EP1140343B1 - Verfahren und vorrichtung zur konvektiven bewegung von flüssigkeiten in mikrosystemen - Google Patents
Verfahren und vorrichtung zur konvektiven bewegung von flüssigkeiten in mikrosystemen Download PDFInfo
- Publication number
- EP1140343B1 EP1140343B1 EP99964603A EP99964603A EP1140343B1 EP 1140343 B1 EP1140343 B1 EP 1140343B1 EP 99964603 A EP99964603 A EP 99964603A EP 99964603 A EP99964603 A EP 99964603A EP 1140343 B1 EP1140343 B1 EP 1140343B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- duct
- electrode
- section
- liquid
- field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 86
- 238000000034 method Methods 0.000 title claims description 24
- 230000005684 electric field Effects 0.000 claims abstract description 28
- 238000002156 mixing Methods 0.000 claims description 18
- 239000012530 fluid Substances 0.000 claims description 17
- 238000000018 DNA microarray Methods 0.000 claims description 9
- 239000000725 suspension Substances 0.000 claims description 6
- 239000011859 microparticle Substances 0.000 claims description 3
- 230000009471 action Effects 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 238000003491 array Methods 0.000 claims 1
- 238000013461 design Methods 0.000 description 10
- 230000008901 benefit Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 230000001960 triggered effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 206010010774 Constipation Diseases 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 241000597800 Gulella radius Species 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002103 nanocoating Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/50—Mixing liquids with solids
- B01F23/55—Mixing liquids with solids the mixture being submitted to electrical, sonic or similar energy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/30—Micromixers
- B01F33/3031—Micromixers using electro-hydrodynamic [EHD] or electro-kinetic [EKI] phenomena to mix or move the fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/30—Micromixers
- B01F33/3032—Micromixers using magneto-hydrodynamic [MHD] phenomena to mix or move the fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15D—FLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
- F15D1/00—Influencing flow of fluids
- F15D1/02—Influencing flow of fluids in pipes or conduits
Definitions
- the invention relates to methods for the convective movement of static or flowing liquids in microsystems, in particular for electro- or thermoconvective mixing of Liquids, and devices for implementing the methods, such as in particular electrode arrangements in microsystems to trigger convective fluid movements.
- R e ( ⁇ ⁇ U ⁇ L) / ⁇ , where ⁇ is the density of the liquid, ⁇ is the dynamic viscosity of the liquid, U is the flow velocity and L is a characteristic channel size (e.g. radius of the channel cross-section) ,
- a well known approach to circulating fluids in microsystems is the splitting of one Channel into a variety of narrower channels and their subsequent ones Reunification in a changed relative arrangement. In doing so no moving parts are used. However, own the narrowed channels have a characteristic diameter, which is 10 to 40 times smaller than the output channel is. This increases the flow resistance and arises an acute risk of constipation. An application for suspensions, the particles such as biological cells or microbeads included is excluded. In addition, there is only one quasi-mixing according to the number and rearrangement of the narrowed channels.
- J.R. Melcher et al. described system is a macroscopic system with a channel length of approx. 1 m and a typical channel cross section of approx. 3 cm. It only serves the study of electrical convection and allowed due to the complex measures for producing the temperature gradient and to control the electrodes via the entire channel length no practical use.
- Miniaturized traveling wave pumps are described by Fuhr et al. in "MEMS 92", 1992, p. 25.
- a Liquid circulation would mean that the sum of the liquids circulated in an area of the microsystem Is zero.
- the conventional traveling wave pumps deliver however always a net solution flow. There is a directed one Pumping along the channel direction in the microsystem. A mix of liquids with the conventional traveling wave pumps not possible.
- the task in particular consists of a procedure for effective liquid mixing in microsystems, that can also be used with suspensions, the microparticles contain.
- the object of the invention is also devices to implement the aforementioned methods, in particular miniaturized liquid mixers, to be specified.
- a new method for convective fluid movement created in microsystems in which one or more liquids electric fields migrating in the microsystem, Alternating fields or electrical field gradients with one orientation to be exposed by a flow direction the liquid in the microsystem and / or a preferred longitudinal alignment a section of the microsystem (e.g. channel section) differs.
- the alignment of the alternating fields (preferred direction the field-generating electrodes), the traveling electrical Fields (running direction) or field gradients is in hereinafter generally referred to as field direction.
- the field direction runs e.g. perpendicular to the direction of flow the liquid or perpendicular to the channel orientation.
- the convective fluid movement can flow in both Liquids (transverse to the flow direction) as well as in still ones Liquid volumes (e.g. in a closed part of a microsystem).
- the convective fluid movement is due to a closed liquid circulation characterized.
