[go: up one dir, main page]

EP1205006B1 - Transition from a waveguide to a microstrip - Google Patents

Transition from a waveguide to a microstrip Download PDF

Info

Publication number
EP1205006B1
EP1205006B1 EP00949855A EP00949855A EP1205006B1 EP 1205006 B1 EP1205006 B1 EP 1205006B1 EP 00949855 A EP00949855 A EP 00949855A EP 00949855 A EP00949855 A EP 00949855A EP 1205006 B1 EP1205006 B1 EP 1205006B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
substrate
transition
microstrip
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00949855A
Other languages
German (de)
French (fr)
Other versions
EP1205006A1 (en
Inventor
Sigmund Lenz
Achim Strouhal
Siegbert Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ericsson AB
Original Assignee
Marconi Communications GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marconi Communications GmbH filed Critical Marconi Communications GmbH
Publication of EP1205006A1 publication Critical patent/EP1205006A1/en
Application granted granted Critical
Publication of EP1205006B1 publication Critical patent/EP1205006B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions

Definitions

  • the present invention relates to a transition from a waveguide to a stripline, wherein extending on a substrate stripline protrudes through an opening in the waveguide and a belonging to the strip line grounding line is contacted with the waveguide wall.
  • Such a transition from a waveguide to a stripline is known from US 5,202,648.
  • the strip line runs on top of the substrate, and the associated ground line consists of a deposited on the opposite side of the substrate conductive surface which is contacted with the waveguide wall.
  • a weak point of such executed transitions between a waveguide and a stripline is often too low reflection attenuation and too high transmission loss.
  • EP-A2-0 920 071 describes a transition from a waveguide to a stripline formed in a multilayer substrate.
  • the junction may be enclosed within a hermetically sealed housing that includes a metal base, a first portion of the multi-layer substrate, a metal ring, and a metal cover.
  • the multilayer substrate has at least a first and a second dielectric layer, between which a first conductive layer is arranged.
  • the multi-layer substrate further includes the waveguide.
  • the walls of the waveguide are coated with an electromagnetically reflective material so that signals may propagate through reflection by the waveguide to the first dielectric layer.
  • vias are arranged to form an approximate outline around a protruding portion of the first dielectric layer.
  • a stripline is disposed on a second, separate portion of the multilayer substrate from the top of the first dielectric layer and connected to a T-shaped antenna disposed over the waveguide and within the waveguide extension.
  • the invention has for its object to provide a transition of the type mentioned, the one Has the highest possible reflection loss and the lowest possible insertion loss.
  • the ground line belonging to the strip line consists of a plurality of ground planes stacked in the substrate, all of which are contacted to each other by means of plated-through holes in the substrate.
  • the multi-layer ground line causes a more favorable field conversion of the stripline to the waveguide, which sets a high reflection loss and low transmission loss for the transition.
  • a plated-through in the substrate is provided at the acting as an antenna, projecting into the waveguide end of the strip line, the transition is broadband.
  • the substrate is fixed with at least one screw on a support on the waveguide wall, wherein the screw is passed through the ground surface and produces an electrical contact between these and the support.
  • a low transmission loss is achieved by the fact that the at least one screw rests with its head on one of the lateral next to the strip line on the substrate top applied ground surfaces and that between the screw head and the mass surface, a conductive tape is clamped, which is connected to the waveguide wall.
  • at least one conductive elastic body may be inserted between at least one of the two ground faces located laterally of the strip line and a projection of the waveguide wall projecting beyond the ground faces.
