EP1188196A1 - Lithium-mixed oxide particles coated with metal-oxides - Google Patents
Lithium-mixed oxide particles coated with metal-oxidesInfo
- Publication number
- EP1188196A1 EP1188196A1 EP00929419A EP00929419A EP1188196A1 EP 1188196 A1 EP1188196 A1 EP 1188196A1 EP 00929419 A EP00929419 A EP 00929419A EP 00929419 A EP00929419 A EP 00929419A EP 1188196 A1 EP1188196 A1 EP 1188196A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- lithium
- oxide particles
- mixed oxide
- coated
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Complex oxides containing nickel and at least one other metal element
- C01G53/42—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
- C01G53/44—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C3/00—Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
- C09C3/06—Treatment with inorganic compounds
- C09C3/063—Coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
- C01D15/02—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/40—Complex oxides containing cobalt and at least one other metal element
- C01G51/42—Complex oxides containing cobalt and at least one other metal element containing alkali metals, e.g. LiCoO2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
- C01P2004/82—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
- C01P2004/84—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to coated lithium mixed oxide particles for improving the high-temperature properties of electrochemical cells.
- the principle of operation of the lithium-ion battery is based on the fact that both the cathode and the anode materials can reversibly intercalate lithium ions. I.e. during charging, the lithium ions migrate out of the cathode, diffuse through the electrolyte and are intercalated in the anode. The same process takes place in the opposite direction when unloading. Because of this mode of operation, these batteries are also called “rocking chairs” or lithium-ion batteries.
- the resulting voltage of such a cell is determined by the lithium intercalation potentials of the electrodes.
- cathode materials that intercalate lithium ions at very high potentials and anode materials that intercalate lithium ions at very low potentials (vs. Li / Li + ).
- Cathode materials that meet these requirements are LiCo0 2 and LiNi0 2 , which have a layer structure, and LiMn 2 0 4 , which has a cubic spatial network structure. These compounds deintercalate lithium ions at potentials around 4V (vs Li / Li + ).
- certain carbon compounds such as. B. Graphite the requirement of low potential and high capacity.
- LiCo0 2 , LiNi0 2 and LiMn 2 0 4 are discussed and used for 4V cathodes.
- Mixtures are used as the electrolyte which, in addition to a conductive salt, also contain aprotic solvents.
- the most commonly used solvents are ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC) and ethyl methyl carbonate (EMC).
- EC ethylene carbonate
- PC propylene carbonate
- DMC dimethyl carbonate
- DEC diethyl carbonate
- EMC ethyl methyl carbonate
- LiPF 6 is used almost without exception.
- Graphite is usually used as the anode.
- Cathode materials especially the lithium manganese spinel
- lithium manganese spinel is for the cathode
- a disadvantage of the spinel is its lower capacity and its insufficient high-temperature storage capacity and the associated poor cycle stability at high temperatures. The reason for this is considered to be the solubility of the divalent manganese in the electrolyte (Solid State Ionics 69 (1994) 59; J. Power Sources 66 (1997) 129; J. Electrochem. Soc. 144 (1997) 2178).
- the manganese is present in two oxidation states, namely trivalent and tetravalent.
- the LiPF 6 -containing electrolyte always contains water impurities. This water reacts with the conductive salt LiPF 6 to form LiF and acidic components, eg HF.
- One way to increase the stability of the spinel at high temperatures is to dope it.
- part of the manganese ions can be replaced by other, for example trivalent, metal cations.
- Antonini et al. report that spinels doped with gallium and chromium (e.g.
- Li 1.02 Gao . o 25 C-ro . o 25 Mn 1.95 ⁇ 4 ) at 55 ° C show satisfactory storage and cycle stability (J. Electrochem. Soc, 145 (1998) 2726).
- a layer for example a lithium borate glass (Solid State Ionics 104 (1997) 13).
- a spinel is placed in a methanolic solution of H 3 B0 3 , LiBO 2 * 8H 2 0 and LiOH * H 2 0 given and stirred at 50-80 ° C until the solvent has completely evaporated.
- the powder is then heated to 600-800 ° C to ensure the conversion into the borate. This improves the shelf life at high temperatures. However, no improved cycle stability was found.
- WO 98/02930 undoped spinels are treated with alkali metal hydroxide solutions.
- the treated spinel is then heated in a CO 2 atmosphere in order to convert the adhering hydroxides into the corresponding carbonates.
- the spinels modified in this way show improved high-temperature shelf life as well as improved cycle stability at high temperatures.
- the cathode and / or anode is coated in such a way that the active material is pasted onto the current conductor together with binder and a conductive material. Then a paste consisting of the
- Coating material, binder and / or solvent applied to the electrode Inorganic and / or organic materials which can be conductive are named as coating materials, e.g. B. Al 2 0 3 , nickel, graphite, LiF, PVDF etc. Lithium-ion batteries that contain electrodes coated in this way show high voltages and capacities as well as improved safety characteristics (EP 836238).
- the electrode paste (cathode material: lithium manganese spinel) is first produced and applied to the current conductor. Then the protective layer, consisting of a metal oxide and binder, is pasted onto the electrode.
- Metal oxides used are, for example, aluminum oxide, titanium oxide and zirconium oxide.
- JP 08236114 likewise first produces the electrode, preferably LiNi 0 5 C0 0.5 O 2 as the active material, and then one Oxide layer applied by sputtering, vacuum evaporation or CVD.
- JP 09147916 a protective layer consisting of solid oxide particles, for example MgO, CaO, SrO, Zr0 2 , Al 2 0 3 Si0 2 , and a polymer is applied to the side of the current collector that contains the electrode.
- a protective layer consisting of solid oxide particles, for example MgO, CaO, SrO, Zr0 2 , Al 2 0 3 Si0 2 , and a polymer is applied to the side of the current collector that contains the electrode.
- JP 09165984 Another way is described in JP 09165984.
- the lithium manganese spinel which is coated with boron oxide, serves as the cathode material. This coating is created during the spinel synthesis.
- a lithium, manganese and boron compound are calcined in an oxidizing atmosphere.
- the boron oxide-coated spinels obtained in this way show no manganese dissolution at high voltages.
- JP 08250120 is used for coating with sulfides, selenides and tellurides
- the object of the present invention is to provide electrode materials which do not have the disadvantages of the prior art and which have improved storage stability and cycle stability at high temperatures, in particular at temperatures above room temperature.
- the object according to the invention is achieved by lithium mixed oxide particles which are coated with one or more metal oxides.
- the invention also relates to a method for coating the lithium mixed oxide particles and the use in electrochemical cells, batteries and secondary lithium batteries.
- the present invention relates to undoped and doped mixed oxides as cathode materials selected from the group Li (MnMe z ) 2 0 4 , Li (CoMe z ) 0 2 , Li (Ni 1 - x - y Co x Me y ) 0 2 , where Me is at least is a metal cation from the groups Ila, lila, IVa, Ilb, Illb, IVb, VIb, Vllb, VIII of the periodic table.
- Particularly suitable metal cations are copper, silver, nickel, magnesium, zinc, aluminum, iron, cobalt, chromium, titanium and zircon, and also lithium for the spinel compounds.
- the present invention also relates to other lithium intercalation and insertion compounds which are suitable for 4V cathodes with improved high-temperature properties, in particular at temperatures above room temperature, their production and use, in particular as cathode material in electrochemical cells.
- the lithium mixed oxide particles are coated with metal oxides in order to obtain improved storage stability and cyclability at high temperatures (above room temperature).
- metal oxides in particular oxides or mixed oxides of Zr, Al, Zn, Y, Ce, Sn, Ca, Si, Sr, Mg and Ti and mixtures thereof, for example ZnO, CaO, SrO, Si0 2 , CaTi0 3 , are suitable as coating materials.
- Particle has some advantages over the coating of the electrode strips. If the electrode material is damaged, a large part of the active material can attack the coated tapes, while these undesired reactions remain highly localized when the individual particles are coated.
- the coating process achieves layer thicknesses between 0.03 ⁇ m and 5 ⁇ m. Preferred layer thicknesses are between 0.05 ⁇ m and 3 ⁇ m.
- the lithium mixed oxide particles can be coated one or more times.
- the coated lithium mixed oxide particles can be processed with the usual carriers and auxiliaries to 4V cathodes for lithium-ion batteries.
- the coating is carried out at the supplier so that the battery manufacturer does not have to make the process changes necessary for the coating.
- the undesirable reactions of the electrode material with the electrolyte are strongly inhibited, and thus an improvement in the shelf life and cycle stability at higher temperatures is achieved.
- the cathode material according to the invention can be used in secondary lithium-ion batteries with common electrolytes.
- electrolytes with conductive salts selected from the group LiPF 6 , LiBF 4 , LiCI0 4 , LiAsF 6 , LiCF 3 S0 3 , LiN (CF 3 S0 2 ) 2 or LiC (CF 3 S0 2 ) 3 and mixtures thereof are suitable.
- the electrolytes can too contain organic isocyanates (DE 199 44 603) to reduce the water content.
- the electrolytes can also contain organic alkali salts (DE 199 10 968) as an additive.
- Alkali borates of the general formula are suitable
- R 1 and R 2 are the same or different
- each individually or jointly having the meaning of an aromatic or aliphatic carbon, dicarbon or sulfonic acid radical, or in each case individually or jointly meaning an aromatic ring from the group consisting of phenyl, naphthyl and anthracenyl or phenanthrenyl, which can be unsubstituted or substituted one to four times by A or shark, or in each case individually or jointly the meaning of a heterocyclic aromatic ring from the group pyridyl, pyrazyl or bipyridyl, which is unsubstituted or mono- to triple by A or shark may be substituted, or in each case individually or jointly, have the meaning of an aromatic hydroxy acid from the group of aromatic hydroxy-carboxylic acids or aromatic hydroxy-sulfonic acids, which may be unsubstituted or substituted one to four times by A or shark, and
- A is alkyl with 1 to 6 carbon atoms, which can be halogenated one to three times.
- Alkaline alcoholates of the general formula are also suitable Li + OR " , in which R has the meaning of an aromatic or aliphatic carbon, dicarbon or sulfonic acid residue, or
- aromatic hydroxy acid from the group of aromatic hydroxy-carboxylic acids or aromatic hydroxy-sulfonic acids, which can be unsubstituted or substituted one to four times by A or shark,
- a alkyl with 1 to 6 carbon atoms which can be halogenated one to three times.
- R 1 and R 2 are the same or different, optionally connected directly to one another by a single or double formation, each individually or jointly the meaning of an aromatic Rings from the group phenyl, naphthyl, anthracenyl or
- Phenanthrenyl which is unsubstituted or one to six times by alkyl
- Alkyl (Ci to C 6 ), alkoxy groups (d to C 6 ) or halogen (F, Cl, Br) can be substituted,
- R 3 -R 6 can each have the following meaning individually or in pairs, optionally directly linked to one another by a single or double bond:
- alkyl (d to C 6 ), alkyloxy (d to C 6 ) or halogen (F, Cl, Br)
- Phenyl, naphthyl, anthracenyl or phenanthrenyl which can be unsubstituted or monosubstituted to sixfold substituted by alkyl (d to C 6 ), alkoxy groups (d to C 6 ) or halogen (F, Cl, Br),
- Pyridyl, pyrazyl or pyrimidyl which can be unsubstituted or mono- to tetrasubstituted by alkyl (d to C 6 ), alkoxy groups (d to C 6 ) or halogen (F, Cl, Br),
- the end product is isolated can be contained in the electrolyte.
- electrolytes can be compounds of the following formula (DE 199 41 566)
- A N, P, P (O), O, S, S (O), S0 2 , As, As (O), Sb, Sb (O)
- A can be enclosed in different positions in R 1 , R 2 and / or R 3 ,
- Kt can be enclosed in a cyclic or heterocyclic ring
- the groups bound to Kt can be the same or different
- D + selected from the group of alkali metals in a polar organic solvent with a salt of the general formula
- Kt, A, R 1 , R 2 , R 3 , k, I, x and y have the meaning given above and
- R 1 to R 5 are the same or different, optionally connected directly to one another by a single or double formation, each individually or jointly the meaning
- alkyl or alkoxy radical (d to C 8 ) which can be partially or completely substituted by F, Cl, Br,
- an aromatic ring from the group phenyl, naphthyl, anthracenyl or phenanthrenyl, optionally bonded via oxygen, which may be unsubstituted or monosubstituted to sixfold substituted by alkyl (d to C 8 ) or F, Cl, Br an aromatic heterocyclic ring, optionally bonded via oxygen, from the group pyridyl, pyrazyl or pyrimidyl, which may be unsubstituted or substituted one to four times by alkyl (d to C 8 ) or F, Cl, Br and
- R 6 to R 8 are the same or different, optionally connected directly to one another by a single or double bond, each individually or jointly the meaning
- a hydrogen or the meaning as R 1 to R 5 prepared by reacting a corresponding boron or phosphorus-Lewis acid solvency adduct with a lithium or tetraalkylammonium imide, methanide or triflate can be used.
- borate salts (DE 199 59 722) of the general formula
- M is a metal ion or tetraalkylammonium ion
- R 1 to R 4 may be the same or different, optionally by means of a single or double bond directly bonded alkoxy or carboxy radicals (CC 8 ).