- the sum of the range of the invention currents caused by trained field gradients is zero. It become, for example, flow circuits transverse to the channel direction which produces a swirl and a mixing of the cause liquids involved. This is surprising Result after a free mixing of liquids in microsystems because of the fluid mechanics explained above Reasons were considered impossible.
- the convective fluid movement is according to the following Principles triggered.
- the field gradients lead to polarization phenomena and force effects leading to mixing at the and every new interface.
- With liquids or liquid mixtures with sufficient anisotropy dielectric properties or polarization properties is the mixing only by the electrical field gradient triggered. If the liquid is isotropic, must electrical anisotropy by forming a thermal gradient artificially triggered.
- the effect of the thermal gradient is explained with the following picture. With the change in temperature are in an initially isotropic liquid according to the temperature gradients also gradients of dielectric properties or polarization properties educated.
- the liquid can be dielectric as a layering of many different liquids can be considered. To the Interfaces between the layers occur for the effects called anisotropic liquids. electrical Polarization phenomena lead to the mixing of the liquid.
- thermo gradient is required to in the Liquid to produce the anisotropy, which in interaction with the electrical fields for liquid feed leads.
- thermal gradient is required to generate the liquid circulation according to the invention or cross flow a thermal gradient with a Temperature difference between opposite duct walls from 0.5 ° C to 1 ° C.
- the thermal gradient is generated externally, this is done preferably with optical radiation.
- the interested one Area of the microsystem in which the electrical field gradients are trained with a suitable light Wavelength that is well absorbed in the liquid is irradiated.
- the radiation is preferably carried out with a focused laser beam, depending on the application Sides of the microsystem through transparent wall areas or coupled in using optical fibers becomes. Due to the optically induced temperature increase So-called "hot spots" are formed, which are particularly effective with the electric field gradient to generate the convective Interact fluid movement.
- Flow direction generally for the alignment of the liquid flow or for the alignment of the microsystem area, in which the liquid flows.
- the angle preferably lies between the field direction and the flow direction in the range of 60 ° to 120 °. For values above 90 ° this means that the field direction has a component which is opposite to the direction of flow.
- a fluidic microsystem is specified with structures which are set up for liquid conduction or absorption and which have at least one predetermined partial section (swirling section) an electrode arrangement for forming the traveling electrical fields, electrical field gradients or alternating voltages corresponding to the desired field direction.
- the structures in the microsystem preferably have a characteristic cross-sectional dimension of less than 150 ⁇ m.
- the provision of swirling sections is possible in all types of microsystems known per se.
- the attachment of electrode arrangements according to the invention is preferred on straight channels.
- the invention also relates to at least one Wall of a microchannel attached electrode arrangement for Training of the field effects mentioned in one of the channel orientation deviating field direction.
- the electrode arrangement consists of electrode elements, which is asymmetrical with respect to the field direction or have an irregular shape. At least this is true for the embodiment in which the electric fields include electrical field gradients or AC voltages. When using wandering electric fields there is asymmetry of the electrode elements is not mandatory, since then the thermal Field gradient also due to the timed activation of the Electrode elements is generated.
- the invention has the following advantages. It will be the first time the convective fluid movement to produce Cross liquid flows and / or swirls in microchannels realized.
- the electrode arrangements according to the invention have a simple and compact structure. Therefore, it is sufficient if the swirling sections in the microsystem a relatively small expansion in the longitudinal direction of the channel approximately in the range of the channel cross-sectional dimension up to one Own fifth of this.
- the fluidization according to the invention is in both resting and flowing Liquids can be realized. An effective temperature gradient can simply be electrical with the electrode assemblies be generated. The application of an additional, external Temperature gradients are possible, but not essential.
- the invention is simple with other microstructure techniques compatible. So the electrode arrangements consist of electrodes that are essentially like electrodes to create field barriers for dielectrophoretic manipulation suspended particles are built up. According to the invention no moving parts are required.
- FIG. 1 An enlarged perspective view of a channel 13 in one Microsystem is shown in detail in Fig. 1.
- the channel 13 has a rectangular cross section with dimensions a and b, which range from a few to a few hundred Micrometers or less. An upper limit for the Dimensions a, b is approx. 1 mm.
- the walls of the canal 13 are in the operating position below according to their position referred to as floor, top and side surfaces.
- the channel 13 is part of a microsystem, e.g. essentially out Plastic or a semiconductor material.
- the microsystem is preferably using methods of semiconductor technology processed on a substrate to form a microsystem chip.
- the channel 13 is set up for a liquid (Solution or suspension) flows in the direction of arrow 14 become.
- the direction of flow 14 corresponds to the longitudinal extent of channel 13.
- channel 13 is connected to others Parts of the microsystem (not shown) connected. at training as a liquid mixer opens several sub-channels into channel 13 upstream of the swirl section 10, which will be described below.
- the swirling section 10 is by a on the channel walls attached electrode assembly 11, 12 formed.