  • a conductive elastic body can be pressed between the head of the at least one screw and the projection of the waveguide wall.
  • a stripline 2 runs on a multilayer substrate 1 (multi-layer substrates).
  • a tongue 5 located on the substrate 1 in the Waveguide 3 protrudes.
  • the extending on the tongue 5 end of the strip line 2 acts as an antenna 6 for coupling the waveguide array to the stripline or vice versa.
  • ground planes 7 and 8 are applied to the substrate upper side next to the strip line 2, and in addition a plurality of ground planes are stacked within the multilayer substrate, all of which have the same ground potential.
  • the cross-section B-B shown in FIG. 3 through the waveguide 3 into the substrate 1 shows the multilayer ground surfaces 9 within the substrate 1.
  • the longitudinal section AA shown in Figure 2 shows the two symmetrical ground planes 7 and 8 on both sides of the strip line 2. These ground surfaces 7 and 8 on the substrate top are electrically conductively connected to the other within the substrate 1 stacked ground surfaces 9 through a plurality of plated through holes 10 , The locations and distances of the vias 10 are selected so that field propagation into the spaces between the ground planes of the multilayer substrate 1 is prevented. Because this could disrupt the function of arranged in the individual substrate layers circuits.
  • the ground surfaces 9 of the substrate 1 preferably protrude into the waveguide 3 by a few tenths of a millimeter in order to increase the positional tolerance of the substrate 1 relative to the waveguide 3.
  • the field configuration under the stripline 2 in the waveguide 3 is closely related to the position of the ground surfaces 9 together. If the position of the substrate 1 is now slightly changed, the field remains unchanged due to the positional tolerance of the ground surfaces 9.
  • a penetration depth of the ground surfaces 9 in the waveguide 3 of 0.5 - 1.0 mm makes sense.
  • the multilayer substrate 1 forms a larger virtual mass, thereby creating a field configuration that is better converted into a waveguide wave.
  • the field is namely formed by the greater extent of the mass (because of the many stacked mass surfaces) in the direction of the broad side of the waveguide 3 more intense in a field component of the fundamental mode of the waveguide.
  • FIGS. 2 and 3 show that through-plating 11 is provided at the end of the antenna 6 of the stripline 2 running on the substrate tongue 5.
  • This plated-11 at the end of the antenna 6 of the strip line leads to a broadening of the frequency band of the transition from the waveguide 3 to the stripline 2. Due to the thicker structure of the substrate 1, the feedthrough 11 at the end of the antenna 6 increases, resulting in a more favorable conversion of the stripline field contributes to the waveguide field.
  • the substrate 1 is fixed by means of at least one screw - in the embodiment shown in FIG. 2, two screws 12 and 13 - on a support 14 extending from the waveguide wall below the opening 4.
  • the screws are 12 and 13 with their heads on the side adjacent to the strip line 2 applied ground surfaces 7 and 8 and thus provide between the ground surfaces 7 and B and the stacked ground surfaces 9 in the substrate 1 and the waveguide wall 14 an electrical contact.
  • This contacting can, as shown in Figure 2, take place by means of conductive bands 15 and 16 which at one end between the heads of the screws 12 and 13 and the conductive surfaces 7 and 8 and at its other end in the parting plane 17 of two half-shells existing waveguide 3 are clamped.
  • FIG 3 Another variant for the contacting of the mass surfaces 7, 8 and screws 12, 13 with the waveguide wall is shown in FIG 3.
  • the waveguide 3 above its opening 4 a wall projection 18 which extends over the ground surfaces 7 and 8 on the upper side of the substrate 1 protrudes.
  • a wall projection 18 which extends over the ground surfaces 7 and 8 on the upper side of the substrate 1 protrudes.
  • one or more conductive elastic body 19 are clamped.
  • one or more conductive elastic bodies 20 can be pressed.