- These borate salts are prepared by reacting lithium tetraalcoholate borate or a 1: 1 mixture of lithium alcoholate with a boric acid ester in an aprotic solvent with a suitable hydroxyl or carboxyl compound in a ratio of 2: 1 or 4: 1.
- cathode materials in particular materials with a layer structure (for example Li (CoMe z ) 0 2 or Li (Ni 1. X - y Co x Me y ) 0 2 ) and spinels (for example Li (MnMe z ) 2 0 4 ) suspended in polar organic solvents such as alcohols, aldehydes, halides or ketones, spinels also in water and placed in a reaction vessel.
- polar organic solvents such as alcohols, aldehydes, halides or ketones
- spinels also in water and placed in a reaction vessel.
- the materials can also be suspended in non-polar organic solvents, such as cycloalkanes or aromatics.
- the reaction vessel can be heated and is equipped with a stirrer. The reaction solution is heated to temperatures between 10 and 100 ° C, depending on the boiling point of the solvent.
- Soluble metal salts selected from the group of zirconium, aluminum, zinc, yttrium, cerium, tin, calcium, silicon, strontium, titanium and magnesium salts and their mixtures, which are in organic solvents, are used as the coating solution , or water are soluble. Acids, bases or water are suitable as the hydrolysis solution, depending on the solvent used for the coating solution.
- the coating solution and the hydrolysis solution are slowly metered in.
- the dosing quantities and speeds depend on the desired layer thicknesses and the metal salts used.
- the hydrolysis solution is added in excess.
- the solution is filtered off and the powder obtained is dried.
- the dried powder In order to ensure complete conversion into the metal oxide, the dried powder must still be calcined.
- the powder is heated to 400 ° C. to 1000 ° C., preferably 700 to 850 ° C., and kept at this temperature for 10 minutes to 5 hours, preferably 20 to 60 minutes.
- the particles can be coated one or more times. If desired, the first coating can be carried out with a metal oxide and the next coatings with the oxides of other metals.
- Tetrapropyl orthozirconate (26.58 g), which is dissolved in ethanol (521.8 ml), serves as the coating solution.
- Water (14.66 g) is used as the hydrolysis solution. Both solutions are slowly added. The addition of zirconium propylate is complete after approx. 6.5 hours. To ensure that the hydrolysis reaction also takes place quantitatively, water (36.4 g) is added for the further hydrolysis for a further 16.2 hours.
- the ethanolic solution is filtered off and the powder obtained is dried at about 100.degree. To ensure complete conversion into the Zr0 2 , the dried powder must still be calcined. After drying, the powder is therefore heated to 800 ° C. and kept at this temperature for 30 minutes.
- Electrolyte mixed (LP600 Selectipur ® from Merck, EC: DEC: PC 2: 1: 3 1M LiPF 6 ).
- the aluminum bottles are then sealed gas-tight. These preparations are all carried out in an argon-flushed glove box.
- the bottles prepared in this way are then removed from the glove box and stored in a drying cabinet at 80 ° C. for 6 or 13 days.
- the aluminum bottles cooled to room temperature are reinserted into the glove box and opened there.
- the electrolyte is filtered off and the amount of manganese dissolved in the electrolyte is determined quantitatively by means of ICP-OES.
- Table 1 compares the analytical results of the uncoated and coated lithium manganese spinels.
- the cathode powder is mixed well with 15% conductive carbon black and 5% PVDF (binder material).
- the paste thus produced is applied to an aluminum mesh, which serves as a current conductor, and dried overnight at 175 ° C. under an argon atmosphere and under reduced pressure.
- the dried electrode is introduced into the glove box flushed with argon and the measuring cell is installed.
- Lithium metal serves as the counter and reference electrode.
- LP 50 Selectipur ® from Merck is used as the electrolyte (1 M LiPF 6 in EC: EMC 50: 50% by weight).
- the measuring cell with the electrodes and the electrolyte is placed in a steel container, which is sealed gas-tight.
- the cell produced in this way is removed from the glove box and placed in a climatic cabinet which is set to 60 ° C. After connecting the measuring cell to one
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- Composite Materials (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Compounds Of Iron (AREA)
Abstract
The invention relates to lithium-mixed oxide particles coated with metal-oxide. Said particles are used to improve the characteristics of electrochemical cells. The invention relates to undoped and doped mixed oxides which are selected from the group Li(MnMez)2O4, Li(CoMez)O2, Li(Ni1-x-yCoxMey)O2 as cathode material. Me means at least one metal cation from the groups IIa, IIIa, IVa, IIb, IIIb, IVb, VIb, VIIb, VIII of the periodic table. Copper, silver, nickel, magnesium, zinc, aluminium, iron, cobalt, chromium, titanium and zircon are especially useful cations. Lithium is especially useful for the spinel compositions. The present invention also relates to lithium intercalations and insertion compounds that can be used for 4V-cathodes and have improved high temperature characteristics, especially at temperatures above room temperature. The invention further relates to the production and utilisation thereof, especially as cathode material in electrochemical cells. Various metal-oxides, especially oxides or mixed oxides of Zr, Al, Zn, Y, Ce, Sn, Ca, Si, Sr, Mg and Ti and the mixtures thereof, such as ZnO, CaO, SrO, SiO2, CaTiO3, MgAl2O4, ZrO2, Al2O3, Ce2O3, Y2O3, SnO2, TiO2 and MgO for instance, can be used as coating materials. It has been found that the undesired reactions of the electrolyte with the electrode materials can be significantly hindered by means of the coating with said metal-oxides.
Description
MIT METALLOXIDEN BESCHICHTETE LITHIUM-MI SCHOXID-PARTIKEL LITHIUM-MI CHOXIDE PARTICLES COATED WITH METAL OXIDS
Die Erfindung betrifft beschichtete Lithium-Mischoxid-Partikel zur Verbesserung der Hochtemperatur-Eigenschaften elektrochemischer Zellen.The invention relates to coated lithium mixed oxide particles for improving the high-temperature properties of electrochemical cells.
Der Bedarf an wiederaufladbaren Lithium-Batterien ist hoch und wird in Zukunft noch sehr viel stärker ansteigen. Die Gründe hierfür sind die hohe erzielbare Energiedichte und das geringe Gewicht dieser Batterien. Anwendung finden diese Batterien in Mobiltelefonen, tragbaren Videokameras, Laptops etc.The need for rechargeable lithium batteries is high and will increase much more in the future. The reasons for this are the high achievable energy density and the low weight of these batteries. These batteries are used in mobile phones, portable video cameras, laptops etc.
Der Einsatz von metallischem Lithium als Anodenmaterial führt bekanntermaßen wegen der Dent tenbildung beim Auflösen und Abscheiden des Lithiums zu einer ungenügenden Zyklenfestigkeit der Batterie und zu einem erheblichen Sicherheitsrisiko (interner Kurzschluß) (J. Power Sources, 54 (1995) 151 ).The use of metallic lithium as the anode material is known to lead to insufficient cycle stability of the battery and to a considerable safety risk (internal short circuit) because of the dent formation during dissolution and deposition of the lithium (J. Power Sources, 54 (1995) 151).
Die Lösung dieser Probleme geschah durch Ersatz der Lithiummetall- Anode durch andere Verbindungen, die reversibel Lithiumionen interkalieren können. Das Funktionsprinzip der Lithium-Ionen-Battehe beruht darauf, daß sowohl die Kathoden- als auch die Anodenmaterialien Lithiumionen reversibel interkalieren können. D. h. beim Laden wandern die Lithiumionen aus der Kathode, diffundieren durch den Elektrolyten und werden in der Anode interkaliert. Beim Entladen läuft derselbe Prozeß in umgekehrter Richtung ab. Aufgrund dieser Funktionsweise werden diese Batterien auch „Rocking-chair" oder Lithium-Ionen-Batterien genannt.These problems were solved by replacing the lithium metal anode with other compounds which can reversibly intercalate lithium ions. The principle of operation of the lithium-ion battery is based on the fact that both the cathode and the anode materials can reversibly intercalate lithium ions. I.e. during charging, the lithium ions migrate out of the cathode, diffuse through the electrolyte and are intercalated in the anode. The same process takes place in the opposite direction when unloading. Because of this mode of operation, these batteries are also called “rocking chairs” or lithium-ion batteries.
Die resultierende Spannung einer solchen Zelle wird bestimmt durch die Lithium-Interkalationspotentiale der Elektroden. Um eine möglichst hohe Spannung zu erreichen, muß man Kathodenmaterialien, die Lithiumionen bei sehr hohen Potentialen und Anodenmaterialien, die Lithiumionen bei sehr niedrigen Potentialen (vs. Li/Li+) interkalieren, verwenden. Kathodenmaterialien, die diesen Anforderungen genügen, sind LiCo02 und LiNi02, welche eine Schichtstruktur aufweisen, und
LiMn204, welches eine kubische Raumnetzstruktur besitzt. Diese Verbindungen deinterkalieren Lithiumionen bei Potentialen um 4V (vs Li/Li+). Bei den Anodenverbindungen erfüllen bestimmte Kohlenstoff- Verbindungen wie z. B. Graphit die Anforderung eines niedrigen Potentials und einer hohen Kapazität.The resulting voltage of such a cell is determined by the lithium intercalation potentials of the electrodes. In order to achieve the highest possible voltage, one must use cathode materials that intercalate lithium ions at very high potentials and anode materials that intercalate lithium ions at very low potentials (vs. Li / Li + ). Cathode materials that meet these requirements are LiCo0 2 and LiNi0 2 , which have a layer structure, and LiMn 2 0 4 , which has a cubic spatial network structure. These compounds deintercalate lithium ions at potentials around 4V (vs Li / Li + ). In the anode connections certain carbon compounds such as. B. Graphite the requirement of low potential and high capacity.
Anfang der neunziger Jahre brachte die Firma Sony eine Lithium- Ionen-Battehe auf den Markt, die aus einer Lithiumcobaltoxid- Kathode, einem nicht-wäßrigem flüssigen Elektrolyten und einer Kohlenstoff-Anode besteht (Progr. Batteries Solar Cells, 9 (1990) 20).In the early 1990s, Sony launched a lithium-ion battery, which consists of a lithium cobalt oxide cathode, a non-aqueous liquid electrolyte and a carbon anode (Progr. Batteries Solar Cells, 9 (1990) 20) .
Für 4V-Kathoden werden LiCo02, LiNi02 und LiMn204 diskutiert und eingesetzt. Als Elektrolyt werden Mischungen verwendet, die neben einem Leitsalz noch aprotische Lösungsmittel enthalten. Die am häufigsten verwendeten Lösungsmittel sind Ethylenkarbonat (EC), Propylenkarbonat (PC), Dimethylkarbonat (DMC), Diethylkarbonat (DEC) und Ethylmethylkarbonat (EMC). Obwohl eine ganze Reihe von Leitsalzen diskutiert werden, wird fast ausnahmslos LiPF6 verwendet. Als Anode dient in der Regel Graphit.LiCo0 2 , LiNi0 2 and LiMn 2 0 4 are discussed and used for 4V cathodes. Mixtures are used as the electrolyte which, in addition to a conductive salt, also contain aprotic solvents. The most commonly used solvents are ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC) and ethyl methyl carbonate (EMC). Although a whole series of conductive salts are discussed, LiPF 6 is used almost without exception. Graphite is usually used as the anode.
Ein Nachteil der state-of-art Batterien ist, daß dieA disadvantage of the state-of-art batteries is that
Hochtemperaturlagerfähigkeit und -zyklisierbarkeit schlecht ist. DieHigh temperature storage and cyclability is bad. The
Gründe hierfür sind neben dem Elektrolyten die verwendetenIn addition to the electrolyte, the reasons for this are the ones used
Kathodenmaterialien, insbesondere der Lithium-Mangan-SpinellCathode materials, especially the lithium manganese spinel
LiMn204.LiMn 2 0 4 .
Der Lithium Mangan Spinell ist jedoch als Kathode ist fürHowever, the lithium manganese spinel is for the cathode
Gerätebatterien ein vielversprechendes Material. Der Vorteil gegenüber LiNi02-und LiCo02-basierten Kathoden ist die verbesserteDevice batteries are a promising material. The advantage over LiNi0 2 and LiCo0 2 based cathodes is the improved one
Sicherheit im geladenen Zustand, die Ungiftigkeit und die geringeren Kosten der Rohmaterialien.Loaded safety, non-toxicity and lower raw material costs.
Nachteilig bei dem Spinell sind seine geringere Kapazität und seine ungenügende Hochtemperaturlagerfähigkeit und damit verbunden schlechte Zyklenfestigkeit bei hohen Temperaturen. Als Grund hierfür wird die Löslichkeit des zweiwertigen Mangan im Elektrolyten angesehen (Solid State lonics 69 (1994) 59; J. Power Sources 66 (1997) 129; J. Electrochem. Soc. 144 (1997) 2178). Im Spinell
LiMn204 liegt das Mangan in zwei Oxidationsstufen vor, nämlich drei- und vierwertig. Der LiPF6-haltige Elektrolyt enthält immer auch Verunreinigungen von Wasser. Dieses Wasser reagiert mit dem Leitsalz LiPF6 unter Bildung von LiF und sauren Komponenten, z.B. HF. Diese sauren Komponenten reagieren mit dem dreiwertigen Mangan im Spinell unter Bildung von Mn2+ und Mn4+ (Disproportionierung: 2Mn3+ → Mn2+ + Mn4+). Diese Degradation findet auch schon bei Raumtemperatur statt, beschleunigt sich aber mit zunehmender Temperatur.A disadvantage of the spinel is its lower capacity and its insufficient high-temperature storage capacity and the associated poor cycle stability at high temperatures. The reason for this is considered to be the solubility of the divalent manganese in the electrolyte (Solid State Ionics 69 (1994) 59; J. Power Sources 66 (1997) 129; J. Electrochem. Soc. 144 (1997) 2178). In the spinel LiMn 2 0 4 , the manganese is present in two oxidation states, namely trivalent and tetravalent. The LiPF 6 -containing electrolyte always contains water impurities. This water reacts with the conductive salt LiPF 6 to form LiF and acidic components, eg HF. These acidic components react with the trivalent manganese in the spinel to form Mn 2+ and Mn 4+ (disproportionation: 2Mn 3+ → Mn 2+ + Mn 4+ ). This degradation also takes place at room temperature, but accelerates with increasing temperature.