- the electrode arrangement 11, 12 consists of two electrode groups, the are attached to opposite channel walls. With a rectangular duct cross-section (as shown) the electrode groups to achieve high mixing effectiveness preferably on the canal walls with the larger one Transverse width provided, i.e. in the present case to the floor and Deck surfaces.
- the electrode groups extend on the respective channel wall across the entire channel width and in the direction of flow 14 over the length of the swirling section, which depends on the application is chosen.
- the length can be, for example, the channel width match or be shorter than this (up to one Fifth of the channel width).
- the electrode groups have in Channel longitudinal direction (corresponding to flow direction 14) preferably the same extent. But it can also be different Dimensions may be provided, as explained below becomes.
- the electrode groups are in relation to the direction of flow 14 opposite or offset arranged.
- each electrode group a plurality of lower electrode strips 11 on the bottom surface or upper electrode strip 12 on the Top surface of the channel 13.
- the electrode strips each have separate control lines. For reasons of clarity are only the control lines 11a of the lower electrode strips 11 shown.
- the electrode strips are single or in groups (e.g. joint control of every third electrode strip) controllable.
- the electrode strips have a planar shape, i.e. she are layered on the respective channel wall with a thickness applied, which is much smaller than the channel height a is.
- the channel cross section is thus through the electrodes practically not restricted.
- Have the electrode strips a length corresponding to the length of the swirling section and a predetermined width or predetermined stripe spacing.
- the stripe width and stripe spacing are in the range selected from about 1/20 to 1/5 of the channel height a or below.
- the Electrode strips of different widths and different Strip spacing or have different shapes, because these features the effectiveness of fluid swirling influence.
- the electrode strips run in the longitudinal direction of the channel and are used to produce a field effect transverse to the longitudinal direction of the channel set up (see below).
- the electrodes exist in all embodiments of the invention preferably made of an inert metal (e.g. gold, platinum, Titanium).
- the electrode strips and the associated control lines are expedient with the methods of semiconductor technology manufactured on the respective substrate surface.
- the electrode groups are provided with a (not shown) control device according to one or more of the the following alternatives.
- the electrode strips electrical traveling waves trained as they are by themselves above-mentioned traveling wave pumps are known.
- the electrode strips become successive controlled so that there is a cross to the direction of flow moving field maximum results.
- attach the electrode strips high-frequency signals with a certain phase shift created.
- the frequency of the high-frequency Signals roughly corresponds to the reciprocal of the relaxation time of the Charge carriers in the liquid and are in the kHz to MHz range.
- the field direction. 14 oblique or transverse to the flow direction 14 electrical field gradients built up.
- the electrode strips become phase-identical with high-frequency signals, but one of Stripe to stripe variable amplitude (e.g. in the area from 0.1 V to 100 V) (typically ⁇ 20V).
- a high-frequency AC voltage (amplitude in Volt range) is applied to cross liquid flows or to achieve fluid swirling in the swirling section.
- all sub-electrodes the electrode groups are controlled together or the electrode groups consist of only one common Electrode, however, used to generate the thermal gradient is structured (see FIG. 5).
- a particular advantage of the invention consists in the circulation of the liquid (e.g. mixing several liquids) in flow mode at flow speeds of up to 1000 ⁇ m / s can be realized can.
- the generation of the swirl or the cross or ring flows transversely or diagonally to the channel orientation can be achieved by additional temperature control of the channel can be influenced.
- additional temperature control of the channel can be influenced.
- the turbulence can be intensified. This is advantageous because a reduction occurs simultaneously with the tempering the amplitude of the control signals is made possible.
- each electrode group consists of a straight line up of triangular or arrow-shaped electrode elements.
- the line-up forms a strip with one Alignment according to the desired field direction or across the flow direction.
- the electrode elements are lined up in such a way that one triangle tip each a triangle side of the adjacent electrode element.
- Three pairs of electrode groups are drawn in channel 23.
- the electrode groups 21a, 22a are designed symmetrically, i.e. both electrode groups consist of the same size and identically oriented electrode elements.
- the electrode groups 21b, 22b form a symmetrical design, in which the Electrode group 21b on the bottom surface a smaller number of enlarged electrode elements compared to the electrode group 22b on the top surface. Another the pair of electrode groups shows an asymmetrical design 21c, 22c, each of the same size, but in relation to the Triangular direction of inverted electrode elements consists.
- Fig. 2 are the control lines of the individual electrode elements Not shown.
- the electrode elements are electrical arranged isolated from each other and thus separately or controllable in groups.
- the control of the electrode elements can be analogous to the control of the strip electrodes Fig. 1 take place.
- Electrode groups consist of a series of Electrode elements that are flat, triangular or rectangular Have shapes of different sizes.