Landscapes

  • Waveguides (AREA)
  • Waveguide Aerials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Electric Cable Installation (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Optical Integrated Circuits (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

A transition from a waveguide to a microstrip, including a substrate having a plurality of ground surfaces superimposed on one another, the microstrip extending on the substrate and a plurality of through-contacts providing electrical connectivity to the plurality of ground surfaces. Wherein the waveguide includes a waveguide wall with an opening therein, the substrate projecting through the opening into the waveguide such that at least a portion of the microstrip is disposed within the waveguide, at least one of the plurality of ground surfaces being in contact with the waveguide wall.

Description

Stand der TechnikState of the art

Die vorliegende Erfindung betrifft einen Übergang von einem Hohlleiter auf eine Streifenleitung, wobei die auf einem Substrat verlaufende Streifenleitung durch eine Öffnung in den Hohlleiter hineinragt und eine zu der Streifenleitung gehörende Masseleitung mit der Hohlleiterwandung kontaktiert ist.The present invention relates to a transition from a waveguide to a stripline, wherein extending on a substrate stripline protrudes through an opening in the waveguide and a belonging to the strip line grounding line is contacted with the waveguide wall.

Ein derartiger Übergang von einem Hohlleiter auf eine Streifenleitung ist aus der US 5,202,648 bekannt. Dabei verläuft die Streifenleitung auf der Oberseite des Substrats, und die zugehörige Masseleitung besteht aus einer auf der gegenüberliegenden Substratseite aufgebrachten leitenden Fläche, die mit der Hohlleiterwandung kontaktiert ist. Eine Schwachstelle derartig ausgeführter Übergänge zwischen einem Hohlleiter und einer Streifenleitung ist eine oft zu geringe Reflexionsdämpfung und auch eine zu hohe Durchgangsdämpfung.Such a transition from a waveguide to a stripline is known from US 5,202,648. In this case, the strip line runs on top of the substrate, and the associated ground line consists of a deposited on the opposite side of the substrate conductive surface which is contacted with the waveguide wall. A weak point of such executed transitions between a waveguide and a stripline is often too low reflection attenuation and too high transmission loss.

In EP-A2-0 920 071 (D1) ist ein Übergang von einem Wellenleiter auf eine Streifenleitung beschrieben, der in einem Mehrlagensubstrat ausgebildet ist. Der Übergang kann in ein hermetisch abgeschlossenes Gehäuse eingeschlossen sein, das eine Metallbasis, einen ersten Teil des Mehrlagensubstrats, einen Metallring und eine Metallabdeckung umfasst. Das Mehrlagensubstrat weist wenigstens eine erste und eine zweite dielektrische Schicht auf, zwischen denen eine erste leitende Schicht angeordnet ist. Das Mehrlagensubstrat beinhaltet weiterhin den Wellenleiter. Die Wände des Wellenleiters sind mit einem elektromagnetisch reflektierenden Material beschichtet, so dass sich Signale durch Reflexion durch den Wellenleiter zu der ersten dielektrischen Schicht ausbreiten können. Wenigstens in der ersten dielektrischen Schicht sind Durchkontaktierungen so angeordnet, dass sie einen näherungsweisen Umriss um einen hervorstehenden Bereich der ersten dielektrischen Schicht bilden. Sie bilden so eine Erweiterung des Wellenleiters, die Signale durch die erste dielektrische Schicht führt. Ein Streifenleiter ist auf einem zweiten, von dem ersten getrennten Teil des Mehrlagensubstrats auf der Oberseite der ersten dielektrischen Schicht angeordnet und mit einer T-förmigen Antenne, die über dem Wellenleiter und innerhalb der Wellenleitererweiterung angeordnet ist, verbunden.EP-A2-0 920 071 (D1) describes a transition from a waveguide to a stripline formed in a multilayer substrate. The junction may be enclosed within a hermetically sealed housing that includes a metal base, a first portion of the multi-layer substrate, a metal ring, and a metal cover. The multilayer substrate has at least a first and a second dielectric layer, between which a first conductive layer is arranged. The multi-layer substrate further includes the waveguide. The walls of the waveguide are coated with an electromagnetically reflective material so that signals may propagate through reflection by the waveguide to the first dielectric layer. At least in the first dielectric layer, vias are arranged to form an approximate outline around a protruding portion of the first dielectric layer. They thus form an extension of the waveguide, which carries signals through the first dielectric layer. A stripline is disposed on a second, separate portion of the multilayer substrate from the top of the first dielectric layer and connected to a T-shaped antenna disposed over the waveguide and within the waveguide extension.

Der Erfindung liegt die Aufgabe zugrunde, einen Übergang der eingangs genannten Art anzugeben, der eine möglichst hohe Reflexionsdämpfung und eine möglichst geringe Durchgangsdämpfung aufweist.The invention has for its object to provide a transition of the type mentioned, the one Has the highest possible reflection loss and the lowest possible insertion loss.

Vorteile der ErfindungAdvantages of the invention

Gemäß Anspruchs 1 besteht die zu der Streifenleitung gehörende Masseleitung aus mehreren im Substrat übereinander geschichteten Masseflächen, die alle mittels Durchkontaktierungen im Substrat miteinander kontaktiert sind. Die mehrlagige Masseleitung bewirkt eine günstigere Feldkonvertierung von der Streifenleitung auf den Hohlleiter, womit sich für den Übergang eine hohe Reflexionsdämpfung und eine geringe Durchgangsdämpfung einstellt.According to claim 1, the ground line belonging to the strip line consists of a plurality of ground planes stacked in the substrate, all of which are contacted to each other by means of plated-through holes in the substrate. The multi-layer ground line causes a more favorable field conversion of the stripline to the waveguide, which sets a high reflection loss and low transmission loss for the transition.

Vorteilhafte Weiterbildungen der Erfindung gehen aus den Unteransprüchen hervor.Advantageous developments of the invention will become apparent from the dependent claims.

