EP1163378A2 - Chemically passivated object made of magnesium or alloys thereof - Google Patents
Chemically passivated object made of magnesium or alloys thereofInfo
- Publication number
- EP1163378A2 EP1163378A2 EP00918709A EP00918709A EP1163378A2 EP 1163378 A2 EP1163378 A2 EP 1163378A2 EP 00918709 A EP00918709 A EP 00918709A EP 00918709 A EP00918709 A EP 00918709A EP 1163378 A2 EP1163378 A2 EP 1163378A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- radicals
- group
- passivation
- conversion layer
- carbon atoms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/68—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/40—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2222/00—Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
- C23C2222/20—Use of solutions containing silanes
Definitions
- the present invention relates to an object made of magnesium or its alloys, which has a conversion layer produced by passivation of the surface, and a method for producing such an object and its use.
- Magnesium and its alloys are the lightest, but also the least noble metallic construction materials (normal potential of Mg: -2.34 volts) and are therefore very susceptible to corrosion.
- magnesium and its alloys are treated in aqueous passivation electrolytes.
- a conversion layer is formed which consists of oxides of the magnesium material and oxidic reaction products which result from the constituents of the aqueous passivation electrolyte.
- conversion layer is understood here and below to mean a layer which is not formed by application to a surface, but rather by chemical conversion (conversion) of the metallic surface and various components of the aqueous passivation electrolyte (cf. H. Simon, M. Thoma "Applied surface technology for metallic materials", Carl Hanser Verlag, Kunststoff (1985) p. 4).
- the chromating of objects made of magnesium or its alloys is known.
- the corresponding ner driving is described in particular in the MIL specifications M3171 Type I to Type III.
- Chromic acid or its salts are used for the passivation.
- the use of sodium dichromate in combination with potassium permanganate has also been described (Dow Chemical Treatment, ⁇ o. 22).
- the chemical passivation using chromium (VI) -containing aqueous passivation electrolytes is easy to carry out. But this has the serious Disadvantage that the chromate-containing substances that are also contained in the conversion layers formed are carcinogenic
- Aqueous passivation electrolytes based on stannate, sold by Dow Chemical, for example, are known as chromate-free aqueous passivation electrolytes for the passivation of objects made of magnesium or its alloys.
- chromate-free aqueous passivation electrolytes for the passivation of objects made of magnesium or its alloys.
- US Pat. No. 5,743,971 describes a method for the formation of corrosion protection coatings on metals such as Zn, Ni, Ag, Fe, Cd, Al, Mg and their alloys. These metals are immersed in a solution which contains an oxidizing agent, a silicate and at least contains a cation from the group of Ti, Zr, Ce, Sr, V, W and Mo The pH of this solution is in particular in a range between 1.5 and 3.0
- the oxidizing agent is selected exclusively from the group of peroxo compounds.
- Kahumpermanganate is not mentioned as an oxidizing agent. This document also does not indicate which actual improvements the process described there brings for magnesium or its alloys compared to conventional chromating
- the conversion layer obtainable in this way shows a good protective effect, but the stability of the aqueous passivation electrolyte is not sufficient for an industrial application of this method.
- brown stone (Mn0 2 ) precipitates, which renders the aqueous passivation electrolyte unusable for the further passivation of magnesium materials.
- the object of the invention is to provide a chemically passivated article made of magnesium or its alloys, the conversion layer of which can be obtained by an electrolytic, current-free process which can be used in a simple manner and can be transferred to an industrial scale.
- the corrosion protection effect of such a conversion layer should also not be worse than that of the known, chromated objects made of magnesium or its alloys.
- This object is achieved according to the invention by an object made of magnesium or its alloys, the surface of which has a conversion layer in whole or in part, characterized in that the conversion layer comprises MgO, Mn 2 0 and Mn0 2 and at least one oxide from the group of vanadium, molybdenum and tungsten having.
- the conversion layer according to the invention can be obtained by passivating the object by means of an aqueous passivation electrolyte, this aqueous passivation electrolyte containing potassium permanganate and at least one alkali metal or ammonium salt of an anion from the group of vanadate, molybdate and tungstate.
- the object on which the invention is based is equally achieved by a method for producing a conversion layer on an object made of magnesium or its alloys, characterized in that the object is a Passivation is subjected to an aqueous passivation electrolyte, the aqueous passivation electrolyte containing potassium permanganate and at least one alkali or ammonium salt of an anion from the group of vanadate, molybdate and tungstenate.
- the conversion layer according to the invention has a golden brown to gray-brown, iridescent color and contains MgO, Mn 2 O, MnO and at least one oxide from the group of vanadium, molybdenum and tungsten.
- the anions used according to the invention have a lower oxidizing power than chromate ions when compared individually with the chromate ions, it becomes clear that only by combining the permanganate ions with the corresponding vanadate, molybdate and / or tungsten ions does a synergistic effect occur is achieved, which leads to the formation of a corrosion-inhibiting conversion layer on objects made of magnesium or its alloys. This is of particular importance since the aqueous passivation electrolytes of the prior art containing potassium permanganate can only achieve such an oxidizing power of the electrolyte solution by lowering the pH and / or increasing the temperature.
- a particular advantage of the method according to the invention is the fact that the aqueous passivation electrolyte is still stable even after a long standing time, without brown stone precipitating in an amount that would render the aqueous passivation electrolyte unusable for the passivation of objects made of magnesium or its alloys.
- a polymer layer is additionally applied to the conversion layer and can be obtained by polymerizing and / or crosslinking a solution which contains at least one alkoxysilane compound.
- the conversion layer according to the invention acts as a primer.
- the conversion layer obtainable in accordance with the method according to the invention has pores with a size between 200 and 1,000 nm.
- an alkoxysilane compound as the compound to be polymerized and / or crosslinked ensures that the polymer layer on the conversion layer is connected to the surface of the conversion layer on the one hand as a result of chemisorption via Si-O bonds, and on the other hand also via chemisorption inside the pores.
- the penetration of the alkoxysilane compound into the pores of the conversion layer increases the contact area and thus the chemisorption between the conversion layer and the polymer layer.
- the polymer layer is formed by polymerization processes known per se and familiar to the person skilled in the art (e.g. air drying, heating or UV radiation):
- the amount of alkoxysilane compound in the solution to be applied can vary within wide limits.
- the solution generally contains 5 to 45% by weight, in particular 10 to 30% by weight, of the alkoxysilane compound.
- the solution may also contain a polar solvent, which should be selected so that it does not react with the alkoxysilane compound (e.g. ethanol).
- the alkoxysilane compound corresponds to the general formula
- X represents an alkoxy, an aryloxy or an acyloxy group with 1 to 12 carbon atoms, preferably with 1 to 4 carbon atoms, and is particularly selected from the group of methoxy, ethoxy, n-propoxy, i-propoxy, Butoxy, phenoxy, acetoxy and propionyloxy groups; • R 1 and R 2 , identical or different from one another, are selected from the group of
- Alkyl radicals in particular the alkyl radicals having 1 to 6 carbon atoms, preferably the methyl, ethyl, n-propyl, isopropyl, n-butyl, s-butyl, t-butyl, pentyl, hexyl or cyclohexyl radicals;
- Alkenyl radicals in particular the alkenyl radicals having 2 to 6 carbon atoms, preferably the vinyl, 1-propenyl, 2-propenyl or butenyl radicals;
- Alkynyl radicals in particular the alkenyl radicals having 2 to 6 carbon atoms, preferably the acetylenyl or propargyl radicals;
- Aryl radicals in particular aryl radicals having 6 to 10 carbon atoms, preferably phenyl or naphtenyl radicals;
- Epoxy radicals in particular the epoxy radicals having 3 to 16 carbon atoms, preferably the glycidyl, glycidyl ether, glycidyl ester or glycidyloxy alkyl radicals; or group X described above; and
- a and b represent the value 0, 1, 2 or 3, the sum of a and b not exceeding 3.
- a corresponding alkoxysilane compound can be a tetraalkoxysilane, epoxyalkoxysilane or aminoalkoxysilane.
- compound capable of forming a titanium complex denotes compounds which form TiO 2 -SiO 2 systems bridged with the alkoxysilane compound and the conversion layer via complex bonding. The reaction between the alkoxysilane compound and titanium compound also gives a crosslinked polymer layer.
- a particularly suitable compound is an alkoxytitanium compound, a titanium acid ester or a titanium chelate, in particular a compound of the formula Ti (OR) .., in which R represents an alkyl radical having 1 to 6 carbon atoms, which is preferably selected from the group consisting of methyl, ethyl, n-propyl, i-propyl and butyl radicals.
- the molar ratio between alkoxysilane compound and titanium compound is not critical and is generally between 1 and 20.
- Solutions containing both an alkoxysilane and contain a group capable of forming a titanium complex compound are described for example in DE 41 38 218 Al and are available from various companies (for example Deltacoll ® 80 from the company. Dörken).
- the polymer layer can also have a color.
- the solution to be polymerized and / or crosslinked additionally contains at least one dye which is soluble in a polar solvent, in particular a metal complex dye.
- a metal complex dye is ICI available for example under the trade name of Neozapon "from Fa. BASF, Orasol ® by the company. Ciba-Geigy, Savinyl" from Messrs. Sandoz or Lampronol H from the company.. Due to the solubility of the dye in a polar solvent, a homogeneous solution and thus a homogeneous structure of the polymer layer is achieved. There is therefore no accumulation of the dye in the polymer layer, which could act as a “predetermined breaking point” between the conversion and polymer layers.