- each Electrode group 31a, 32a form the rectangular electrode elements each Electrode group one strip each, in the desired Field direction (here e.g. perpendicular to the flow direction) is aligned.
- the electrode groups 31b, 32b are as Alternating electrodes and rectangles and triangles are provided, which in turn are a stripe form.
- Both electrode arrangements according to FIG. 3 in turn asymmetrical arrangements.
- the arrangement of larger or smaller rectangular electrode elements or rectangular or triangular electrode elements provides orientation of the respective strips.
- the orientations of each other opposite electrode groups 31a, 32a and 31b, 32b are reversed to each other.
- the strips formed by the electrode elements extend over the entire width of the channel and have typical dimensions in the longitudinal direction of the channel like that in Fig. 1 shown electrode strips.
- Electrode elements can be modified depending on the application. Again, the electrode elements are individual or in groups controllable.
- FIG. 4 Another design of an electrode arrangement according to the invention is shown in Fig. 4.
- channel 43 is on the floor surface a meandering electrode arrangement 41 and on the Cover surface of a flat electrode 42 (shown with dots) appropriate.
- the meandering group of electrodes consists of illustrated example of four electrodes that are separated from each other separated, spirally laid around one another in the plane of the floor surface are arranged.
- the flat electrode 42 forms a counter electrode.
- the flat electrode 42 can be replaced by a corresponding one Meander arrangement to be replaced.
- an electrode arrangement in the liquid-flow microchannel 53 provided that consist of two structured individual electrodes 51, 52 exists.
- the individual electrodes 51, 52 are analogous to the positioning of the electrode groups according to the above explained embodiments on opposite channel walls appropriate.
- Each of the individual electrodes has a structure e.g. in the form of a series of triangular Electrode elements (as shown), but here the difference to the design according to FIG. 2 electrically with one another are connected.
- the electrode elements can also be other possess geometric shapes.
- each individual electrode 51, 52 are either produced by processing the desired electrode area on the respective floor or top surface by applying a coating according to the desired shape of the electrode elements or by the cover technology explained below. Accordingly, each individual electrode 51, 52 consists of one flat, rectangular electrode that extends over the entire Channel width extends (drawn in dashed lines).
- the electrode carries an insulation layer with recesses corresponding to desired shapes of the electrode elements. Only on these recesses or openings, the electrode with the liquid in direct contact and is therefore only appropriate these exemption patterns are effective. This design has the advantage that the electrode elements of the Individual electrodes 51, 52 do not have to touch because of the electrical Contact via the electrode surface under the insulation layer is guaranteed.
- Fig. 5 again shows an asymmetrical design in which the electrode elements of the lower single electrode 51 are lined up with fewer but larger triangles forms as the electrode elements of the upper single electrode 52nd
- Electrode arrangement consisting of two on opposite channel walls attached electrode groups 61a, 61b or 62a, 62b, each consisting of two interdigitated electrode strips consist.
- the channel 63 is corresponding to the Arrow direction 64 (or vice versa) from the liquid flows through. If the liquid is in the area of the electrode arrangement exposed to high frequency electrical fields, this again results in the desired electro-convective circulation across the channel direction.
- the illustrated embodiment comprises a total of four electrode strips, preferably four-phase controlled with a high-frequency alternating field become.
- the electrode strips are asymmetrical with respect to the stripe width and stripe spacing.
- An electrode arrangement according to the invention can also comprise an octopole electrode arrangement according to FIG. 7.
- Two electrode groups are provided on opposite channel walls.
- the electrode group on the bottom surface consists of four individually controllable, rectangular electrode elements 71a to 71d.
- the electrode group on the cover surface consists of four individually controllable, rectangular electrode elements 72a to 72d.
- the liquid flowing through the channel 73 in the direction of arrow 74 is preferably exposed to a rotating four-phase alternating field.
- the octopole arrangement can be modified so that only four electrodes are provided, then the floating ones Controls are omitted.
- the invention has been used above to illustrate various forms of the electrode arrangements described, each of one Field direction perpendicular to the flow direction was assumed. Different orientations in the angular range mentioned at the beginning are with appropriate adjustment of the electrode elements and their arrangement feasible. In any case can the individual electrode groups in the channel direction to each other be staggered. The realization of the invention in channels with a rectangular cross-section when the Electrode arrangements on the wider channel walls are preferred however, also modified geometric designs possible are. Instead of the described control of the electrodes with continuous, high-frequency AC voltages pulse control is also possible.
- the electrodes may also include electrode elements that are related to the Flow direction structured and can be controlled separately. This could change the direction of the field during liquid circulation be changed. e.g. on the result of the revolution or react to certain liquid properties.
- Preferred applications of the invention are in all areas the use of microsystems for biotechnological, medical, diagnostic, chemical-technological or pharmacological Tasks.