Dadurch, daß an dem als Antenne wirkenden, in den Hohlleiter hineinragenden Ende der Streifenleitung eine Durchplattierung im Substrat vorgesehen ist, wird der Übergang breitbandiger.The fact that a plated-through in the substrate is provided at the acting as an antenna, projecting into the waveguide end of the strip line, the transition is broadband.

Um eine gute Kontaktierung zwischen der Masseleitung und der Hohlleiterwandung herstellen zu können, ist es zweckmäßig, daß auf dem Substrat zu beiden Seiten neben der Streifenleitung Masseflächen aufgebracht sind und daß diese Masseflächen über Durchkontaktierungen mit den anderen im Substrat übereinander geschichteten Masseflächen kontaktiert sind. Vorteilhafterweise wird das Substrat mit mindestens einer Schraube auf einer Auflage an der Hohlleiterwand fixiert, wobei die Schraube durch die Massefläche hindurchgeführt ist und zwischen diesen und der Auflage einen elektrischen Kontakt herstellt.In order to produce a good contact between the ground line and the waveguide wall, it is expedient that on the substrate on both sides of the strip line ground planes are applied and that these ground surfaces are contacted via vias with the other layered in the substrate ground surfaces. Advantageously, the substrate is fixed with at least one screw on a support on the waveguide wall, wherein the screw is passed through the ground surface and produces an electrical contact between these and the support.

Eine geringe Durchgangsdämpfung erreicht man dadurch, daß die mindestens eine Schraube mit ihrem Kopf auf einer der seitlichen neben der Streifenleitung auf der Substratoberseite aufgebrachten Masseflächen aufliegt und daß zwischen dem Schraubenkopf und der Massenfläche eine leitendes Band eingeklemmt ist, das mit der Hohlleiterwand verbunden ist. Alternativ dazu kann zwischen mindestens einer der beiden seitlich der Streifenleitung befindlichen Masseflächen und einem über die Masseflächen hinausragenden Vorsprung der Hohlleiterwandung mindestens ein leitender elastischer Körper eingesetzt sein. Außerdem kann zwischen dem Kopf der mindestens einen Schraube und dem Vorsprung der Hohlleiterwandung ein leitender elastischer Körper eingepreßt werden.A low transmission loss is achieved by the fact that the at least one screw rests with its head on one of the lateral next to the strip line on the substrate top applied ground surfaces and that between the screw head and the mass surface, a conductive tape is clamped, which is connected to the waveguide wall. Alternatively, at least one conductive elastic body may be inserted between at least one of the two ground faces located laterally of the strip line and a projection of the waveguide wall projecting beyond the ground faces. In addition, between the head of the at least one screw and the projection of the waveguide wall, a conductive elastic body can be pressed.

Zeichnungdrawing

Anhand mehrerer in der Zeichnung dargestellter Ausführungsbeispiele wird nachfolgend die Erfindung näher erläutert. Es zeigen:

  • Figur 1 ein perspektivische Darstellung eines Übergangs von einem Hohlleiter auf eine Streifenleitung,
  • Figur 2 einen Längsschnitt A-A durch den Übergang und
  • Figur 3 einen Querschnitt B-B durch den Übergang.
On the basis of several embodiments shown in the drawings, the invention is explained in more detail below. Show it:
  • 1 shows a perspective view of a transition from a waveguide to a stripline,
  • Figure 2 shows a longitudinal section AA through the transition and
  • Figure 3 shows a cross section BB through the transition.

Beschreibung von AusführungsbeispielenDescription of exemplary embodiments

Wie der perspektivischen Prinzipskizze in Figur 1 zu entnehmen ist, verläuft auf einem Mehrlagen-Substrat 1 (Multi-Layer-Substrate) eine Streifenleitung 2. In einer Seitenwand eines Hohlleiters 3 befindet sich eine Öffnung 4, durch die eine am Substrat 1 befindliche Zunge 5 in den Hohlleiter 3 hineinragt. Das auf der Zunge 5 verlaufende Ende der Streifenleitung 2 wirkt als Antenne 6 zur Ankopplung des Hohlleiterfeldes an die Streifenleitung bzw. umgekehrt.1, a stripline 2 runs on a multilayer substrate 1 (multi-layer substrates). In a side wall of a waveguide 3 there is an opening 4, through which a tongue 5 located on the substrate 1 in the Waveguide 3 protrudes. The extending on the tongue 5 end of the strip line 2 acts as an antenna 6 for coupling the waveguide array to the stripline or vice versa.