- the passivation is preferably carried out in a pH range of the aqueous passivation electrolyte from 7.0 to 8.0.
- the passivation is usually carried out for a period of 2 to 10 minutes.
- concentration of potassium permanganate in the aqueous passivation electrolyte according to the invention is preferably 1 to 10 g / 1; that of the alkali or ammonium salt of the vanadate, molybdate and / or tungsten ions, preferably 1 to 10 g / 1.
- the upper limit of the vanadate, molybdate and / or tungstate concentration is not critical.
- the method according to the invention can also be carried out with an electrolyte which contains a saturated solution of these salts, even with undissolved constituents.
- the objects passivated according to the invention are, for example, parts for the motor vehicle industry, electrical and electronics industry, mechanical engineering industry, aerospace technology and parts of sports equipment.
- Magnesium alloys that can be used are all common die casting, cast and wrought alloys. Examples of these are in particular AZ91, AZ81, AZ61, AM60, AM50, AM20, AS41, AS21, AE42, QE22, ZE41, ZK ⁇ l and AZ31, AZ60, ZK30, ZK60, WE43 and WE54 (names according to ASTM).
- the invention also relates to the use of a solution for producing an object according to the invention, this solution containing at least one of the alkoxysilane compounds described above.
- this solution containing at least one of the alkoxysilane compounds described above.
- the objects made of magnesium or its alloys are previously pickled in a manner known per se with mineral acids such as phosphoric acid, hydrofluoric acid, nitric acid etc.
- a varnish or a paint is additionally applied to the conversion layer with or without an additional polymer layer.
- All commercially available powder or epoxy-based paints and electro-dip paints are suitable as paints. Powder coatings based on high molecular weight epoxy resins of the bisphenol-A type are preferred, optionally combined with a carboxyl-containing polyester resin, such as those e.g. are available under the name Delta-S-NT powder coating from Dörken, Herdecke.
- a silane combination (DELTACOLL 80 from Dörken) and / or an epoxy polyester powder coating (Delta-S-NT powder coating from Dörken) is used as the sealer in accordance with the conditions specified in Table I.
- the results of the salt spray tests are given in Table I.
- a silane combination (DELTACOLL 80 from Dörken) and / or an epoxy polyester powder coating (Delta-S-NT powder coating from Dörken) is used as the sealer in accordance with the conditions specified in Table I.
- the results of the salt spray tests are given in Table I.
- the smaller value corresponds to the time at which the first of the three plates shows insufficient corrosion protection; the larger value indicates the time at which the last of the three plates shows insufficient corrosion protection.
- the smaller value corresponds to the time at which the first of the three plates shows insufficient corrosion protection; the larger value indicates the time at which the last of the three plates shows insufficient corrosion protection.
- Table III clearly shows improved corrosion protection for the conversion layer according to the invention when using a silane combination.
Landscapes
- Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
- Paints Or Removers (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Treatment And Processing Of Natural Fur Or Leather (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
„Chemisch passivierter Gegenstand aus Magnesium oder seinen Legierungen" "Chemically passivated article made of magnesium or its alloys"
Die vorliegende Erfindung betrifft einen Gegenstand aus Magnesium oder seinen Legierungen, der eine durch Passivierung der Oberfläche erzeugte Konversionsschicht aufweist, sowie ein Nerfahren zur Herstellung eines solchen Gegenstandes und dessen Verwendung.The present invention relates to an object made of magnesium or its alloys, which has a conversion layer produced by passivation of the surface, and a method for producing such an object and its use.
Magnesium und seine Legierungen sind die leichtesten, aber auch unedelsten metallischen Konstruktionswerkstoffe (Νormalpotential von Mg : -2,34 Volt) und neigen deshalb sehr stark zu Korrosion. Um dieser nachteiligen Eigenschaft entgegenzuwirken, werden Magnesium und seine Legierungen in wäßrigen Passivierungselektrolyten behandelt. Durch den dabei ablaufenden Redoxvorgang (ohne äußere Stromquelle) bildet sich eine Konversionsschicht, die aus Oxiden des Magnesiumwerkstoffes und oxidischen Reaktionsprodukten, die aus den Bestandteilen des wäßrigen Passivierungselektrolyten herrühren, besteht.Magnesium and its alloys are the lightest, but also the least noble metallic construction materials (normal potential of Mg: -2.34 volts) and are therefore very susceptible to corrosion. To counteract this disadvantageous property, magnesium and its alloys are treated in aqueous passivation electrolytes. As a result of the redox process (without an external power source) taking place, a conversion layer is formed which consists of oxides of the magnesium material and oxidic reaction products which result from the constituents of the aqueous passivation electrolyte.
Unter dem Begriff „Konversionsschicht" wird hier und im folgenden eine Schicht verstanden, die nicht durch Auftrag auf eine Oberfläche, sondern durch chemische Umwandlung (Konversion) der metallischen Oberfläche und verschiedenen Bestandteilen des wäßrigen Passivierungselektrolyten gebildet wird (vgl. H. Simon, M. Thoma „Angewandte Oberflächentechnik für metallische Werkstoffe", Carl Hanser Verlag, München (1985) S. 4).The term “conversion layer” is understood here and below to mean a layer which is not formed by application to a surface, but rather by chemical conversion (conversion) of the metallic surface and various components of the aqueous passivation electrolyte (cf. H. Simon, M. Thoma "Applied surface technology for metallic materials", Carl Hanser Verlag, Munich (1985) p. 4).
So ist zum Beispiel die Chromatierung von Gegenständen aus Magnesium oder seinen Legierungen bekannt. Die entsprechenden Nerfahren werden insbesondere in den MIL-Spezifikationen M3171 Typ I bis Typ III beschrieben. Dabei werden zur Passivierung Chromsäure oder deren Salze eingesetzt. Auch die Verwendung von Νatrium- dichromat in Kombination mit Kaliumpermanganat ist beschrieben (Dow Chemical Treatment, Νo. 22). Die chemische Passivierung mittels Chrom(VI)-haltiger wäßriger Passivierungselektrolyte ist einfach durchzuführen. Diese hat aber den gravierenden Nachteil, daß die chromathaltigen Stoffe, die auch in den gebildeten Konversionsschichten enthalten sind, kanzerogen sindFor example, the chromating of objects made of magnesium or its alloys is known. The corresponding ner driving is described in particular in the MIL specifications M3171 Type I to Type III. Chromic acid or its salts are used for the passivation. The use of sodium dichromate in combination with potassium permanganate has also been described (Dow Chemical Treatment, Νo. 22). The chemical passivation using chromium (VI) -containing aqueous passivation electrolytes is easy to carry out. But this has the serious Disadvantage that the chromate-containing substances that are also contained in the conversion layers formed are carcinogenic
Darüber hinaus stellt die Wiederverwertbarkeit chromatierter Gegenst nde aus Magnesium oder seinen Legierungen ein erhebliches Problem dar, da diese aufgrund ihres Gehalts an Schwermetallen nur mit erheblichem Aufwand zu sogenannten „High- Puπty"-Mateπalιen recycelt werden könnenIn addition, the recyclability of chromated articles made of magnesium or its alloys is a considerable problem, since, owing to their heavy metal content, they can only be recycled to so-called “high-purity” materials with considerable effort
Aus Gründen des Umweltschutzes und der ArbeiLssicherheit ist es das Bestreben von Herstellern und Verarbeitern passivierter Gegenst nde aus Magnesium oder seinen Legierungen, einen Ersatz für die herkömmliche Chromatierung unter Verwendung von chromatfreien wäßrigen Passivierungselektrolyten zu findenFor reasons of environmental protection and occupational safety, manufacturers and processors of passivated articles made of magnesium or its alloys are striving to find a replacement for conventional chromating using chromate-free aqueous passivation electrolytes
Als chromatfreie wäßrige Passivierungselektrolyte für die Passivierung von Gegenstanden aus Magnesium oder seinen Legierungen sind beispielsweise von der Firma Dow Chemical vertriebene wäßrige Passivierungselektrolyte auf Stannat-Basis bekannt Es hat sich aber gezeigt, daß die Korrosionsschutzwirkung der dabei erhaltenen Konversionsschicht im Vergleich zu den chromatierten Magnesiumwerkstoffen geringer istAqueous passivation electrolytes based on stannate, sold by Dow Chemical, for example, are known as chromate-free aqueous passivation electrolytes for the passivation of objects made of magnesium or its alloys. However, it has been shown that the corrosion protection effect of the conversion layer obtained is less compared to the chromated magnesium materials
Die US 5 743 971 beschreibt ein Verfahren zur Bildung von Korrosionsschutzuberzu- gen auf Metallen wie Zn, Ni, Ag, Fe, Cd, AI, Mg und deren Legierungen Dabei werden diese Metalle in eine Losung getaucht, die ein Oxidationsmittel, ein Silikat und mindestens ein Kation aus der Gruppe von Ti, Zr, Ce, Sr, V, W und Mo enthalt Der pH-Wert dieser Losung liegt insbesondere in einem Bereich zwischen 1,5 und 3,0US Pat. No. 5,743,971 describes a method for the formation of corrosion protection coatings on metals such as Zn, Ni, Ag, Fe, Cd, Al, Mg and their alloys. These metals are immersed in a solution which contains an oxidizing agent, a silicate and at least contains a cation from the group of Ti, Zr, Ce, Sr, V, W and Mo The pH of this solution is in particular in a range between 1.5 and 3.0
Das Oxidationsmittel ist ausschließlich gewählt aus der Gruppe der Peroxoverbmdun- gen Kahumpermanganat wird als Oxidationsmittel nicht erwähnt Auch ist dieser Entgegenhaltung nicht zu entnehmen, welche tatsachlichen Verbesserungen das dort beschriebene Verfahren für Magnesium oder dessen Legierungen im Vergleich zu herkömmlichen Chromatierungen mit sich bringtThe oxidizing agent is selected exclusively from the group of peroxo compounds. Kahumpermanganate is not mentioned as an oxidizing agent. This document also does not indicate which actual improvements the process described there brings for magnesium or its alloys compared to conventional chromating
Darüber hinaus ist auch das Phosphatieren von Gegenstanden aus Magnesium oder seinen Legierungen bekannt (vgl Dow Chemical Treatment No 18) Eine Phosphatie- rung unter gleichzeitiger Verwendung von Kahumpermanganat ist in D Hawk, D L Albright, MA Phosphate-Permanganate Conversion Coating for Magnesium", Metal Fi- nishmg, October 1995, S 34 - 38, beschrieben Auch hier ist der unter Verwendung dieser wäßrigen Passivierungselektrolyte erhaltene Korrosionsschutz im Vergleich zu einer chromatierten Schicht wesentlich geringer.In addition, the phosphating of objects made of magnesium or its alloys is known (see Dow Chemical Treatment No 18) tion A phosphating with simultaneous use of potassium permanganate is in D Hawk, DL Albright, M A Phosphate-permanganates conversion coating for magnesium " Metal Finishingmg, October 1995, S 34 - 38, described here is also used This aqueous passivation electrolyte has much less corrosion protection compared to a chromated layer.