Eine Möglichkeit, die Stabilität des Spinells bei hohen Temperaturen zu erhöhen, besteht darin, ihn zu dotieren. Beispielsweise kann man einen Teil der Manganionen durch andere, beispielsweise dreiwertige, Metallkationen ersetzen. Antonini et al. berichten, daß Spinelle, die mit Gallium und Chrom dotiert sind (beispielsweiseOne way to increase the stability of the spinel at high temperatures is to dope it. For example, part of the manganese ions can be replaced by other, for example trivalent, metal cations. Antonini et al. report that spinels doped with gallium and chromium (e.g.
Li1.02Gao.o25C-ro.o25Mn1.95θ4) bei 55°C eine befriedigende Lager- und Zyklenstabilität zeigen (J. Electrochem. Soc, 145 (1998) 2726).Li 1.02 Gao . o 25 C-ro . o 25 Mn 1.95 θ 4 ) at 55 ° C show satisfactory storage and cycle stability (J. Electrochem. Soc, 145 (1998) 2726).
Einen ähnlichen Weg beschreiten die Forscher von Bellcore Inc. Sie ersetzen einen Teil des Mangans durch Aluminium und zusätzlich einen Teil der Sauerstoffionen durch Fluoridionen ((Li1+xAlyMn2.χ.y)04-zFz). Auch diese Dotierung führt zu einer Verbesserung der Zyklenstabilität bei 55°C (WO 9856057).The researchers at Bellcore Inc. are following a similar path. They replace some of the manganese with aluminum and some of the oxygen ions with fluoride ions ((Li 1 + x Al y Mn 2 .χ. Y ) 0 4 - z F z ). This doping also leads to an improvement in the cycle stability at 55 ° C. (WO 9856057).
Ein anderer Lösungsansatz besteht darin, die Oberfläche des Kathodenmaterials zu modifizieren. In US 5695887 werdenAnother approach is to modify the surface of the cathode material. In US 5695887
Spinellkathoden vorgeschlagen, die eine reduzierte Oberfläche aufweisen und deren katalytische Zentren durch Behandlung mit Chelatbildnem, z.B. Acetylaceton, abgesättigt werden. Solche Kathodenmaterialien zeigen deutlich reduzierte Selbstentladung und verbesserte Lagerfähigkeit bei 55°C. Die Zyklenfestigkeit bei 55°C wird nur leicht verbessert (Solid State lonics 104 (1997) 13).Spinel cathodes have been proposed which have a reduced surface area and whose catalytic centers by treatment with chelating agents, e.g. Acetylacetone to be saturated. Such cathode materials show significantly reduced self-discharge and improved shelf life at 55 ° C. The cycle stability at 55 ° C is only slightly improved (Solid State Ionics 104 (1997) 13).
Eine weitere Möglichkeit besteht darin, die Kathodenpartikel mit einer Schicht zu überziehen, beispielsweise einem Lithiumborat-Glas (Solid State lonics 104 (1997) 13). Hierfür wird ein Spinell in eine methanolische Lösung von H3B03, LiBO2 *8H20 und LiOH*H20
gegeben und bei 50-80°C gerührt, bis das Lösungsmittel vollständig verdampft ist. Anschließend wird das Pulver auf 600-800°C erhitzt, um die Umsetzung in das Borat zu gewährleisten. Die Lagerfähigkeit bei hohen Temperaturen wird dadurch verbessert. Eine verbesserte Zyklenfestigkeit wurde jedoch nicht gefunden.Another possibility is to coat the cathode particles with a layer, for example a lithium borate glass (Solid State Ionics 104 (1997) 13). For this, a spinel is placed in a methanolic solution of H 3 B0 3 , LiBO 2 * 8H 2 0 and LiOH * H 2 0 given and stirred at 50-80 ° C until the solvent has completely evaporated. The powder is then heated to 600-800 ° C to ensure the conversion into the borate. This improves the shelf life at high temperatures. However, no improved cycle stability was found.
In WO 98/02930 werden undotierte Spinelle mit Alkalimetallhydroxid- Lösungen behandelt. Anschließend wird der behandelte Spinell in einer C02 Atmosphäre erhitzt, um aus den anhaftenden Hydroxiden die entsprechenden Karbonate zu machen. Die so modifizierten Spinelle zeigen verbesserte Hochtemperatur-lagerfähigkeit als auch verbesserte Zyklenfestigkeit bei hohen Temperaturen.In WO 98/02930 undoped spinels are treated with alkali metal hydroxide solutions. The treated spinel is then heated in a CO 2 atmosphere in order to convert the adhering hydroxides into the corresponding carbonates. The spinels modified in this way show improved high-temperature shelf life as well as improved cycle stability at high temperatures.
Die Beschichtung von Elektroden zur Verbesserung von verschiedenen Eigenschaften von Lithium Ionen Batterien ist schon öfters beschrieben worden.The coating of electrodes to improve various properties of lithium ion batteries has been described many times.
Beispielsweise wird die Kathode und/oder Anode in der Weise beschichtet, daß auf den Stromableiter das Aktivmaterial zusammen mit Binder und einem leitfähigen Material aufpastiert wird. Anschließend wird eine Paste, bestehend aus demFor example, the cathode and / or anode is coated in such a way that the active material is pasted onto the current conductor together with binder and a conductive material. Then a paste consisting of the
Beschichtungsmaterial, Binder und/oder Lösungsmittel auf die Elektrode aufgebracht. Als Beschichtungsmaterialien werden anorganische und oder organische Materialien, die leitfähig sein können, benannt, z. B. Al203, Nickel, Graphite, LiF, PVDF etc. Lithium-Ionen-Batterien, die solcherart beschichtete Elektroden enthalten, zeigen hohe Spannungen und Kapazitäten sowie eine verbesserte Sicherheitscharakteristik (EP 836238).Coating material, binder and / or solvent applied to the electrode. Inorganic and / or organic materials which can be conductive are named as coating materials, e.g. B. Al 2 0 3 , nickel, graphite, LiF, PVDF etc. Lithium-ion batteries that contain electrodes coated in this way show high voltages and capacities as well as improved safety characteristics (EP 836238).
Ganz ähnlich wird auch in US 5869208 vorgegangen. Auch hier wird erst die Elektrodenpaste (Kathodenmaterial: Lithium Mangan Spinell) hergestellt und auf den Stromableiter aufgebracht. Dann wird die Schutzschicht, bestehend aus einem Metalloxid und Binder, auf die Elektrode aufpastiert. Verwendete Metalloxide sind beispielsweise Aluminiumoxid, Titanoxid und Zirkonoxid.A very similar procedure is also followed in US 5869208. Here too, the electrode paste (cathode material: lithium manganese spinel) is first produced and applied to the current conductor. Then the protective layer, consisting of a metal oxide and binder, is pasted onto the electrode. Metal oxides used are, for example, aluminum oxide, titanium oxide and zirconium oxide.
In JP 08236114 wird ebenfalls erst die Elektrode hergestellt, vorzugsweise LiNi0 5C00.5O2 als Aktivmaterial, und dann eine
Oxidschicht durch Sputtem, Vakuum Verdampfung oder CVD aufgebracht.JP 08236114 likewise first produces the electrode, preferably LiNi 0 5 C0 0.5 O 2 as the active material, and then one Oxide layer applied by sputtering, vacuum evaporation or CVD.
In JP 09147916 wird eine Schutzschicht, bestehend aus festen Oxidpartikeln, beispielsweise MgO, CaO, SrO, Zr02, Al203 Si02, und einem Polymer, auf die Seite des Stromableiters aufgebracht, die die Elektrode enthält. Dadurch werden hohe Spannungen und eine hohe Zyklenfestigkeit erreicht.In JP 09147916 a protective layer consisting of solid oxide particles, for example MgO, CaO, SrO, Zr0 2 , Al 2 0 3 Si0 2 , and a polymer is applied to the side of the current collector that contains the electrode. As a result, high voltages and high cycle stability are achieved.
Ein anderer Weg wird in JP 09165984 beschriften. Als Kathodenmaterial dient der Lithium Mangan Spinell, der mit Boroxid beschichtet wird. Diese Beschichtung wird während der Spinell- Synthese erzeugt. Hierzu werden eine Lithium-, Mangan- und Borverbindung in einer oxidierenden Atmosphäre calciniert. Die so erhaltenen Boroxid-beschichteten Spinelle zeigen keine Manganauflösung bei hohen Spannungen.Another way is described in JP 09165984. The lithium manganese spinel, which is coated with boron oxide, serves as the cathode material. This coating is created during the spinel synthesis. For this purpose, a lithium, manganese and boron compound are calcined in an oxidizing atmosphere. The boron oxide-coated spinels obtained in this way show no manganese dissolution at high voltages.
Es wird aber nicht nur mit oxidischen Materialien beschichtet, sondern auch mit Polymeren wie in JP 07296847 zur Verbesserung der Sicherheitscharakteristik beschrieben. In JP 08250120 erfolgt die Beschichtung mit Sulfiden, Seleniden und Telluriden zurHowever, it is not only coated with oxidic materials, but also with polymers as described in JP 07296847 to improve the safety characteristics. JP 08250120 is used for coating with sulfides, selenides and tellurides
Verbesserung der Zyklen-Performance und in JP 08264183 mit Fluoriden zur Verbesserung der Zyklenlebensdauer.Improvement of the cycle performance and in JP 08264183 with fluorides to improve the cycle life.
Aufgabe der vorliegenden Erfindung ist es, Elektrodenmaterialien zur Verfügung zu stellen, die die Nachteile des Standes der Technik nicht besitzen und bei hohen Temperaturen, insbesondere bei Temperaturen oberhalb der Raumtemperatur, verbesserte Lagerfähigkeit und Zyklenfestigkeit aufweisen.The object of the present invention is to provide electrode materials which do not have the disadvantages of the prior art and which have improved storage stability and cycle stability at high temperatures, in particular at temperatures above room temperature.
Die erfindungsgemäße Aufgabe wird gelöst durch Lithium-Mischoxid Partikel, welche mit einem oder mehreren Metalloxiden beschichtet sind.The object according to the invention is achieved by lithium mixed oxide particles which are coated with one or more metal oxides.
Gegenstand der Erfindung ist auch ein Verfahren zur Beschichtung der Lithium-Mischoxid-Partikel und die Anwendung in elektrochemischen Zellen, Batterien und sekundären Lithiumbatterien.
Die vorliegende Erfindung betrifft undotierte und dotierte Mischoxide als Kathodenmaterialien ausgewählt aus der Gruppe Li(MnMez)204, Li(CoMez)02, Li(Ni1-x-yCoxMey)02, wobei Me mindestens ein Metallkation aus den Gruppen lla, lila, IVa, Ilb, Illb, IVb, VIb, Vllb, VIII des Periodensystems bedeutet. Besonders geeignete Metallkationen sind Kupfer, Silber, Nickel, Magnesium, Zink, Aluminium, Eisen, Cobalt, Chrom, Titan und Zirkon, für die Spinell-Verbindungen auch Lithium. Ebenso betrifft die vorliegende Erfindung andere Lithium- Interkalations und Insertions-Verbindungen die für 4V-Kathoden geeignet sind mit verbesserten Hochtemperatureigenschaften, insbesondere bei Temperaturen oberhalb der Raumtemperatur, deren Herstellung und Verwendung, insbesondere als Kathodenmaterial in elektrochemischen Zellen.The invention also relates to a method for coating the lithium mixed oxide particles and the use in electrochemical cells, batteries and secondary lithium batteries. The present invention relates to undoped and doped mixed oxides as cathode materials selected from the group Li (MnMe z ) 2 0 4 , Li (CoMe z ) 0 2 , Li (Ni 1 - x - y Co x Me y ) 0 2 , where Me is at least is a metal cation from the groups Ila, lila, IVa, Ilb, Illb, IVb, VIb, Vllb, VIII of the periodic table. Particularly suitable metal cations are copper, silver, nickel, magnesium, zinc, aluminum, iron, cobalt, chromium, titanium and zircon, and also lithium for the spinel compounds. The present invention also relates to other lithium intercalation and insertion compounds which are suitable for 4V cathodes with improved high-temperature properties, in particular at temperatures above room temperature, their production and use, in particular as cathode material in electrochemical cells.
In der vorliegenden Erfindung werden die Lithium-Mischoxid-Partikel, um eine verbesserte Lagerfähigkeit und Zyklisierbarkeit bei hohen Temperaturen (oberhalb der Raumtemperatur) zu erhalten, mit Metalloxiden beschichtet.In the present invention, the lithium mixed oxide particles are coated with metal oxides in order to obtain improved storage stability and cyclability at high temperatures (above room temperature).