Wie in den Figuren 2 und 3 detaillierter dargestellt, sind auf der Substratoberseite neben der Streifenleitung 2 zwei Masseflächen 7 und 8 aufgebracht, und zusätzlich sind innerhalb des Mehrlagen-Substrats mehrere Masseflächen übereinandergeschichtet, die alle das gleiche Massepotential haben. Der in der Figur 3 dargestellte Querschnitt B-B durch den Hohlleiter 3 in das Substrat 1 zeigt die mehrlagigen Masseflächen 9 innerhalb des Substrats 1.As shown in more detail in FIGS. 2 and 3, two ground planes 7 and 8 are applied to the substrate upper side next to the strip line 2, and in addition a plurality of ground planes are stacked within the multilayer substrate, all of which have the same ground potential. The cross-section B-B shown in FIG. 3 through the waveguide 3 into the substrate 1 shows the multilayer ground surfaces 9 within the substrate 1.

Der in der Figur 2 dargestellte Längsschnitt A-A zeigt die beiden symmetrischen Masseflächen 7 und 8 zu beiden Seiten der Streifenleitung 2. Diese Masseflächen 7 und 8 auf der Substratoberseite sind mit den anderen innerhalb des Substrats 1 übereinander geschichteten Masseflächen 9 durch mehrere Durchkontaktierungen 10 elektrisch leitend verbunden. Die orte und Abstände der Durchkontaktierungen 10 sind so gewählt, daß eine Feldausbreitung in die Zwischenräume zwischen den Masseflächen des mehrlagigen Substrats 1 verhindert wird. Denn dadurch könnte die Funktion von in den einzelnen Substratlagen angeordneten Schaltungen gestört werden.The longitudinal section AA shown in Figure 2 shows the two symmetrical ground planes 7 and 8 on both sides of the strip line 2. These ground surfaces 7 and 8 on the substrate top are electrically conductively connected to the other within the substrate 1 stacked ground surfaces 9 through a plurality of plated through holes 10 , The locations and distances of the vias 10 are selected so that field propagation into the spaces between the ground planes of the multilayer substrate 1 is prevented. Because this could disrupt the function of arranged in the individual substrate layers circuits.

Die Masseflächen 9 des Substrats 1 ragen vorzugsweise um einige zehntel Millimeter in den Hohlleiter 3 hinein, um die Lagetoleranz des Substrats 1 gegenüber dem Hohlleiter 3 zu erhöhen. Die Feldkonfiguration unter der Streifenleitung 2 im Hohlleiter 3 hängt eng mit der Lage der Masseflächen 9 zusammen. Wird nun die Lage des Substrats 1 leicht verändert, so bleibt aufgrund der Lagetoleranz der Masseflächen 9 das Feld unverändert. Bei einer Betriebsfrequenz von z.B. 10 GHz ist eine Eindringtiefe der Masseflächen 9 in den Hohlleiter 3 von 0,5 - 1,0 mm sinnvoll.The ground surfaces 9 of the substrate 1 preferably protrude into the waveguide 3 by a few tenths of a millimeter in order to increase the positional tolerance of the substrate 1 relative to the waveguide 3. The field configuration under the stripline 2 in the waveguide 3 is closely related to the position of the ground surfaces 9 together. If the position of the substrate 1 is now slightly changed, the field remains unchanged due to the positional tolerance of the ground surfaces 9. At a Operating frequency of eg 10 GHz, a penetration depth of the ground surfaces 9 in the waveguide 3 of 0.5 - 1.0 mm makes sense.

Das mehrlagige Substrat 1 bildet eine größere virtuelle Masse, wodurch eine Feldkonfiguration entsteht, die besser in eine Hohlleiterwelle überführt wird. Das Feld wird nämlich durch die größere Ausdehnung der Masse (wegen der vielen übereinandergestapelten Masseflächen) in Richtung der Breitseite des Hohlleiters 3 intensiver in eine Feldkomponente des Grundwellentyps des Hohlleiters geformt.The multilayer substrate 1 forms a larger virtual mass, thereby creating a field configuration that is better converted into a waveguide wave. The field is namely formed by the greater extent of the mass (because of the many stacked mass surfaces) in the direction of the broad side of the waveguide 3 more intense in a field component of the fundamental mode of the waveguide.