Eine weitere Möglichkeit zur chemischen Passivierung wird von CHIBA Institute of Technology, Japan (veröffentlicht im Tagungsmaterial INTERFINISHING 96 World Congress, Birmingham, England, 10. - 12. September 1996, S. 425 - 432) beschrieben, wonach eine Lösung von Kaliumpermanganat alleine oder in Kombination mit geringen Mengen an Säuren (HNO^, H2S04, HF) in einem wäßrigen Passivierungselektrolyten enthalten ist. Die für die chemische Passivierung erforderliche Temperatur des wäßrigen Passivierungselektrolyten liegt zwischen 40 und 84 °C.Another possibility for chemical passivation is described by the CHIBA Institute of Technology, Japan (published in the conference material INTERFINISHING 96 World Congress, Birmingham, England, September 10-12, 1996, pp. 425-432), according to which a solution of potassium permanganate alone or in combination with small amounts of acids (HNO ^, H 2 S0 4 , HF) is contained in an aqueous passivation electrolyte. The temperature of the aqueous passivation electrolyte required for chemical passivation is between 40 and 84 ° C.
Die auf diese Weise erhältliche Konversionsschicht zeigt eine gute Schutzwirkung, allerdings ist die Stabilität des wäßrigen Passivierungselektrolyten für eine technische Anwendung dieses Verfahrens nicht ausreichend. So fällt nach kurzer Zeit Braunstein (Mn02) aus, der den wäßrigen Passivierungselektrolyten für die weitere Passivierung von Magnesiumwerkstoffen unbrauchbar macht.The conversion layer obtainable in this way shows a good protective effect, but the stability of the aqueous passivation electrolyte is not sufficient for an industrial application of this method. After a short time, brown stone (Mn0 2 ) precipitates, which renders the aqueous passivation electrolyte unusable for the further passivation of magnesium materials.
Aufgabe der Erfindung ist die Bereitstellung eines chemisch passivierten Gegenstands aus Magnesium oder seinen Legierungen, dessen Konversionsschicht durch ein elektrolytisches, stromfreies Verfahren erhältlich ist, das auf einfache Weise anwendbar und auf einen industriellen Maßstab übertragbar ist. Die Korrosionsschutzwirkung einer solchen Konversionsschicht sollte darüber hinaus nicht schlechter sein, als die der bekannten, chromatierten Gegenstände aus Magnesium oder seinen Legierungen.The object of the invention is to provide a chemically passivated article made of magnesium or its alloys, the conversion layer of which can be obtained by an electrolytic, current-free process which can be used in a simple manner and can be transferred to an industrial scale. The corrosion protection effect of such a conversion layer should also not be worse than that of the known, chromated objects made of magnesium or its alloys.
Diese Aufgabe wird erfindungsgemäß gelöst durch einen Gegenstand aus Magnesium oder seinen Legierungen, dessen Oberfläche ganz oder teilweise eine Konversionsschicht aufweist, dadurch gekennzeichnet, daß die Konversionsschicht MgO, Mn20 und Mn02 sowie mindestens ein Oxid aus der Gruppe von Vanadium, Molybdän und Wolfram aufweist.This object is achieved according to the invention by an object made of magnesium or its alloys, the surface of which has a conversion layer in whole or in part, characterized in that the conversion layer comprises MgO, Mn 2 0 and Mn0 2 and at least one oxide from the group of vanadium, molybdenum and tungsten having.
Die erfindungsgemäße Konversionsschicht kann erhältlich sein durch Passivierung des Gegenstands mittels eines wäßrigen Passivierungselektrolyten, wobei dieser wäßrige Passivierungselektrolyt Kaliumpermanganat und mindestens ein Alkali- oder Ammoniumsalz eines Anions aus der Gruppe von Vanadat, Molybdat und Wolframat enthält. Die der Erfindung zugrunde liegende Aufgabe wird gleichermaßen gelöst durch ein Verfahren zur Erzeugung einer Konversionsschicht auf einem Gegenstand aus Magnesium oder seinen Legierungen, dadurch gekennzeichnet, daß der Gegenstand einer Passivierung mittels eines wäßrigen Passivierungselektrolyten unterzogen wird, wobei der wäßrige Passivierungselektrolyt Kaliumpermanganat und mindestens ein Alkalioder Ammoniumsalz eines Anions aus der Gruppe von Vanadat, Molybdat und Wolf- ramat enthält.The conversion layer according to the invention can be obtained by passivating the object by means of an aqueous passivation electrolyte, this aqueous passivation electrolyte containing potassium permanganate and at least one alkali metal or ammonium salt of an anion from the group of vanadate, molybdate and tungstate. The object on which the invention is based is equally achieved by a method for producing a conversion layer on an object made of magnesium or its alloys, characterized in that the object is a Passivation is subjected to an aqueous passivation electrolyte, the aqueous passivation electrolyte containing potassium permanganate and at least one alkali or ammonium salt of an anion from the group of vanadate, molybdate and tungstenate.
Die erfindungsgemäße Konversionsschicht hat eine goldbraune bis graubraune, irisierende Farbe und enthält MgO, Mn20 , Mn0 und mindestens ein Oxid aus der Gruppe von Vanadium, Molybdän und Wolfram.The conversion layer according to the invention has a golden brown to gray-brown, iridescent color and contains MgO, Mn 2 O, MnO and at least one oxide from the group of vanadium, molybdenum and tungsten.
Untersuchungen haben gezeigt, daß die Korrosionsschutzwirkung dieser Konversionsschicht nicht geringer ist, als die einer herkömmlichen Chromatschicht.Investigations have shown that the corrosion protection effect of this conversion layer is no less than that of a conventional chromate layer.
Insbesondere vor dem Hintergrund, daß die erfindungsgemäß verwendeten Anionen im Vergleich mit den Chromationen einzeln betrachtet eine geringere Oxidationskraft als Chromationen besitzen, wird deutlich, daß erst durch Kombination der Permanga- nationen mit den entsprechenden Vanadat-, Molybdat- und/oder Wolframationen ein synergistischer Effekt erzielt wird, der zur Bildung einer korrosionshemmenden Konversionsschicht auf Gegenständen aus Magnesium oder seinen Legierungen führt. Dies ist von besonderer Bedeutung, da die Kaliumpermanganat enthaltenden wäßrigen Passivierungselektrolyte des Standes der Technik eine solche Oxidationskraft der Elek- trolytlösung nur durch eine Senkung des pH-Werts und/oder Temperaturerhöhung erzielen können.Particularly against the background that the anions used according to the invention have a lower oxidizing power than chromate ions when compared individually with the chromate ions, it becomes clear that only by combining the permanganate ions with the corresponding vanadate, molybdate and / or tungsten ions does a synergistic effect occur is achieved, which leads to the formation of a corrosion-inhibiting conversion layer on objects made of magnesium or its alloys. This is of particular importance since the aqueous passivation electrolytes of the prior art containing potassium permanganate can only achieve such an oxidizing power of the electrolyte solution by lowering the pH and / or increasing the temperature.
Eine mögliche Erklärung für diesen synergistischen Effekt kann in der Bildung sehr starker, sogenannter Heteropolysäuren in Form ihrer löslichen Ammonium- oder Alkalisalze liegen.A possible explanation for this synergistic effect can be the formation of very strong, so-called heteropolyacids in the form of their soluble ammonium or alkali salts.
Ein besonderer Vorteil des erfindungsgemäßen Verfahrens ist die Tatsache, daß der wäßrige Passivierungselektrolyt auch nach einer längeren Standzeit noch stabil ist, ohne daß hierbei Braunstein in einer Menge ausfällt, die den wäßrigen Passivierungselektrolyten für die Passivierung von Gegenständen aus Magnesium oder seinen Legierungen unbrauchbar machen würde.A particular advantage of the method according to the invention is the fact that the aqueous passivation electrolyte is still stable even after a long standing time, without brown stone precipitating in an amount that would render the aqueous passivation electrolyte unusable for the passivation of objects made of magnesium or its alloys.
Daher ist es bei dem vorliegenden Verfahren in einfacher Weise möglich, nach längerer Anwendungszeit die verbrauchten Chemikalien auf einfache Weise nachzudosieren, ohne daß der wäßrige Passivierungselektrolyt selber ausgewechselt werden muß. Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung ist zusätzlich auf der Konversionsschicht eine Polymerschicht aufgebracht, die erhältlich ist durch Polymerisieren und/oder Vernetzen einer Lösung, die mindestens eine Alkoxysilanverbindung enthält.Therefore, it is possible in the present method in a simple manner to replenish the used chemicals in a simple manner after a long period of use, without the aqueous passivation electrolyte itself having to be replaced. According to a preferred embodiment of the present invention, a polymer layer is additionally applied to the conversion layer and can be obtained by polymerizing and / or crosslinking a solution which contains at least one alkoxysilane compound.
Auf diese Weise werden die mechanischen und chemischen Eigenschaften der Konversionsschicht (z.B. Korrosionsbeständigkeit oder Abriebfestigkeit) deutlich erhöht. Die erfindungsgemäße Konversionsschicht wirkt hierbei als Haftgrund. So weist die entsprechend dem erfindungsgemäßen Verfahren erhältliche Konversionsschicht Poren mit einer Größe zwischen 200 und 1.000 nm auf.In this way, the mechanical and chemical properties of the conversion layer (e.g. corrosion resistance or abrasion resistance) are significantly increased. The conversion layer according to the invention acts as a primer. Thus, the conversion layer obtainable in accordance with the method according to the invention has pores with a size between 200 and 1,000 nm.
Durch die Wahl einer Alkoxysilanverbindung als zu polymerisierende und/oder zu vernetzende Verbindung ist gewährleistet, daß die auf der Konversionsschicht befindliche Polymerschicht zum einen infolge einer Chemisorption über Si-O-Bindungen mit der Oberfläche der Konversionsschicht verbunden ist, zum anderen aber auch über eine Chemisorption im Inneren der Poren. Das Eindringen der Alkoxysilanverbindung in die Poren der Konversionsschicht bewirkt eine Vergrößerung der Kontaktfläche und damit der Chemisorption zwischen Konversionsschicht und Polymerschicht.The choice of an alkoxysilane compound as the compound to be polymerized and / or crosslinked ensures that the polymer layer on the conversion layer is connected to the surface of the conversion layer on the one hand as a result of chemisorption via Si-O bonds, and on the other hand also via chemisorption inside the pores. The penetration of the alkoxysilane compound into the pores of the conversion layer increases the contact area and thus the chemisorption between the conversion layer and the polymer layer.
Die Bildung der Polymerschicht erfolgt durch an sich bekannte, dem Fachmann geläufige Polymerisationsverfahren (z.B. Lufttrocknung, Erhitzen oder UV-Bestrahlung):The polymer layer is formed by polymerization processes known per se and familiar to the person skilled in the art (e.g. air drying, heating or UV radiation):
Die Menge an Alkoxysilanverbindung in der aufzubringenden Lösung kann in weiten Grenzen variieren. Im allgemeinen enthält die Lösung 5 bis 45 Gew.-%, insbesondere 10 bis 30 Gew.-% der Alkoxysilanverbindung. Je nach erforderlicher Viskosität kann die Lösung zusätzlich ein polares Lösungsmittel enthalten, das so zu wählen ist, daß es nicht mit der Alkoxysilanverbindung reagiert (z.B. Ethanol).The amount of alkoxysilane compound in the solution to be applied can vary within wide limits. The solution generally contains 5 to 45% by weight, in particular 10 to 30% by weight, of the alkoxysilane compound. Depending on the required viscosity, the solution may also contain a polar solvent, which should be selected so that it does not react with the alkoxysilane compound (e.g. ethanol).
Gemäß einer bevorzugten Ausführungsform entspricht die Alkoxysilanverbindung der allgemeinen FormelAccording to a preferred embodiment, the alkoxysilane compound corresponds to the general formula
in derin the
• X eine Alkoxy-, eine Aryloxy- oder eine Acyloxygruppe mit 1 bis 12 Kohlenstoffatomen, vorzugsweise mit 1 bis 4 Kohlenstoffatomen darstellt, und insbesondere ausgewählt ist aus der Gruppe der Methoxy-, Ethoxy-, n-Propoxy-, i-Propoxy-, Butoxy-, Phenoxy-, Acetoxy- und Propionyloxygruppen; • R1 und R2, gleich oder verschieden voneinander, ausgewählt sind aus der Gruppe derX represents an alkoxy, an aryloxy or an acyloxy group with 1 to 12 carbon atoms, preferably with 1 to 4 carbon atoms, and is particularly selected from the group of methoxy, ethoxy, n-propoxy, i-propoxy, Butoxy, phenoxy, acetoxy and propionyloxy groups; • R 1 and R 2 , identical or different from one another, are selected from the group of
Amino-, Monoalkylamino- oder Dialkylaminoreste;Amino, monoalkylamino or dialkylamino residues;
Alkylreste, insbesondere der Alkylreste mit 1 bis 6 Kohlenstoffatomen, vorzugsweise der Methyl-, Ethyl-, n-Propyl-, Isopropyl-, n-Butyl-, s-Butyl-, t-Butyl-, Pentyl-, Hexyl- oder Cyclohexylreste;Alkyl radicals, in particular the alkyl radicals having 1 to 6 carbon atoms, preferably the methyl, ethyl, n-propyl, isopropyl, n-butyl, s-butyl, t-butyl, pentyl, hexyl or cyclohexyl radicals;
Alkenylreste, insbesondere der Alkenylreste mit 2 bis 6 Kohlenstoff atomen, vorzugsweise der Vinyl-, 1-Propenyl-, 2-Propenyl- oder Butenylreste; Alkinylreste, insbesondere der Alkenylreste mit 2 bis 6 Kohlenstoff atomen, vorzugsweise der Acetylenyl- oder Propargylreste;Alkenyl radicals, in particular the alkenyl radicals having 2 to 6 carbon atoms, preferably the vinyl, 1-propenyl, 2-propenyl or butenyl radicals; Alkynyl radicals, in particular the alkenyl radicals having 2 to 6 carbon atoms, preferably the acetylenyl or propargyl radicals;
Arylreste, insbesondere der Arylreste mit 6 bis 10 Kohlenstoffatomen, vorzugsweise Phenyl- oder Naphtenylreste;Aryl radicals, in particular aryl radicals having 6 to 10 carbon atoms, preferably phenyl or naphtenyl radicals;
Epoxyreste, insbesondere der Epoxyreste mit 3 bis 16 Kohlenstoffatomen, vorzugsweise der Glycidyl-, Glycidylether-, Glycidylester- oder Glycidyl- oxy alkylreste; oder zuvor beschriebenen Gruppe X; undEpoxy radicals, in particular the epoxy radicals having 3 to 16 carbon atoms, preferably the glycidyl, glycidyl ether, glycidyl ester or glycidyloxy alkyl radicals; or group X described above; and
• a und b, gleich oder verschieden voneinander, den Wert 0, 1, 2 oder 3 darstellen, wobei die Summe von a und b den Wert 3 nicht überschreitet.A and b, the same or different from each other, represent the value 0, 1, 2 or 3, the sum of a and b not exceeding 3.
Eine entsprechende Alkoxysilanverbindung kann ein Tetraalkoxysilan, Epoxyalkoxysi- lan oder Aminoalkoxysilan sein.A corresponding alkoxysilane compound can be a tetraalkoxysilane, epoxyalkoxysilane or aminoalkoxysilane.
Sehr gute Ergebnisse wurden mit Tetraethoxysilan, 3-Glycidyloxypropyl-trimethoxy- silan, 3-Aminopropyl-trimethoxysilan und 3-(Aminoethylamin)propyl-trimethoxysilan als Alkoxysilanverbindung erhalten.Very good results were obtained with tetraethoxysilane, 3-glycidyloxypropyl-trimethoxysilane, 3-aminopropyl-trimethoxysilane and 3- (aminoethylamine) propyl-trimethoxysilane as the alkoxysilane compound.
Um die Haftung zwischen Konversions- und Polymerschicht noch weiter zu verbessern empfiehlt es sich, der auf die Konversionsschicht aufzubringenden Lösung zusätzlich eine zur Bildung eines Titankomplexes fähige Verbindung zuzusetzen. Der Begriff „zur Bildung eines Titankomplexes fähige Verbindung" bezeichnet Verbindungen, die mit der Alkoxysilanverbindung und der Konversionsschicht über Komplexbindung verbrückte Ti02-Si02-Systeme bilden. Durch die Reaktion zwischen Alkoxysilanverbindung und Titanverbindung wird darüber hinaus eine vernetzte Polymerschicht erhalten.In order to further improve the adhesion between the conversion and polymer layers, it is advisable to add an additional compound capable of forming a titanium complex to the solution to be applied to the conversion layer. The term “compound capable of forming a titanium complex” denotes compounds which form TiO 2 -SiO 2 systems bridged with the alkoxysilane compound and the conversion layer via complex bonding. The reaction between the alkoxysilane compound and titanium compound also gives a crosslinked polymer layer.
Eine besonders geeignete Verbindung ist eine Alkoxytitanverbindung, ein Titansäureester oder ein Titanchelat, insbesondere eine Verbindung der Formel Ti(OR).., in der R einen Alkylrest mit 1 bis 6 Kohlenstoffatomen darstellt, der vorzugsweise ausgewählt ist aus der Gruppe der Methyl-, Ethyl-, n-Propyl-, i-Propyl- und Butylreste.A particularly suitable compound is an alkoxytitanium compound, a titanium acid ester or a titanium chelate, in particular a compound of the formula Ti (OR) .., in which R represents an alkyl radical having 1 to 6 carbon atoms, which is preferably selected from the group consisting of methyl, ethyl, n-propyl, i-propyl and butyl radicals.
Sehr gute Ergebnisse wurden mit Tetraethoxytitanat Ti(OC2H5)/1 erzielt.Very good results were achieved with tetraethoxytitanate Ti (OC 2 H 5 ) / 1 .
Das molare Verhältnis zwischen Alkoxysilanverbindung und Titanverbindung ist nicht kritisch und liegt im allgemeinen zwischen 1 und 20.The molar ratio between alkoxysilane compound and titanium compound is not critical and is generally between 1 and 20.
Lösungen, die sowohl eine Alkoxysilanverbindung als auch eine zur Bildung eines Titankomplexes fähige Verbindung enthalten, sind beispielsweise in der DE 41 38 218 AI beschrieben und können von verschiedenen Firmen bezogen werden (z.B. Deltacoll® 80 von der Fa. Dörken).Solutions containing both an alkoxysilane and contain a group capable of forming a titanium complex compound, are described for example in DE 41 38 218 Al and are available from various companies (for example Deltacoll ® 80 from the company. Dörken).
Sofern erforderlich, kann die Polymerschicht auch noch eine Farbe aufweisen. In diesem Fall enthält die zu polymerisierende und/oder zu vernetzende Lösung zusätzlich mindestens einen in einem polaren Lösemittel löslichen Farbstoff, insbesondere einen Metallkomplex-Farbstoff. Solch ein Metallkomplex-Farbstoff ist beispielsweise unter der Handelsbezeichnung Neozapon" von der Fa. BASF, Orasol® von der Fa. Ciba-Geigy, Savinyl " von der Fa. Sandoz oder LampronolH von der Fa. ICI erhältlich. Aufgrund der Löslichkeit des Farbstoffs in einem polaren Lösungsmittel wird eine homogene Lösung und damit ein homogener Aufbau der Polymerschicht erreicht. Es findet sich somit keine Anreicherung des Farbstoffs in der Polymerschicht, die als „Sollbruchstelle" zwischen Konversions- und Polymerschicht wirken könnte.If necessary, the polymer layer can also have a color. In this case, the solution to be polymerized and / or crosslinked additionally contains at least one dye which is soluble in a polar solvent, in particular a metal complex dye. Such a metal complex dye is ICI available for example under the trade name of Neozapon "from Fa. BASF, Orasol ® by the company. Ciba-Geigy, Savinyl" from Messrs. Sandoz or Lampronol H from the company.. Due to the solubility of the dye in a polar solvent, a homogeneous solution and thus a homogeneous structure of the polymer layer is achieved. There is therefore no accumulation of the dye in the polymer layer, which could act as a “predetermined breaking point” between the conversion and polymer layers.
Bei dem erfindungsgemäßen Verfahren zur Herstellung einer Konverionssschicht wird die Passivierung bevorzugterweise in einem pH-Bereich des wäßrigen Passivierungselektrolyten von 7,0 bis 8,0 durchgeführt.In the process according to the invention for producing a conversion layer, the passivation is preferably carried out in a pH range of the aqueous passivation electrolyte from 7.0 to 8.0.
Somit kann auf einen Zusatz von Säuren verzichtet werden. Das bedeutet, daß keine Verringerung des pH-Werts durch Zugabe von Säuren notwendig ist, um die Oxidationskraft der Permanganatanionen zu erhöhen.It is therefore not necessary to add acids. This means that it is not necessary to reduce the pH by adding acids in order to increase the oxidizing power of the permanganate anions.
Weiter ist es mit dem erfindungsgemäßen Verfahren erstmals möglich, eine ausreichende Passivierung bei einer Temperatur des wäßrigen Passivierungselektrolyten von 15 bis 50 °C, insbesondere von 20 bis 30 °C, durchzuführen.Furthermore, with the method according to the invention it is possible for the first time to carry out an adequate passivation at a temperature of the aqueous passivation electrolyte of 15 to 50 ° C., in particular 20 to 30 ° C.
Die Passivierung wird dabei üblicherweise für eine Zeitdauer von 2 bis 10 Minuten durchgeführt. Die Konzentration an Kaliumpermanganat im erfindungsgemäßen wäßrigen Passivierungselektrolyten beträgt bevorzugt 1 bis 10 g/1; die des Alkali- oder Ammoniumsalzes der Vanadat-, Molybdat- und/oder Wolframationen vorzugsweise 1 bis 10 g/1. Insbesondere die Obergrenze der Vanadat-, Molybdat- und/oder Wolframatkonzentration ist nicht kritisch. So ist das erfindungsgemäße Verfahren auch mit einem Elektrolyten durchführbar, der eine gesättigte Lösung dieser Salze, sogar mit ungelösten Bestandteilen, enthält.The passivation is usually carried out for a period of 2 to 10 minutes. The concentration of potassium permanganate in the aqueous passivation electrolyte according to the invention is preferably 1 to 10 g / 1; that of the alkali or ammonium salt of the vanadate, molybdate and / or tungsten ions, preferably 1 to 10 g / 1. In particular, the upper limit of the vanadate, molybdate and / or tungstate concentration is not critical. Thus, the method according to the invention can also be carried out with an electrolyte which contains a saturated solution of these salts, even with undissolved constituents.
Der synergistische Effekt zwischen Permanganationen und Vanadat-, Molybdat- und/oder Wolframationen wird besonders deutlich, wenn man versucht, einen Gegenstand aus Magnesium nur mit einer wäßrigen Kaliumpermanganatlösung mit einer Konzentration von 1 bis 10 g/1 bei gleichen Arbeitsparametern zu passivieren. Denn unter diesen Bedingungen ist es nicht möglich, eine Konversionsschicht mit ausreichender Korrosionsschutzwirkung zu erhalten.The synergistic effect between permanganate ions and vanadate, molybdate and / or tungsten ions becomes particularly clear when an attempt is made to passivate an object made of magnesium only with an aqueous potassium permanganate solution with a concentration of 1 to 10 g / 1 with the same working parameters. Because under these conditions it is not possible to obtain a conversion layer with sufficient corrosion protection.
Bei den erfindungsgemäß passivierten Gegenständen handelt es sich beipielsweise um Teile für die Kraftfahrzeugindustrie, Elektro- und Elektronikindustrie, Maschinenbauindustrie, Luft- und Raumfahrttechnik sowie um Teile von Sportgeräten. Zu nennen sind insbesondere Teile von Motoren und Getriebegehäusen, Instrumententafeln, Türen und Einzelteile hiervon, Lenkgetriebegehäuse, Radsterne für Motorräder, Drosselklappengehäuse, Aufnahmevorrichtungen für Fräser, Rotoren oder Verdrängergehäuse für Kompressoren, Siegelbacken für Verpackungsmaschinen, Teile für Steckerleisten und elektrische Verbinder, Lampenträger, Lampengehäuse, Rotorgehäuse von Helikoptern, Gehäuse für elektrische Geräte und Teile von Sportbögen.The objects passivated according to the invention are, for example, parts for the motor vehicle industry, electrical and electronics industry, mechanical engineering industry, aerospace technology and parts of sports equipment. In particular, parts of engines and gearboxes, instrument panels, doors and individual parts thereof, steering gearboxes, wheel stars for motorcycles, throttle valve housings, mounting devices for milling cutters, rotors or displacement housings for compressors, sealing jaws for packaging machines, parts for plug strips and electrical connectors, lamp holders, lamp housings, Rotor housings for helicopters, housings for electrical devices and parts for sports arches.
Besonders einsetzbare Magnesiumlegierungen sind alle gebräuchlichen Druckguß-, Guß- und Knetlegierungen. Beispiele hierfür sind insbesondere AZ91, AZ81, AZ61, AM60, AM50, AM20, AS41, AS21, AE42, QE22, ZE41, ZKόl und AZ31, AZ60, ZK30, ZK60, WE43 und WE54 (Bezeichnungen nach ASTM).Magnesium alloys that can be used are all common die casting, cast and wrought alloys. Examples of these are in particular AZ91, AZ81, AZ61, AM60, AM50, AM20, AS41, AS21, AE42, QE22, ZE41, ZKόl and AZ31, AZ60, ZK30, ZK60, WE43 and WE54 (names according to ASTM).
Die Erfindung betrifft des weiteren auch die Verwendung einer Lösung zur Herstellung eines erfindungsgemäßen Gegenstands, wobei diese Lösung mindestens eine der zuvor beschriebenen Alkoxysilanverbindungen enthält. Als Vorbehandlung für die erfindungsgemäße chemische Passivierung werden die Gegenstände aus Magnesium oder seinen Legierungen zuvor in an sich bekannter Weise mit Mineralsäuren wie Phosphorsäure, Flußsäure, Salpetersäure etc. gebeizt.The invention also relates to the use of a solution for producing an object according to the invention, this solution containing at least one of the alkoxysilane compounds described above. As a pretreatment for the chemical passivation according to the invention, the objects made of magnesium or its alloys are previously pickled in a manner known per se with mineral acids such as phosphoric acid, hydrofluoric acid, nitric acid etc.
Des weiteren ist es möglich, daß zusätzlich auf die Konversionsschicht mit oder ohne zusätzlicher Polymerschicht ein Lack oder eine Farbe aufgetragen wird. Als Lacke eignen sich alle handelsüblichen Lacke auf Pulver- oder Epoxybasis sowie Elektrotauchlacke. Bevorzugt sind Pulverlacke auf Basis hochmolekularer Epoxyharze vom Bisphenol-A Typ, ggf. kombiniert mit einem carboxylgruppenhaltigen Polyesterharz, wie sie z.B. unter der Bezeichnung Delta-S-NT-Pulverlack von der Fa. Dörken, Herdecke, erhältlich sind.Furthermore, it is possible that a varnish or a paint is additionally applied to the conversion layer with or without an additional polymer layer. All commercially available powder or epoxy-based paints and electro-dip paints are suitable as paints. Powder coatings based on high molecular weight epoxy resins of the bisphenol-A type are preferred, optionally combined with a carboxyl-containing polyester resin, such as those e.g. are available under the name Delta-S-NT powder coating from Dörken, Herdecke.
Die folgenden Beispiele dienen der Erläuterung der Erfindung.The following examples serve to illustrate the invention.
Vergleichsbeispiel 1Comparative Example 1
12 Platten aus der Magnesiumlegierung AZ91HP mit den Abmessungen 50 x 100 x 2 mm werden entsprechend der MIL-Spezifikation M3171 Typ I chromatiert. Je drei der auf diese Weise passivierten Platten werden im Originalzustand (ohne Versiegelung), sowie mit speziellen Lacküberzügen versiegelt, einem Salznebeltest nach DIN 50021 -SS unterzogen.12 plates made of the AZ91HP magnesium alloy with the dimensions 50 x 100 x 2 mm are chromated according to the MIL specification M3171 type I. Three of the plates passivated in this way are subjected to a salt spray test in accordance with DIN 50021 -SS in their original condition (without sealing) and with special lacquer coatings.
Als Versiegelung wird eine Silankombination (DELTACOLL 80 der Fa. Dörken) und/oder ein Epoxid-Polyesterpulverlack (Delta-S-NT-Pulverlack der Fa. Dörken) gemäß den in der Tabelle I angegebenen Bedingungen verwendet. Die Ergebnisse der Salznebeltests sind in Tabelle I angegeben.A silane combination (DELTACOLL 80 from Dörken) and / or an epoxy polyester powder coating (Delta-S-NT powder coating from Dörken) is used as the sealer in accordance with the conditions specified in Table I. The results of the salt spray tests are given in Table I.
Beispiel 1example 1
12 Platten aus der Magnesiumlegierung AZ91HP mit den Abmessungen 50 x 100 x 2 mm werden 30 Sekunden lang in 75 %iger H PO/( gebeizt. Anschließend wird mit entionisiertem Wasser gespült und die Platten bei Raumtemperatur 30 Sekunden lang in 10 %iger NaOH neutralisiert; danach werden die Platten nochmals mit entionisiertem Wasser gespült. Die Platten werden in nassem Zustand 5 Minuten lang bei Raumtemperatur in einen wäßrigen Passivierungselektrolyten getaucht, bestehend aus einer wäßrigen Lösung von 3 g/1 KMn04 und 1 g/1 NHNO^. Nach dem Herausnehmen der Platten aus dem Passivierungsbad wird die grau-braun aussehende Konversionsschicht mit entionisiertem Wasser gespült und danach 30 Minuten lang bei 110 °C getrocknet. Je drei der auf diese Weise passivierten Platten werden im Originalzustand (ohne Versiegelung), sowie mit speziellen Lacküberzügen versiegelt, einem Salznebeltest nach DIN 50021-SS unterzogen.12 plates made of magnesium alloy AZ91HP with the dimensions 50 x 100 x 2 mm are pickled in 75% H PO / ( for 30 seconds. Then rinsed with deionized water and the plates are neutralized in 10% NaOH at room temperature for 30 seconds; The plates are then rinsed again with deionized water, and the plates are immersed in an aqueous passivating electrolyte consisting of an aqueous solution of 3 g / 1 KMnO 4 and 1 g / 1 NHNO ^ for 5 minutes at room temperature after removal the The gray-brown-looking conversion layer is rinsed with deionized water in plates from the passivation bath and then dried at 110 ° C. for 30 minutes. Three of the plates passivated in this way are subjected to a salt spray test in accordance with DIN 50021-SS in the original state (without sealing) and with special lacquer coatings.
Als Versiegelung wird eine Silankombination (DELTACOLL 80 der Fa. Dörken) und/oder ein Epoxid-Polyesterpulverlack (Delta-S-NT-Pulverlack der Fa. Dörken) gemäß den in der Tabelle I angegebenen Bedingungen verwendet. Die Ergebnisse der Salznebeltests sind in Tabelle I angegeben.A silane combination (DELTACOLL 80 from Dörken) and / or an epoxy polyester powder coating (Delta-S-NT powder coating from Dörken) is used as the sealer in accordance with the conditions specified in Table I. The results of the salt spray tests are given in Table I.
Tabelle ITable I
Der kleinere Wert entspricht der Zeit, bei der die erste der drei Platten einen unzureichenden Korrosionsschutz zeigt; der größere Wert gibt die Zeit an, bei der die letzte der drei Platten einen unzureichenden Korrosionsschutz zeigt.The smaller value corresponds to the time at which the first of the three plates shows insufficient corrosion protection; the larger value indicates the time at which the last of the three plates shows insufficient corrosion protection.
Vergleichsbeispiel 2Comparative Example 2
6 Platten aus der Magnesiumlegierung AM50HP mit den Abmessungen 50 x 100 x 2 mm werden entsprechend der MIL-Spezifikation M3171 Typ I chromatiert. Je drei der auf diese Weise passivierten Platten werden im Originalzustand (ohne Versiegelung), sowie mit einer Silankombination (DELTACOLL 80 der Fa. Dörken) versiegelt, einem Salznebeltest nach DIN 50021-SS unterzogen. Die Ergebnisse der Salznebeltests sind in Tabelle II angegeben. Beispiel 26 plates made of the magnesium alloy AM50HP with the dimensions 50 x 100 x 2 mm are chromated according to the MIL specification M3171 type I. Three of the plates passivated in this way are subjected to a salt spray test according to DIN 50021-SS in the original state (without sealing) and with a silane combination (DELTACOLL 80 from Dörken). The results of the salt spray tests are given in Table II. Example 2
6 Platten aus der Magnesiumlegierung AM50HP mit den Abmessungen 50 x 100 x 2 mm werden in 40 %iger HF 60 Sekunden lang bei Raumtemperatur gebeizt. Nach dem Spülen mit entionisiertem Wasser werden die Platten in einen wäßrigen Passivierungselektrolyten, bestehend aus einer wäßrigen Lösung mit 4 g/1 KMn04 und 1,5 g/1 Na2W04, 10 Minuten lang bei Raumtemperatur eingetaucht. Nach dem Herausnehmen der Platten wird die goldbraun irisierende Konversionsschicht mit entionisiertem Wasser gespült und 60 Minuten lang bei 110 °C getrocknet.6 plates made of the magnesium alloy AM50HP with the dimensions 50 x 100 x 2 mm are pickled in 40% HF for 60 seconds at room temperature. After rinsing with deionized water, the plates are immersed in an aqueous passivation electrolyte consisting of an aqueous solution with 4 g / 1 KMn0 4 and 1.5 g / 1 Na 2 W0 4 for 10 minutes at room temperature. After removing the plates, the golden-brown iridescent conversion layer is rinsed with deionized water and dried at 110 ° C. for 60 minutes.
Je drei der auf diese Weise passivierten Platten werden im Originalzustand (ohne Versiegelung), sowie mit einer Silankombination (DELTACOLL 80 der Fa. Dörken) versiegelt, einem Salznebeltest nach DIN 50021-SS unterzogen. Die Ergebnisse der Salznebeltests sind in Tabelle II angegeben.Three of the plates passivated in this way are subjected to a salt spray test according to DIN 50021-SS in the original state (without sealing) and with a silane combination (DELTACOLL 80 from Dörken). The results of the salt spray tests are given in Table II.
Tabelle πTable π
Der kleinere Wert entspricht der Zeit, bei der die erste der drei Platten einen unzureichenden Korrosionsschutz zeigt; der größere Wert gibt die Zeit an, bei der die letzte der drei Platten einen unzureichenden Korrosionsschutz zeigt.The smaller value corresponds to the time at which the first of the three plates shows insufficient corrosion protection; the larger value indicates the time at which the last of the three plates shows insufficient corrosion protection.
Vergleichsbeispiel 3Comparative Example 3
6 Platten aus der Magnesiumlegierung AZ91HP mit den Abmessungen 50 x 100 x 2 mm werden entsprechend der MIL-Spezifikation M3171 Typ I chromatiert. Je drei der auf diese Weise passivierten Platten werden mit einer Silankombination (DELTACOLL 80 der Fa. Dörken) und mit einem Epoxid-Polyesterpulverlack (Delta-S- NT-Pulverlack der Firma Dörken) versiegelt, und anschließend einem Salznebeltest nach DIN 50021-SS unterzogen.6 plates made of the magnesium alloy AZ91HP with the dimensions 50 x 100 x 2 mm are chromated according to the MIL specification M3171 type I. Three of the plates passivated in this way are sealed with a silane combination (DELTACOLL 80 from Dörken) and with an epoxy polyester powder coating (Delta-S-NT powder coating from Dörken), and then subjected to a salt spray test according to DIN 50021-SS .
Es wurde die Anzahl der Korrosionspunkte in Abhängigkeit der Zeit ermittelt. Die Ergebnisse sind in Tabelle III angegeben. Beispiel 3The number of corrosion points as a function of time was determined. The results are shown in Table III. Example 3
6 Platten aus AZ91HP mit den Abmessungen 50 x 100 x 2 mm werden in 75 %iger H P04 30 Sekunden lang gebeizt. Danach wird mit entionisiertem Wasser gespült und die Platten mit einer 10 %igen wäßrigen NaOH 45 Sekunden lang neutralisiert und anschließend nochmals mit entionisiertem Wasser gespült. Die Platten werden dann in nassem Zustand 4 Minuten lang bei Raumtemperatur in einen wäßrigen Passivierungselektrolyten getaucht, bestehend aus einer wäßrigen Lösung von 3 g/1 KMn04 und 1 g/1 NaV03. Nach dem Herausnehmen der Platten wird die graubraun aussehende Konversionsschicht mit entionisiertem Wasser gespült und anschließend 45 Minuten lang bei 110 °C getrocknet.6 plates of AZ91HP with the dimensions 50 x 100 x 2 mm are pickled in 75% H P0 4 for 30 seconds. It is then rinsed with deionized water and the plates are neutralized with a 10% aqueous NaOH for 45 seconds and then rinsed again with deionized water. The plates are then immersed in the wet state for 4 minutes at room temperature in an aqueous passivation electrolyte consisting of an aqueous solution of 3 g / 1 KMn0 4 and 1 g / 1 NaV0 3 . After removing the plates, the gray-brown-looking conversion layer is rinsed with deionized water and then dried at 110 ° C. for 45 minutes.
Je drei der auf diese Weise passivierten Platten werden mit einer Silankombination (DELTACOLL 80 der Fa. Dörken) und mit einem Epoxid-Polyesterpulverlack (Delta-S- NT-Pulverlack der Firma Dörken) versiegelt, und anschließend einem Salznebeltest nach DIN 50021-SS unterzogen.Three of the plates passivated in this way are sealed with a silane combination (DELTACOLL 80 from Dörken) and with an epoxy polyester powder coating (Delta-S-NT powder coating from Dörken), and then subjected to a salt spray test according to DIN 50021-SS .
Es wurde die Anzahl der Korrosionspunkte in Abhängigkeit von der Zeit ermittelt. Die Ergebnisse sind in Tabelle III angegeben.The number of corrosion points as a function of time was determined. The results are shown in Table III.
Tabelle DITable DI
Die Tabelle III zeigt deutlich einen verbesserten Korrosionsschutz für die erfindungsgemäße Konversionsschicht bei Verwendung einer Silankombination. Table III clearly shows improved corrosion protection for the conversion layer according to the invention when using a silane combination.
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19913242 | 1999-03-24 | ||
DE19913242A DE19913242C2 (en) | 1999-03-24 | 1999-03-24 | Chemically passivated article made of magnesium or its alloys, method of manufacture and its use |
PCT/DE2000/000872 WO2000056950A2 (en) | 1999-03-24 | 2000-03-22 | Chemically passivated object made of magnesium or alloys thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1163378A2 true EP1163378A2 (en) | 2001-12-19 |
EP1163378B1 EP1163378B1 (en) | 2002-11-20 |
Family
ID=7902184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00918709A Expired - Lifetime EP1163378B1 (en) | 1999-03-24 | 2000-03-22 | Chemically passivated object made of magnesium or alloys thereof |
Country Status (16)
Country | Link |
---|---|
US (1) | US6794046B1 (en) |
EP (1) | EP1163378B1 (en) |
JP (1) | JP2003508625A (en) |
KR (1) | KR20010053604A (en) |
CN (1) | CN1154751C (en) |
AT (1) | ATE228177T1 (en) |
AU (1) | AU777284B2 (en) |
BR (1) | BR0006920A (en) |
CA (1) | CA2367509A1 (en) |
DE (2) | DE19913242C2 (en) |
EA (1) | EA004143B1 (en) |
ES (1) | ES2184708T3 (en) |
MX (1) | MXPA01001157A (en) |
NZ (1) | NZ510937A (en) |
PT (1) | PT1163378E (en) |
WO (1) | WO2000056950A2 (en) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW538138B (en) | 2000-04-27 | 2003-06-21 | Otsuka Kagaku Kk | Process for treating and producing the parts made of magnesium and/or magnesium alloy |
ATE463591T1 (en) * | 2001-06-28 | 2010-04-15 | Alonim Holding Agricultural Co | SURFACE TREATMENT TO IMPROVE THE CORROSION RESISTANCE OF MAGNESIUM |
AU2002301945B2 (en) * | 2001-11-21 | 2008-07-17 | Chiyoda Chemical Co., Ltd | Surface treatment method of metal member, and metal goods |
AU2002360953B2 (en) * | 2001-12-05 | 2006-07-20 | Chemetall Gmbh | Polymeric coating mixture, method for applying this coating mixture to a metallic base for protecting an edge or a part, protective layer, a base coated in this manner and the use thereof |
ES2387805T3 (en) * | 2003-02-25 | 2012-10-02 | Chemetall Gmbh | Procedure for coating metal surfaces with a polymer-rich composition |
DE10327365B4 (en) * | 2003-06-16 | 2007-04-12 | AHC-Oberflächentechnik GmbH & Co. OHG | An article with a corrosion protection layer and its use |
US7304013B2 (en) * | 2003-06-30 | 2007-12-04 | Corning Incorporated | Metal oxide catalysts |
KR100510005B1 (en) * | 2003-07-23 | 2005-08-26 | (주)에스이 플라즈마 | Method for blocking moisture-absorption of protective layer for dielectric layer |
WO2006015754A2 (en) * | 2004-08-03 | 2006-02-16 | Chemetall Gmbh | Method for protecting a metal surface by means of a corrosion-inhibiting coating |
ES2746174T3 (en) * | 2004-11-10 | 2020-03-05 | Chemetall Gmbh | Procedure for coating metal surfaces with an aqueous composition containing silane / silanol / siloxane / polysiloxane, and that composition |
US8101014B2 (en) * | 2004-11-10 | 2012-01-24 | Chemetall Gmbh | Process for coating metallic surfaces with a multicomponent aqueous composition |
US20060099332A1 (en) * | 2004-11-10 | 2006-05-11 | Mats Eriksson | Process for producing a repair coating on a coated metallic surface |
US20080138615A1 (en) | 2005-04-04 | 2008-06-12 | Thomas Kolberg | Method for Coating Metallic Surfaces with an Aqueous Composition and Said Composition |
DE102006060501A1 (en) * | 2006-12-19 | 2008-06-26 | Biotronik Vi Patent Ag | Forming corrosion-inhibiting anodized coating on bio-corrodible magnesium alloy implant, treats implant in aqueous or alcoholic solution containing specified ion concentration |
DE102007007879A1 (en) | 2007-02-14 | 2008-08-21 | Gkss-Forschungszentrum Geesthacht Gmbh | Coating of a component |
KR100971248B1 (en) * | 2007-12-21 | 2010-07-20 | 주식회사 포스코 | Passive film coating method of magnesium or magnesium alloy with excellent corrosion resistance |
JP2009185363A (en) * | 2008-02-08 | 2009-08-20 | Matsumoto Fine Chemical Co Ltd | Surface treating composition |
DE102008009069A1 (en) | 2008-02-13 | 2009-08-20 | Gkss-Forschungszentrum Geesthacht Gmbh | Coating of a Magnesuimbauteils |
DE102008043970A1 (en) * | 2008-11-21 | 2010-05-27 | Biotronik Vi Patent Ag | A method for producing a corrosion-inhibiting coating on an implant of a biocorrodible magnesium alloy and implant produced by the method |
KR101117800B1 (en) * | 2009-08-12 | 2012-03-09 | 주식회사 포스코 | Surface treatment process for magnesium parts and magnesium parts treated by using the same |
US8506728B2 (en) * | 2009-09-03 | 2013-08-13 | Mazda Motor Corporation | Surface treatment method of metal material |
DE102009039887A1 (en) | 2009-09-03 | 2011-03-17 | Innovent E.V. | Method for surface-treatment of magnesium-containing component, comprises applying a chemical passivating solution that consists of thixotropic agent, on a part of the surface and leaving the passivating solution on the surface |
DE102010062357B4 (en) | 2010-12-02 | 2013-08-14 | Innovent E.V. | Apparatus and method for producing a magnesium-containing substrate coated with at least one anticorrosion layer |
JP6083020B2 (en) * | 2012-10-24 | 2017-02-22 | 株式会社正信 | Surface treatment method of magnesium or magnesium alloy, acid detergent and chemical conversion treatment agent, and chemical conversion treatment structure of magnesium or magnesium alloy |
JP6083562B2 (en) * | 2013-03-27 | 2017-02-22 | 株式会社正信 | Surface treatment method, chemical conversion treatment agent, and chemical conversion treatment structure |
KR101471095B1 (en) * | 2013-06-26 | 2014-12-09 | 주식회사 위스코하이텍 | Manufacturing method of magnesium alloy substrate |
KR101520838B1 (en) * | 2013-10-10 | 2015-05-21 | 주식회사 위스코하이텍 | Method for treating surface of metal nano wire |
TWI487809B (en) * | 2014-01-06 | 2015-06-11 | Univ Nat Taiwan | Chemical conversion coating and method of fabricating the same |
CN104357817B (en) * | 2014-11-13 | 2016-10-26 | 无锡伊佩克科技有限公司 | Compound chrome-free tanning agent of magnesium alloy and preparation method thereof |
US20180298497A1 (en) * | 2015-09-16 | 2018-10-18 | Okuno Chemical Industries Co., Ltd. | Chemical conversion solution for aluminum or aluminum alloy, chemical conversion method, and chemical conversion film |
CN106399992A (en) * | 2016-12-26 | 2017-02-15 | 巢湖云海镁业有限公司 | Compound-mixed tea polyphenol-rare-earth salt conversion liquid for magnesium alloy surface treatment and use method thereof |
WO2020050844A1 (en) * | 2018-09-06 | 2020-03-12 | Hewlett-Packard Development Company, L.P. | Decorated panels for electronic devices |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3392008B2 (en) * | 1996-10-30 | 2003-03-31 | 日本表面化学株式会社 | Metal protective film forming treatment agent and treatment method |
US1723067A (en) * | 1926-04-16 | 1929-08-06 | Pacz Aladar | Method and composition of matter for coating and coloring metal articles |
GB314769A (en) * | 1928-03-02 | 1929-07-02 | Otto Sprenger Patentverwertung | An improved process for coating metals |
US3620939A (en) * | 1969-03-17 | 1971-11-16 | Us Army | Coating for magnesium and its alloys and method of applying |
CA1228000A (en) * | 1981-04-16 | 1987-10-13 | David E. Crotty | Chromium appearance passivate solution and process |
JPH0835073A (en) * | 1994-05-18 | 1996-02-06 | Matsufumi Takatani | Method for modifying surface of magnesium-base molded metallic body |
US5814703A (en) * | 1995-08-17 | 1998-09-29 | Shin-Etsu Chemical Co., Ltd. | Coating composition |
JP3523383B2 (en) * | 1995-08-21 | 2004-04-26 | ディップソール株式会社 | Liquid rust preventive film composition and method of forming rust preventive film |
JP3598163B2 (en) * | 1996-02-20 | 2004-12-08 | ソニー株式会社 | Metal surface treatment method |
US5750197A (en) * | 1997-01-09 | 1998-05-12 | The University Of Cincinnati | Method of preventing corrosion of metals using silanes |
JPH10219473A (en) * | 1997-02-05 | 1998-08-18 | Matsufumi Takatani | Surface treatment of magnesium-base metallic compact |
-
1999
- 1999-03-24 DE DE19913242A patent/DE19913242C2/en not_active Expired - Fee Related
-
2000
- 2000-03-22 PT PT00918709T patent/PT1163378E/en unknown
- 2000-03-22 AT AT00918709T patent/ATE228177T1/en not_active IP Right Cessation
- 2000-03-22 EP EP00918709A patent/EP1163378B1/en not_active Expired - Lifetime
- 2000-03-22 JP JP2000606808A patent/JP2003508625A/en active Pending
- 2000-03-22 CN CNB008015260A patent/CN1154751C/en not_active Expired - Fee Related
- 2000-03-22 CA CA002367509A patent/CA2367509A1/en not_active Abandoned
- 2000-03-22 AU AU39566/00A patent/AU777284B2/en not_active Ceased
- 2000-03-22 ES ES00918709T patent/ES2184708T3/en not_active Expired - Lifetime
- 2000-03-22 US US09/937,154 patent/US6794046B1/en not_active Expired - Fee Related
- 2000-03-22 EA EA200100043A patent/EA004143B1/en not_active IP Right Cessation
- 2000-03-22 BR BR0006920-5A patent/BR0006920A/en not_active IP Right Cessation
- 2000-03-22 WO PCT/DE2000/000872 patent/WO2000056950A2/en not_active Application Discontinuation
- 2000-03-22 NZ NZ510937A patent/NZ510937A/en unknown
- 2000-03-22 MX MXPA01001157A patent/MXPA01001157A/en unknown
- 2000-03-22 DE DE50000793T patent/DE50000793D1/en not_active Expired - Lifetime
- 2000-03-22 KR KR1020017001059A patent/KR20010053604A/en not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO0056950A2 * |
Also Published As
Publication number | Publication date |
---|---|
PT1163378E (en) | 2003-03-31 |
EP1163378B1 (en) | 2002-11-20 |
DE19913242A1 (en) | 2000-09-28 |
CA2367509A1 (en) | 2000-09-28 |
KR20010053604A (en) | 2001-06-25 |
CN1327487A (en) | 2001-12-19 |
EA004143B1 (en) | 2004-02-26 |
ES2184708T3 (en) | 2003-04-16 |
BR0006920A (en) | 2001-11-13 |
DE50000793D1 (en) | 2003-01-02 |
CN1154751C (en) | 2004-06-23 |
NZ510937A (en) | 2003-09-26 |
ATE228177T1 (en) | 2002-12-15 |
AU777284B2 (en) | 2004-10-07 |
MXPA01001157A (en) | 2002-04-24 |
DE19913242C2 (en) | 2001-09-27 |
WO2000056950A3 (en) | 2001-04-19 |
US6794046B1 (en) | 2004-09-21 |
WO2000056950A2 (en) | 2000-09-28 |
AU3956600A (en) | 2000-10-09 |
EA200100043A1 (en) | 2002-04-25 |
JP2003508625A (en) | 2003-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1163378B1 (en) | Chemically passivated object made of magnesium or alloys thereof | |
DE69405530T2 (en) | Process and composition for metal treatment | |
EP3019563B1 (en) | Method for coating metal surfaces of substrates and objects coated in accordance with said method | |
EP2475468B1 (en) | Two-stage method for the corrosion protection treatment of metal surfaces | |
EP3280831B1 (en) | Method for nickel-free phosphating metal surfaces | |
EP0356855B1 (en) | Pretreatment of aluminium or aluminium alloy surfaces to be coated with organic materials without using chromium | |
DE10320765A1 (en) | Means for coating metals to protect against corrosion | |
WO2013124400A1 (en) | Pretreating zinc surfaces prior to a passivating process | |
EP0149720B1 (en) | Process for after passivating phosphated metal surfaces using titanium and/or manganese and/or cobalt and/or nickel and/or copper cations containing solutions | |
EP0261519B1 (en) | Passivation by coating for materials containing different metals | |
EP2215285B1 (en) | Zirconium phosphating of metal components, in particular iron | |
WO2004101850A1 (en) | Pre-treatment of metal surfaces prior to painting | |
DE10327365B4 (en) | An article with a corrosion protection layer and its use | |
DE10014035B4 (en) | Colored conversion layer, a solution for their preparation and their use | |
EP2743376B1 (en) | Aqueous agent and coating method for the corrosion protection treatment of metal substrates | |
DE102018127345A1 (en) | PROCESS FOR COATING A RAW BODY STRUCTURE WITH AT LEAST ONE SURFACE CONTAINING AN ALUMINUM ALLOY | |
WO2001059180A1 (en) | Method for coating metal surfaces, aqueous concentrate used therefor and use of coated metal parts | |
DE102023001507A1 (en) | Method and device for reactivating a conversion layer | |
DE102017011379A1 (en) | Anti-corrosion coating for metallic substrates | |
EP0096753A1 (en) | Process for the electroless production of corrosion-inhibiting layers on structural parts of aluminium | |
WO2005047566A1 (en) | Coloured conversion layers devoid of chromium, applied to metal surfaces |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20001221 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL PAYMENT 20001221;LT PAYMENT 20001221;LV PAYMENT 20001221;MK PAYMENT 20001221;RO PAYMENT 20001221;SI PAYMENT 20001221 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20020214 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL PAYMENT 20001221;LT PAYMENT 20001221;LV PAYMENT 20001221;MK PAYMENT 20001221;RO PAYMENT 20001221;SI PAYMENT 20001221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021120 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021120 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021120 |
|
REF | Corresponds to: |
Ref document number: 228177 Country of ref document: AT Date of ref document: 20021215 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50000793 Country of ref document: DE Date of ref document: 20030102 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PATENTANWALT DIPL. ING. WOLFGANG HEISEL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030220 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030322 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030331 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20030211 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20030315 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2184708 Country of ref document: ES Kind code of ref document: T3 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20021120 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D Ref document number: 1163378E Country of ref document: IE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030821 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20060322 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20060328 Year of fee payment: 7 Ref country code: BE Payment date: 20060328 Year of fee payment: 7 Ref country code: ES Payment date: 20060328 Year of fee payment: 7 Ref country code: NL Payment date: 20060328 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20060329 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20060330 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20060331 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20061130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070924 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20070924 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070322 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20070322 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20071001 |
|
BERE | Be: lapsed |
Owner name: *ELECTRO CHEMICAL ENGINEERING G.M.B.H. Effective date: 20070331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071001 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070322 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20070323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070323 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20060322 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070322 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20100930 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111001 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50000793 Country of ref document: DE Effective date: 20111001 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R073 Ref document number: 50000793 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50000793 Country of ref document: DE Representative=s name: MOSER & GOETZE PATENTANWAELTE, DE Ref country code: DE Ref legal event code: R082 Ref document number: 50000793 Country of ref document: DE Representative=s name: MOSER GOETZE & PARTNER PATENTANWAELTE MBB, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R011 Ref document number: 50000793 Country of ref document: DE Ref country code: DE Ref legal event code: R124 Ref document number: 50000793 Country of ref document: DE |