Als Beschichtungsmaterialien sind verschiedene Metalloxide, insbesondere Oxide bzw. Mischoxide von Zr, AI, Zn, Y, Ce, Sn, Ca, Si, Sr, Mg und Ti sowie deren Mischungen, beispielsweise ZnO, CaO, SrO, Si02, CaTi03, MgAI204, Zr02, Al203, Ce203, Y203, Sn02, Ti02 und MgO, geeignet.Various metal oxides, in particular oxides or mixed oxides of Zr, Al, Zn, Y, Ce, Sn, Ca, Si, Sr, Mg and Ti and mixtures thereof, for example ZnO, CaO, SrO, Si0 2 , CaTi0 3 , are suitable as coating materials. MgAI 2 0 4 , Zr0 2 , Al 2 0 3 , Ce 2 0 3 , Y 2 0 3 , Sn0 2 , Ti0 2 and MgO.
Es wurde gefunden, daß durch die Beschichtung mit den besagten Metalloxiden die unerwünschten Reaktionen des Elektrolyten mit den Elektrodenmaterialien stark gehemmt werden können.It has been found that the undesired reactions of the electrolyte with the electrode materials can be strongly inhibited by coating with the said metal oxides.
Überraschend wurde gefunden, daß es durch die Beschichtung der Lithium-Mischoxid-Partikel zur deutlichen Verbesserung derSurprisingly, it was found that the coating of the lithium mixed oxide particles significantly improves the
Hochtemperaturzyklenstabilität der daraus gefertigten Kathoden kommt. Dies führt fast zur Halbierung des Kapazitätsverlustes pro Zyklus des beschichteten Kathodenmaterials gegenüber unbeschichteten Kathodenmaterialien.
Zusätzlich konnte eine verbesserte Lagerfähigkeit oberhalb der Raumtemperatur gefunden werden. Mit Metalloxiden beschichtete Spinelle weisen eine deutlich reduzierte Manganauflösung auf.High temperature cycle stability of the cathodes made from it comes. This almost halves the loss of capacity per cycle of the coated cathode material compared to uncoated cathode materials. In addition, an improved shelf life above room temperature was found. Spinels coated with metal oxides have a significantly reduced manganese dissolution.
Desweiteren wurde gefunden, daß die Beschichtung der einzelnenFurthermore, it was found that the coating of the individual
Partikel gegenüber der Beschichtung der Elektrodenbänder einige Vorteile hat. Bei Beschädigung des Elektrodenmaterials kann bei den beschichteten Bändern der Elektrolyt einen großen Teil des aktiven Materials angreifen, während bei der Beschichtung der einzelnen Partikel diese unerwünschten Reaktionen stark lokalisiert bleiben.Particle has some advantages over the coating of the electrode strips. If the electrode material is damaged, a large part of the active material can attack the coated tapes, while these undesired reactions remain highly localized when the individual particles are coated.
Mit dem Beschichtungsverfahren werden Schichtdicken zwischen 0,03 μm und 5 μm erzielt. Bevorzugte Schichtdicken sind zwischen 0,05 μm und 3 μm. Die Lithium-Mischoxid Partikel können ein- oder mehrfach beschichtet werden.The coating process achieves layer thicknesses between 0.03 μm and 5 μm. Preferred layer thicknesses are between 0.05 μm and 3 μm. The lithium mixed oxide particles can be coated one or more times.
Die beschichteten Lithium-Mischoxid-Partikel können mit den üblichen Träger- und Hilfsstoffen zu 4V-Kathoden für Lithium-Ionen- Batterien verarbeitet werden.The coated lithium mixed oxide particles can be processed with the usual carriers and auxiliaries to 4V cathodes for lithium-ion batteries.
Zudem wird die Beschichtung bei dem Zulieferer durchgeführt, so daß der Batteriehersteller, die für das Beschichten notwendigen, Verfahrensänderungen nicht vornehmen muß.In addition, the coating is carried out at the supplier so that the battery manufacturer does not have to make the process changes necessary for the coating.
Aufgrund der Beschichtung der Materialien ist auch die Verbesserung der Sicherheitsaspekte zu erwarten.Due to the coating of the materials, the safety aspects can also be improved.
Durch die Beschichtung des Kathodenmaterials mit anorganischen Materialien, werden die unerwünschten Reaktionen des Elektrodenmaterials mit dem Elektrolyten stark gehemmt, und damit eine Verbesserung der Lagerfähigkeit und Zyklenfestigkeit bei höheren Temperaturen erreicht.By coating the cathode material with inorganic materials, the undesirable reactions of the electrode material with the electrolyte are strongly inhibited, and thus an improvement in the shelf life and cycle stability at higher temperatures is achieved.
Das erfindungsgemäße Kathodenmaterial kann in sekundären Lithium-Ionen-Batterien mit gängigen Elektrolyten eingesetzt werden. Geeignet sind z.B. Elektrolyte mit Leitsalzen ausgewählt aus der Gruppe LiPF6, LiBF4, LiCI04, LiAsF6, LiCF3S03, LiN(CF3S02)2 oder LiC(CF3S02)3 und deren Mischungen. Die Elektrolyte können auch
organische Isocyanate (DE 199 44 603) zur Herabsetzung des Wassergehaltes enthalten. Ebenso können die Elektrolyte organische Alkalisalze (DE 199 10 968) als Additiv enthalten. Geeignet sind Alkaliborate der allgemeinen FormelThe cathode material according to the invention can be used in secondary lithium-ion batteries with common electrolytes. For example, electrolytes with conductive salts selected from the group LiPF 6 , LiBF 4 , LiCI0 4 , LiAsF 6 , LiCF 3 S0 3 , LiN (CF 3 S0 2 ) 2 or LiC (CF 3 S0 2 ) 3 and mixtures thereof are suitable. The electrolytes can too contain organic isocyanates (DE 199 44 603) to reduce the water content. The electrolytes can also contain organic alkali salts (DE 199 10 968) as an additive. Alkali borates of the general formula are suitable
Li+ B-(OR1)m(OR2)p worin, m und p 0, 1 , 2, 3 oder 4 mit m+p=4 undLi + B- (OR 1 ) m (OR 2 ) p where, m and p 0, 1, 2, 3 or 4 with m + p = 4 and
R1 und R2 gleich oder verschieden sind,R 1 and R 2 are the same or different,
gegebenenfalls durch eine Einfach- oder Doppelbindung direkt miteinander verbunden sind, jeweils einzeln oder gemeinsam die Bedeutung eines aromati schen oder aliphatischen Carbon-, Dicarbon- oder Sulfonsäurerestes haben, oder jeweils einzeln oder gemeinsam die Bedeutung eines aromatischen Rings aus der Gruppe Phenyl, Naphthyl, Anthracenyl oder Phenanthrenyl, der unsubstituiert oder ein- bis vierfach durch A oder Hai substituiert sein kann, haben oder jeweils einzeln oder gemeinsam die Bedeutung eines heterocyclischen aromatischen Rings aus der Gruppe Pyridyl, Pyrazyl oder Bipyridyl, der unsubstituiert oder ein- bis dreifach durch A oder Hai substituiert sein kann, haben oder jeweils einzeln oder gemeinsam die Bedeutung einer aromatischen Hydroxysäure aus der Gruppe aromatischer Hydroxy-Carbonsäuren oder aromatischer Hydroxy-Sulfonsäuren, der unsubstituiert oder ein- bis vierfach durch A oder Hai substituiert sein kann, haben undoptionally connected directly to one another by a single or double bond, each individually or jointly having the meaning of an aromatic or aliphatic carbon, dicarbon or sulfonic acid radical, or in each case individually or jointly meaning an aromatic ring from the group consisting of phenyl, naphthyl and anthracenyl or phenanthrenyl, which can be unsubstituted or substituted one to four times by A or shark, or in each case individually or jointly the meaning of a heterocyclic aromatic ring from the group pyridyl, pyrazyl or bipyridyl, which is unsubstituted or mono- to triple by A or shark may be substituted, or in each case individually or jointly, have the meaning of an aromatic hydroxy acid from the group of aromatic hydroxy-carboxylic acids or aromatic hydroxy-sulfonic acids, which may be unsubstituted or substituted one to four times by A or shark, and
Hai F, Cl oder Br undShark F, Cl or Br and
A Alkyl mit 1 bis 6 C-Atomen, das ein- bis dreifach halogeniert sein kann, bedeuten. Ebenso geeignet sind Alkalialkoholate der allgemeinen Formel
Li+ OR" sind, worin R die Bedeutung eines aromatischen oder aliphatischen Carbon-, Dicarbon- oder Sulfonsäurerestes hat, oderA is alkyl with 1 to 6 carbon atoms, which can be halogenated one to three times. Alkaline alcoholates of the general formula are also suitable Li + OR " , in which R has the meaning of an aromatic or aliphatic carbon, dicarbon or sulfonic acid residue, or
die Bedeutung eines aromatischen Rings aus der Gruppe Phenyl, Naphthyl, Anthracenyl oder Phenanthrenyl, der unsubstituiert oder ein- bis vierfach durch A oder Hai substituiert sein kann, hat oderhas the meaning of an aromatic ring from the group phenyl, naphthyl, anthracenyl or phenanthrenyl, which may be unsubstituted or substituted one to four times by A or shark, or
die Bedeutung eines heterocyclischen aromatischen Rings aus der Gruppe Py dyl, Pyrazyl oder Bipyhdyl, der unsubstituiert oder ein- bis dreifach durch A oder Hai substituiert sein kann, hat oderhas the meaning of a heterocyclic aromatic ring from the group Py dyl, pyrazyl or bipyhdyl, which may be unsubstituted or mono- to trisubstituted by A or shark, or
die Bedeutung einer aromatischen Hydroxysäure aus der Gruppe aromatischer Hydroxy-Carbonsäuren oder aromatischer Hydroxy- Sulfonsäuren, der unsubstituiert oder ein- bis vierfach durch A oder Hai substituiert sein kann,the meaning of an aromatic hydroxy acid from the group of aromatic hydroxy-carboxylic acids or aromatic hydroxy-sulfonic acids, which can be unsubstituted or substituted one to four times by A or shark,
hat undhas and
Hai F, Cl, oder Br,Shark F, Cl, or Br,
undand
A Alkyl mit 1 bis 6 C-Atomen, das ein- bis dreifach halogeniert sein kann.A alkyl with 1 to 6 carbon atoms, which can be halogenated one to three times.
Auch Lithiumkomplexsalze der FormelAlso lithium complex salts of the formula
wobeiin which
R1 und R2 gleich oder verschieden sind, gegebenenfalls durch eine Einfach- oder Doppelbildung direkt miteinander verbunden sind, jeweils einzeln oder gemeinsam die Bedeutung eines aromatischen
Rings aus der Gruppe Phenyl, Naphthyl, Anthracenyl oderR 1 and R 2 are the same or different, optionally connected directly to one another by a single or double formation, each individually or jointly the meaning of an aromatic Rings from the group phenyl, naphthyl, anthracenyl or
Phenanthrenyl, der unsubstituiert oder ein- bis sechsfach durch AlkylPhenanthrenyl, which is unsubstituted or one to six times by alkyl
(Ci bis C6), Alkoxygruppen (d bis C6) oder Halogen (F, Cl, Br) substituiert sein kann, haben,(Ci to C 6 ), alkoxy groups (d to C 6 ) or halogen (F, Cl, Br) can be substituted,
oder jeweils einzeln oder gemeinsam die Bedeutung eines aromatischen heterozyklischen Rings aus der Gruppe Pyridyl,or in each case individually or jointly the meaning of an aromatic heterocyclic ring from the group pyridyl,
Pyrazyl oder Pyrimidyl, der unsubstituiert oder ein- bis vierfach durchPyrazyl or pyrimidyl, which is unsubstituted or one to four times by
Alkyl (Ci bis C6), Alkoxygruppen (d bis C6) oder Halogen (F, Cl, Br) substituiert sein kann, haben,Alkyl (Ci to C 6 ), alkoxy groups (d to C 6 ) or halogen (F, Cl, Br) can be substituted,
oder jeweils einzeln oder gemeinsam die Bedeutung eines aromatischen Rings aus der Gruppe Hydroxylbenzoecarboxyl, Hydroxylnaphthalincarboxyl, Hydroxylbenzoesulfonyl und Hydroxylnaphthalinsulfonyl, der unsubstituiert oder ein- bis vierfach durch Alkyl (Ci bis C6), Alkoxygruppen (d bis C6) oder Halogen (F, Cl, Br) substituiert sein kann, haben,or in each case individually or jointly the meaning of an aromatic ring from the group hydroxylbenzoecarboxyl, hydroxylnaphthalenecarboxyl, hydroxylbenzenesulfonyl and hydroxylnaphthalenesulfonyl, which is unsubstituted or one to four times by alkyl (Ci to C 6 ), alkoxy groups (d to C 6 ) or halogen (F, Cl , Br) may have substituted,
R3-R6 können jeweils einzeln oder paarweise, gegebenenfalls durch eine Einfach oder Doppelbindung direkt miteinander verbunden, folgende Bedeutung haben:R 3 -R 6 can each have the following meaning individually or in pairs, optionally directly linked to one another by a single or double bond:
1. Alkyl (d bis C6),Alkyloxy (d bis C6) oder Halogen (F, Cl, Br)1. alkyl (d to C 6 ), alkyloxy (d to C 6 ) or halogen (F, Cl, Br)
2. ein aromatischer Ring aus den Gruppen2. an aromatic ring from the groups
Phenyl, Naphthyl, Anthracenyl oder Phenanthrenyl, der unsubstituiert oder ein- bis sechsfach durch Alkyl (d bis C6), Alkoxygruppen (d bis C6) oder Halogen (F, Cl, Br) substituiert sein kann,Phenyl, naphthyl, anthracenyl or phenanthrenyl, which can be unsubstituted or monosubstituted to sixfold substituted by alkyl (d to C 6 ), alkoxy groups (d to C 6 ) or halogen (F, Cl, Br),
Pyridyl, Pyrazyl oder Pyrimidyl, der unsubstituiert oder ein- bis vierfach durch Alkyl (d bis C6), Alkoxygruppen (d bis C6) oder Halogen (F, Cl, Br) substituiert sein kann,Pyridyl, pyrazyl or pyrimidyl, which can be unsubstituted or mono- to tetrasubstituted by alkyl (d to C 6 ), alkoxy groups (d to C 6 ) or halogen (F, Cl, Br),
die über folgendes Verfahren (DE 199 32 317) dargestellt werdenwhich are shown using the following method (DE 199 32 317)
a) 3-, 4-, 5-, 6-substituiertes Phenol in einem geeigneten Lösungsmittel mit Chlorsulfonsäure versetzt wird,
b) das Zwischenprodukt aus a) mit Chlortrimethylsilan umgesetzt, filtriert und fraktioniert destilliert wird,a) 3-, 4-, 5-, 6-substituted phenol is mixed with chlorosulfonic acid in a suitable solvent, b) the intermediate from a) is reacted with chlorotrimethylsilane, filtered and fractionally distilled,
c) das Zwischenprodukt aus b) mit Lithiumtetramethanolat-borat(l-), in einem geeigneten Lösungsmittel umgesetzt und daraus dasc) the intermediate from b) with lithium tetramethanolate borate (l-), reacted in a suitable solvent and from it the
Endprodukt isoliert wird, können im Elektrolyten enthalten sein.The end product is isolated can be contained in the electrolyte.
Ebenso können die Elektrolyte Verbindungen der folgenden Formel (DE 199 41 566)Likewise, the electrolytes can be compounds of the following formula (DE 199 41 566)
[([R1(CR2R3)k],Ax)yKt]+ -N(CF3)2 [([R 1 (CR 2 R 3 ) k ], A x ) y Kt] + -N (CF 3 ) 2
wobeiin which
Kt= N, P, As, Sb, S, SeKt = N, P, As, Sb, S, Se
A= N, P, P(O), O, S, S(O), S02, As, As(O), Sb, Sb(O)A = N, P, P (O), O, S, S (O), S0 2 , As, As (O), Sb, Sb (O)
R1, R2 und R3 R 1 , R 2 and R 3
gleich oder verschiedenthe same or different
H, Halogen, substituiertes und/oder unsubstituiertes Alkyl CnH2n+ι, substituiertes und/oder unsubstituiertes Alkenyl mit 1-18 Kohlenstoffatomen und einer oder mehreren Doppelbindungen, substituiertes und/oder unsubstituiertes Alkinyl mit 1-18 Kohlenstoffatomen und einer oder mehreren Dreifachbindungen, substituiertes und/oder unsubstituiertes Cycloalkyl CmH2m-ι, ein- oder mehrfach substituiertes und/oder unsubstituiertes Phenyl, substituiertes und/oder unsubstituiertes Heteroaryl,H, halogen, substituted and / or unsubstituted alkyl C n H 2n + ι, substituted and / or unsubstituted alkenyl with 1-18 carbon atoms and one or more double bonds, substituted and / or unsubstituted alkynyl with 1-18 carbon atoms and one or more triple bonds, substituted and / or unsubstituted cycloalkyl C m H 2m -ι, mono- or polysubstituted and / or unsubstituted phenyl, substituted and / or unsubstituted heteroaryl,
A kann in verschiedenen Stellungen in R1, R2 und/oder R3 eingeschlossen sein,A can be enclosed in different positions in R 1 , R 2 and / or R 3 ,
Kt kann in cyclischen oder heterocyclischen Ring eingeschlossen sein,Kt can be enclosed in a cyclic or heterocyclic ring,
die an Kt gebundenen Gruppen können gleich oder verschieden seinthe groups bound to Kt can be the same or different
mit
n= 1-18With n = 1-18
m= 3-7m = 3-7
k= 0, 1-6k = 0.1-6
l= 1 oder 2 im Fall von x=1 und 1 im Fall x=0l = 1 or 2 in the case of x = 1 and 1 in the case of x = 0
x= 0,1x = 0.1
y= 1-4y = 1-4
bedeuten, enthalten. Das Verfahren zur Herstellung dieser Verbindungen ist dadurch gekennzeichnet, daß ein Alkalisalz der allgemeinen Formelmean contain. The process for the preparation of these compounds is characterized in that an alkali salt of the general formula
D+ "N(CF3)2 (II)D + " N (CF 3 ) 2 (II)
mit D+ ausgewählt aus der Gruppe der Alkalimetalle in einem polaren organischen Lösungsmittel mit einem Salz der allgemeinen Formelwith D + selected from the group of alkali metals in a polar organic solvent with a salt of the general formula
[([R1(CR2R3)k],Ax)yKt]+ Ε (III)[([R 1 (CR 2 R 3 ) k ], A x ) y Kt] + Ε (III)
wobeiin which
Kt, A, R1, R2, R3, k, I, x und y die oben angegebene Bedeutung haben undKt, A, R 1 , R 2 , R 3 , k, I, x and y have the meaning given above and
~E F, Cl", Br", r, BF4 ", CI04 ", AsF6 ", SbF6 ' oder PF6 " ~ EF, Cl " , Br " , r, BF 4 " , CI0 4 " , AsF 6 " , SbF 6 ' or PF 6 "
bedeutet, umgesetzt wird.means is implemented.
Aber auch Elektrolyte enthaltend Verbindungen der allgemeinen Formel (DE 199 53 638)But also electrolytes containing compounds of the general formula (DE 199 53 638)
X-(CYZ)m-S02N(CR R2R3)2 X- (CYZ) m -S0 2 N (CR R 2 R 3 ) 2
mitWith
X H, F, Cl, CnF2n+1, dF^, (S02)kN(CR1R2R3)2 XH, F, Cl, C n F 2n + 1 , dF ^, (S0 2 ) k N (CR 1 R 2 R 3 ) 2
Y H, F, Cl
Z H, F, ClYH, F, Cl ZH, F, Cl
R1, R2, R3 H und/oder Alkyl, Fluoralkyl, CycloalkylR 1 , R 2 , R 3 H and / or alkyl, fluoroalkyl, cycloalkyl
m 0-9 und falls X=H, m≠Om 0-9 and if X = H, m ≠ O
n 1-9n 1-9
k 0, falls m=0 und k=1 , falls m=1-9,k 0 if m = 0 and k = 1 if m = 1-9,
hergestellt durch die Umsetzung von teil- oder perfluorierten Alkysulfonylfluoriden mit Dimethylamin in organischen Lösungsmitteln sowie Kompiexsalze der allgemeinen Formel (DE 199 51 804)prepared by the reaction of partially or perfluorinated alkysulfonyl fluorides with dimethylamine in organic solvents and complex salts of the general formula (DE 199 51 804)
MHEZ]:;MHEZ] :;
worin bedeuten:in which mean:
x, y 1 , 2, 3, 4, 5, 6x, y 1, 2, 3, 4, 5, 6
Mx+ ein MetallionM x + a metal ion
E einer Lewis-Säure, ausgewählt aus der GruppeE of a Lewis acid selected from the group
BR1R2R3, AIR1R2R3, PR1R2R3R4R5, AsR1R2R3R4R5, VR1R2R3R4R5,BR 1 R 2 R 3 , AIR 1 R 2 R 3 , PR 1 R 2 R 3 R 4 R 5 , AsR 1 R 2 R 3 R 4 R 5 , VR 1 R 2 R 3 R 4 R 5 ,
R1 bis R5 gleich oder verschieden, gegebenenfalls durch eine Einfach- oder Doppelbildung direkt miteinander verbunden sind, jeweils einzeln oder gemeinsam die BedeutungR 1 to R 5 are the same or different, optionally connected directly to one another by a single or double formation, each individually or jointly the meaning
eines Halogens (F, Cl, Br),a halogen (F, Cl, Br),
eines Alkyl- oder Alkoxyrestes (d bis C8) der teilweise oder vollständig durch F, Cl, Br substituiert sein kann,an alkyl or alkoxy radical (d to C 8 ) which can be partially or completely substituted by F, Cl, Br,
eines, gegebenenfalls über Sauerstoff gebundenen aromatischen Rings aus der Gruppe Phenyl, Naphthyl, Anthracenyl oder Phenanthrenyl, der unsubstituiert oder ein- bis sechsfach durch Alkyl (d bis C8) oder F, Cl, Br substituiert sein kann
eines, gegebenenfalls über Sauerstoff gebundenen aromatischen heterozyklischen Rings aus der Gruppe Pyridyl, Pyrazyl oder Pyrimidyl, der unsubstituiert oder ein- bis vierfach durch Alkyl (d bis C8) oder F, Cl, Br substituiert sein kann, haben können undan aromatic ring from the group phenyl, naphthyl, anthracenyl or phenanthrenyl, optionally bonded via oxygen, which may be unsubstituted or monosubstituted to sixfold substituted by alkyl (d to C 8 ) or F, Cl, Br an aromatic heterocyclic ring, optionally bonded via oxygen, from the group pyridyl, pyrazyl or pyrimidyl, which may be unsubstituted or substituted one to four times by alkyl (d to C 8 ) or F, Cl, Br and
Z OR6, NR6R7, CR6R7R8, OS02R6, N(S02R6)(S02R7), C(S02R5)(S02R7)(S02R8), OCOR6, wobeiZ OR 6 , NR 6 R 7 , CR 6 R 7 R 8 , OS0 2 R 6 , N (S0 2 R 6 ) (S0 2 R 7 ), C (S0 2 R 5 ) (S0 2 R 7 ) (S0 2 R 8 ), OCOR 6 , where
R6 bis R8 gleich oder verschieden sind, gegebenenfalls durch eine Einfach- oder Doppelbindung direkt miteinander verbunden sind, jeweils einzeln oder gemeinsam die BedeutungR 6 to R 8 are the same or different, optionally connected directly to one another by a single or double bond, each individually or jointly the meaning
eines Wasserstoffs oder die Bedeutung wie R1 bis R5 haben, hergestellt durch Umsetzung von einem entsprechenden Bor- oder Phosphor-Lewis-Säure-Solvenz-Adukt mit einem Lithium- oder Tetraalkylammonium-Imid, -Methanid oder -Triflat, können verwendet werden.a hydrogen or the meaning as R 1 to R 5 , prepared by reacting a corresponding boron or phosphorus-Lewis acid solvency adduct with a lithium or tetraalkylammonium imide, methanide or triflate can be used.
Auch Boratsalze (DE 199 59 722) der allgemeinen FormelAlso borate salts (DE 199 59 722) of the general formula
worin bedeuten: in which mean:
M ein Metallion oder TetraalkylammoniumionM is a metal ion or tetraalkylammonium ion
x,y 1 , 2, 3, 4, 5 oder 6x, y 1, 2, 3, 4, 5 or 6
R1 bis R4 gleich oder verschieden, gegebenenfalls durch eine Einfach- oder Doppelbindung direkt miteinander verbunder Alkoxy- oder Carboxyreste (C C8) können enthalten sein. Hergestellt werden diese Boratsalze durch Umsetzung von Lithiumtetraalkoholatborat oder einem 1 :1 Gemisch aus Lithiumalkoholat mit einem Borsäureester in einem aprotischen Lösungsmittel mit einer geeigneten Hydroxyl- oder Carboxylverbindung im Verhältnis 2:1 oder 4:1.
Nachfolgend wird ein allgemeines Beispiel der Erfindung erläutert.R 1 to R 4 may be the same or different, optionally by means of a single or double bond directly bonded alkoxy or carboxy radicals (CC 8 ). These borate salts are prepared by reacting lithium tetraalcoholate borate or a 1: 1 mixture of lithium alcoholate with a boric acid ester in an aprotic solvent with a suitable hydroxyl or carboxyl compound in a ratio of 2: 1 or 4: 1. A general example of the invention is explained below.
Verfahren zur Beschichtung von KathodenmaterialienProcess for coating cathode materials
4 V-Kathodenmateriaiien, insbesondere Materialien mit Schichtstruktur (z.B. Li(CoMez)02 oder Li(Ni1.x-yCoxMey)02) und Spinelle (z.B. Li(MnMez)204), werden in polaren organischen Lösungsmitteln, wie z.B. Alkohole, Aldehyde, Halogenide oder Ketone, Spinelle auch in Wasser, suspendiert und in ein Reaktionsgefäß gegeben. Die Materialien können auch in unpolaren organischen Lösungsmitteln, wie z.B. Cycloalkanen oder Aromaten, suspendiert werden. Das Reaktionsgefäß ist beheizbar und mit einem Rührer ausgestattet. Die Reaktionslösung wird auf Temperaturen zwischen 10 und 100°C, in Abhängigkeit vom Siedepunkt des Lösungsmittels, erwärmt.4 V cathode materials, in particular materials with a layer structure (for example Li (CoMe z ) 0 2 or Li (Ni 1. X - y Co x Me y ) 0 2 ) and spinels (for example Li (MnMe z ) 2 0 4 ) suspended in polar organic solvents such as alcohols, aldehydes, halides or ketones, spinels also in water and placed in a reaction vessel. The materials can also be suspended in non-polar organic solvents, such as cycloalkanes or aromatics. The reaction vessel can be heated and is equipped with a stirrer. The reaction solution is heated to temperatures between 10 and 100 ° C, depending on the boiling point of the solvent.
Als Beschichtungslösung sind lösliche Metallsalze, ausgewählt aus der Gruppe der Zirkonium-, Aluminium-, Zink-, Yttrium-, Cer-, Zinn-, Calcium-, Silicium-, Strontium-, Titan- und Magnesiumsalze und deren Mischungen, die in organischen Lösungsmitteln, bzw. Wasser löslich sind, geeignet. Als Hydrolyselösung sind, entsprechend des verwendeten Lösungsmittels der Beschichtungslösung, Säuren, Basen oder Wasser geeignet.Soluble metal salts selected from the group of zirconium, aluminum, zinc, yttrium, cerium, tin, calcium, silicon, strontium, titanium and magnesium salts and their mixtures, which are in organic solvents, are used as the coating solution , or water are soluble. Acids, bases or water are suitable as the hydrolysis solution, depending on the solvent used for the coating solution.
Die Beschichtungslösung und die Hydrolyselösung werden langsam zudosiert. Die Dosiermengen und Geschwindigkeiten sind abhängig von den gewünschten Schichtdicken und den eingesetzten Metallsalzen. Um zu gewährleisten, daß die Hydrolysereaktion quantitativ abläuft, wird die Hydrolyselösung im Überschuß zugegeben.The coating solution and the hydrolysis solution are slowly metered in. The dosing quantities and speeds depend on the desired layer thicknesses and the metal salts used. In order to ensure that the hydrolysis reaction proceeds quantitatively, the hydrolysis solution is added in excess.
Nach dem Ende der Reaktion wird die Lösung abfiltriert und das erhaltene Pulver getrocknet. Um eine vollständige Umsetzung in das Metalloxid sicherzustellen, muß das getrocknete Pulver noch calciniert werden. Das Pulver wird auf 400°C bis 1000°C, vorzugsweise auf 700 bis 850°C, erhitzt und 10 min bis 5 Stunden, vorzugsweise 20 bis 60 min, bei dieser Temperatur gehalten.
Die Beschichtung der Partikel kann ein- oder mehrfach durchgeführt werden. Dabei kann, falls gewünscht, die erste Beschichtung mit einem Metalloxid und die nächsten Beschichtungen mit den Oxiden anderer Metalle erfolgen.After the end of the reaction, the solution is filtered off and the powder obtained is dried. In order to ensure complete conversion into the metal oxide, the dried powder must still be calcined. The powder is heated to 400 ° C. to 1000 ° C., preferably 700 to 850 ° C., and kept at this temperature for 10 minutes to 5 hours, preferably 20 to 60 minutes. The particles can be coated one or more times. If desired, the first coating can be carried out with a metal oxide and the next coatings with the oxides of other metals.
Die nachfolgenden Beispiele sollen die Erfindung näher erläutern, ohne sie jedoch zu beschränken.
The following examples are intended to explain the invention in more detail, but without restricting it.
BeispieleExamples
Beispiel 1example 1
Verfahren zur Beschichtung von Kathodenmaterialien mit Zr02 Process for coating cathode materials with Zr0 2
100g Lithium-Mangan-Spinell, SP30 Selectipur® der Firma Merck, und 500ml Ethanol, welches als Lösungsmittel dient, werden in einen 2 Literkolben gegeben. Dieser Kolben taucht in ein Wasserbad ein und ist mit einem Rührwerkzeug versehen. Das Wasserbad wird auf 40°C erhitzt.100 g of lithium manganese spinel, SP30 Selectipur ® from Merck, and 500 ml of ethanol, which serves as a solvent, are placed in a 2 liter flask. This flask is immersed in a water bath and is equipped with a stirring tool. The water bath is heated to 40 ° C.
Als Beschichtungslösung dient Tetrapropylorthozirkonat (26,58 g), welches in Ethanol (521 , 8 ml) gelöst wird. Als Hydrolyselösung dient Wasser (14,66 g). Beide Lösungen werden langsam zudosiert. Die Zirkonpropylatzugabe ist nach ca. 6,5 Stunden beendet. Um zu gewährleisten, daß die Hydrolysereaktion auch quantitativ abläuft, wird zur Nachhydrolyse noch weitere 16,2 Stunden Wasser (36,4 g) zugegeben.Tetrapropyl orthozirconate (26.58 g), which is dissolved in ethanol (521.8 ml), serves as the coating solution. Water (14.66 g) is used as the hydrolysis solution. Both solutions are slowly added. The addition of zirconium propylate is complete after approx. 6.5 hours. To ensure that the hydrolysis reaction also takes place quantitatively, water (36.4 g) is added for the further hydrolysis for a further 16.2 hours.
Nach Ende der Reaktion wird die ethanolische Lösung abfiltriert und das erhaltene Pulver bei ca. 100°C getrocknet. Um eine vollständige Umsetzung in das Zr02 sicherzustellen, muß das getrocknete Pulver noch calciniert werden. Daher wird nach der Trocknung das Pulver auf 800°C erhitzt und 30 min bei dieser Temperatur gehalten.After the end of the reaction, the ethanolic solution is filtered off and the powder obtained is dried at about 100.degree. To ensure complete conversion into the Zr0 2 , the dried powder must still be calcined. After drying, the powder is therefore heated to 800 ° C. and kept at this temperature for 30 minutes.
Beispiel 2:Example 2:
Lagertest bei erhöhten TemperaturenStorage test at elevated temperatures
Es werden kommerziell erhältliche Spinell-Kathodenpulver, SP30 und SP35 Selectipur® von Merck, eingesetzt. Die Proben, SP30, unbehandelt und mit Zr02-beschichteter SP30, werden jeweils in eine 1 -Liter Aluminiumflasche gegeben (ca. 3g Probe) und mit 30mlCommercially available spinel cathode powders, SP30 and SP35 Selectipur ® from Merck, are used. The samples, SP30, untreated and with Zr0 2 -coated SP30, are each placed in a 1 liter aluminum bottle (approx. 3g sample) and with 30ml
Elektrolyt versetzt (LP600 Selectipur® von Merck, EC:DEC:PC 2:1 :3
1M LiPF6). Anschließend werden die Aluminiumflaschen gasdicht verschlossen. Diese Vorbereitungen werden alle in einer mit Argon gespülten Glove-Box durchgeführt. Die so vorbereiteten Flaschen werden dann aus der Glove-Box ausgeschleust und in einem Trockenschrank bei 80°C 6 bzw. 13 Tage gelagert. Nach Beendigung des Lagertests werden die auf Raumtemperatur abgekühlten Aluminiumflaschen wieder in die Glove-Box eingeschleust und dort geöffnet. Der Elektrolyt wird abfiltriert und die im Elektrolyt gelöste Manganmenge wird mittels ICP-OES quantitativ bestimmt.Electrolyte mixed (LP600 Selectipur ® from Merck, EC: DEC: PC 2: 1: 3 1M LiPF 6 ). The aluminum bottles are then sealed gas-tight. These preparations are all carried out in an argon-flushed glove box. The bottles prepared in this way are then removed from the glove box and stored in a drying cabinet at 80 ° C. for 6 or 13 days. After the end of the storage test, the aluminum bottles cooled to room temperature are reinserted into the glove box and opened there. The electrolyte is filtered off and the amount of manganese dissolved in the electrolyte is determined quantitatively by means of ICP-OES.
In Tabelle 1 sind die Analysenergebnisse der unbeschichteten und beschichteten Lithium-Mangan-Spinelle gegenübergestellt.Table 1 compares the analytical results of the uncoated and coated lithium manganese spinels.
Tabelle 1 : Ergebnisse der ManganbestimmungTable 1: Results of the manganese determination
Die Manganauflösung bei den nicht beschichteten Spinellen ist sehr stark und nimmt mit zunehmender Zeit weiter zu. Bei den beschichteten Spinellen dagegen ist die Manganauflösung deutlich reduziert sowohl in absoluten Zahlen als auch als Funktion der Lagerzeit. Die deutliche Verbesserung der Hochtemperaturlagerfähigkeit auf Grund der Metalloxidbeschichtung für diese Kathodenmaterialien ist klar nachweisbar.
Beispiel 3:The manganese dissolution in the uncoated spinels is very strong and increases with time. In the case of the coated spinels, however, the manganese dissolution is significantly reduced both in absolute numbers and as a function of the storage time. The significant improvement in high-temperature shelf life due to the metal oxide coating for these cathode materials is clearly demonstrable. Example 3:
Zyklisieren bei hohen TemperaturenCyclize at high temperatures
Das nach Beispiel 1 hergestellte, beschichtete Kathodenpulver, und als Vergleich ein unbeschichtetes Material SP30 Selectipur® von Merck, werden bei 60°C zyklisiert.The cathode powder prepared according to Example 1, coated, and as a comparison, an uncoated material SP30 Selectipur ® from Merck be cycled at 60 ° C.
Zur Elektrodenherstellung wird das Kathodenpulver mit 15% Leitruß und 5% PVDF (Bindermaterial) gut vermischt. Die so hergestellte Paste wird auf ein Aluminiumnetz, welches als Stromableiter dient, aufgetragen und über Nacht bei 175°C unter Argonatmosphäre und vermindertem Druck getrocknet. Die getrocknete Elektrode wird in der mit Argon gespülten Glove-Box eingeschleust und die Meßzelle eingebaut. Als Gegen- und Referenzelektrode dient Lithiummetall. Als Elektrolyt wird LP 50 Selectipur® von Merck verwendet (1 M LiPF6 in EC:EMC 50:50 Gew.-%). Die Meßzelle mit den Elektroden und dem Elektrolyt wird in einen Stahlbehälter gestellt, der gasdicht verschlossen wird. Die so hergestellte Zelle wird aus der Glove-Box ausgeschleust und in einen Klimaschrank gestellt, der auf 60°C eingestellt wird. Nach Anschluß der Meßzelle an einenTo produce the electrodes, the cathode powder is mixed well with 15% conductive carbon black and 5% PVDF (binder material). The paste thus produced is applied to an aluminum mesh, which serves as a current conductor, and dried overnight at 175 ° C. under an argon atmosphere and under reduced pressure. The dried electrode is introduced into the glove box flushed with argon and the measuring cell is installed. Lithium metal serves as the counter and reference electrode. LP 50 Selectipur ® from Merck is used as the electrolyte (1 M LiPF 6 in EC: EMC 50: 50% by weight). The measuring cell with the electrodes and the electrolyte is placed in a steel container, which is sealed gas-tight. The cell produced in this way is removed from the glove box and placed in a climatic cabinet which is set to 60 ° C. After connecting the measuring cell to one
Potentiostaten/Galvanostaten wird die Elektrode gezykelt (Laden: 5 Stunden, Entladen: 5 Stunden).Potentiostats / galvanostats, the electrode is cycled (charging: 5 hours, discharging: 5 hours).
Das Ergebnis ist, daß die Zyklenstabilität des unbeschichteten Spinells geringer als die des beschichteten ist.The result is that the cycle stability of the uncoated spinel is less than that of the coated one.
In den ersten 5 Zyklen laufen irreversible Reaktionen wie zum Beispiel Filmbildung auf Kathode und Anode ab, so daß sie für die Berechnung nicht herangezogen werden. Der Kapazitätsverlust pro Zyklus des unbeschichteten Spinells ist dann 0,78 mAh/g, während der Zr02-beschichtete Spinell nur 0,45 mAh/g pro Zyklus verliert. Dies ist fast eine Halbierung des Kapazitätsverlustes pro Zyklus. Dies zeigt, daß die Hochtemperaturzyklenstabilität der Kathodenpulver durch Beschichtung mit Oxiden deutlich verbessert ist.
In the first 5 cycles there are irreversible reactions such as film formation on the cathode and anode, so that they are not used for the calculation. The capacity loss per cycle of the uncoated spinel is then 0.78 mAh / g, while the Zr0 2 -coated spinel loses only 0.45 mAh / g per cycle. This is almost a halving of the loss of capacity per cycle. This shows that the high temperature cycle stability of the cathode powder is significantly improved by coating with oxides.
Claims
1. Lithium-Mischoxid-Partikel, dadurch gekennzeichnet, daß diese mit einem oder mehreren Metalloxiden beschichtet sind.1. Mixed lithium oxide particles, characterized in that they are coated with one or more metal oxides.
2. Lithium-Mischoxid-Partikel nach Anspruch 1 , dadurch gekennzeichnet, daß die Partikel aus der Gruppe Li(MnMez)204, Li(CoMez)02, Li(Ni1_x.yCoxMez)02 und andere Lithium- Interkalations und Insertions-Verbindungen ausgewählt sind.2. Lithium mixed oxide particles according to claim 1, characterized in that the particles from the group Li (MnMe z ) 2 0 4 , Li (CoMe z ) 0 2 , Li (Ni 1 _ x . Y Co x Me z ) 0 2 and other lithium intercalation and insertion compounds are selected.