Den Figuren 2 und 3 ist zu entnehmen, daß am Ende der auf der Substrat-Zunge 5 verlaufenden Antenne 6 der Streifenleitung 2 eine Durchplattierung 11 vorgesehen ist. Diese Durchplattierung 11 am Ende der Antenne 6 der Streifenleitung führt zu einer Verbreiterung des Frequenzbandes des Überganges vom Hohlleiter 3 auf die Streifenleitung 2. Durch den dickeren Aufbau des Substrats 1 vergrößert sich auch die Durchkontaktierung 11 am Ende der Antenne 6, was zu einer günstigeren Konversion des Streifenleitungsfeldes in das Hohlleiterfeld beiträgt.FIGS. 2 and 3 show that through-plating 11 is provided at the end of the antenna 6 of the stripline 2 running on the substrate tongue 5. This plated-11 at the end of the antenna 6 of the strip line leads to a broadening of the frequency band of the transition from the waveguide 3 to the stripline 2. Due to the thicker structure of the substrate 1, the feedthrough 11 at the end of the antenna 6 increases, resulting in a more favorable conversion of the stripline field contributes to the waveguide field.

Das Substrat 1 ist mittels mindestens einer Schraube - in dem dargestellten Ausführungsbeispiel in Figur 2 sind es zwei Schrauben 12 und 13 - auf einer unterhalb der Öffnung 4 von der Hohlleiterwandung ausgehenden Auflage 14 fixiert. Dabei liegen die Schrauben 12 und 13 mit ihren Köpfen auf den seitlich neben der Streifenleitung 2 aufgebrachten Masseflächen 7 und 8 auf und stellen somit zwischen den Masseflächen 7 und B und den übereinander geschichteten Masseflächen 9 im Substrat 1 und der Hohlleiterwandung 14 einen elektrischen Kontakt her. Dadurch, daß zusätzlich ein Kontakt zwischen den auf der Oberseite des Substrats 1 aufgebrachten Masseleitungen 7 und 8 und der Hohlleiterwandung hergestellt wird, wird die Durchgangsdämpfung des Überganges verringert. Diese Kontaktierung kann, wie in Figur 2 dargestellt, mittels leitender Bänder 15 und 16 erfolgen, die an einem Ende zwischen den Köpfen der Schrauben 12 und 13 und den leitenden Flächen 7 und 8 und an ihrem anderen Ende in der Trennebene 17 des aus zwei Halbschalen bestehenden Hohlleiters 3 eingeklemmt werden.The substrate 1 is fixed by means of at least one screw - in the embodiment shown in FIG. 2, two screws 12 and 13 - on a support 14 extending from the waveguide wall below the opening 4. In this case, the screws are 12 and 13 with their heads on the side adjacent to the strip line 2 applied ground surfaces 7 and 8 and thus provide between the ground surfaces 7 and B and the stacked ground surfaces 9 in the substrate 1 and the waveguide wall 14 an electrical contact. Characterized in that in addition a contact between the applied on the upper side of the substrate 1 grounding lines 7 and 8 and the Hohlleiterwandung is produced, the transmission loss of the transition is reduced. This contacting can, as shown in Figure 2, take place by means of conductive bands 15 and 16 which at one end between the heads of the screws 12 and 13 and the conductive surfaces 7 and 8 and at its other end in the parting plane 17 of two half-shells existing waveguide 3 are clamped.

Eine andere Variante für die Kontaktierung der Massenflächen 7, 8 und Schrauben 12, 13 mit der Hohlleiterwandung zeigt die Figur 3. Hier weist der Hohlleiter 3 oberhalb seiner Öffnung 4 einen Wandvorsprung 18 auf, der über die Masseflächen 7 und 8 auf der Oberseite des Substrats 1 hinausragt. Zwischen den Masseflächen 7 und 8 auf der Substratoberseite und dem wandvorsprung 18 sind ein oder mehrere leitende elastische Körper 19 eingeklemmt. Auch können zwischen den Köpfen der Schrauben 12 und 13 und dem Wandvorsprung 18 ein oder mehrere leitende elastische Körper 20 eingepreßt werden.Another variant for the contacting of the mass surfaces 7, 8 and screws 12, 13 with the waveguide wall is shown in FIG 3. Here, the waveguide 3 above its opening 4, a wall projection 18 which extends over the ground surfaces 7 and 8 on the upper side of the substrate 1 protrudes. Between the ground surfaces 7 and 8 on the substrate top and the wall projection 18, one or more conductive elastic body 19 are clamped. Also, between the heads of the screws 12 and 13 and the wall projection 18, one or more conductive elastic bodies 20 can be pressed.

Claims (7)

  1. A transition from a waveguide to a microstrip, wherein the microstrip (2) extending on a substrate (1) projects through an opening (4) into the waveguide (3) and a ground line (7, 8, 9) belonging to the microstrip (2) has contact with the waveguide wall, characterized in that the ground line consists of a plurality of ground surfaces (7, 8, 9) superimposed on one another in the substrate (2) which all contact one another by means of through contacts in the substrate (2).
  2. A transition in accordance with claim 1, characterized in that a throughplating (11) is provided in the substrate (2, 5) at the end of the microstrip (2) projecting into the waveguide (3) and acting as an antenna (6).
  3. A transition in accordance with claim 1, characterized in that ground surfaces (7, 8) are applied to the substrate (1) at both sides next to the microstrip (2), and in that these ground surfaces (7, 8) come into contact with the other ground surfaces (9) superimposed on one another in the substrate (1) via through contacts (10).
  4. A transition in accordance with claim 1, characterized in that the substrate (1) is fixed on a support (14) at the waveguide wall by at least one screw (12, 13), and in that the screw (12, 13) is guided through the ground surfaces (7, 8, 9) and makes an electrical contact between these and the support (14).
  5. A transition in accordance with claims 3 and 4, characterized in that the at least one screw (12, 13) lies with its head on one of the ground surfaces (7, 8) applied to the upper substrate side to the side next to the microstrip (2), and in that a conductive ribbon (15, 16), which is connected to the waveguide wall, is clamped between the screw head and the ground surface (7, 8).
  6. A transition in accordance with claim 3, characterized in that at least one conductive elastic body (19) is inserted between at least one ground surface (7, 8) located at both sides of the microstrip (2) on the upper substrate side and a projection (18) of the waveguide wall projecting beyond this ground surface (7, 8).
  7. A transition in accordance with claims 4 and 6, characterized in that a conductive elastic body (20) is inserted between the head of the at least one screw (12, 13) and the projection (18) of the waveguide wall.
EP00949855A 1999-07-22 2000-07-19 Transition from a waveguide to a microstrip Expired - Lifetime EP1205006B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19934351A DE19934351A1 (en) 1999-07-22 1999-07-22 Transition from a waveguide to a strip line
DE19934351 1999-07-22
PCT/IB2000/001140 WO2001008252A1 (en) 1999-07-22 2000-07-19 Transition from a waveguide to a microstrip

Publications (2)

Publication Number Publication Date
EP1205006A1 EP1205006A1 (en) 2002-05-15
EP1205006B1 true EP1205006B1 (en) 2007-01-31

Family

ID=7915641

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00949855A Expired - Lifetime EP1205006B1 (en) 1999-07-22 2000-07-19 Transition from a waveguide to a microstrip

Country Status (8)

Country Link
US (1) US7002431B2 (en)
EP (1) EP1205006B1 (en)
CN (1) CN1196222C (en)
AT (1) ATE353165T1 (en)
AU (1) AU6311100A (en)
DE (2) DE19934351A1 (en)
NO (1) NO20020297L (en)
WO (1) WO2001008252A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004110247A2 (en) * 2003-05-22 2004-12-23 Stephen Ritland Intermuscular guide for retractor insertion and method of use
US7420436B2 (en) * 2006-03-14 2008-09-02 Northrop Grumman Corporation Transmission line to waveguide transition having a widened transmission with a window at the widened end
US7479842B2 (en) * 2006-03-31 2009-01-20 International Business Machines Corporation Apparatus and methods for constructing and packaging waveguide to planar transmission line transitions for millimeter wave applications
US20080048798A1 (en) * 2006-08-23 2008-02-28 Inventec Corporation Transmission line for in-circuit testing
US7847654B2 (en) * 2008-07-28 2010-12-07 Bosch Security Systems, Inc. Multilayer microstripline transmission line transition
CN202050037U (en) * 2010-11-30 2011-11-23 中兴通讯股份有限公司 Waveguide microstrip switching device and equipment
CN107534200B (en) * 2015-05-19 2019-11-08 三菱电机株式会社 Coaxial microband route conversion circuit
KR102457114B1 (en) * 2020-12-16 2022-10-20 주식회사 넥스웨이브 Transition structure between a transmission line of multilayer PCB and a waveguide
CN114284676B (en) * 2021-12-24 2022-07-29 电子科技大学 A Waveguide-Microstrip Transition Structure Based on V-shaped Antenna

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2675637B1 (en) * 1991-04-16 1993-07-09 Bretagne Critt MICRO-TAPE LINE TRANSITION / WAVEGUIDE.
US5202648A (en) * 1991-12-09 1993-04-13 The Boeing Company Hermetic waveguide-to-microstrip transition module
DE69308906T2 (en) * 1992-01-21 1997-09-11 Sharp Kk Waveguide coaxial transition and converter for satellite broadcast antenna with such a waveguide
TW212252B (en) * 1992-05-01 1993-09-01 Martin Marietta Corp
GB9215707D0 (en) * 1992-07-23 1992-09-09 Cambridge Computer Rf waveguide signal transition apparatus
DE69835633T2 (en) * 1997-04-25 2007-08-23 Kyocera Corp. High-frequency assembly
US5982250A (en) * 1997-11-26 1999-11-09 Twr Inc. Millimeter-wave LTCC package
SE513288C2 (en) * 1998-12-22 2000-08-21 Ericsson Telefon Ab L M Broadband microstrip waveguide transition

Also Published As

Publication number Publication date
CN1364325A (en) 2002-08-14
ATE353165T1 (en) 2007-02-15
WO2001008252A1 (en) 2001-02-01
US20050040911A1 (en) 2005-02-24
NO20020297D0 (en) 2002-01-18
CN1196222C (en) 2005-04-06
DE19934351A1 (en) 2001-02-08
AU6311100A (en) 2001-02-13
DE50014027D1 (en) 2007-03-22
NO20020297L (en) 2002-03-15
EP1205006A1 (en) 2002-05-15
US7002431B2 (en) 2006-02-21

Similar Documents

Publication Publication Date Title
DE69125703T2 (en) Integrated microwave circuit pack
DE60029962T2 (en) ARRANGEMENT FOR ASSEMBLING CHIPS ON PCB
DE69317390T2 (en) Microwave arrangement with at least one transition between a transmission line integrated on a substrate and a waveguide
DE69802467T2 (en) Printed circuit board with a transmission line for high frequencies
DE69827347T2 (en) Multi-pole electrical connector
DE69514130T2 (en) Connection between layers with conductor strips or micro strips using a cavity-supported slot
DE60009962T2 (en) WAVEGUIDE STRIPE WIRE TRANSFERS
DE4306056C2 (en) antenna device
DE1809183A1 (en) Multi-layer printed circuit
DE69612322T2 (en) H-type connector for vertical grounded coplanar waveguides
EP0766099A2 (en) Doppler radar module
DE60305553T2 (en) Power divider / combiner
EP1540762A1 (en) Junction between a microstrip line and a waveguide
EP1205006B1 (en) Transition from a waveguide to a microstrip
DE69829327T2 (en) Dielectric filter, transceiver, and communication device
EP3293814B1 (en) Circuit substrate and electronic super high frequency component
DE102007046351B4 (en) High-frequency board that converts a transmission mode of high-frequency signals
DE60030979T2 (en) TRANSITION BETWEEN ASYMETRIC STRIP LEADERS AND MICROSTRIPS IN A DEEPERATION
DE69123092T2 (en) Microwave stripe resonators
EP1370886B1 (en) Antenna with coplanar waveguide feed for the transmission and/or reception of radar beams
DE3720447A1 (en) ELECTRICAL CONNECTIONS FOR SHIELDED COAXIAL CONDUCTORS
DE69935615T2 (en) WIDE-BROAD TRANSITION FROM A HOLLOWER TO A MICRO-TIRE LINE
DE69228177T2 (en) ELECTRIC CONNECTOR ARRANGEMENT
EP0022990B1 (en) Microstrip microwave balun
DE68916594T2 (en) Multi-surface waveguide coupler.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20020729

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070131

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070131

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070131

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ERICSSON AB

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50014027

Country of ref document: DE

Date of ref document: 20070322

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070430

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: ERICSSON AB

Effective date: 20070307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070702

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071101

BERE Be: lapsed

Owner name: MARCONI COMMUNICATIONS G.M.B.H.

Effective date: 20070731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070730

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070501

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070719

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090717

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090727

Year of fee payment: 10

Ref country code: DE

Payment date: 20090729

Year of fee payment: 10

Ref country code: NL

Payment date: 20090724

Year of fee payment: 10

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100719

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50014027

Country of ref document: DE

Effective date: 20110201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110201

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100719