempeln 8, 9 auf.

Claims (6)

  1. Crimpeinrichtung zur Erzeugung einer Crimpkraft, mittels welcher ein Kontakt mit einem Leiter elektrisch und mechanisch unlösbar verbindbar sind, bestehend aus einem Antrieb (15, 16, 18, 19, 20) für ein an einem Werkzeughalter (23) angeordneten Crimpwerkzeug mit mindestens einem Crimpstempel, einer Steuerung (28), einem Geber (21) zur Bestimmung eines Crimpweges (CW) und einem Kraftsensor (23.1) zur Bestimmung der Crimpkraft (CK),
    dadurch gekennzeichnet, dass der Kraftsensor (23.1) mit der vom Antrieb (15, 16, 18, 19, 20) in vertikaler Richtung erzeugten, totalen Crimpkraft (CK) beaufschlagbar ist und oberhalb der Crimpstempel angeordnet ist.
  2. Crimpeinrichtung nach Anspruch 1,
    dadurch gekennzeichnet, dass der Kraftsensor (23.1) zur Bestimmung der Crimpkraft (CK) in vertikaler Richtung mehr als ein Sensorelement (48) aufweist, die zusammen ein auswertbares Signal erzeugen.
  3. Crimpeinrichtung nach Anspruch 2,
    dadurch gekennzeichnet, dass das Sensorelement (48) ein Piezoelement ist, das zwischen einem Boden (41) und einem Deckel (42) eines Gehäuses (40) angeordnet ist, wobei die Innenseite des Bodens (41) und des Deckels (42) eine elektrisch leitende Beschichtung (43) aufweist.
  4. Crimpeinrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass zur präzisen Erfassung der Crimpkraft (CK) während eines der Kalibrierung des Kraftsensors (23.1) dienenden Kalibriervorganges ein Crimpsimulator (25) anstelle des Crimpwerkzeuges vorgesehen ist.
  5. Crimpeinrichtung nach Anspruch 4,
    dadurch gekennzeichnet, dass die Steuerung (28) eine Korrekturtabelle aufweist, in der die durch die Nichtlinearität des Kraftsensors (23.1) bedingten Kraftabweichungen gegenüber dem mittels des Crimpsimulators (25) gemessenen Kraftverlauf abgelegt sind und dass der Kraftsensor (23.1) mittels des Crimpsimulators (25) auf einen Kraftverlauf eichbar ist.
  6. Crimpeinrichtung nach Anspruch 5,
    dadurch gekennzeichnet, dass die Steuerung (28) eine Korrektureinrichtung aufweist, die beim Crimpvorgang den mittels des Kraftsensors (23.1) gemessenen Crimpkraftverlauf anhand der Korrekturtabelle linearisiert.
EP02002743A 1997-09-11 1998-09-01 Verfahren und Einrichtung zur Bestimmung der Qualität einer Crimpverbindung Expired - Lifetime EP1211761B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02002743A EP1211761B1 (de) 1997-09-11 1998-09-01 Verfahren und Einrichtung zur Bestimmung der Qualität einer Crimpverbindung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP97810648 1997-09-11
EP97810648 1997-09-11
EP19980116524 EP0902509B1 (de) 1997-09-11 1998-09-01 Verfahren zur Bestimmung der Qualität einer Crimpverbindung
EP02002743A EP1211761B1 (de) 1997-09-11 1998-09-01 Verfahren und Einrichtung zur Bestimmung der Qualität einer Crimpverbindung

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP19980116524 Division EP0902509B1 (de) 1997-09-11 1998-09-01 Verfahren zur Bestimmung der Qualität einer Crimpverbindung

Publications (2)

Publication Number Publication Date
EP1211761A1 EP1211761A1 (de) 2002-06-05
EP1211761B1 true EP1211761B1 (de) 2005-12-14

Family

ID=26148061

Family Applications (2)

Application Number Title Priority Date Filing Date
EP02002743A Expired - Lifetime EP1211761B1 (de) 1997-09-11 1998-09-01 Verfahren und Einrichtung zur Bestimmung der Qualität einer Crimpverbindung
EP19980116524 Expired - Lifetime EP0902509B1 (de) 1997-09-11 1998-09-01 Verfahren zur Bestimmung der Qualität einer Crimpverbindung

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP19980116524 Expired - Lifetime EP0902509B1 (de) 1997-09-11 1998-09-01 Verfahren zur Bestimmung der Qualität einer Crimpverbindung

Country Status (1)

Country Link
EP (2) EP1211761B1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1381123B1 (de) * 2002-07-10 2011-06-22 Komax Holding AG Crimppresse mit Kontaktzuführung
US7024752B2 (en) 2002-07-10 2006-04-11 Komax Holding Ag Crimping press with contact feed
EP1515403B1 (de) * 2003-09-10 2007-10-24 komax Holding AG Kabelbearbeitungseinrichtung
DE102004043776B3 (de) * 2004-09-10 2006-06-14 Bernhard Schäfer Werkzeug- und Sondermaschinenbau GmbH Motorisch angetriebene Crimpvorrichtung
DE102008030773B4 (de) * 2008-06-28 2013-12-24 GFE - Gesellschaft für Fertigungstechnik und Entwicklung Schmalkalden e.V. Anordnung zur Integration einer Messelektronik in Crimpzangen
US8746026B2 (en) 2008-10-02 2014-06-10 Komax Holding Ag Method for determining the quality of a crimped connection between a conductor and a contact
US9331447B2 (en) * 2010-12-07 2016-05-03 Tyco Electronics Corporation Crimping apparatus having a crimp quality monitoring system
TWI608677B (zh) 2012-08-15 2017-12-11 威查格工具廠有限公司 壓接機用的變換承接器
DE102013211045A1 (de) * 2013-06-13 2014-12-18 Otto Bihler Handels-Beteiligungs-Gmbh Umformverfahren mit Regelung einer geometrischen Eigenschaft eines Werkstücks und Vorrichtung dazu
DE102014018995A1 (de) 2014-12-18 2016-06-23 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Verfahren zum Betrieb eines Scheinwerfers sowie Kraftfahrzeugscheinwerfer
DE102015010042A1 (de) 2015-08-01 2017-02-02 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Prüfanordnung zur Prüfung mindestens einer Verbindungsschnittstelle und Verfahren zur Prüfung mindestens einer Verbindungsschnittstelle mit einer Prüfanordnung
DE102017213147A1 (de) 2017-07-31 2019-01-31 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Überprüfung von Steckverbindungen
CN109655242A (zh) * 2017-10-10 2019-04-19 中国商用飞机有限责任公司 用于检测线束与端接件的连接的可靠性的方法及设备
DE102019101016A1 (de) * 2019-01-16 2020-07-16 Harting Electric Gmbh & Co. Kg Verfahren und Vorrichtung zur Überprüfung der Qualität einer Crimpung
DE102019101017A1 (de) * 2019-01-16 2020-07-16 Harting Electric Gmbh & Co. Kg Verfahren und Vorrichtung zur Überwachung des Zustands einer Crimpeinrichtung
CH716048B1 (de) 2019-04-09 2024-02-15 Dietmar Kramer Dr Sc Techn Eth Phd Verfahren sowie eine Messeinrichtung zum Ausmessen von Utensilien für Pressen.
DE102020111790A1 (de) 2020-04-30 2021-11-04 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum zerstörungsfreien Prüfen einer Schlauchverbindung
CN115345480B (zh) * 2022-08-13 2024-11-12 国网安徽省电力有限公司经济技术研究院 一种基于数字化技术的架空输电线路监测预警方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2906407C2 (de) * 1979-02-20 1981-02-26 Kistler Instrumente Ag, Winterthur (Schweiz) Piezoelektrisches Wandlerelement zum Einbau in Druck-, Kraft- oder Beschleunigungsaufnehmer
US4914602A (en) * 1987-05-13 1990-04-03 Furukawa Electric Co., Ltd. Method for detecting the molding defectiveness of a press-molded workpiece and a terminal press-bonding apparatus utilizing the same
DE4014221A1 (de) * 1989-05-12 1990-11-15 Siemens Ag Verfahren und vorrichtung zur fertigungsueberwachung beim crimpen von flexiblen, abisolierten adern von leitungen
GB8927466D0 (en) * 1989-12-05 1990-02-07 Amp Gmbh Electrical terminal crimping apparatus
DE4337797B4 (de) * 1993-11-05 2007-05-31 Kmf Messtechnik Und Verwaltungs Gmbh Anordnung zum Erfassen der Kraft zwischen relativ zueinander bewegten Maschinenteilen

Also Published As

Publication number Publication date
EP0902509A1 (de) 1999-03-17
EP1211761A1 (de) 2002-06-05
EP0902509B1 (de) 2003-01-22

Similar Documents

Publication Publication Date Title
EP1211761B1 (de) Verfahren und Einrichtung zur Bestimmung der Qualität einer Crimpverbindung
US6212924B1 (en) Process and apparatus for determination of the quality of a crimped connection
EP2173015B1 (de) Verfahren zur Bestimmung der Qualität einer Crimpverbindung zwischen einem Leiter und einem Kontakt
DE69117351T2 (de) Verfahren zur Qualitätsbestimmung einer Quetschverbindung
EP0989636B1 (de) Verfahren zur Qualitätssicherung von in einer Crimpvorrichtung hergestellten Crimpverbindungen sowie Crimpwerkzeug und Crimpvorrichtung
DE3886812T2 (de) Verfahren zum Ermitteln von Anschlagsmänglen beim Pressen eines gequetschten Werkstückes und eine dasselbe anwendende Vorrichtung zum Anschlagen von Anschlusselementen.
DE10223946B4 (de) Drehdetektoreinrichtung und Verfahren zu deren Herstellung
DE69402877T2 (de) Verfahren und vorrichtung zur statistischen echtzeitprozessüberwachung eines standpressvorganges
DE19548533C2 (de) Verfahren zur Überwachung der Qualität von Crimpverbindungen
EP0397434B1 (de) Verfahren und Vorrichtung zur Verbindung eines Drahtes an einer Anschlussklemme
DE102011101294B4 (de) Vorrichtung und Verfahren zum Kalibrieren und Abgleichen einer Messeinrichtung einer Tablettenpresse sowie Tablettenpresse
DE102009053043A1 (de) Kraftmesszelle zur Messung der Einspritzkraft beim Spritzgießen
DE102007053825B4 (de) Abisoliervorrichtung mit Berührungssensor und Justierhilfe für eine Abisoliervorrichtung
DE102016213266A1 (de) Brennstoffzellenstapel-montagevorrichtung und steuerverfahren
DE102016008283B4 (de) Motorantriebsvorrichtung umfassend einen widerstandsbremskreis
WO2014060174A1 (de) Anschlusselement für eine antriebsanordnung sowie eine antriebsanordnung mit einem anschlussteil
DE60020304T2 (de) Anordnung und Verfahren zur Prüfung der Crimpqualität von Kontakten sowie Verfahren zur Besimmung des Reibungsverschleisses der Crimpmatritze
DE4038658C2 (de)
EP2098838B1 (de) Füllstandmessgerät
DE4038653A1 (de) Crimpverbindungs-qualitaetskontrolle
EP2725331B1 (de) Verfahren und Vorrichtung zum Bestimmen einer Betriebstemperatur eines Elektromotors
DE112019004468B4 (de) Pressvorrichtung, Endgerät sowie Verfahren und Programm zum Berechnen der geschätzten Lebensdauer einer Kugelgewindespindel
EP0884811A1 (de) Verfahren und Einrichtung zur Herstellung einer Crimpverbindung
DE10313349B4 (de) Verfahren zur Herstellung einer Sensorvorrichtung
EP4118496B1 (de) Verfahren und systeme zum bereitstellen eines simulationsmodells einer elektrischen rotatorischen maschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 902509

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 20021118

AKX Designation fees paid

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 20030807

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 0902509

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59813281

Country of ref document: DE

Date of ref document: 20060119

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: INVENTIO AKTIENGESELLSCHAFT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060131

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060915

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080918

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110928

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20170921

Year of fee payment: 20

Ref country code: IT

Payment date: 20170926

Year of fee payment: 20

Ref country code: DE

Payment date: 20170928

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59813281

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL