EP0986728B1 - Method for detecting a projectile point or moment of impact - Google Patents
Method for detecting a projectile point or moment of impact Download PDFInfo
- Publication number
- EP0986728B1 EP0986728B1 EP98929471A EP98929471A EP0986728B1 EP 0986728 B1 EP0986728 B1 EP 0986728B1 EP 98929471 A EP98929471 A EP 98929471A EP 98929471 A EP98929471 A EP 98929471A EP 0986728 B1 EP0986728 B1 EP 0986728B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- projectile
- impact
- signals
- mobile
- antenna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 11
- 230000005540 biological transmission Effects 0.000 claims description 8
- 238000013213 extrapolation Methods 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 6
- 230000001133 acceleration Effects 0.000 claims description 5
- 230000008034 disappearance Effects 0.000 claims description 4
- 230000000737 periodic effect Effects 0.000 claims 1
- 230000008054 signal transmission Effects 0.000 claims 1
- 238000001514 detection method Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 5
- 230000005855 radiation Effects 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 2
- 239000011257 shell material Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41J—TARGETS; TARGET RANGES; BULLET CATCHERS
- F41J5/00—Target indicating systems; Target-hit or score detecting systems
- F41J5/12—Target indicating systems; Target-hit or score detecting systems for indicating the distance by which a bullet misses the target
Definitions
- the invention relates to a method and a system. for the detection of the point or instant of impact of a projectile.
- This point of impact is usually the ground. However, it can be constituted by another mobile.
- the position of the point of impact can be calculated at from the characteristics of the projectile and the conditions of launch. However, in some cases, this calculation is not easy or does not provide satisfactory results. For example, the trajectory of a bomb dropped from an airplane is difficult to calculate. Again it is always useful to know, to know preferably in real time, the exact position of the point of impact.
- the invention allows the realization of a system of detection, in real time, of the point of impact of a projectile which does not have the disadvantages mentioned above and that is with good accuracy.
- the system according to the invention is characterized in that the projectile has a device for receiving signals GPS or the like and for transmitting received GPS signals to a remote receiver, and in that the receiver, for example at ground, includes means for periodically determining the position of the mobile from GPS or similar signals received and to detect the position of the impact by extrapolation from, on the one hand, the determination of the moment when the signals from the projectile, and, on the other hand, previous position measurements.
- the measurement period is by example between 100 ms and 1 second.
- GPS or similar signals signals which come from satellites or beacons, these signals serving to determine the position and speed of mobiles thanks to the measure the distance between this mobile and satellites or beacons whose positions are known. Each distance is measured from the time between the instant of emission of a signal by a satellite or beacon, from the moment of reception of the same signal by the mobile.
- the signal from each satellite or tag has a carrier frequency whose value is a parameter used for determining speeds.
- Global Positioning System Global Positioning System
- GLONASS Global Orbiting Navigation Satellite System
- the satellite In each of these systems the satellite emits a signal at a specific time, this instant being a data transmitted by the satellite.
- the distance is proportional to the time between the instant of emission, supplied by the satellite signal, from the instant of reception by the mobile.
- each satellite transmits on a carrier frequency L 1 equal to 1,575.42 MHz as well as on an auxiliary carrier frequency L 2 at 1,227.06 MHz.
- the carrier frequency which is also used for speed determination, is modulated by a binary sequence repetitive pseudo-random according to a phase modulation of the type BPSK ("Binary Phase Shift Keying").
- Each sequence constitutes a code which, in the case of GPS, has a length of 1023 bits.
- These codes are issued at a frequency of 1.023 MHz. They coexist with other codes issued at ten times the frequency: 10.23 MHz.
- the codes, called C / A, at 1.023 MHz allow in principle an approximate position determination while the codes, called P, at a frequency ten times higher, allow a precise location.
- each code is threefold: on the one hand, it identifies the transmitting satellite, on the other hand, it facilitates detection and demodulation of signals which are drowned in very high noise, detection being carried out by correlation between the code received from the satellite and an identical code locally produced, and secondly finally, it is used to measure time shifts for calculating distances.
- the carrier frequency L 1 is also coded by other binary data which represent, in particular, the date of transmission of the signal.
- the satellite being identified and the date of emission of the signal being known, the position of this satellite at the time of emission of the signal is then known with great precision.
- the carrier frequency L 1 constitutes the identification of the satellite. It therefore differs from one satellite to another.
- the frequencies L 1 range from approximately 1600 MHz to 1615 MHz.
- a pseudo-random code is also provided in this GLONASS system, but its usefulness is limited to extracting the signal in noise and determining time differences for measuring the distances between receiver and satellite.
- the invention also relates to the determination of the instant of impact of a non-destructible projectile.
- a device is provided on the projectile reception of GPS or similar signals and re-transmission of these signals to a remote receiver, the remote receiver comprising means for periodically determining the position of the projectile.
- This projectile and / or the reception and retransmission of non destructible GPS signals during the impact, the moment of impact is extrapolated from the position of the point of impact and at least one position measured previously.
- Extrapolation is, in any case, necessary because position determinations are not made continuously but periodically, the period being at least of the order of 100 ms.
- This sampling period is either fixed or variable. It depends on the speed characteristics and / or projectile acceleration.
- the projectile there are preferably two antennas, namely an antenna for receiving GPS signals at the rear and a transmitting antenna so arranged that the radiation pattern is preferably directed towards forward.
- the projectile can take orientations variables, in one embodiment, the antenna diagram is strongly omnidirectional.
- the latter has a shell material plastic and it is shaped to participate in the diagram emission radiation.
- the plastic fuselage - which constitutes a dielectric - can increase omni-directionality of the radiation diagram.
- This training bomb 10 presents the general shape of a rocket with an elongated body 12 narrowed in point shape 14 forward and fins 16 toward the rear.
- the antenna 18, intended to receive the signals of the GPS satellites is arranged at the back, that is to say towards the high.
- a quadrifilar antenna is provided composed of helically wound wires. We know that such an antenna has good omni-directionality qualities.
- a "PATCH" type antenna formed by one or more conductors on a support.
- the GPS antenna is also used to retransmit signals to a ground station (not shown in Figure 1). Although the transmitting antenna is placed at the rear of the bomb 10 when it has to transmit forward, this antenna gives, despite everything, good results because we found that the structure plastic insulator of the bomb 10 participates in the radiation pattern of the transmitting antenna. These results are due to dielectric coupling.
- the circuits 20 associated with the antenna 18 are found in the same housing 22 as the antenna 18, at the rear of the bomb 10, substantially along its axis.
- the 18 'antenna for receiving signals GPS satellites are arranged in the same way as the antenna 18 in Figure 1 but the transmit antenna, 24 or 26, is separate of the receiving antenna 18 '.
- the antenna 24 has the form a belt surrounding the shell 10 at the front of the antenna 18 ', between the latter and the middle zone 28.
- Such an antenna allows an almost omnidirectional emission without variation of phase or level even if the projectile revolves around its axis. You can also use a plurality of antennas elementary (or "patch") coupled.
- an antenna 26 is provided. near the nose 14 of the bomb 10, around the hull.
- This antenna 26 is formed by several elementary antennas coupled. You can also use a belt type antenna. In both cases, the arrangement of the antenna on the part conique york favors forward transmission.
- a GPS signal receiver which will be described later in relation to FIG. 5, periodically determines, by example every 200 ms, the position of the mobile and, depending of the measured positions, the path 32 of the mobile.
- the trajectory is in a vertical plane, the Oz axis being vertical and the Ox axis horizontal.
- the corresponding time we keep in memory the corresponding time as well as the speed and acceleration.
- the impact of the mobile on the ground will generally have consequence of destroying the reception electronics and re-transmission of GPS signals.
- the moment of impact is thus determined by the disappearance of the signals received on the ground.
- Detection of the instant of disappearance of signals GPS is carried out using a circuit located either downstream processing circuits providing the GPS signals either upstream of processing, on the carrier of the received signal.
- a means is provided for continuously measuring the signal-to-noise ratio and the instant of impact corresponds to the instant the signal-to-noise ratio drops below one determined threshold.
- a circuit which, before treatment, and before correlation, determines the signal level, for example the level of automatic gain control and instant of impact corresponds to the moment when the signal drops below a threshold predetermined, or when automatic gain control exceeds a predetermined limit.
- the invention makes it possible to simple determination of the moment of impact. Indeed, in in this case, the position of the impact is known. extrapolation will therefore relate to the determination of time and not to the determination of the position.
- FIG. 4 represents an exemplary embodiment of reception and retransmission circuits on board the mobile.
- the antenna 18 for receiving GPS signals supplies a signal to the amplifier 112.
- This amplified signal is applied to the first input 114 1 of a member 114, such as a frequency change mixer, of which the second input 114 2 receives a local signal supplied by the output 116 1 of a generator 116.
- the local signal applied to the input 114 2 has a frequency of 1580 GHz while the signal detected by the antenna 18 is the signal from the GPS carrier at the frequency 1,575.42 MHz.
- the signal appearing on the output 114 3 of the mixer 114 is at a frequency equal to the difference between the frequencies of the signals applied to the inputs 114 1 and 114 2 .
- This signal is applied to a second amplifier 118, then is transmitted to a filter 120 and, from there, is connected to the transmitting antenna 18, directed towards the GPS receiver on the ground.
- Figure 5 shows the installation on the ground.
- It includes a conventional GPS receiver.
- Processing means allow the calculation of the trajectory and the instant of impact and, therefore, the location of this point of impact.
- the installation on the ground includes a receiving antenna 142 whose signal is applied to a telemetry receiver 144 which performs functions filtering and amplification classics.
- the receiver output 144 is connected to a circuit 146 for calculating the trajectory of the mobile.
- the installation includes a so-called receiver 148 with its own antenna 150.
- the reference receiver allows, at all times, the comparison between, on the one hand, the distance measured between this receiver on the ground and the satellite and, on the other hand, the distance, known a priori, between this receiver and the satellite. This comparison is used to correct the measurements provided by the cellphone. This type of correction, which allows great precision of the location of the mobile, is called a GPS system differential.
- the reference receiver 148 has a clock output 148 1 connected to a corresponding clock input 146 1 of the circuit 146. It also has an output 148 2 providing the reference data on a corresponding input of a calculation circuit 152 of position, speed, acceleration and time, which, with circuit 146, makes it possible to calculate the trajectory.
- the circuit 146 further comprises an input 146 2 receiving a help signal (inertial for example), to improve the performance of attachment and tracking of GPS signals.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Description
L'invention est relative à un procédé et à un système pour la détection du point ou de l'instant d'impact d'un projectile.The invention relates to a method and a system. for the detection of the point or instant of impact of a projectile.
Il est souvent utile de connaítre la position du point d'impact d'un projectile. Ce point d'impact est habituellement le sol. Cependant il peut être constitué par un autre mobile.It is often useful to know the position of the point impact of a projectile. This point of impact is usually the ground. However, it can be constituted by another mobile.
La position du point d'impact peut être calculée à partir des caractéristiques du projectile et des conditions de lancement. Cependant, dans certains cas, ce calcul n'est pas aisé ou ne fournit pas des résultats satisfaisants. Par exemple, la trajectoire d'une bombe larguée d'un avion est difficile à calculer. De toute façon il est toujours utile de connaítre, de préférence en temps réel, la position exacte du point d'impact.The position of the point of impact can be calculated at from the characteristics of the projectile and the conditions of launch. However, in some cases, this calculation is not easy or does not provide satisfactory results. For example, the trajectory of a bomb dropped from an airplane is difficult to calculate. Anyway it is always useful to know, to know preferably in real time, the exact position of the point of impact.
On a déjà proposé, pour l'entraínement des personnels, un système de détection du point d'impact d'une bombe larguée d'un avion qui fait appel à des moyens acoustiques. Mais ce système n'est pas toujours fiable, notamment parce que le bruit de l'avion risque de perturber la détection du bruit entraíné par l'impact. We have already proposed, for staff training, a point of impact detection system for a dropped bomb of an airplane that uses acoustic means. But system is not always reliable, especially because noise of the plane risks disturbing the detection of noise caused by the impact.
On a également proposé des systèmes de localisation goniométriques, utilisant par exemple trois antennes directives tournantes, pour repérer à partir de chaque antenne la direction d'où semble émettre une source radio, et pour localiser le point d'émission par calcul du point d'intersection des trois directions repérées. Ces méthodes goniométriques sont très imprécises et nécessitent plusieurs installations de réception.Location systems have also been proposed direction finding, using for example three directional antennas rotating, to identify the direction from each antenna where a radio source seems to be emitting, and to locate the point emission by calculation of the point of intersection of the three directions identified. These direction finding methods are very imprecise and require several reception facilities.
On notera qu'il est connu de la demande de brevet FR-A-2490 802 un système de détection de point d'impact par goniométrie dans lequel un projectile émet des signaux jusqu'à son impact. Il est connu également des systèmes de localisation grossière d'abonnés dans des systèmes de communication par satellites (US 5 543 813).Note that it is known from patent application FR-A-2490 802 a goniometry point of impact detection system in which a projectile emits signals until its impact. He is also known to coarse subscriber location systems in satellite communication (US 5,543,813).
L'invention permet la réalisation d'un système de détection, en temps réel, du point d'impact d'un projectile qui ne présente pas les inconvénients mentionnés ci-dessus et qui est d'une bonne précision.The invention allows the realization of a system of detection, in real time, of the point of impact of a projectile which does not have the disadvantages mentioned above and that is with good accuracy.
Le système selon l'invention est caractérisé en ce que le projectile comporte un dispositif pour la réception de signaux GPS ou analogues et pour l'émission des signaux GPS reçus vers un récepteur à distance, et en ce que le récepteur, par exemple au sol, comporte des moyens pour déterminer, de façon périodique, la position du mobile à partir des signaux GPS ou analogues reçus et pour détecter la position de l'impact par extrapolation à partir, d'une part, de la détermination de l'instant où disparaissent les signaux en provenance du projectile, et, d'autre part, des mesures antérieures de position.The system according to the invention is characterized in that the projectile has a device for receiving signals GPS or the like and for transmitting received GPS signals to a remote receiver, and in that the receiver, for example at ground, includes means for periodically determining the position of the mobile from GPS or similar signals received and to detect the position of the impact by extrapolation from, on the one hand, the determination of the moment when the signals from the projectile, and, on the other hand, previous position measurements.
Un tel système de détection n'est bien entendu pas sensible au bruit de l'impact. La période de mesure est par exemple comprise entre 100 ms et 1 seconde.Such a detection system is of course not sensitive to impact noise. The measurement period is by example between 100 ms and 1 second.
Par signaux GPS ou analogues, on entend ici des signaux qui proviennent de satellites ou de balises, ces signaux servant à déterminer la position et la vitesse de mobiles grâce à la mesure de la distance entre ce mobile et des satellites ou balises dont les positions sont connues. Chaque distance est mesurée à partir du temps séparant l'instant d'émission d'un signal par un satellite ou balise, de l'instant de réception du même signal par le mobile. Le signal émis par chaque satellite ou balise comporte une fréquence porteuse dont la valeur constitue un paramètre utilisé pour la détermination des vitesses. By GPS or similar signals is meant here signals which come from satellites or beacons, these signals serving to determine the position and speed of mobiles thanks to the measure the distance between this mobile and satellites or beacons whose positions are known. Each distance is measured from the time between the instant of emission of a signal by a satellite or beacon, from the moment of reception of the same signal by the mobile. The signal from each satellite or tag has a carrier frequency whose value is a parameter used for determining speeds.
On peut noter qu'il existe aujourd'hui deux réseaux de satellites dont l'un est affecté au système GPS proprement dit ("Global Positionning System") et l'autre au système GLONASS ("Global Orbiting Navigation Satellite System"). Il est également envisagé l'utilisation de satellites géostationnaires et de balises fixes au sol.It can be noted that today there are two networks of satellites, one of which is assigned to the GPS system itself ("Global Positioning System") and the other to the GLONASS system ("Global Orbiting Navigation Satellite System"). he is also considered the use of geostationary satellites and fixed beacons on the ground.
Dans chacun de ces systèmes le satellite émet un signal à un moment précis, cet instant étant une donnée transmise par le satellite. La distance est proportionnelle au temps séparant l'instant d'émission, fourni par le signal du satellite, de l'instant de réception par le mobile.In each of these systems the satellite emits a signal at a specific time, this instant being a data transmitted by the satellite. The distance is proportional to the time between the instant of emission, supplied by the satellite signal, from the instant of reception by the mobile.
Dans le système GPS, auquel on se référera surtout par la suite, chaque satellite émet sur une fréquence porteuse L1 égale à 1 575,42 MHz ainsi que sur une fréquence porteuse auxiliaire L2 à 1 227,06 MHz.In the GPS system, which will be referred to mainly below, each satellite transmits on a carrier frequency L 1 equal to 1,575.42 MHz as well as on an auxiliary carrier frequency L 2 at 1,227.06 MHz.
La fréquence porteuse, qui sert aussi à la détermination des vitesses, est modulée par une séquence binaire pseudo-aléatoire répétitive selon une modulation de phase de type BPSK ("Binary Phase Shift Keying"). Chaque séquence constitue un code qui, dans le cas du GPS, a une longueur de 1 023 bits. Ces codes sont émis à une fréquence de 1,023 MHz. Ils coexistent avec d'autres codes émis à une fréquence dix fois plus élevée : 10,23 MHz. Les codes, dénommés C/A, à 1,023 MHz permettent en principe une détermination de position approximative tandis que les codes, dénommés P, à la fréquence dix fois plus élevée, permettent une localisation précise.The carrier frequency, which is also used for speed determination, is modulated by a binary sequence repetitive pseudo-random according to a phase modulation of the type BPSK ("Binary Phase Shift Keying"). Each sequence constitutes a code which, in the case of GPS, has a length of 1023 bits. These codes are issued at a frequency of 1.023 MHz. They coexist with other codes issued at ten times the frequency: 10.23 MHz. The codes, called C / A, at 1.023 MHz allow in principle an approximate position determination while the codes, called P, at a frequency ten times higher, allow a precise location.
Le rôle de chaque code est triple : d'une part, il permet d'identifier le satellite émetteur, d'autre part, il facilite la détection et la démodulation des signaux qui sont noyés dans un bruit très élevé, la détection étant effectuée par corrélation entre le code reçu du satellite et un code identique produit localement, et d'autre part enfin, il sert à la mesure des déphasages temporels pour le calcul des distances.The role of each code is threefold: on the one hand, it identifies the transmitting satellite, on the other hand, it facilitates detection and demodulation of signals which are drowned in very high noise, detection being carried out by correlation between the code received from the satellite and an identical code locally produced, and secondly finally, it is used to measure time shifts for calculating distances.
La fréquence porteuse L1 est en outre codée par d'autres données binaires qui représentent, notamment, la date d'émission du signal. Le satellite étant identifié et la date d'émission du signal étant connue, la position de ce satellite au moment de l'émission du signal est alors connue avec une grande précision.The carrier frequency L 1 is also coded by other binary data which represent, in particular, the date of transmission of the signal. The satellite being identified and the date of emission of the signal being known, the position of this satellite at the time of emission of the signal is then known with great precision.
Pour mémoire, on indiquera ici que dans le système GLONASS la fréquence porteuse L1 constitue l'identification du satellite. Elle diffère donc d'un satellite à un autre. Les fréquences L1 s'étalent d'environ 1 600 MHz à 1 615 MHz. Un code pseudo-aléatoire est également prévu dans ce système GLONASS mais son utilité est limitée à l'extraction du signal dans le bruit et à la détermination des écarts temporels pour la mesure des distances entre récepteur et satellite.For the record, it will be indicated here that in the GLONASS system the carrier frequency L 1 constitutes the identification of the satellite. It therefore differs from one satellite to another. The frequencies L 1 range from approximately 1600 MHz to 1615 MHz. A pseudo-random code is also provided in this GLONASS system, but its usefulness is limited to extracting the signal in noise and determining time differences for measuring the distances between receiver and satellite.
L'invention concerne aussi la détermination de l'instant d'impact d'un projectile non destructible.The invention also relates to the determination of the instant of impact of a non-destructible projectile.
Comme pour la détection de la position du point d'impact on prévoit, sur le projectile, un dispositif de réception de signaux GPS ou analogues et de réémission de ces signaux vers un récepteur à distance, le récepteur à distance comportant des moyens pour déterminer, de façon périodique, la position du projectile. Ce projectile et/ou le dispositif de réception et réémission de signaux GPS n'étant pas destructible lors de l'impact, l'instant de l'impact est extrapolé à partir de la position du point d'impact et d'au moins une position mesurée antérieurement.As for the detection of the point position impact, a device is provided on the projectile reception of GPS or similar signals and re-transmission of these signals to a remote receiver, the remote receiver comprising means for periodically determining the position of the projectile. This projectile and / or the reception and retransmission of non destructible GPS signals during the impact, the moment of impact is extrapolated from the position of the point of impact and at least one position measured previously.
L'extrapolation est, dans tous les cas, nécessaire car les déterminations de position ne s'effectuent pas en permanence mais de façon périodique, la période étant au moins de l'ordre de 100 ms. Cette période d'échantillonnage est soit fixe, soit variable. Elle est fonction des caractéristiques de vitesse et/ou d'accélération du projectile.Extrapolation is, in any case, necessary because position determinations are not made continuously but periodically, the period being at least of the order of 100 ms. This sampling period is either fixed or variable. It depends on the speed characteristics and / or projectile acceleration.
Sur le projectile on prévoit, de préférence, deux antennes, à savoir une antenne de réception des signaux GPS à l'arrière et une antenne d'émission disposée de façon telle que le diagramme de rayonnement soit préférentiellement dirigé vers l'avant. Le projectile pouvant prendre des orientations variables, dans une réalisation, le diagramme des antennes est fortement omnidirectionnel.On the projectile there are preferably two antennas, namely an antenna for receiving GPS signals at the rear and a transmitting antenna so arranged that the radiation pattern is preferably directed towards forward. The projectile can take orientations variables, in one embodiment, the antenna diagram is strongly omnidirectional.
Dans une réalisation destinée à un projectile d'entraínement, ce dernier présente une coque en matière plastique et celle-ci est conformée pour participer au diagramme de rayonnement d'émission. Au cours d'expériences effectuées dans le cadre de l'invention, on a constaté qu'avec une antenne d'émission disposée à l'arrière, le fuselage plastique - qui constitue un diélectrique - peut augmenter l'omni-directionnalité du diagramme de rayonnement.In an embodiment intended for a projectile drive, the latter has a shell material plastic and it is shaped to participate in the diagram emission radiation. During experiments carried out in within the scope of the invention, it has been found that with an antenna at the rear, the plastic fuselage - which constitutes a dielectric - can increase omni-directionality of the radiation diagram.
D'autres caractéristiques et avantages de l'invention apparaítront avec la description de certain de ses modes de réalisation, celle-ci étant effectuée en se référant aux dessins ci-annexés sur lesquels :
- la figure 1 est un schéma d'un projectile avec une antenne pour la réception et la réémission de signaux GPS,
- la figure 2 est un schéma analogue à celui de la figure 1, mais pour deux variantes,
- la figure 3 est un diagramme montrant une interpolation effectuée pour déterminer la position de l'impact d'un projectile,
- la figure 4 est un schéma d'un dispositif destiné à équiper un projectile dont on veut détecter la position de l'impact, et
- la figure 5 est un schéma pour la réception de signaux fournis par un dispositif du type de celui de la figure 4.
- FIG. 1 is a diagram of a projectile with an antenna for receiving and re-transmitting GPS signals,
- FIG. 2 is a diagram similar to that of FIG. 1, but for two variants,
- FIG. 3 is a diagram showing an interpolation carried out to determine the position of the impact of a projectile,
- FIG. 4 is a diagram of a device intended to equip a projectile whose position of impact is to be detected, and
- FIG. 5 is a diagram for the reception of signals supplied by a device of the type of that of FIG. 4.
L'exemple que l'on va décrire, en relation avec les figures, concerne la détection de la position de l'impact d'un projectile d'entraínement telle qu'une bombe larguée d'un avion (non représenté).The example that we will describe, in relation to the figures, concerns the detection of the impact position of a training projectile such as a bomb dropped from an airplane (not shown).
Cette bombe d'entraínement 10 (figure 1) présente la
forme générale d'une roquette avec un corps allongé 12 rétréci en
forme de pointe 14 vers l'avant et des ailettes 16 vers
l'arrière. This training bomb 10 (Figure 1) presents the
general shape of a rocket with an
Étant donné que le trajet de la bombe 10 est du haut
vers le bas l'antenne 18, destinée à capter les signaux des
satellites GPS, est disposée à l'arrière, c'est-à-dire vers le
haut.Since the path of
Dans cet exemple, on prévoit une antenne quadrifilaire composée de fils bobinés en hélice. On sait qu'une telle antenne présente de bonnes qualités d'omni-directionnalité. En variante, on utilise une antenne du type "PATCH", formée d'un ou plusieurs conducteurs sur un support.In this example, a quadrifilar antenna is provided composed of helically wound wires. We know that such an antenna has good omni-directionality qualities. Alternatively, using a "PATCH" type antenna, formed by one or more conductors on a support.
L'antenne GPS sert aussi à réémettre les signaux vers
une station au sol (non représentée sur la figure 1). Bien que
l'antenne d'émission soit disposée à l'arrière de la bombe 10
alors qu'elle doit émettre vers l'avant, cette antenne donne,
malgré tout, de bons résultats car on a constaté que la structure
isolante en matière plastique de la bombe 10 participe au
diagramme de rayonnement de l'antenne d'émission. Ces résultats
sont dus à un couplage diélectrique.The GPS antenna is also used to retransmit signals to
a ground station (not shown in Figure 1). Although
the transmitting antenna is placed at the rear of the
Les circuits 20 associés à l'antenne 18 se trouvent
dans le même logement 22 que l'antenne 18, à l'arrière de la
bombe 10, sensiblement selon son axe.The
Dans la variante représentée sur la figure 2, qui est
de préférence prévue pour des fréquences d'émission supérieures à
2 GHz environ, l'antenne 18' de réception des signaux de
satellites GPS est disposée de la même manière que l'antenne 18
de la figure 1 mais l'antenne d'émission, 24 ou 26, est distincte
de l'antenne de réception 18'.In the variant shown in Figure 2, which is
preferably provided for emission frequencies higher than
2 GHz approximately, the 18 'antenna for receiving signals
GPS satellites are arranged in the same way as the
Dans une première réalisation, l'antenne 24 a la forme
d'une ceinture entourant la coque 10 à l'avant de l'antenne 18',
entre cette dernière et la zone médiane 28. Une telle antenne
permet une émission quasi omnidirectionnelle sans variation de
phase ou de niveau même si le projectile tourne autour de son
axe. On peut également faire appel à une pluralité d'antennes
élémentaires (ou "patch") couplées.In a first embodiment, the
Dans une seconde réalisation, on prévoit une antenne 26
à proximité du nez 14 de la bombe 10, autour de la coque. Cette
antenne 26 est formée de plusieurs antennes élémentaires
couplées. On peut aussi utiliser une antenne de type ceinture.
Dans les deux cas, la disposition de l'antenne sur la partie
conique avant privilégie l'émission vers l'avant.In a second embodiment, an
Pour déterminer, au sol, le lieu de l'impact de la
bombe 10, à l'aide des signaux réémis par l'antenne 18, ou par
l'antenne 24 ou 26, on procède de la façon suivante :To determine, on the ground, the location of the impact of the
Un récepteur de signaux GPS, qui sera décrit plus loin
en relation avec la figure 5, détermine de façon périodique, par
exemple tous les 200 ms, la position du mobile et, en fonction
des positions mesurées, la trajectoire 32 du mobile. Dans
l'exemple représenté sur la figure 3 la trajectoire est dans un
plan vertical, l'axe Oz étant vertical et l'axe Ox horizontal.
Pour chaque point de la trajectoire 32 calculée on garde en
mémoire le temps correspondant ainsi que la vitesse et
l'accélération.A GPS signal receiver, which will be described later
in relation to FIG. 5, periodically determines, by
example every 200 ms, the position of the mobile and, depending
of the measured positions, the
L'impact du mobile au sol aura en général pour conséquence de détruire l'électronique de réception et de réémission des signaux GPS. L'instant de l'impact est ainsi déterminé par la disparition des signaux reçus au sol.The impact of the mobile on the ground will generally have consequence of destroying the reception electronics and re-transmission of GPS signals. The moment of impact is thus determined by the disappearance of the signals received on the ground.
La détection de l'instant de la disparition des signaux GPS s'effectue à l'aide d'un circuit se trouvant soit à l'aval des circuits de traitement fournissant les signaux GPS soit en amont du traitement, sur la porteuse du signal reçu.Detection of the instant of disappearance of signals GPS is carried out using a circuit located either downstream processing circuits providing the GPS signals either upstream of processing, on the carrier of the received signal.
Dans le premier cas (à l'aval des circuits de traitement), on prévoit un moyen pour mesurer en permanence le rapport signal à bruit et l'instant de l'impact correspond à l'instant où le rapport signal à bruit descend au-dessous d'un seuil déterminé.In the first case (downstream of the treatment), a means is provided for continuously measuring the signal-to-noise ratio and the instant of impact corresponds to the instant the signal-to-noise ratio drops below one determined threshold.
Dans le second cas (à l'amont des circuits de traitement), on prévoit un circuit qui, avant le traitement, et avant corrélation, détermine le niveau du signal, par exemple le niveau du contrôle automatique de gain et l'instant de l'impact correspond au moment où le signal descend au-dessous d'un seuil prédéterminé, ou quand le contrôle automatique de gain dépasse une limite prédéterminée.In the second case (upstream of the treatment), a circuit is provided which, before treatment, and before correlation, determines the signal level, for example the level of automatic gain control and instant of impact corresponds to the moment when the signal drops below a threshold predetermined, or when automatic gain control exceeds a predetermined limit.
A partir de la trajectoire calculée lors de la réception des signaux GPS au sol et d'autres paramètres calculés (vitesse et accélération), on peut extrapoler la trajectoire entre le dernier instant t1 de mesure et l'instant td de la disparition des signaux GPS. Cette extrapolation fournit donc la position du point d'impact du mobile au sol. Bien entendu le calcul et l'extrapolation s'effectuent en temps réel.From the trajectory calculated during the reception of GPS signals on the ground and other calculated parameters (speed and acceleration), one can extrapolate the trajectory between the last instant t 1 of measurement and the instant td of disappearance of the signals GPS. This extrapolation therefore provides the position of the point of impact of the mobile on the ground. Of course the calculation and the extrapolation are carried out in real time.
Dans une variante, quand les circuits récepteurs-émetteurs de signaux GPS du mobile sont résistants et ne sont donc pas détruits par l'impact au sol, l'invention permet de déterminer de façon simple l'instant de l'impact. En effet, dans ce cas, la position de l'impact est connue. L'extrapolation portera donc sur la détermination du temps et non sur la détermination de la position.Alternatively, when the receiver-transmitter circuits GPS signals from the mobile are resistant and are not therefore not destroyed by impact on the ground, the invention makes it possible to simple determination of the moment of impact. Indeed, in in this case, the position of the impact is known. extrapolation will therefore relate to the determination of time and not to the determination of the position.
La figure 4 représente un exemple de réalisation de circuits de réception et de réémission à bord du mobile.FIG. 4 represents an exemplary embodiment of reception and retransmission circuits on board the mobile.
Dans cet exemple, l'antenne 18 de réception de signaux
GPS fournit un signal à l'amplificateur 112. Ce signal amplifié
est appliqué sur la première entrée 1141 d'un organe 114, tel
qu'un mélangeur de changement de fréquence, dont la seconde
entrée 1142 reçoit un signal local fourni par la sortie 1161 d'un
générateur 116. Le signal local appliqué sur l'entrée 1142 a une
fréquence de 1 580 GHz alors que le signal détecté par l'antenne
18 est le signal de la porteuse GPS à la fréquence 1 575,42 MHz.In this example, the
Le signal apparaissant sur la sortie 1143 du mélangeur
114 est à une fréquence égale à la différence entre les
fréquences des signaux appliqués sur les entrées 1141 et 1142. Ce
signal est appliqué à un second amplificateur 118, puis est
transmis à un filtre 120 et, de là, est relié à l'antenne 18
d'émission, dirigée vers le récepteur GPS au sol.The signal appearing on the
La figure 5 représente l'installation au sol.Figure 5 shows the installation on the ground.
Elle comporte un récepteur GPS classique. It includes a conventional GPS receiver.
Des moyens de traitement permettent le calcul de la trajectoire et l'instant d'impact et, donc, la localisation de ce point d'impact.Processing means allow the calculation of the trajectory and the instant of impact and, therefore, the location of this point of impact.
Dans l'exemple représenté, l'installation au sol
comprend une antenne 142 de réception dont le signal est appliqué
à un récepteur de télémétrie 144 qui assure des fonctions
classiques de filtrage et d'amplification. La sortie du récepteur
144 est reliée à un circuit 146 de calcul de la trajectoire du
mobile.In the example shown, the installation on the ground
includes a receiving
Par ailleurs, l'installation comprend un récepteur dit
de référence 148 comportant sa propre antenne 150. De façon en
soi connue, le récepteur de référence permet, à chaque instant,
la comparaison entre, d'une part, la distance mesurée entre ce
récepteur au sol et le satellite et, d'autre part, la distance,
connue a priori, entre ce récepteur et le satellite. Cette
comparaison est utilisée pour corriger les mesures fournies par
le mobile. Ce type de correction, qui permet une grande précision
de la localisation du mobile, est appelé un système GPS
différentiel.Furthermore, the installation includes a so-called
Le récepteur 148 de référence comporte une sortie
d'horloge 1481 reliée à une entrée d'horloge correspondante 1461
du circuit 146. Il comporte aussi une sortie 1482 fournissant les
données de référence sur une entrée correspondante d'un circuit
152 de calcul de position, de vitesse, d'accélération et de
temps, qui, avec le circuit 146, permet de calculer la
trajectoire. Le circuit 146 comporte, en outre, une entrée 1462
recevant un signal d'aide (inertielle par exemple), pour
améliorer les performances d'accrochage et de poursuite des
signaux GPS.The
Claims (12)
- Method for determining the position of the impact of a projectile (10), characterized in that, the projectile being equipped with a reception/transmission device for, on the one hand, receiving satellite-positioning signals, transmitted by a group of satellites, which are used to determine the position of the projectile by measuring the distance between it and the satellites, whose positions are known, and, on the other hand, transmitting the received signals to a remote receiver (142-152), the following are determined in the remote receiver:periodically, the position of the mobile,the time (td) at which the signals transmitted by the transmission device of the mobile disappear, andon the basis of at least one position measurement and of measuring the time at which the signals disappear, by extrapolation, the position of the impact.
- Method according to Claim 1, characterized in that the positions are determined with a period of between 100 ms and 1 second.
- Method according to Claim 1 or 2, characterized in that the extrapolation used for determining the position of the impact also involves velocity and acceleration.
- Method according to any one of Claims 1 to 3, characterized in that the time at which the received signals disappear is determined by comparing these signals with a threshold, the time of disappearance corresponding to the moment when a received signal falls below the threshold.
- Method according to any one of the preceding claims, characterized in that the position-determination signals are of the GPS type or the like.
- Projectile for implementing the method according to any one of Claims 1 to 5, characterized in that it has a satellite-signal reception antenna (18, 18') which is arranged at the rear of this projectile.
- Projectile for implementing the method according to any one of Claims 1 to 5, characterized in that it has a signal transmission antenna (18; 24; 26) arranged in such a way that it transmits the signals forwards from the projectile.
- Projectile according to Claim 7, characterized in that the transmission antenna (18) is arranged at the rear and is coupled to the front by a dielectric.
- Projectile according to Claim 8, characterized in that the dielectric constitutes the outer casing of this projectile.
- Projectile according to Claim 7, characterized in that the transmission antenna forms a belt (24) or a ring enclosing the projectile.
- Projectile according to Claim 10, characterized in that the transmission antenna (26) is arranged at the front of the projectile.
- Method for determining the time of the impact of a projectile or mobile, characterized in that, the projectile or mobile being equipped with a reception/transmission device for, on the one hand, receiving satellite-positioning signals, transmitted by a group of satellites, which are used to determine the position of the mobile by measuring the distance between it and the satellites, whose positions are known, and, on the other hand, transmitting the received signals to a remote receiver, the following are determined in the remote receiver:periodically, the position of the mobile, andon the basis of these periodic measurements and of the position of the immobilized mobile, by extrapolation, the time of the impact.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9706800A FR2764057B1 (en) | 1997-06-03 | 1997-06-03 | METHOD FOR DETECTING THE POINT OR INSTANT OF IMPACT OF A PROJECTILE |
FR9706800 | 1997-06-03 | ||
PCT/FR1998/001111 WO1998055821A1 (en) | 1997-06-03 | 1998-06-03 | Method for detecting a projectile point or moment of impact |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0986728A1 EP0986728A1 (en) | 2000-03-22 |
EP0986728B1 true EP0986728B1 (en) | 2003-01-08 |
Family
ID=9507523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98929471A Expired - Lifetime EP0986728B1 (en) | 1997-06-03 | 1998-06-03 | Method for detecting a projectile point or moment of impact |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0986728B1 (en) |
DE (1) | DE69810621T2 (en) |
FR (1) | FR2764057B1 (en) |
IL (1) | IL133103A0 (en) |
WO (1) | WO1998055821A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE2100185A1 (en) * | 2021-12-14 | 2023-06-15 | Bae Systems Bofors Ab | Projectile with antenna |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4281239A (en) * | 1979-07-23 | 1981-07-28 | Motorola Inc. | Timing apparatus and method |
FR2490802B1 (en) * | 1980-09-24 | 1985-06-14 | Applic Etu Mat Electro | METHOD AND DEVICE FOR LOCATING THE IMPACT OF PROJECTILES |
JPH06159997A (en) * | 1992-11-25 | 1994-06-07 | Fuji Heavy Ind Ltd | Control apparatus for missile |
US5543813A (en) * | 1993-08-12 | 1996-08-06 | Kokusai Denshin Denwa Kabushiki Kaisha | System for determining and registering location of mobile terminal for communication system with non-geosynchronous satellites |
US5574469A (en) * | 1994-12-21 | 1996-11-12 | Burlington Northern Railroad Company | Locomotive collision avoidance method and system |
US5614910A (en) * | 1995-07-28 | 1997-03-25 | The United States Of America As Represented By The Secretary Of The Navy | Miss distance vector scoring system |
-
1997
- 1997-06-03 FR FR9706800A patent/FR2764057B1/en not_active Expired - Fee Related
-
1998
- 1998-06-03 WO PCT/FR1998/001111 patent/WO1998055821A1/en active IP Right Grant
- 1998-06-03 DE DE69810621T patent/DE69810621T2/en not_active Expired - Fee Related
- 1998-06-03 IL IL13310398A patent/IL133103A0/en not_active IP Right Cessation
- 1998-06-03 EP EP98929471A patent/EP0986728B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE69810621T2 (en) | 2003-08-14 |
FR2764057B1 (en) | 1999-08-20 |
DE69810621D1 (en) | 2003-02-13 |
EP0986728A1 (en) | 2000-03-22 |
IL133103A0 (en) | 2001-03-19 |
FR2764057A1 (en) | 1998-12-04 |
WO1998055821A1 (en) | 1998-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4014807B2 (en) | Enhancement of GPS system signal detection capability | |
EP1712930B1 (en) | System and procedure for determining the instantaneous speed of an object | |
EP0747721B1 (en) | Method and device for precisely determining an electromagnetically shielded point by position measuring with satellites | |
EP1345042B1 (en) | 3D locating system with a high accuracy | |
EP0925515B1 (en) | Method of air navigation assistance for guiding a moving vehicle towards a moving target | |
FR2568017A1 (en) | SATELLITE NAVIGATION SYSTEM FOR DETERMINING MARKS OVER TIME AND PROVIDING ADDITIONAL INFORMATION | |
CA2805619C (en) | Direction estimation process for the arrival of navigation signals on a receptor after reflection on the walls in a satellite positioning system | |
WO2009083507A1 (en) | Method for aircraft landing assistance using gps and mls in case of calculated axial approach | |
EP3698173B1 (en) | Positioning system with gnss signal generation means and radiating cable | |
FR2801682A1 (en) | Satellite telecommunications parasitic transmission position location technique having interferometric frequency difference measurement providing detection satellite/line parasitic transmitter/satellite angle | |
EP2587691B1 (en) | Method for the coordinated processing of signals transmitted by beacons | |
EP0986728B1 (en) | Method for detecting a projectile point or moment of impact | |
WO2002033437A1 (en) | System for tracking a moving object | |
WO2006067058A1 (en) | Device for autonomously determining absolute geographic coordinates of a mobile changing with regard to immersion | |
WO2018115721A1 (en) | Optical transmission from a satellite to a reception terminal | |
EP0938683B1 (en) | Satellite signal receiver with detector of incoherence between code phase and carrier frequency measurements | |
FR2836554A1 (en) | Pilotless helicopter remotely controlled landing system having three fixed mechanisms on bridge of boat RF linked to three matching mechanisms | |
EP0961938B1 (en) | System for remote sensing of the position of a moving vehicle | |
EP0839324B1 (en) | System and method for measuring the total electron content of the ionosphere | |
EP2409424A1 (en) | Payload for a satellite with ais | |
FR2780154A1 (en) | Remotely guided aircraft engine | |
FR3137763A1 (en) | Method for detecting an interfering signal from a GNSS receiver and associated detection device | |
EP0809084A1 (en) | Apparatus for determining the roll angle position of a flying device, especially of an ammunition | |
EP2724179B1 (en) | Optimization of a location system including terrestrial transmitting base stations | |
FR2737016A1 (en) | ON-BOARD EQUIPMENT FOR INPUT OF MACHINE POSITION INFORMATION AND ASSOCIATED CONTROL STATION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19990818 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT SE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SECAPEM Owner name: THALES AVIONICS S.A. |
|
17Q | First examination report despatched |
Effective date: 20010615 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MAILLET, BERNARD THOMSON-CSF DEPT. PROTECTION ET Inventor name: RENARD, ALAIN THOMSON-CSF DEPT. PROTECTION ET Inventor name: DUSSURGEY, CHARLES THOMSON-CSF DEPT. PROTECTION |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 69810621 Country of ref document: DE Date of ref document: 20030213 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20030506 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20031009 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080626 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20080609 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090603 Year of fee payment: 12 Ref country code: DE Payment date: 20090529 Year of fee payment: 12 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100603 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090604 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100603 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090611 Year of fee payment: 12 |