- An advantageous application of the invention in so-called DNA chips is referred to below with reference to Fig. 8 explains.
- a DNA chip is generally a sample chamber with at least one a modified surface.
- the modified wall surface has a predetermined molecular coating for Formation of a substrate for DNA reactions.
- To build certain DNA configurations are nucleotides in the sample chamber introduced and with the substrate or already grown DNA strands reacted. The reaction is accelerated by circulation of the liquid. on the other hand must also be avoided that already grown strands of DNA be separated from the modified wall surface.
- the method according to the invention can advantageously be used for this purpose be used for convective fluid movement.
- Fig. 8 shows a schematic cross-sectional view of a DNA chip 80, on the inner walls of which electrode arrangements 81 and 82 are provided.
- the DNA chip has an inlet 83 and an outlet 84.
- the lower, inner chip wall in the illustration 85 forms the surface modified substrate for the DNA growth.
- the DNA strands 86 grow in the nucleotide solution introduced through inlet 83 (Arrow). According to the principles explained above become electrical field gradients with the electrode arrangements 81, 82 with one that deviates from the direction of flow Alignment generated. This results in a in the DNA chip 80 Mix the nucleotide solution. This mixing can by setting optically induced thermal gradients in predetermined focus positions 87. of the laser radiation 88 locally be limited so that mixing only at the free ends of the DNA strands 86 takes place.
- the circulation of the supplied Nucleotide solution has the advantage of speed DNA synthesis is significantly increased.
- the invention has been described here with reference to flowing suspension liquids described, but can also be accordingly in quiescent liquids or swirled liquids become.
- the invention has also been described above with reference to Embodiments described, in each case on opposite Channel walls electrode arrangements are provided. According to a modification, it is also possible to use only one Channel wall an electrode arrangement for generating the or To provide field gradients.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Micromachines (AREA)
- Sampling And Sample Adjustment (AREA)
Description
- Fig. 1 bis 7:
- verschiedene Ausführungsformen erfindungsgemäßer Elektrodenanordnungen in schematischer Perspektivansicht ausschnittsweise dargestellter Mikrokanäle, und
- Fig. 8:
- eine Illustration zur Anwendung der Erfindung bei der Flüssigkeitsdurchmischung in DNA-Chips.
Elektrode/Variante | 71a | 71b | 71c | 71d | 72a | 72b | 72c | 72d |
1 | 0° | 90° | 180° | 270° | 180° | 270° | 0° | 90° |
2 | 0° | 90° | 180° | 270° | 0° | 90° | 180° | 270° |
3 | 0° | 90° | 180° | 270° | erdfei | erdfrei | erdfrei | erdfrei |
4 | 0° | erdfrei | 90° | erdfrei | 270° | erdfrei | 180° | erdfrei |
5 | 0° | 0° | 270° | 270° | 90° | 90° | 180° | 180° |
6 | 0° | erdfrei | erdfrei | 270° | 90° | erdfrei | erdfrei | 180° |
Claims (20)
- Verfahren zur konvektiven Bewegung mindestens einer Flüssigkeit in einem Kanal eines Mikrosystems, der eine vorbestimmte Kanalrichtung besitzt,
dadurch gekennzeichnet, daß
die Flüssigkeit in wenigstens einem Teilabschnitt des Kanals einem elektrischen Feldgradienten ausgesetzt wird, der mit elektrischen Feldern in dem jeweiligen Teilabschnitt entsprechend einer vorbestimmten Feldrichtung erzeugt wird, wobei die Feldrichtung von der Kanalrichtung abweicht, und die Flüssigkeit unter Wirkung des Feldgradienten in einer von der Kanalrichtung abweichenden Richtung bewegt wird. - Verfahren gemäß Anspruch 1, bei dem simultan zur Erzeugung des elektrischen Feldgradienten ein thermischer Gradient in dem jeweiligen Teilabschnitt des Kanals erzeugt wird.
- Verfahren gemäß Anspruch 2, bei dem der thermische Gradient mit einer Elektrodenanordnung erzeugt wird, die im jeweiligen Teilabschnitt auf mindestens einer Kanalwand angebracht ist.
- Verfahren gemäß Anspruch 2, bei dem der thermische Gradient durch eine fokussierte Bestrahlung des jeweiligen Teilabschnitts des Kanals erzeugt wird.
- Verfahren gemäß einem der Ansprüche 1 bis 4, bei dem die elektrischen Felder wandernde elektrische Felder, deren Laufrichtung der Feldrichtung entspricht, elektrische Feldgradienten mit einer Ausrichtung entsprechend der Feldrichtung oder Wechselfelder umfassen, die mit felderzeugenden, in Feldrichtung ausgerichteten Elektroden gebildet werden.
