EP0979548B1 - Method for triggering a gas insulated switching spark gap and device using said method - Google Patents
Method for triggering a gas insulated switching spark gap and device using said method Download PDFInfo
- Publication number
- EP0979548B1 EP0979548B1 EP98919199A EP98919199A EP0979548B1 EP 0979548 B1 EP0979548 B1 EP 0979548B1 EP 98919199 A EP98919199 A EP 98919199A EP 98919199 A EP98919199 A EP 98919199A EP 0979548 B1 EP0979548 B1 EP 0979548B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- spark gap
- switching
- electrodes
- triggering
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 34
- 239000007789 gas Substances 0.000 claims description 46
- 239000000443 aerosol Substances 0.000 claims description 27
- 239000002245 particle Substances 0.000 claims description 26
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 238000009760 electrical discharge machining Methods 0.000 claims description 10
- 230000001960 triggered effect Effects 0.000 claims description 10
- 239000011777 magnesium Substances 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 239000002923 metal particle Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 239000007772 electrode material Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 1
- 230000000295 complement effect Effects 0.000 claims 1
- 229910052802 copper Inorganic materials 0.000 claims 1
- 239000010949 copper Substances 0.000 claims 1
- 239000007769 metal material Substances 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 230000015556 catabolic process Effects 0.000 description 11
- 230000005855 radiation Effects 0.000 description 8
- 239000002800 charge carrier Substances 0.000 description 7
- 230000003068 static effect Effects 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000006862 quantum yield reaction Methods 0.000 description 2
- 101100421200 Caenorhabditis elegans sep-1 gene Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- PYLWMHQQBFSUBP-UHFFFAOYSA-N monofluorobenzene Chemical compound FC1=CC=CC=C1 PYLWMHQQBFSUBP-UHFFFAOYSA-N 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T2/00—Spark gaps comprising auxiliary triggering means
Definitions
- the invention relates to a method for triggering a switching spark gap and a switching spark gap which is operated according to the method and is used as a DC voltage switch or as a dynamically stressed switch.
- the goal is for high voltage discharges in the most diverse Processes to have a switch available to them a predetermined time reliably in the conductive state is transferable.
- a solution is known in which the insulating gas in the spark gap chamber is easily photoionizable, gaseous additives (fluorene scene) are added, which is then more suitable by irradiation with a light source Wavelength via photoionization the starting electrons for the Clear the formation of the ignition channel (see Dougal, R. A. et al .: "Fundamental Processes in Laser-Triggered Electrical Breakdown of Gases ", J. Appl. Phys., Vol. 17 (1984), p. 903 - 918, printed in Great Britain).
- trigger light sources As light sources, the spark gap in the conductive state offset, so-called trigger light sources, have become incoherent Light sources such as UV lamps or coherent light sources proven like lasers. The latter is under the term laser triggering known.
- JP 1-81 185 A describes a method for triggering a Switching spark gap and a corresponding device are known.
- a spark arises between the electrodes 6 and 1 by partially illuminating the space between the electrodes with a light source 14 of predetermined wavelength ionized metal vapor generated.
- auxiliary spark gap G5 causes ultraviolet radiation that ignites a trigger spark gap G4, which in turn leads to the ignition of the switching spark gap G1.
- the temporally targeted resolution electrical breakdown in a spark gap the irradiation of the electrode gap or the electrode surface achieved with laser light.
- the one for triggering the Spark gap required laser energy depends on the used Mechanism of photoelectric charge generation and on the operating mode of the spark gap.
- the voltage to be isolated is constantly present at DC voltage switches before the spark gap is triggered.
- An electrical breakdown in a gas-insulated homogeneous field arrangement can only take place if the effective impact ionization coefficient ⁇ eff in the gas is greater than zero and consequently an avalanche-like increase in freely movable charge carriers as a result of the impact ionization can take place.
- ⁇ eff ⁇ 0 applies. Since the DC switch should isolate reliably before the trigger event, its operating voltage must be below its static breakdown voltage U DC .
- the mobile charge carrier of the plasma can thus only by a simultaneous absorption of multiple photons, by the so-called M ulti p hotonen i onisation (MPI) can be generated (see Gray Morgan, C .: “Laser-Induced Breakdown of Gases", Rep. Prog. Phys., Vol. 38, 1975, p. 621-665).
- Multiphoton ionization is a strongly non-linear effect that only appears at high irradiance levels.
- a conductive plasma which has a charge carrier density of n> 10 16 cm -3 sufficient for triggering a DC voltage switch (Dougal, RA et al .: “Fundamental Processes in the Laser-Triggered Electrical Breakdown of Gases", J. Appl. Phys ., Vol. 60, No.12, 1986, p. 4240 - 4247)
- the required laser energies are W> 100 mJ.
- the laser beam is focused on the electrode surface the trigger energies are about an order of magnitude less than with a focus in the gas volume between the electrodes.
- Evaporated metal from electrode material increases here the conductivity of the plasma. In addition, they are freely movable Electrons from photoemission from the electrode surface triggered.
- the trigger laser energies to be used are in the range of 1 mJ and the irradiance levels are a few MW / cm 2 . It is not necessary to focus the laser beam.
- the electrode surface is illuminated, electrons are provided by photoemission from the metal surface in addition to the charge carriers formed in the gas volume.
- the trigger laser energy to be used is then, similar to DC voltage switches, lower than when the interelectrode space is only illuminated.
- a reduction in the trigger laser energy required was achieved by adding easily photoionizable gas additives such as fluorobenzene when using the KrF laser and tri-n-propylamine when using the nitrogen laser.
- easily photoionizable gas additives such as fluorobenzene when using the KrF laser and tri-n-propylamine when using the nitrogen laser.
- the lowest irradiance 300 kW / cm 2 .
- the need for light or laser energy for error-free triggering the spark gap is high. This goes hand in hand with the need on trigger light sources with higher energy, which in particular reflected in the cost of the trigger light system.
- the object is achieved by a method according to claim 1 and with a switching spark gap according to claim 6.
- the switching spark gap is used according to claim 13 as a DC voltage switch or as a dynamically stressed switch.
- the light required to trigger the switching spark gap or laser energy is very compared to the prior art low.
- the method does not require a beam-focusing Means such as lenses and the necessary fine adjustment devices.
- the process is for the optimization of existing laser switching systems applicable without significant design change. Especially The optimization of the switching behavior is advantageous of spark gaps with similar, rail-shaped electrodes, i.e. multi-channel switches, the so-called Railgap spark gaps.
- the switching spark gap 4 is a rail gap spark gap that perpendicular to the axis of the electric field lines and parallel illuminated to the two electrodes with a nitrogen trigger laser 9 becomes.
- the aerosol is a magnesium aerosol, accordingly is at least one of the two sacrificial electrodes of the aerosol generator 1 made of magnesium.
- the trigger voltage interval is not restricted by the use of metal aerosol switching gases.
- the required laser energy itself is 3 orders of magnitude lower.
- the method of operation does not depend on a specific electrode geometry tied to the spark gap.
- a targeted release of a dynamically stressed laser switch depends first Line depends on whether starting electrons at a certain laser energy can be generated. The used one plays Start charge carrier process the decisive role and not that Electrode geometry.
- the reason for the high quantum yield is the negligible one Backscattering of electrons on gas particles in the direction the particle surface with subsequent absorption of the electron viewed.
- An electron emission in the direction of the surface normal has the highest probability of leaving.
- the metal particles 2 are created using the aerosol generator 1 generated, which works on the spark erosion principle.
- the trigger method is the gas supply line 3 Switching spark gap 4 separated and the spark erosion generator 1 interposed, Fig. 1.
- This type of aerosol generation and admixture is for continuous operation of the laser switch suitable with constant switching characteristics.
- other methods of aerosol generation such as the Wire explosion method, long-term stability of the Switching properties during repeated operation of the spark gap cannot be reached.
- the spherical metal particles 2 arise in the spark erosion generator 1 as a result of the spark discharges between the two sacrificial electrodes 7, FIG. 2.
- the discharge is fed from the capacitance C S and burns repeatedly with the spark frequency f F.
- electrode material is melted and flung in liquid form into the gas space, where it solidifies in a spherical shape and is transported by the gas stream 8 into the switching spark gap 4.
- the sacrificial electrodes 7 consist of the specified metal.
- the work function of the particle material W A must be smaller than the photon energy of the trigger laser radiation W ph .
- the trigger method is used on the Railgap spark gap 4 and is investigated with the addition of magnesium particles 2.
- a basic gas mixture of argon and SF 6 was used (FIGS. 5 and 6). In principle, however, the use of a mixed gas is not necessary for the trigger method to function.
- a one-component or higher-component switching gas can also be used to operate the switching spark gap 4.
- the spark gap 4 breaks through automatically at higher voltage values considerably after the time of laser irradiation.
- the ignition delay time (FIG. 3) and the switching spread of the spark gap 4 (jitter) (FIG. 4) are correspondingly high at 145 ns and 167 ns, respectively.
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
- Lasers (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Triggerung einer Schaltfunkenstrecke und eine Schaltfunkenstrecke, die gemäß dem Verfahren betrieben wird und als Gleichspannungsschalter oder als dynamisch beanspruchter Schalter verwendet wird. The invention relates to a method for triggering a switching spark gap and a switching spark gap which is operated according to the method and is used as a DC voltage switch or as a dynamically stressed switch.
Das Ziel ist für Hochspannungsentladungen bei den verschiedensten Prozessen einen Schalter zur Verfügung zu haben, der zu einem vorbestimmten Zeitpunkt zuverlässig in den leitenden Zustand überführbar ist. Hierzu ist eine Lösung bekannt, bei der dem Isoliergas in der Funkenstreckenkammer leicht photoionisierbare, gasförmige Additive (Fluorbenzene) beigemischt werden, die dann durch Bestrahlen mit eine Lichtquelle geeigneter Wellenlänge über Photoionisation die Startelektronen für die Ausbildung des Zündkanals freimachen (siehe Dougal, R. A. et al.: "Fundamental Processes in Laser-Triggered Electrical Breakdown of Gases", J. Appl. Phys., Vol.17(1984), p. 903 - 918, printed in Great Britain).The goal is for high voltage discharges in the most diverse Processes to have a switch available to them a predetermined time reliably in the conductive state is transferable. For this purpose, a solution is known in which the insulating gas in the spark gap chamber is easily photoionizable, gaseous additives (fluorene scene) are added, which is then more suitable by irradiation with a light source Wavelength via photoionization the starting electrons for the Clear the formation of the ignition channel (see Dougal, R. A. et al .: "Fundamental Processes in Laser-Triggered Electrical Breakdown of Gases ", J. Appl. Phys., Vol. 17 (1984), p. 903 - 918, printed in Great Britain).
Als Lichtquellen, die die Funkenstrecke in den leitenden Zustand versetzen, sog. Triggerlichtquellen, haben sich inkohärente Lichtquellen wie UV-Strahler oder kohärente Lichtquellen wie Laser bewährt. Letzteres ist unter dem Begriff Lasertriggerung bekannt.As light sources, the spark gap in the conductive state offset, so-called trigger light sources, have become incoherent Light sources such as UV lamps or coherent light sources proven like lasers. The latter is under the term laser triggering known.
Aus der JP 1-81 185 A ist ein Verfahren zur Triggerung einer
Schaltfunkenstrecke und eine entsprechende Vorrichtung bekannt.
Dabei wird ein Funkenlichtbogen zwischen den Elektroden 6 und 1
durch Teilausleuchtung des Zwischenraumes zwischen den Elektroden
mit einer Lichtquelle 14 vorbestimmter Wellenlänge ein
ionisierter Metalldampf erzeugt.JP 1-81 185 A describes a method for triggering a
Switching spark gap and a corresponding device are known.
A spark arises between the
Aus der US 4,604,554 ist eine Vorrichtung mit lichtgetriggerter Schaltfunkenstrecke bekannt. Eine Hilfsfunkenstrecke G5 bewirkt ultraviolette Strahlung, die eine Triggerfunkenstrecke G4 zündet, die wiederum zur Zündung der Schaltfunkenstrecke G1 führt. From US 4,604,554 is a device with light triggered Switching spark gap known. An auxiliary spark gap G5 causes ultraviolet radiation that ignites a trigger spark gap G4, which in turn leads to the ignition of the switching spark gap G1.
Mit der Lasertriggerung wird die zeitlich gezielte Auflösung eines elektrischen Durchschlags in einer Funkenstrecke durch die Bestrahlung des Elektrodenzwischenraums bzw. der Elektrodenoberfläche mit Laserlicht erreicht. Die zur Triggerung der Funkenstrecke erforderliche Laserenergie hängt vom ausgenutzten Mechanismus der photoelektrischen Ladungsträgererzeugung und von der Betriebsart der Funkenstrecke ab.With laser triggering, the temporally targeted resolution electrical breakdown in a spark gap the irradiation of the electrode gap or the electrode surface achieved with laser light. The one for triggering the Spark gap required laser energy depends on the used Mechanism of photoelectric charge generation and on the operating mode of the spark gap.
Grundsätzlich wird zwischen dynamisch beanspruchten Schaltern und Gleichspannungsschaltern unterschieden. An Gleichspannungsschaltern liegt die zu isolierende Spannung vor der Triggerung der Funkenstrecke ständig an. Ein elektrischer Durchschlag in einer gasisolierten Homogenfeldanordnung kann nur erfolgen, wenn der effektive Stoßionisationskoeffizient αeff im Gas größer Null ist und folglich eine lawinenartige Vermehrung freibeweglicher Ladungsträger infolge der Stoßionisation stattfinden kann. Bei Feldstärken kleiner der statischen Durchbruchfeldstärke gilt αeff ≤ 0. Da der Gleichspannungsschalter vor dem Triggerereignis sicher isolieren soll, muß seine Betriebsspannung unter seiner statischen Durchbruchspannung UDC liegen.A basic distinction is made between dynamically stressed switches and DC voltage switches. The voltage to be isolated is constantly present at DC voltage switches before the spark gap is triggered. An electrical breakdown in a gas-insulated homogeneous field arrangement can only take place if the effective impact ionization coefficient α eff in the gas is greater than zero and consequently an avalanche-like increase in freely movable charge carriers as a result of the impact ionization can take place. For field strengths less than the static breakdown field strength, α eff ≤ 0 applies. Since the DC switch should isolate reliably before the trigger event, its operating voltage must be below its static breakdown voltage U DC .
Die Ionisierungsenergie von Gasatomen liegt oberhalb von Wi = 12 eV und ist damit wesentlich größer als die Photonenenergie der Laserstrahlung, die je nach Wellenlänge des Lasers kleiner als Wph = 4...5 eV ist. Die freibeweglichen Ladungsträgers des Plasmas können folglich nur durch eine gleichzeitige Absorption mehrerer Photonen, durch die sogenannte Multiphotonenionisation (MPI) erzeugt werden (siehe Grey Morgan, C.: "Laser-induced Breakdown of Gases", Rep. Prog. Phys., Vol. 38., 1975, p. 621 - 665).The ionization energy of gas atoms is above W i = 12 eV and is therefore significantly larger than the photon energy of the laser radiation, which is less than W ph = 4 ... 5 eV depending on the wavelength of the laser. The mobile charge carrier of the plasma can thus only by a simultaneous absorption of multiple photons, by the so-called M ulti p hotonen i onisation (MPI) can be generated (see Gray Morgan, C .: "Laser-Induced Breakdown of Gases", Rep. Prog. Phys., Vol. 38, 1975, p. 621-665).
Die Multiphotonenionisation ist ein stark nichtlinearer Effekt, der erst bei hohen Bestrahlungsstärken in Erscheinung tritt. Zur Erzeugung eines leitfähigen Plasmas, das eine zur Triggerung eines Gleichspannungsschalters ausreichende Ladungsträgerdichten von n > 1016 cm-3 besitzt (Dougal, R. A. et al.: "Fundamental Processes in the Laser-Triggered Electrical Breakdown of Gases", J. Appl. Phys., Vol. 60, No.12, 1986, p. 4240 - 4247), liegt die erforderliche Bestrahlungsstärke bei I = 1 GWcm-2. Sie ist nur mit einer Fokussierung des Laserstrahls im Elektrodenzwischenraum zu erreichen. Die erforderlichen Laserenergien betragen W > 100 mJ.Multiphoton ionization is a strongly non-linear effect that only appears at high irradiance levels. To generate a conductive plasma which has a charge carrier density of n> 10 16 cm -3 sufficient for triggering a DC voltage switch (Dougal, RA et al .: "Fundamental Processes in the Laser-Triggered Electrical Breakdown of Gases", J. Appl. Phys ., Vol. 60, No.12, 1986, p. 4240 - 4247), the required irradiance is I = 1 GWcm -2 . It can only be achieved by focusing the laser beam in the space between the electrodes. The required laser energies are W> 100 mJ.
Wird der Laserstrahl auf die Elektrodenoberfläche fokussiert sind die Triggerenergien etwa eine Größenordnung geringer als bei einer Fokussierung im Gasvolumen zwischen den Elektroden. Die erforderliche Laserenergie liegt bei W = 10 mJ (siehe Dougal, R. A. et al.: "Fundamental Processes in Laser-Triggered Electrical Breakdown of Gases", J. Appl. Phys., Vol.17(1984), p. 903 - 918). Verdampftes Metall aus Elektrodenmaterial erhöht hier die Leitfähigkeit des Plasmas. Zusätzlich werden freibewegliche Elektronen durch Photoemission aus der Elektrodenoberfläche ausgelöst.The laser beam is focused on the electrode surface the trigger energies are about an order of magnitude less than with a focus in the gas volume between the electrodes. The required laser energy is W = 10 mJ (see Dougal, R. A. et al .: "Fundamental Processes in Laser Triggered Electrical Breakdown of Gases ", J. Appl. Phys., Vol.17 (1984), p. 903-918). Evaporated metal from electrode material increases here the conductivity of the plasma. In addition, they are freely movable Electrons from photoemission from the electrode surface triggered.
In der Pulsed-Power-Technik und bei nahezu allen kurzzeitphysikalischen Anwendungen werden die Schaltfunkenstrecken mit impulsförmigen Spannungen u(t) beaufschlagt und somit dynamisch beansprucht. Zur Triggerung dynamisch beanspruchter Schalter ist der Energieaufwand geringer. Die Spannung am Schalter überschreitet die statische Durchbruchspannung sehr rasch. Die Funkenstrecke bricht bei vergleichsweise hohen Feldstärken von selbst durch, wenn auf natürliche Weise, d. h. durch radioaktive Strahlung oder durch Höhenstrahlung, ein freibewegliches Startelektron gebildet wurde.In pulsed power technology and in almost all short-term physics Applications are the switching spark gaps with pulse-shaped Voltages u (t) acted upon and thus dynamic claimed. For triggering dynamically stressed switches the energy consumption is lower. The voltage at the switch exceeds the static breakdown voltage very quickly. The spark gap breaks at comparatively high field strengths of even if, in a natural way, d. H. by radioactive radiation or by radiation from the outside free starting electron was formed.
Die gezielte Überführung eines dynamischen Schalters in den leitenden Zustand findet vor dem Auftreten eines auf natürliche Weise entstandenen Startelektrones statt. Bevor die Funkenstrecke von selbst durchbricht werden zum Triggerzeitpunkt mittels Laserlicht Startelektronen erzeugt. Während der Vorentladungsdauer erfolgt der Lawinenaufbau und die Streamerausbreitung zwischen den Elektroden. Nach Ablauf der Vorentladungsdauer bricht die Spannung zwischen den Elektroden zusammen und die Funkenstrecke ist im leitenden Zustand.The targeted transfer of a dynamic switch into the conductive state takes place before the appearance of a natural Start electronics created in this way. Before the spark gap are breached by themselves at the trigger time using Laser light generates starting electrons. During the pre-discharge period the avalanche builds up and the streamer spreads between the electrodes. After the pre-discharge period breaks the voltage between the electrodes and the spark gap is in the conductive state.
Im Gegensatz zu Gleichspannungsschaltern ist bei dynamisch beanspruchten Schaltern die Voraussetzung für die Ausbildung eines Entladungskanals ein Feldstärkewert über die statischen Durchbruchfeldstärke infolge der kurzzeitigen Überschreitung der statischen Durchbruchspannung bereits erfüllt. Es genügt daher eine vergleichsweise geringe Ladungsträgerdichte, im Idealfall ein einzelnes Startelektron, um die Funkenstrecke gezielt auszulösen. Dazu ist eine geringere Bestrahlungsstärke erforderlich als zur Erzeugung eines hochleitfähigen Plasmas mit hoher Ladungsträgerdichte.In contrast to DC voltage switches, dynamically stressed Switches the prerequisite for training a Discharge channel a field strength value over the static Breakthrough field strength due to short-term exceedance the static breakdown voltage already met. It is sufficient therefore a comparatively low charge carrier density, in Ideally, a single starting electron around the spark gap trigger specifically. In addition there is a lower irradiance required to generate a highly conductive plasma with high charge carrier density.
Die aufzuwendenden Triggerlaserenergien liegen im Bereich von 1 mJ und die Bestrahlungsstärken bei wenigen MW/cm2. Eine Fokussierung des Laserstrahls ist nicht erforderlich. Bei einer Beleuchtung der Elektrodenoberfläche werden zusätzlich zu den im Gasvolumen entstandenen Ladungsträgern Elektronen durch Photoemission aus der Metalloberfläche bereitgestellt. Die aufzuwendende Triggerlaserenergie ist dann, ähnlich wie bei Gleichspannungsschaltern, niedriger als bei einer ausschließlichen Beleuchtung des Zwischenelektrodenraums.The trigger laser energies to be used are in the range of 1 mJ and the irradiance levels are a few MW / cm 2 . It is not necessary to focus the laser beam. When the electrode surface is illuminated, electrons are provided by photoemission from the metal surface in addition to the charge carriers formed in the gas volume. The trigger laser energy to be used is then, similar to DC voltage switches, lower than when the interelectrode space is only illuminated.
Wird der Triggerlaserstrahl nicht fokussiert und parallel zu den Elektrodenoberflächen geführt, besteht die Möglichkeit, mehrere Entladungskanäle gleichzeitig auszulösen. Um möglichst viele Entladungskanäle zu erzeugen, sind daher langgestreckte und schienenförmig angeordnete Elektrodengemometrien besonders geeignet. Derartig ausgeführte Mehrkanalschalter werden als Railgap-Funkenstrecken bezeichnet. Sie besitzen eine äußerst geringe Schalterimpendanz und wegen der vergleichsweise großen zu beanspruchenden Elektrodenoberfläche eine hohe Lebensdauer.If the trigger laser beam is not focused and parallel to the electrode surfaces, there is the possibility trigger several discharge channels simultaneously. To be as possible Generating many discharge channels is therefore elongated and rail-shaped electrode geometries in particular suitable. Such multi-channel switches are called Railgap spark gaps. You have an extreme low switch impedance and because of the comparatively large the electrode surface to be stressed has a long service life.
Railgap-Schalter mit einer Elektrodenlänge von 50 cm wurden von Taylor et. al. am National Research Council of Canada untersucht. Als Triggerlaser dienten ein KrF-Laser (λ = 248 nm) und ein Stickstofflaser (λ = 337 nm). Mit Ar/SF6- und N2/SF6-Schaltgasgemischen und ohne optimierende Zusätze erfolgte die Auslösung der Funkenstrecke mit Laserenergien im Bereich von W = 20 mJ.Railgap switches with an electrode length of 50 cm were developed by Taylor et. al. at the National Research Council of Canada. A KrF laser (λ = 248 nm) and a nitrogen laser (λ = 337 nm) served as trigger lasers. With Ar / SF 6 and N 2 / SF 6 switching gas mixtures and without optimizing additives, the spark gap was triggered with laser energies in the range of W = 20 mJ.
Eine Verringerung der erforderlichen Triggerlaserenergie wurde durch die Beimischung von leicht photoionisierbaren Gasadditiven, wie Fluorobenzenen bei Verwendung des KrF-Lasers und Tri-n-Propylamin beim Einsatz des Stickstofflasers erzielt. Mit 1 mJ KrF-Laserstrahlung konnten so 70 - 100 Entladungskanäle pro Meter Elektrodenlänge erzielt werden. Die minimale Triggerenergie war W = 100 µJ, die geringste Bestrahlungsstärke betrug I = 300 kW/cm2. Bei der Triggerung mittels N2-Laser war der Energieaufwand W = 60 µJ (siehe Taylor, R. S. et al.: "UV Radiation Triggered Rail-Gap Switches", Rev. of Scient. Instrum., Vol. 55, No. 2, 1984, p. 52 - 63). Die Bestrahlungsstärke lag hier jedoch bei ca. I = 4 MW/cm2 und damit wesentlich höher als bei der Triggerung mit KrF-Strahlung.A reduction in the trigger laser energy required was achieved by adding easily photoionizable gas additives such as fluorobenzene when using the KrF laser and tri-n-propylamine when using the nitrogen laser. With 1 mJ KrF laser radiation, 70 - 100 discharge channels per meter electrode length could be achieved. The minimum trigger energy was W = 100 µJ, the lowest irradiance was I = 300 kW / cm 2 . When triggered by means of an N 2 laser, the energy expenditure was W = 60 μJ (see Taylor, RS et al .: "UV Radiation Triggered Rail-Gap Switches", Rev. of Scient. Instrum., Vol. 55, No. 2, 1984, pp. 52-63). However, the irradiance here was approx. I = 4 MW / cm 2 and thus significantly higher than when triggered with KrF radiation.
W. Frey und A. J. Schwab berichteten auf dem Ninth International Symposium on High Votage Engineering in Graz, Österreich, 28. Aug. - 1. Sep. 1995 über lasergetriggerte Rail-Gap-Funkenstrecken mit Startelektronen-Erzeugung durch Photoemission von Metall-Aerosol-Teilchen. Hierzu wird ein Laserstrahl geeigneter Wellenlänge und niedriger Laserenergie durch den Elektrodenzwischenraum der Funkenstrecke gelenkt. Der Innenraum der Funkenstrecke ist mit einem Gas, z. B. Ar, gefüllt, in dem Metall-Aerosol-Partikel verteilt sind. Das Laserlicht setzt durch Photoemission an den Aerosol-Partikeln Startelektronen frei, die unter geeigneten Bedingungen, wie Schaltgasdichte Innern der Funkenstrecke und anfänglicher Potentialunterschied zwischen den Elektroden, den Kurzschluß zwischen den Elektroden initiieren. Wesentlich ist, daß der startelektronenerzeugende Laserstrahl durch den Elektrodenzwischenraum geht.W. Frey and A. J. Schwab reported at Ninth International Symposium on High Votage Engineering in Graz, Austria, Aug 28 - Sep 1 1995 on laser-triggered rail gap spark gaps with starting electron generation by photoemission of metal aerosol particles. For this a laser beam is used suitable wavelength and low laser energy directed through the gap between the electrodes of the spark gap. The Interior of the spark gap is with a gas, e.g. Bar, filled, in which metal aerosol particles are distributed. The Laser light sets in on the aerosol particles through photoemission Starting electrons free, under suitable conditions, such as Switching gas-tight interior of the spark gap and more initial Potential difference between the electrodes, the short circuit initiate between the electrodes. It is essential that the starting electron generating laser beam through the Electrode gap goes.
Der Bedarf an Licht- bzw. Laserenergie zur fehlerfreien Auslösung der Funkenstrecke ist hoch. Damit einher geht der Bedarf an Triggerlichtquellen mit höherer Energie, das sich insbesondere in den Kosten für das Triggerlichtsystem niederschlägt.The need for light or laser energy for error-free triggering the spark gap is high. This goes hand in hand with the need on trigger light sources with higher energy, which in particular reflected in the cost of the trigger light system.
Daraus ergibt sich die Aufgabe, die der Erfindung zugrunde
liegt, nämlich:
Die Aufgabe wird durch ein Verfahren gemäß Anspruch 1 und mit
einer Schaltfunkenstrecke gemäß Anspruch 6 gelöst. Die
Schaltfunkenstrecke wird gemäß Anspruch 13 als Gleichspannungsschalter
oder als dynamisch beanspruchter Schalter
verwendet. The object is achieved by a method according to
In den Unteranspüchen 2 bis 5 sind vorteilhafte Verfahrensschritte
gekennzeichnet. Die Unteransprüche 7 bis 12 kennzeichnen
für die Ausführung vorteilhafte bauliche Maßnahmen,Advantageous method steps are in
Die zur Triggerung der Schaltfunkenstrecke notwendige Licht- bzw. Laserenergie ist gegenüber dem Stand der Technik sehr niedrig. Das Verfahren benötigt keine strahlfokussierenden Mittel wie Linsen und dazu notwendige Feinjustiereinrichtungen. Das Verfahren ist zur Optimierung bestehender Laserschaltsysteme ohne wesentliche Designänderung anwendbar. Besonders vorteilhaft ist die Optimierung des Schaltverhaltens von Funkenstrecken mit gleichartigen, schienenförmigen Elektroden, also Mehrkanalschalter, den sog. Railgap-Funkenstrekken. The light required to trigger the switching spark gap or laser energy is very compared to the prior art low. The method does not require a beam-focusing Means such as lenses and the necessary fine adjustment devices. The process is for the optimization of existing laser switching systems applicable without significant design change. Especially The optimization of the switching behavior is advantageous of spark gaps with similar, rail-shaped electrodes, i.e. multi-channel switches, the so-called Railgap spark gaps.
Im folgenden wird das Verfahren und die Schaltfunkenstrecke und
der Zeichnung näher erläutert.
Es zeigt:
It shows:
Die Schaltfunkenstrecke 4 ist eine Rail-Gap-Funkenstrecke, die
senkrecht zu der Achse der elektrischen Feldlinien und parallel
zu den beiden Elektroden mit einem Stickstoff-Triggerlaser 9 beleuchtet
wird. Das Aerosol ist ein Magnesium-Aerosol, dementsprechend
ist mindestens eine der beiden Opferelektroden des Aerosolgenerators
1 aus Magnesium.The switching
Entscheidend für die Anwendung der Metall-Aerosol-Triggermethode
zur Optimierung des Schaltverhaltens bestehender Systeme ist,
daß durch die Partikelbeimischung kein verfrühter Selbstdurchbruch
der Laserschalter vor der Auslösung des Triggerlasers
9 auftritt.Crucial for the application of the metal aerosol trigger method
to optimize the switching behavior of existing systems,
that no premature self-breakthrough due to the particle admixture
the laser switch before triggering the
Messungen der Selbstdurchbruchspannung der Railgap-Funkenstrecke
4 in Abhängigkeit von der Partikelkonzentration np, die
proportional zur Funkenfreauenz fF des Aerosolgenerators 1 ist,
zeigen, daß das Selbstdurchbruchverhalten der Funkenstrecke 4
von der Partikelbeimischung nicht beeinflußt wird (Fig. 5 und
6). Durch die Anwendung von Metall-Aerosol-Schaltgasen wird das
Triggerspannungsintervall nicht eingeschränkt.Measurements of the self-breakdown voltage of the rail
Mit Mg-Partikeln im Schaltgas erfolgt eine fehlerfreie Triggerung
der Funkenstrecke 4 bei Laserenergien von W = 200 nJ. Bei
dieser Triggerenergie ist die Schaltsteuerung geringer als ohne
Partikelbeimischung und einer um Faktor 1000 höheren Laserenergie,
Figur 3, rechts.Error-free triggering occurs with Mg particles in the switching gas
the
Die Bestrahlungsstärke liegt bei der geringsten untersuchten Triggerlaserenergie bei I = 300 Wcm-2 und ist damit um 4 Größenordnungen niedriger als bei bisherigen Ansätzen zur Verringerung der erforderlichen Triggerlaserenergie. Die erforderliche Laserenergie selbst ist um 3 Größenordnungen geringer.The irradiance at the lowest investigated trigger laser energy is I = 300 Wcm -2 and is therefore 4 orders of magnitude lower than with previous approaches to reduce the required trigger laser energy. The required laser energy itself is 3 orders of magnitude lower.
Die Funktionsweise der Methode ist nicht an eine bestimmte Elektrodengeometrie der Funkenstrecke gebunden. Eine gezielte Auslösung eines dynamisch beanspruchten Laserschalters hängt in erster Linie davon ab, ob bei einer bestimmten Laserenergie Startelektronen erzeugt werden können. Dabei spielt der genutzte Startladungsträgerprozeß die maßgebliche Rolle und nicht die Elektrodengeometrie. The method of operation does not depend on a specific electrode geometry tied to the spark gap. A targeted release of a dynamically stressed laser switch depends first Line depends on whether starting electrons at a certain laser energy can be generated. The used one plays Start charge carrier process the decisive role and not that Electrode geometry.
Die physikalische Grundlage der Metall-Aerosol-Triggermethode ist die hohe Quantenausbeute der Photoemission von Elektronen aus kleinen sphärischen Metallpartikeln in einer Gasatmosphäre. Sie liegt in der Größenordnung von Y > 10-4. Bei einer Bestrahlung der Partikel mit Licht genügen somit Ne = 104 Photonen um ein freibewegliches Elektron zu erzeugen.The physical basis of the metal aerosol trigger method is the high quantum yield of the photoemission of electrons from small spherical metal particles in a gas atmosphere. It is of the order of Y> 10 -4 . When the particles are irradiated with light, N e = 10 4 photons are sufficient to generate a freely mobile electron.
Als Ursache für die hohe Quantenausbeute wird die vernachlässigbare Rückstreuung von Elektronen an Gasteilchen in Richtung der Partikeloberfläche mit anschließender Absorption des Elektrons angesehen. Eine Elektronenemission in Richtung der Flächennormalen besitzt die höchste Austrittswahrscheinlichkeit.The reason for the high quantum yield is the negligible one Backscattering of electrons on gas particles in the direction the particle surface with subsequent absorption of the electron viewed. An electron emission in the direction of the surface normal has the highest probability of leaving.
Die Metallpartikel 2 werden mit Hilfe des Aerosolgenerators 1
erzeugt, der nach dem Funkenerosionsprinzip arbeitet. Zur technischen
Umsetzung der Triggermethode wird die Gaszuleitung 3 der
Schaltfunkenstrecke 4 aufgetrennt und der Funkenerosionsgenerator
1 dazwischengeschaltet, Fig. 1. Diese Art der Aerosolerzeugung
und -beimischung ist für eine Dauerbetrieb des Laserschalters
mit gleichbleibenden Schalteigenschaften geeignet. Mit
anderen Methoden der Aerosolerzeugung, wie beispielsweise der
Drahtexplosionsmethode, kann eine Langzeitstabilität der
Schalteigenschaften bei einem repetierenden Betrieb der Funkenstrecke
nicht erreicht werden.The
Im Funkenerosionsgenerator 1 entstehen die kugelförmigen Metallpartikel
2 infolge der Funkenentladungen zwischen den beiden
Opferelektroden 7, Figur 2. Die Entladung wird aus der Kapazität
CS gespeist und brennt repetierend mit der Funkenfrequenz fF. Im
Lichtbogenfußpunkt wird Elektrodenmaterial aufgeschmolzen und in
flüssiger Form in den Gasraum geschleudert, wo es kugelförmig
erstarrt und vom Gasstrom 8 in die Schaltfunkenstrecke 4
transportiert wird.The
Die Opferelektroden 7 bestehen aus dem vorgegebenen Metall. Die
Austrittsarbeit des Partikelmaterials WA muß kleiner sein als
die Photonenenergie der Triggerlaserstrahlung Wph. Um eine Sedimentation
der Partikel in der Funkenstrecke zu vermeiden, muß
der Partikeldurchmesser kleiner als Dp = 500 nm sein. Die erforderliche
Partikelkonzentration liegt in der Größenordnung von np
= 104 cm-3. Das wird mit einem Gasstrom von > 1 l/min und mit
Mg-Elektroden erreicht. Der Entladekreis des Aerosolgenerators
ist so ausgelegt, daß die Speicherkapazität CS = 20 nF ist, die
Ladespannung 1 kV beträgt und die Repetierfrequenz mindestens 5
Hz ist.The
Die Triggermethode wird an der Railgap-Funkenstrecke 4 eingesetzt
und mit der Beimischung von Magnesiumpartikeln 2 untersucht.
Die Austrittarbeit von Magnesium beträgt WA = 3,66 eV.
Die Photonenenergie des verwendeten N2-Triggerlasers 9 (λ = 337
nm) liegt mit Wph = hv = 3,68 eV leicht darüber. Der mittlere Magnesium-Partikeldurchmesser
ist Dp = 100 nm und die Partikelkonzentration
im Schaltgas np > 104 cm-3.The trigger method is used on the
Zunächst wurde aus experimentellen Gründen mit einer Schaltgasgrundmischung
von Argon und SF6 gearbeitet (Fig. 5 und 6).
Prinzipiell aber ist der Einsatz eines Mischgases für die
Funktion der Triggermethode nicht notwendig. Es kann auch ein
einkomponentiges oder höherkomponentiges Schaltgas zum Betrieb
der Schaltfunkenstrecke 4 verwendet werden.First, for experimental reasons, a basic gas mixture of argon and SF 6 was used (FIGS. 5 and 6). In principle, however, the use of a mixed gas is not necessary for the trigger method to function. A one-component or higher-component switching gas can also be used to operate the switching
Der geringe Energiebedarf zur Triggerung der Funkenstrecke 4 mit
Aerosolschaltgas wird bei der Messung der Zündverzugszeit der
Funkenstrecke 4, der Zeitdauer vom Beginn des Laserimpulses bis
zum Beginn des Spannungszusammenbruchs über der Funkenstrecke 4,
in Abhängigkeit von der Triggerlaserenergie besonders deutlich,
Fig. 3. Bei einer Grundgasmischung von 10 % SF6 in Argon, einem
Gasdruck von p = 2 barabsolut und ohne Mg-Partikelbeimischung
findet bei einer Laserenergie von W = 20 µJ nur noch sporadisch
eine Lasertriggerung statt. In mehr als 50 % aller Triggerversuche
bricht die Funkenstrecke 4 hier bei höheren Spannungswerten
erheblich nach dem Lasereinstrahlzeitpunkt von
selbst durch. Die Zündverzugszeit (Fig. 3) und die Schaltstreuung
der Funkenstrecke 4 (Jitter) (Fig. 4) sind mit 145 ns bzw.
167 ns dementsprechend hoch. The low energy requirement for triggering the
- 11
- Funkenerosionsgenerator, AerosolgeneratrorSpark erosion generator, aerosol generator
- 22nd
- MetallpartikelMetal particles
- 33rd
- Gaszuleitung, VerbindungsleitungGas supply line, connecting line
- 44th
- Schaltfunkenstrecke, Railgap-Funkenstrecke, FunkenstreckeSwitching spark gap, Railgap spark gap, spark gap
- 55
- Gaszuleitung, ZuleitungGas supply line, supply line
- 66
- SchaltgasversorgungSwitching gas supply
- 77
- Elektroden, OpferelektrodenElectrodes, sacrificial electrodes
- 88th
- GasstromGas flow
- 99
- Triggerlichtquelle, Triggerlaser, N2-TriggerlaserTrigger light source, trigger laser, N 2 trigger laser
Claims (13)
- Method of triggering a gas-insulated switching spark gap, which is subjected to a prescribed insulating gas pressure, by means of a light source, said method comprising the following steps:a spark-erosion generator (1) is incorporated in the supply line (3) for supplying an insulating gas component to the switching spark gap (4) and is subjected to a prescribed pressure,in the spark-erosion generator (1), in which there are spark discharges between two electrodes (7) - the disposable electrodes - and which generator is operated at a prescribable repeating frequency, electrode material is fused at the base of the spark arc, which is produced by the respective discharge, and centrifuged in liquid form into the intermediate space between the disposable electrodes (7), where said material solidifies to form small spherical, suspendable particles - called metal aerosol - which do not sink in the traversing insulating gas component, said material is entrained by the flow of gas and transported to the switching spark gap (4),the intermediate space between the electrodes of the spark gap is at least partially illuminated by a light source (9) of a predetermined wavelength - the triggering light source - for the purpose of ignition, whereby the starting electrons for forming at least one discharge channel between the electrodes of the switching spark gap (4) are released from the metal aerosol particles, present in the insulating gas, at the prescribed time via photoemission, andthe axis of the triggering light beam (9) extend centrally through the space between the electrodes of the switching spark gap (4).
- Method according to claim 1, characterised in that a one-component insulating gas, such as SF6 or N2, or an insulating gas which has at least two components, such as an N2/Ar mixture or air in the simplest case, is used in the switching spark gap (4).
- Method according to claim 2, characterised in that a mixture of 98 - 86 % Ar and, complementary thereto, SF6 is used as the insulating or switching gas, and the gas component Ar, which is not electronegative, flows through the aerosol generator (1).
- Method according to claim 3, characterised in that an incoherent light source, which is suitable for the photoemission of electrons from aerosol particles, is used as the triggering light source (9).
- Method according to claim 3, characterised in that a laser is used as the triggering light source (9), which laser releases electrons from particles of the insulating gas aerosol by photoemission.
- Apparatus for accomplishing the method according to the method claims 1 to 5, comprising a light-triggered switching spark gap and having the following features:during transverse triggering, the axis of the light beam of the triggering light source (9) extends through a light-permeable window, such as quartz glass, in the wall of the switching spark gap (4) and through the centre of the intermediate space between the electrodes or,during longitudinal triggering, said axis extends through such a window in one of the two electrodes,a spark-erosion generator (1) communicates directly with a switching gas supply means (6) provided with pressure regulating arrangements and, moreover, is connected to the chamber of the switching spark gap (4) via a gas pressure line (3),there is at least one additional supply line (5) for an additional insulating gas component in the connection line (3) between the spark-erosion generator (1) and the spark chamber of the switching spark gap (4), so that an insulating gas, which has at least one component, can be supplied to the switching spark gap (4), andat least one of the two electrodes of the spark-erosion generator (1) is configured as a disposable electrode, which is the source for the metal aerosol, and it is formed from an easily ablatable, metallic material or is coated therewith.
- Apparatus according to claim 6, characterised in that the electrodes of the switching spark gap (4) are designed in such a manner that, in the connected position, there is at least one arc channel between the two electrodes.
- Apparatus according to claim 7, characterised in that the two electrodes of the switching spark gap (4) are identical, rail-like, and lie parallel (rail gap) to each other.
- Apparatus according to claim 8, characterised in that the triggering light source (9) is an incoherently radiating light source, such as a UV light source for example, the wavelength of which source is smaller than the long-wave limit for the photoemission of electrons from the aerosol particles, and it radiates in a prescribed intensity.
- Apparatus according to claim 9, characterised in that the triggering light source (9) is a laser, such as a nitrogen laser for example.
- Apparatus according to claim 10, characterised in that the source for the metal particles of the aerosol is from magnesium or copper or a metal which otherwise easily dispenses metal particles.
- Apparatus according to claim 11, characterised in that the gas supply line (3) at the spark-erosion generator (1) terminates directly at the intermediate space between the two disposable electrodes (7).
- Use of the switching spark gap which is operated according to the method claims 1 to 5 and formed according to the apparatus claims 6 to 12, characterised in that the switching spark gap (4) is used as a direct-voltage switch or as a dynamically loaded switch.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19718660 | 1997-05-02 | ||
DE19718660A DE19718660C2 (en) | 1997-05-02 | 1997-05-02 | Process for triggering a gas-insulated switching spark gap and device for using the process |
PCT/EP1998/001877 WO1998050990A1 (en) | 1997-05-02 | 1998-04-01 | Method for triggering a gas insulated switching spark gap and device using said method |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0979548A1 EP0979548A1 (en) | 2000-02-16 |
EP0979548B1 true EP0979548B1 (en) | 2001-03-14 |
Family
ID=7828491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98919199A Expired - Lifetime EP0979548B1 (en) | 1997-05-02 | 1998-04-01 | Method for triggering a gas insulated switching spark gap and device using said method |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0979548B1 (en) |
JP (1) | JP2000513139A (en) |
DE (2) | DE19718660C2 (en) |
WO (1) | WO1998050990A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7663856B2 (en) | 2004-01-13 | 2010-02-16 | Siemens Aktiengesellschaft | Spark gap comprising an optically triggered power semiconductor component |
US11769991B2 (en) | 2021-10-05 | 2023-09-26 | Unison Industries, Llc | Glow discharge tube with a set of electrodes within a gas-sealed envelope |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004002582A1 (en) * | 2004-01-13 | 2005-08-04 | Siemens Ag | Optically ignited spark gap |
JP6112864B2 (en) * | 2009-11-16 | 2017-04-12 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Overvoltage protection for defibrillators |
US10103519B2 (en) | 2016-08-17 | 2018-10-16 | General Electric Company | Krypton-85-free spark gap with photo-emission |
US10916919B2 (en) | 2016-08-18 | 2021-02-09 | General Electric Company | Krypton-85-free spark gap with a discharge probe |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4604554A (en) * | 1984-06-05 | 1986-08-05 | The United States Of America As Represented By The Secretary Of The Air Force | Triggered spark gap discharger |
JPS6481185A (en) * | 1987-09-24 | 1989-03-27 | Hitachi Ltd | Vacuum trigger gap |
US4978893A (en) * | 1988-09-27 | 1990-12-18 | The United States Of American As Epresented By The United States The Department Of Energy | Laser-triggered vacuum switch |
-
1997
- 1997-05-02 DE DE19718660A patent/DE19718660C2/en not_active Expired - Fee Related
-
1998
- 1998-04-01 EP EP98919199A patent/EP0979548B1/en not_active Expired - Lifetime
- 1998-04-01 DE DE59800537T patent/DE59800537D1/en not_active Expired - Fee Related
- 1998-04-01 WO PCT/EP1998/001877 patent/WO1998050990A1/en active IP Right Grant
- 1998-04-01 JP JP10547651A patent/JP2000513139A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7663856B2 (en) | 2004-01-13 | 2010-02-16 | Siemens Aktiengesellschaft | Spark gap comprising an optically triggered power semiconductor component |
US11769991B2 (en) | 2021-10-05 | 2023-09-26 | Unison Industries, Llc | Glow discharge tube with a set of electrodes within a gas-sealed envelope |
Also Published As
Publication number | Publication date |
---|---|
JP2000513139A (en) | 2000-10-03 |
DE59800537D1 (en) | 2001-04-19 |
DE19718660A1 (en) | 1998-11-19 |
WO1998050990A1 (en) | 1998-11-12 |
DE19718660C2 (en) | 2002-08-14 |
EP0979548A1 (en) | 2000-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0140005B1 (en) | Apparatus for producing a plasma source having a higher radiation insensity in the x-ray range | |
DE2804393C2 (en) | Method for generating and accelerating electrons or ions in a discharge vessel, as well as associated particle accelerator and further associated applications of the method | |
DE4108474C2 (en) | ||
DE10151080C1 (en) | Device for producing extreme ultraviolet radiation used in the semiconductor industry comprises a discharge chamber surrounded by electrode housings through which an operating gas flows under a predetermined pressure | |
DE3721529A1 (en) | TRIGGERING AND ISOLATION OF PSEUDO SPARK SWITCHES | |
EP1036488B1 (en) | Method and device for producing extreme ultraviolet and soft x-rays from a gaseous discharge | |
DE1789071B1 (en) | Device for the investigation of plasma physical processes | |
DE10256663B3 (en) | Gas discharge lamp for EUV radiation | |
EP0979548B1 (en) | Method for triggering a gas insulated switching spark gap and device using said method | |
Anders et al. | High ion charge states in a high‐current, short‐pulse, vacuum arc ion source | |
DE2602078A1 (en) | LOW PRESSURE GAS DISCHARGE TUBE WITH IGNITION DEVICE | |
DE602004008091T2 (en) | ACCELERATOR WITH PULSED PLASMA AND OPERATING METHOD THEREFOR | |
DE3942307C2 (en) | ||
EP1384394B1 (en) | Method for the generation of far ultraviolet or soft x-ray radiation | |
WO1989010003A1 (en) | Plasma x-ray tube, in particular for x-ray preionizing of gas lasers, and use as electron gun | |
DE2704434A1 (en) | LOW IMPEDANCE ELECTRON-BEAM CONTROLLED DISCHARGE SWITCHING DEVICE | |
DE3046687A1 (en) | ELECTRON BEAM SWITCHED DISCHARGE FOR FAST-PULSE LASERS | |
EP3262671A1 (en) | X-ray source for ionising of gases | |
DE2657680A1 (en) | GAS LASER DEVICE | |
EP1168895B9 (en) | Pulse device with a system for radiation generation and method for radiation generation | |
DE102013001940B4 (en) | Device and method for generating EUV and / or soft X-rays | |
DE2824775A1 (en) | PROCEDURE FOR INTERRUPTING DC CURRENT AND ARRANGEMENT FOR PERFORMING THE PROCEDURE | |
DE1947077C3 (en) | Controllable low pressure gas discharge tubes | |
Frey | Low-intensity laser-triggering of rail-gaps with magnesium-aerosol switching-gases | |
DE10051986A1 (en) | Hollow cathode for use in a gas discharge process for ion stripping |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19990730 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20000517 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 59800537 Country of ref document: DE Date of ref document: 20010419 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20010612 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20030121 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20030429 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040126 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040401 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041231 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051101 |