3. Lithium-Mischoxid-Partikel nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Metalloxide aus der Gruppe ZnO, CaO, SrO, Si02, CaTi03, MgAI204, Zr02, Al203, Ce203, Y203, Sn02, Ti02 und MgO ausgewählt sind.3. lithium mixed oxide particles according to claim 1 or 2, characterized in that the metal oxides from the group ZnO, CaO, SrO, Si0 2 , CaTi0 3 , MgAI 2 0 4 , Zr0 2 , Al 2 0 3 , Ce 2 0 3 , Y 2 0 3 , Sn0 2 , Ti0 2 and MgO are selected.
4. Lithium-Mischoxid-Partikel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Schichtdicken der Metalloxide 0,05-3 μm betragen.4. Lithium mixed oxide particles according to one of claims 1 to 3, characterized in that the layer thicknesses of the metal oxides are 0.05-3 microns.
5. Kathoden, im wesentlichen Lithium-Mischoxid-Partikel nach einem der Ansprüche 1 bis 4 und übliche Träger- und Hilfsstoffe enthaltend.5. Cathodes, essentially containing lithium mixed oxide particles according to one of claims 1 to 4 and conventional carriers and auxiliaries.
Verfahren zur Herstellung von mit einem oder mehreren Metalloxiden beschichteten Lithium-Mischoxid-Partikeln, dadurch gekennzeichnet, daß die Partikel in einem organischen Lösungsmittel suspendiert werden, die Suspension mit einer Lösung einer hydrolysierbaren Metallverbindung und einer Hydrolyselösung versetzt und danach die beschichteten Partikel abfiltriert, getrocknet und gegebenenfalls calciniert werden.Process for the production of lithium mixed oxide particles coated with one or more metal oxides, characterized in that the particles are suspended in an organic solvent, the suspension is mixed with a solution of a hydrolyzable metal compound and a hydrolysis solution and the filtered particles are then filtered off, dried and optionally calcined.
7. Verfahren zur Herstellung von mit einem oder mehreren7. Method of making with one or more
Metalloxiden beschichteten Lithium-Mischoxid-Partikeln gemäß Anspruch 6, dadurch gekennzeichnet, daß die Metalloxide aus der Gruppe ZnO, CaO SrO, Si02, CaTi03, MgAI204, Zr02, Al203, Ce 03, Y203, Sn02, Ti02 und MgO ausgewählt sind.Metal oxide-coated lithium mixed oxide particles according to claim 6, characterized in that the metal oxides from the Group ZnO, CaO SrO, Si0 2 , CaTi0 3 , MgAI 2 0 4 , Zr0 2 , Al 2 0 3 , Ce 0 3 , Y 2 0 3 , Sn0 2 , Ti0 2 and MgO are selected.
8. Verfahren zur Herstellung von mit einem oder mehreren Metalloxiden beschichteten Lithium-Mischoxid-Partikeln gemäß Anspruch 6, dadurch gekennzeichnet, daß die Hydrolyselösung Säuren, Basen oder Wasser sind.8. A method for producing lithium mixed oxide particles coated with one or more metal oxides according to claim 6, characterized in that the hydrolysis solution are acids, bases or water.
9. Verwendung von beschichteten Lithium-Mischoxid-Partikeln nach einem der Ansprüche 1 bis 4 zur Herstellung von Kathoden mit verbesserter Lagerfähigkeit und Zyklenfestigkeit bei Temperaturen oberhalb der Raumtemperatur.9. Use of coated lithium mixed oxide particles according to one of claims 1 to 4 for the production of cathodes with improved shelf life and cycle stability at temperatures above room temperature.
10. Verwendung von beschichteten Lithium-Mischoxid-Partikeln nach einem der Ansprüche 1 bis 4 zur Herstellung von 4V-Kathoden.10. Use of coated lithium mixed oxide particles according to one of claims 1 to 4 for the production of 4V cathodes.
11. Verwendung von beschichteten Lithium-Mischoxid-Partikeln nach einem der Ansprüche 1 bis 4 in Elektroden für elektrochemische Zellen, Batterien und sekundäre Lithiumbatterien. 11. Use of coated lithium mixed oxide particles according to one of claims 1 to 4 in electrodes for electrochemical cells, batteries and secondary lithium batteries.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19922522A DE19922522A1 (en) | 1999-05-15 | 1999-05-15 | Lithium based composite oxide particles for battery cathode, which are coated with one or more metal oxides |
DE19922522 | 1999-05-15 | ||
PCT/EP2000/003682 WO2000070694A1 (en) | 1999-05-15 | 2000-04-25 | Lithium-mixed oxide particles coated with metal-oxides |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1188196A1 true EP1188196A1 (en) | 2002-03-20 |
Family
ID=7908244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00929419A Ceased EP1188196A1 (en) | 1999-05-15 | 2000-04-25 | Lithium-mixed oxide particles coated with metal-oxides |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP1188196A1 (en) |
JP (1) | JP2003500318A (en) |
KR (1) | KR20020013887A (en) |
CN (1) | CN1350706A (en) |
AU (1) | AU4751200A (en) |
BR (1) | BR0010566A (en) |
CA (1) | CA2373756A1 (en) |
DE (1) | DE19922522A1 (en) |
RU (1) | RU2001132863A (en) |
WO (1) | WO2000070694A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2891517A4 (en) * | 2013-01-03 | 2016-07-06 | Lg Chemical Ltd | DEVICE FOR PRODUCING LITHIUM-BASED COMPOSITE TRANSITION METAL-TYPE OXIDE, LITHIUM-BASED COMPOSITE TRANSITION METAL-TYPE OXIDE OBTAINED USING THE SAME, AND PRODUCTION METHOD THEREOF |
Families Citing this family (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6749965B1 (en) * | 1999-02-10 | 2004-06-15 | Samsung Sdi Co., Ltd. | Positive active material for lithium secondary batteries and method of preparing the same |
US6489060B1 (en) * | 1999-05-26 | 2002-12-03 | E-One Moli Energy (Canada) Limited | Rechargeable spinel lithium batteries with greatly improved elevated temperature cycle life |
JP4938919B2 (en) * | 2000-01-14 | 2012-05-23 | ソニー株式会社 | Secondary battery |
US6737195B2 (en) * | 2000-03-13 | 2004-05-18 | Samsung Sdi Co., Ltd. | Positive active material for rechargeable lithium battery and method of preparing same |
DE10014884A1 (en) * | 2000-03-24 | 2001-09-27 | Merck Patent Gmbh | Coated lithium mixed oxide particles and a process for their production |
US7138209B2 (en) | 2000-10-09 | 2006-11-21 | Samsung Sdi Co., Ltd. | Positive active material for rechargeable lithium battery and method of preparing same |
EP1205998A2 (en) | 2000-11-10 | 2002-05-15 | MERCK PATENT GmbH | Electrolytes |
DE10055811A1 (en) | 2000-11-10 | 2002-05-29 | Merck Patent Gmbh | Tetrakisfluoroalkylborate salts and their use as conductive salts |
KR100399642B1 (en) | 2001-10-24 | 2003-09-29 | 삼성에스디아이 주식회사 | A positive active material for a lithium secondary battery and a method of preparing same |
JP4307962B2 (en) * | 2003-02-03 | 2009-08-05 | 三洋電機株式会社 | Nonaqueous electrolyte secondary battery |
TWI286849B (en) | 2003-03-25 | 2007-09-11 | Nichia Corp | Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
JP2004311408A (en) * | 2003-03-25 | 2004-11-04 | Nichia Chem Ind Ltd | Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
US7566479B2 (en) | 2003-06-23 | 2009-07-28 | Lg Chem, Ltd. | Method for the synthesis of surface-modified materials |
US8153295B2 (en) | 2003-07-17 | 2012-04-10 | Gs Yuasa International Ltd. | Positive electrode active material and its manufacturing method, positive electrode for lithium secondary cell using same, and lithium secondary cell |
CN100442577C (en) * | 2003-07-17 | 2008-12-10 | 株式会社杰士汤浅 | Positive electrode active material, manufacturing method thereof, positive electrode of lithium secondary battery, and lithium secondary battery |
JP5036121B2 (en) * | 2003-08-08 | 2012-09-26 | 三洋電機株式会社 | Nonaqueous electrolyte secondary battery |
JP4424949B2 (en) * | 2003-09-09 | 2010-03-03 | 三洋電機株式会社 | Nonaqueous electrolyte secondary battery |
JP4967217B2 (en) * | 2003-12-08 | 2012-07-04 | 日本電気株式会社 | Positive electrode active material for secondary battery, positive electrode for secondary battery and secondary battery using the same |
JP4798962B2 (en) * | 2004-05-06 | 2011-10-19 | 日本電工株式会社 | Lithium manganese composite oxide and method for producing the same |
JP2005339886A (en) * | 2004-05-25 | 2005-12-08 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
JP4887671B2 (en) * | 2004-06-17 | 2012-02-29 | トヨタ自動車株式会社 | Lithium secondary battery, positive electrode provided in the battery, and manufacturing method thereof |
JP4683527B2 (en) * | 2004-07-22 | 2011-05-18 | 日本化学工業株式会社 | Modified lithium manganese nickel-based composite oxide, method for producing the same, positive electrode active material for lithium secondary battery, and lithium secondary battery |
JP2006114256A (en) * | 2004-10-12 | 2006-04-27 | Toyota Motor Corp | Positive electrode for secondary battery and use thereof |
JP4721729B2 (en) | 2004-11-12 | 2011-07-13 | 三洋電機株式会社 | Nonaqueous electrolyte secondary battery |
JP4841133B2 (en) | 2004-11-16 | 2011-12-21 | 三洋電機株式会社 | Nonaqueous electrolyte secondary battery |
JP2008521196A (en) | 2004-12-31 | 2008-06-19 | アイユーシーエフ−エイチワイユー(インダストリー−ユニバーシティー コーオペレイション ファウンデーション ハンヤン ユニバーシティー) | Positive electrode active material for lithium secondary battery having double layer structure, method for producing the same, and lithium secondary battery using the same |
JP5196621B2 (en) * | 2005-06-27 | 2013-05-15 | 一般財団法人電力中央研究所 | Lithium ion secondary battery using room temperature molten salt and method for producing the same |
JP5260821B2 (en) | 2005-07-11 | 2013-08-14 | パナソニック株式会社 | Lithium ion secondary battery |
CN100426562C (en) * | 2005-09-14 | 2008-10-15 | 松下电器产业株式会社 | Nonaqueous electrolyte secondary battery |
JP5076332B2 (en) * | 2006-03-06 | 2012-11-21 | ソニー株式会社 | Method for producing positive electrode active material and method for producing non-aqueous electrolyte secondary battery |
KR20080102427A (en) | 2006-03-15 | 2008-11-25 | 스미또모 가가꾸 가부시끼가이샤 | Positive electrode active material powder |
US8080335B2 (en) * | 2006-06-09 | 2011-12-20 | Canon Kabushiki Kaisha | Powder material, electrode structure using the powder material, and energy storage device having the electrode structure |
JP5077131B2 (en) | 2007-08-02 | 2012-11-21 | ソニー株式会社 | Positive electrode active material, positive electrode using the same, and nonaqueous electrolyte secondary battery |
JP2009064576A (en) * | 2007-09-04 | 2009-03-26 | Toyota Motor Corp | Positive electrode active material and lithium secondary battery |
JP5189384B2 (en) * | 2008-02-29 | 2013-04-24 | 株式会社日立製作所 | Lithium secondary battery |
JP2009263176A (en) * | 2008-04-25 | 2009-11-12 | Kanto Denka Kogyo Co Ltd | Spinel type lithium manganate surface-coated with magnesium-aluminum multiple oxide, method for producing the same, and positive electrode active material and nonaqueous electrolyte battery using the same |
US20110117432A1 (en) * | 2008-07-15 | 2011-05-19 | Dow Global Technologies Llc | Inorganic binders for battery electrodes and aqueous processing thereof |
KR101623963B1 (en) * | 2008-08-04 | 2016-05-24 | 소니 가부시끼가이샤 | Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery |
WO2011052607A1 (en) * | 2009-10-29 | 2011-05-05 | Agcセイミケミカル株式会社 | Process for production of positive electrode material for lithium ion secondary battery |
JP5747457B2 (en) * | 2010-01-06 | 2015-07-15 | 三洋電機株式会社 | Lithium secondary battery |
JP5382061B2 (en) * | 2010-06-22 | 2014-01-08 | 日亜化学工業株式会社 | Positive electrode composition for non-aqueous electrolyte secondary battery and positive electrode slurry using the positive electrode composition |
FR2965106B1 (en) | 2010-09-17 | 2015-04-03 | Commissariat Energie Atomique | ELECTRODE FOR AN ALL SOLID LITHIUM BATTERY AND METHOD FOR PRODUCING SUCH ELECTRODE |
US20130316227A1 (en) * | 2011-02-25 | 2013-11-28 | Sanyo Electric Co., Ltd. | Non-aqueous electrolyte secondary battery |
KR101288973B1 (en) * | 2011-05-04 | 2013-07-24 | 삼성전자주식회사 | Electrode active material, preparation method thereof, and electrode and lithium battery containing the same |
KR20130050161A (en) * | 2011-11-07 | 2013-05-15 | 삼성에스디아이 주식회사 | Electrode active material, preparation method thereof, and electrode and lithium battery containing the same |
JPWO2013154142A1 (en) * | 2012-04-11 | 2015-12-17 | 旭硝子株式会社 | Positive electrode active material for lithium ion secondary battery |
WO2014010854A1 (en) * | 2012-07-09 | 2014-01-16 | 주식회사 엘지화학 | High voltage anode active material and lithium secondary battery including same |
CN105190956A (en) * | 2013-03-28 | 2015-12-23 | 三洋电机株式会社 | Positive electrode for nonaqueous-electrolyte secondary battery, method for manufacturing positive electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery |
WO2015004705A1 (en) * | 2013-07-08 | 2015-01-15 | 株式会社 日立製作所 | Positive-electrode active material for lithium-ion secondary batteries |
US10164250B2 (en) | 2013-08-23 | 2018-12-25 | Nec Corporation | Lithium-iron-manganese-based composite oxide and lithium-ion secondary battery using same |
KR101665766B1 (en) | 2013-09-30 | 2016-10-12 | 주식회사 엘지화학 | Positive electrode material for secondary battery and manufacturing method of the same |
KR101607013B1 (en) | 2013-09-30 | 2016-03-28 | 주식회사 엘지화학 | Coating solution for positive electrode material of secondary battery and method for manufacturing the same |
KR101636148B1 (en) | 2013-09-30 | 2016-07-04 | 주식회사 엘지화학 | Positive electrode material for secondary battery, manufactuing method of the same and positive electrode for lithiium secondary battery comprising the same |
WO2015065098A2 (en) | 2013-10-31 | 2015-05-07 | 주식회사 엘지화학 | Cathode active material, method for preparing same, and lithium secondary battery comprising same |
CN105449196B (en) * | 2014-08-28 | 2019-01-08 | 宁德时代新能源科技股份有限公司 | composite positive electrode active material and lithium ion secondary battery |
US10847788B2 (en) | 2015-02-20 | 2020-11-24 | Nec Corporation | Lithium-iron-manganese-based composite oxide and lithium-ion secondary battery using same |
WO2017035709A1 (en) * | 2015-08-28 | 2017-03-09 | E.I. Du Pont De Nemours And Company | Coated copper particles and use thereof |
CN107922802B (en) | 2015-08-28 | 2020-09-25 | 杜邦公司 | Conductive adhesive |
KR20180090372A (en) * | 2015-12-18 | 2018-08-10 | 바스프 에스이 | Non-aqueous electrolyte for lithium-ion batteries containing asymmetric borate |
US11942632B2 (en) * | 2016-10-06 | 2024-03-26 | Lg Energy Solution, Ltd. | Positive electrode active material particle including core containing lithium cobalt oxide and shell containing composite metal oxide and preparation method thereof |
KR20190072667A (en) * | 2016-11-14 | 2019-06-25 | 리락 솔루션즈, 인크. | Lithium Extraction Using Coated Ion Exchange Particles |
CN108110311B (en) * | 2016-11-25 | 2021-05-14 | 深圳新宙邦科技股份有限公司 | Lithium ion battery |
EP3583643B1 (en) | 2017-02-17 | 2020-09-30 | Evonik Operations GmbH | Mixed lithium oxides coated with aluminium oxide and titanium oxide and process for making them |
KR102448302B1 (en) * | 2017-04-28 | 2022-09-29 | 삼성전자주식회사 | Composite cathode active material, Cathode and Lithium battery containing composite cathode active material and Preparation method thereof |
JP7187123B2 (en) * | 2017-05-01 | 2022-12-12 | テイカ株式会社 | Gas generation inhibitor for electricity storage device, positive electrode for electricity storage device and electricity storage device using this gas generation inhibitor for electricity storage device |
CN111163852A (en) | 2017-08-02 | 2020-05-15 | 锂莱克解决方案公司 | Lithium extraction using porous ion exchange beads |
EP3710616A4 (en) * | 2017-11-13 | 2021-08-25 | The Regents of the University of Colorado, a body corporate | THIN FILM COATINGS ON MIXED METAL OXIDES |
CN108091848A (en) * | 2017-12-12 | 2018-05-29 | 桑顿新能源科技有限公司 | A kind of carbon-coated mesoporous silicon based anode material and preparation method thereof |
CN108134073B (en) * | 2017-12-25 | 2020-02-18 | 桑德新能源技术开发有限公司 | Ternary cathode material and preparation method thereof |
CN112041470A (en) | 2018-02-28 | 2020-12-04 | 锂莱克解决方案公司 | Ion exchange reactor with particle trap for extracting lithium |
CN108832093B (en) * | 2018-06-12 | 2020-06-26 | 桑德新能源技术开发有限公司 | Composite positive electrode material, preparation method and lithium ion battery |
CN110002546B (en) * | 2019-02-19 | 2022-06-17 | 江苏海普功能材料有限公司 | Activated (Cu-Fe-Ce)/Al2O3Preparation and application of nanoparticle electrode |
CN110104739B (en) * | 2019-05-27 | 2022-02-11 | 中国华能集团清洁能源技术研究院有限公司 | Efficient electrode for treating industrial circulating cooling water and preparation method thereof |
TWI778405B (en) | 2019-08-27 | 2022-09-21 | 德商贏創運營有限公司 | Mixed lithium transition metal oxide coated with pyrogenically produced zirconium-containing oxides |
TWI761920B (en) | 2019-08-27 | 2022-04-21 | 德商贏創運營有限公司 | Mixed lithium transition metal oxide containing pyrogenically produced zirconium-containing oxides |
CA3166921A1 (en) | 2020-01-09 | 2021-07-15 | Lilac Solutions, Inc. | Process for separating undesirable metals |
WO2021220875A1 (en) * | 2020-04-27 | 2021-11-04 | パナソニックIpマネジメント株式会社 | Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery |
KR20230023714A (en) | 2020-06-09 | 2023-02-17 | 리락 솔루션즈, 인크. | Lithium extraction in the presence of scalent |
EP4002519A1 (en) | 2020-11-11 | 2022-05-25 | Evonik Operations GmbH | Transition metal oxide particles encapsulated in nanostructured lithium titanate or lithium aluminate, and the use thereof in lithium ion batteries |
CA3199218A1 (en) | 2020-11-20 | 2022-05-27 | David Henry SNYDACKER | Lithium production with volatile acid |
CA3216001A1 (en) | 2021-04-23 | 2022-10-27 | David Henry SNYDACKER | Ion exchange devices for lithium extraction |
CN113373443B (en) * | 2021-05-20 | 2022-09-06 | 浙江锋锂新能源科技有限公司 | Method for treating lithium metal surface by gas-liquid mixing and lithium metal battery |
WO2023192195A1 (en) | 2022-03-28 | 2023-10-05 | Lilac Solutions, Inc. | Devices for efficient sorbent utilization in lithium extraction |
AR128953A1 (en) | 2022-04-01 | 2024-06-26 | Lilac Solutions Inc | LITHIUM EXTRACTION WITH CHEMICAL ADDITIVES |
WO2023232596A1 (en) | 2022-06-03 | 2023-12-07 | Evonik Operations Gmbh | Cathode active material particles encapsulated in pyrogenic, nanostructured magnesium oxide, and methods of making and using the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69223174T2 (en) * | 1991-04-30 | 1998-06-18 | Sony Corp | Secondary battery with non-aqueous electrolytes |
JP3172388B2 (en) * | 1995-02-27 | 2001-06-04 | 三洋電機株式会社 | Lithium secondary battery |
US5744266A (en) * | 1996-02-02 | 1998-04-28 | Matsushita Electric Industrial Co., Ltd. | Batteries and a method of manufacturing positive active material for the batteries |
US6881520B1 (en) * | 1996-06-14 | 2005-04-19 | N.V. Umicore S.A. | Electrode material for rechargeable batteries and process for the preparation thereof |
US6428766B1 (en) * | 1998-10-27 | 2002-08-06 | Toda Kogyo Corporation | Manganese oxide, lithium manganese complex oxide and cobalt-coated lithium manganese complex oxide, and preparation processes thereof |
-
1999
- 1999-05-15 DE DE19922522A patent/DE19922522A1/en not_active Withdrawn
-
2000
- 2000-04-25 BR BR0010566-0A patent/BR0010566A/en not_active Application Discontinuation
- 2000-04-25 WO PCT/EP2000/003682 patent/WO2000070694A1/en not_active Application Discontinuation
- 2000-04-25 EP EP00929419A patent/EP1188196A1/en not_active Ceased
- 2000-04-25 KR KR1020017014531A patent/KR20020013887A/en not_active Application Discontinuation
- 2000-04-25 CN CN00807605A patent/CN1350706A/en active Pending
- 2000-04-25 JP JP2000619043A patent/JP2003500318A/en active Pending
- 2000-04-25 RU RU2001132863/09A patent/RU2001132863A/en not_active Application Discontinuation
- 2000-04-25 CA CA002373756A patent/CA2373756A1/en not_active Abandoned
- 2000-04-25 AU AU47512/00A patent/AU4751200A/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO0070694A1 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2891517A4 (en) * | 2013-01-03 | 2016-07-06 | Lg Chemical Ltd | DEVICE FOR PRODUCING LITHIUM-BASED COMPOSITE TRANSITION METAL-TYPE OXIDE, LITHIUM-BASED COMPOSITE TRANSITION METAL-TYPE OXIDE OBTAINED USING THE SAME, AND PRODUCTION METHOD THEREOF |
US10236503B2 (en) | 2013-01-03 | 2019-03-19 | Lg Chem, Ltd. | Mixing device for preparing lithium composite transition metal oxide, lithium composite transition metal oxide prepared using the same, and method of preparing lithium composite transition metal oxide |
Also Published As
Publication number | Publication date |
---|---|
CN1350706A (en) | 2002-05-22 |
AU4751200A (en) | 2000-12-05 |
JP2003500318A (en) | 2003-01-07 |
RU2001132863A (en) | 2003-08-10 |
KR20020013887A (en) | 2002-02-21 |
WO2000070694A1 (en) | 2000-11-23 |
CA2373756A1 (en) | 2000-11-23 |
BR0010566A (en) | 2002-02-19 |
DE19922522A1 (en) | 2000-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1188196A1 (en) | Lithium-mixed oxide particles coated with metal-oxides | |
DE10014884A1 (en) | Coated lithium mixed oxide particles and a process for their production | |
US20230077131A1 (en) | Positive electrode material, preparation method therefor, and lithium ion secondary battery | |
DE69411637T2 (en) | Accumulator with non-aqueous electrolyte | |
DE68927688T2 (en) | Process for the production of a cathodic material for a secondary generator with lithium anode and application of this material | |
EP2717364B1 (en) | Use of a positive electrode material for a sulfide-based solid electrolyte battery and sulfide-based solid electrolyte battery with such positive electrode material | |
EP3429000A1 (en) | Modified positive active material and preparation method therefor, and electrochemical energy storage device | |
DE69408223T2 (en) | Rechargeable lithium containing electrochemical power generator and process for its manufacture | |
EP1087452A2 (en) | Coated lithium mixed oxide particles and their use | |
DE19615686A1 (en) | Lithium manganese oxide insertion compounds, process for their preparation and their use in accumulators | |
DE69805853T2 (en) | MODIFIED LITHIUM VANADIUM OXIDE ELECTRODE MATERIALS, PRODUCTS AND METHOD | |
DE112012004372T5 (en) | SECONDARY BATTERY WITH NON-AQUEOUS ELECTROLYTES AND METHOD FOR THE PRODUCTION OF THE SAME | |
DE112012002265T5 (en) | Solid state battery system and method of manufacturing a regenerable solid state secondary battery | |
CN105900266B (en) | Electrode and nonaqueous electrolyte battery | |
EP4145555A1 (en) | Positive electrode material and battery | |
DE69414910T2 (en) | New process for the production of solid solutions for secondary non-aqueous batteries | |
CN111295788A (en) | Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery | |
US11735728B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery and method of manufacturing cathode active material for non-aqueous electrolyte secondary battery | |
DE102014223147A1 (en) | Chromium-doped lithium titanate as cathode material | |
DE112013007268T5 (en) | Coated lithium-rich layer oxides and their preparation | |
DE112019007641T5 (en) | POSITIVE ACTIVE MATERIAL, POSITIVE ELECTRODE, NON-AQUEOUS ELECTROLYTE ENERGY STORAGE DEVICE, METHOD OF MAKING A POSITIVE ACTIVE MATERIAL, METHOD OF MAKING A POSITIVE ELECTRODE, AND METHOD OF MAKING A NON-AQUEOUS ELECTROLYTE ENERGY STORAGE DEVICE | |
DE69418958T2 (en) | Electrochemical devices containing lithium nitride metal compounds in at least one electrode of a pair of electrodes | |
US20240421296A1 (en) | Sodium-ion cathode material, preparation method and use thereof, sodium-ion battery, sodium-ion battery pack, and device | |
DE69409499T2 (en) | Aqueous electrochemical manufacture of intercalation compounds and their use in non-aqueous rechargeable batteries | |
US20250002372A1 (en) | Ternary composite material for all-solid-state battery, preparation method therof and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20011005 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17Q | First examination report despatched |
Effective date: 20020827 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20030130 |