- Verfahren gemäß einem der Ansprüche 1 bis 5, bei dem die Winkeldifferenz zwischen der Kanalrichtung und der Feldrichtung im Bereich von 60° bis 120° gewählt wird.
- Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem mehrere Flüssigkeiten simultan den Kanal durchströmen und im jeweiligen Teilabschnitt quer oder schräg zur Strömungsrichtung umgewälzt und miteinander vermischt werden.
- Verfahren gemäß Anspruch 7, bei dem mindestens eine der Flüssigkeiten eine Suspension mit biologischen oder synthetischen Mikropartikeln ist.
- Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem die Feldrichtung im jeweiligen Teilabschnitt des Kanals in Abhängigkeit von strömungsmechanischen oder stofflichen Eigenschaften der Flüssigkeit variiert wird.
- Verwendung eines Verfahrens gemäß einem der Ansprüche 1 bis 9 zum Mischen von Flüssigkeiten, zur chemischen Behandlung von Mikropartikeln in einer Suspension durch eine Behandlungslösung oder zur Umwälzung einer in einem Mikrosystem strömenden Flüssigkeit.
- Vorrichtung zur konvektiven Bewegung einer Flüssigkeit in einem fluidischen Mikrosystem, welche aus einem Kanal mit einer vorbestimmten Kanalrichtung besteht, wobei im Kanal wenigstens ein vorbestimmter Teilabschnitt mit einer Elektrodenanordnung vorgesehen ist und die Elektrodenanordnung zur Ausbildung eines elektrischen Feldgradienten entlang einer vorbestimmten Feldrichtung eingerichtet ist,
dadurch gekennzeichnet, dass
die Elektrodenanordnung derart ausgebildet ist, dass die Feldrichtung von der Kanalrichtung abweicht. - Vorrichtung gemäß Anspruch 11, bei der die Elektrodenanordnung Elektrodengruppen oder Einzelelektroden umfaßt, die jeweils an mindestens einer Wand des Kanals angebracht sind.
- Vorrichtung gemäß Anspruch 12, bei der die Elektrodengruppen aus Elektrodenstreifen bestehen, die sich über die Länge des jeweiligen Teilabschnitts in Längsrichtung des Kanals erstrecken und einzeln ansteuerbar sind.
- Vorrichtung gemäß Anspruch 12, bei dem die Elektrodengruppen oder Einzelelektroden aus flächigen Elektrodenelementen bestehen, die im jeweiligen Teilabschnitt entsprechend der Feldrichtung streifenförmig angeordnet sind und die separat oder gemeinsam ansteuerbar sind.
- Vorrichtung gemäß Anspruch 14, bei der die Elektrodenelemente Rechteck-, Dreieck- und/oder Pfeilstrukturen bilden.
- Vorrichtung gemäß Anspruch 12, bei der die Elektrodenanordnung mäander- oder kammförmige Einzelelektroden oder Oktopol-Elektrodenanordnungen aufweist.
- Vorrichtung gemäß einem der Ansprüche 11 bis 16, bei der die Länge des jeweiligen Teilabschnitts kleiner oder gleich einer charakteristischen Querschnittsdimension der Kanalstruktur ist.
- Vorrichtung gemäß einem der Ansprüche 11 bis 17, bei dem eine Bestrahlungseinrichtung zur Erzeugung einer optischen Bestrahlung (88) mit Fokus im jeweiligen Teilabschnitt vorgesehen ist.
- Vorrichtung gemäß Anspruch 18, bei der die Bestrahlungseinrichtung durch mindestens eine Laser-Lichtquelle gebildet wird.
- Verwendung mindestens einer Vorrichtung gemäß einem der Ansprüche 11 bis 19 in einem fluidischen Mikrosystem oder einem DNA-Chip (80).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19859461 | 1998-12-22 | ||
DE19859461A DE19859461A1 (de) | 1998-12-22 | 1998-12-22 | Verfahren und Vorrichtung zur konvektiven Bewegung von Flüssigkeiten in Mikrosystemen |
PCT/EP1999/010090 WO2000037165A1 (de) | 1998-12-22 | 1999-12-17 | Verfahren und vorrichtung zur konvektiven bewegung von flüssigkeiten in mikrosystemen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1140343A1 EP1140343A1 (de) | 2001-10-10 |
EP1140343B1 true EP1140343B1 (de) | 2003-03-19 |
Family
ID=7892261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99964603A Expired - Lifetime EP1140343B1 (de) | 1998-12-22 | 1999-12-17 | Verfahren und vorrichtung zur konvektiven bewegung von flüssigkeiten in mikrosystemen |
Country Status (5)
Country | Link |
---|---|
US (1) | US6663757B1 (de) |
EP (1) | EP1140343B1 (de) |
AT (1) | ATE234671T1 (de) |
DE (2) | DE19859461A1 (de) |
WO (1) | WO2000037165A1 (de) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6537433B1 (en) * | 2000-03-10 | 2003-03-25 | Applera Corporation | Methods and apparatus for the location and concentration of polar analytes using an alternating electric field |
DE10055921A1 (de) * | 2000-11-10 | 2002-05-29 | Evotec Ag | Verfahren und Vorrichtung zur Erzeugung von Mikrokonvektionen |
DE10059152C2 (de) * | 2000-11-29 | 2003-03-27 | Evotec Ag | Mikrosystem zur dielektrischen und optischen Manipulierung von Partikeln |
US20030127368A1 (en) * | 2001-12-17 | 2003-07-10 | Intel Corporation | Materials classifier, method of making, and method of using |
DE60202374T2 (de) * | 2002-10-25 | 2005-12-08 | Evotec Technologies Gmbh | Methode und Vorrichtung zur Aufnahme dreidimensionaler Abbildungen von schwebend gehaltenen Mikroobjekten unter Verwendung hochauflösender Mikroskopie |
JP3927968B2 (ja) * | 2003-06-13 | 2007-06-13 | キヤノン株式会社 | 流体制御機構 |
US7444817B2 (en) | 2003-06-13 | 2008-11-04 | Canon Kabushiki Kaisha | Optical micromotor, micropump using same and microvalve using same |
US7530795B2 (en) | 2003-06-13 | 2009-05-12 | Canon Kabushiki Kaisha | Fluid control mechanism |
FR2863117B1 (fr) * | 2003-11-28 | 2006-02-17 | Commissariat Energie Atomique | Microsysteme pour le deplacement de fluide |
US20050161327A1 (en) * | 2003-12-23 | 2005-07-28 | Michele Palmieri | Microfluidic device and method for transporting electrically charged substances through a microchannel of a microfluidic device |
DE502005002217D1 (de) * | 2004-02-04 | 2008-01-24 | Evotec Technologies Gmbh | Mikrofluidisches system mit einer elektrodenanordnung und zugehoriges ansteuerungsverfahren |
JP2006051409A (ja) * | 2004-08-10 | 2006-02-23 | Yokogawa Electric Corp | マイクロリアクタ |
US7998328B2 (en) * | 2005-06-27 | 2011-08-16 | Cfd Research Corporation | Method and apparatus for separating particles by dielectrophoresis |
JP5076234B2 (ja) * | 2007-07-20 | 2012-11-21 | コバレントマテリアル株式会社 | マイクロ流路の垂直断面の粒子濃度の定性的な分布を計測する装置及び前記装置に用いられるマイクロ流路構造体の製造方法 |
DE102008039956B4 (de) | 2008-08-27 | 2022-07-28 | Patrice Weiss | Verfahren und Vorrichtungen zur Erzeugung von symmetrischen und asymmetrischen, sinusförmigen und nichtsinusförmigen Wanderwellen und deren Anwendung für verschiedene Prozesse. Wanderwellengenerator und Wanderwellenmotor |
US8535536B1 (en) | 2009-07-04 | 2013-09-17 | University Of Utah Research Foundation | Cross-flow split-thin-flow cell |
US8961878B2 (en) | 2009-12-07 | 2015-02-24 | Yale University | Label-free cellular manipulation and sorting via biocompatible ferrofluids |
AU2015268583B2 (en) * | 2010-10-28 | 2017-06-15 | Yale University | Microfluidic Processing Of Target Species In Ferrofluids |
AU2011320908A1 (en) | 2010-10-28 | 2013-05-23 | Yale University | Microfluidic processing of target species in ferrofluids |
JP5822491B2 (ja) * | 2011-03-14 | 2015-11-24 | キヤノン株式会社 | 流体混合装置 |
MY179484A (en) * | 2011-08-24 | 2020-11-08 | Mimos Bhd | Apparatus for sorting particles by dielectrophoresis |
WO2014144782A2 (en) | 2013-03-15 | 2014-09-18 | Ancera, Inc. | Systems and methods for active particle separation |
US20160299132A1 (en) | 2013-03-15 | 2016-10-13 | Ancera, Inc. | Systems and methods for bead-based assays in ferrofluids |
WO2016210348A2 (en) | 2015-06-26 | 2016-12-29 | Ancera, Inc. | Background defocusing and clearing in ferrofluid-based capture assays |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3893898A (en) * | 1972-06-16 | 1975-07-08 | James T Candor | Method for removing and/or separating particles from fluid containing the same |
SU516650A1 (ru) * | 1974-01-07 | 1976-06-05 | Московский Институт Химического Машиностроения | Способ гомогенизации стекломассы |
JPS5667537A (en) * | 1979-11-06 | 1981-06-06 | Chiyoda Chem Eng & Constr Co Ltd | Gas-liquid contact method using alternating electric field |
US5441639A (en) * | 1992-10-16 | 1995-08-15 | The Regents Of The University Of Colorado | Convective electrohydrodynamic fluid membranes |
US6447727B1 (en) * | 1996-11-19 | 2002-09-10 | Caliper Technologies Corp. | Microfluidic systems |
-
1998
- 1998-12-22 DE DE19859461A patent/DE19859461A1/de not_active Withdrawn
-
1999
- 1999-12-17 US US09/868,199 patent/US6663757B1/en not_active Expired - Fee Related
- 1999-12-17 WO PCT/EP1999/010090 patent/WO2000037165A1/de active IP Right Grant
- 1999-12-17 EP EP99964603A patent/EP1140343B1/de not_active Expired - Lifetime
- 1999-12-17 DE DE59904670T patent/DE59904670D1/de not_active Expired - Fee Related
- 1999-12-17 AT AT99964603T patent/ATE234671T1/de not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
WO2000037165A1 (de) | 2000-06-29 |
ATE234671T1 (de) | 2003-04-15 |
DE59904670D1 (de) | 2003-04-24 |
EP1140343A1 (de) | 2001-10-10 |
DE19859461A1 (de) | 2000-06-29 |
US6663757B1 (en) | 2003-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1140343B1 (de) | Verfahren und vorrichtung zur konvektiven bewegung von flüssigkeiten in mikrosystemen | |
EP1603678B1 (de) | Verfahren und vorrichtung zur trennung von partikeln in einer flüssigkeitsströmung | |
EP1069955B1 (de) | Verfahren und vorrichtung zur manipulierung von mikropartikeln in fluidströmungen | |
EP1912729B1 (de) | Bildung einer emulsion in einem fluidischen mikrosystem | |
EP0718038B1 (de) | Vorrichtung zur Trennung von Gemischen mikroskopisch kleiner, in einer Flüssigkeit oder einem Gel suspendierter dielektrischer Teilchen | |
EP1286774B1 (de) | Vorrichtung und verfahren zur manipulation kleiner materiemengen | |
DE60010666T2 (de) | Verfahren und vorrichtung zur programmierbaren behandlung von fluiden | |
WO2002082053A2 (de) | Verfahren und vorrichtung zur manipulation kleiner flüssigkeitsmengen und/oder darin enthaltener teilchen | |
DE60310997T2 (de) | Mikrofluides system mit stabilisierter flüssig-flüssig-grenzfläche | |
EP1089823B1 (de) | Elektrodenanordnungen zur erzeugung funktioneller feldbarrieren in mikrosystemen | |
WO2000000292A1 (de) | Elektrodenanordnung zur dielektrophoretischen partikelablenkung | |
DE19859459A1 (de) | Mikrosysteme zur Zellpermeation und Zellfusion | |
EP1979738B1 (de) | Anordnung zur erzeugung von flüssigkeitsströmungen und/oder teilchenströmen, verfahren zu ihrer herstellung und zu ihrem betrieb sowie ihre verwendung | |
DE102006002462A1 (de) | Elektrischer Feldkäfig und zugehöriges Betriebsverfahren | |
WO1998028405A1 (de) | Elektrodenanordnung für feldkäfige | |
EP1331986B1 (de) | Verfahren und vorrichtung zur erzeugung von mikrokonvektionen | |
DE19860118C1 (de) | Elektrodenanordnungen zur Erzeugung funktioneller Feldbarrieren in Mikrosystemen | |
WO2006097312A1 (de) | Mikrofluidisches system und zugehöriges ansteuerverfahren | |
DE102004023466B4 (de) | Verfahren und Vorrichtung zur Sammlung von suspendierten Partikeln | |
DE10117771A1 (de) | Verfahren und Vorrichtung zur Manipulation kleiner Flüssigkeitsmengen und/oder darin enthaltener Teilchen | |
EP2662131B1 (de) | Emulgiervorrichtung | |
DE102007013932A1 (de) | Vorrichtung und Verfahren zum Mischen von mindestens zwei Flüssigkeiten und Verwendung der Vorrichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010523 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: EVOTEC OAI AG |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030319 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20030319 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030319 Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030319 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030319 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 59904670 Country of ref document: DE Date of ref document: 20030424 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030619 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030620 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PATENTBUERO PAUL ROSENICH AG |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20030804 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030930 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20031110 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031217 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20031217 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031217 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20031217 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031231 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031231 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
EN | Fr: translation not filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040223 Year of fee payment: 5 |
|
26N | No opposition filed |
Effective date: 20031222 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20040330 Year of fee payment: 5 |
|
BERE | Be: lapsed |
Owner name: *EVOTEC OAI A.G. Effective date: 20031231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041217 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050701 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20041217 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |