EP0979548B1 - Verfahren zur triggerung einer gasisolierten schaltfunkenstrecke und vorrichtung zur anwendung des verfahrens - Google Patents
Verfahren zur triggerung einer gasisolierten schaltfunkenstrecke und vorrichtung zur anwendung des verfahrens Download PDFInfo
- Publication number
- EP0979548B1 EP0979548B1 EP98919199A EP98919199A EP0979548B1 EP 0979548 B1 EP0979548 B1 EP 0979548B1 EP 98919199 A EP98919199 A EP 98919199A EP 98919199 A EP98919199 A EP 98919199A EP 0979548 B1 EP0979548 B1 EP 0979548B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- spark gap
- switching
- electrodes
- triggering
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 34
- 239000007789 gas Substances 0.000 claims description 46
- 239000000443 aerosol Substances 0.000 claims description 27
- 239000002245 particle Substances 0.000 claims description 26
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 238000009760 electrical discharge machining Methods 0.000 claims description 10
- 230000001960 triggered effect Effects 0.000 claims description 10
- 239000011777 magnesium Substances 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 239000002923 metal particle Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 239000007772 electrode material Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 1
- 230000000295 complement effect Effects 0.000 claims 1
- 229910052802 copper Inorganic materials 0.000 claims 1
- 239000010949 copper Substances 0.000 claims 1
- 239000007769 metal material Substances 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 230000015556 catabolic process Effects 0.000 description 11
- 230000005855 radiation Effects 0.000 description 8
- 239000002800 charge carrier Substances 0.000 description 7
- 230000003068 static effect Effects 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000006862 quantum yield reaction Methods 0.000 description 2
- 101100421200 Caenorhabditis elegans sep-1 gene Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- PYLWMHQQBFSUBP-UHFFFAOYSA-N monofluorobenzene Chemical compound FC1=CC=CC=C1 PYLWMHQQBFSUBP-UHFFFAOYSA-N 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T2/00—Spark gaps comprising auxiliary triggering means
Definitions
- the invention relates to a method for triggering a switching spark gap and a switching spark gap which is operated according to the method and is used as a DC voltage switch or as a dynamically stressed switch.
- the goal is for high voltage discharges in the most diverse Processes to have a switch available to them a predetermined time reliably in the conductive state is transferable.
- a solution is known in which the insulating gas in the spark gap chamber is easily photoionizable, gaseous additives (fluorene scene) are added, which is then more suitable by irradiation with a light source Wavelength via photoionization the starting electrons for the Clear the formation of the ignition channel (see Dougal, R. A. et al .: "Fundamental Processes in Laser-Triggered Electrical Breakdown of Gases ", J. Appl. Phys., Vol. 17 (1984), p. 903 - 918, printed in Great Britain).
- trigger light sources As light sources, the spark gap in the conductive state offset, so-called trigger light sources, have become incoherent Light sources such as UV lamps or coherent light sources proven like lasers. The latter is under the term laser triggering known.
- JP 1-81 185 A describes a method for triggering a Switching spark gap and a corresponding device are known.
- a spark arises between the electrodes 6 and 1 by partially illuminating the space between the electrodes with a light source 14 of predetermined wavelength ionized metal vapor generated.
- auxiliary spark gap G5 causes ultraviolet radiation that ignites a trigger spark gap G4, which in turn leads to the ignition of the switching spark gap G1.
- the temporally targeted resolution electrical breakdown in a spark gap the irradiation of the electrode gap or the electrode surface achieved with laser light.
- the one for triggering the Spark gap required laser energy depends on the used Mechanism of photoelectric charge generation and on the operating mode of the spark gap.
- the voltage to be isolated is constantly present at DC voltage switches before the spark gap is triggered.
- An electrical breakdown in a gas-insulated homogeneous field arrangement can only take place if the effective impact ionization coefficient ⁇ eff in the gas is greater than zero and consequently an avalanche-like increase in freely movable charge carriers as a result of the impact ionization can take place.
- ⁇ eff ⁇ 0 applies. Since the DC switch should isolate reliably before the trigger event, its operating voltage must be below its static breakdown voltage U DC .
- the mobile charge carrier of the plasma can thus only by a simultaneous absorption of multiple photons, by the so-called M ulti p hotonen i onisation (MPI) can be generated (see Gray Morgan, C .: “Laser-Induced Breakdown of Gases", Rep. Prog. Phys., Vol. 38, 1975, p. 621-665).
- Multiphoton ionization is a strongly non-linear effect that only appears at high irradiance levels.
- a conductive plasma which has a charge carrier density of n> 10 16 cm -3 sufficient for triggering a DC voltage switch (Dougal, RA et al .: “Fundamental Processes in the Laser-Triggered Electrical Breakdown of Gases", J. Appl. Phys ., Vol. 60, No.12, 1986, p. 4240 - 4247)
- the required laser energies are W> 100 mJ.
- the laser beam is focused on the electrode surface the trigger energies are about an order of magnitude less than with a focus in the gas volume between the electrodes.
- Evaporated metal from electrode material increases here the conductivity of the plasma. In addition, they are freely movable Electrons from photoemission from the electrode surface triggered.
- the trigger laser energies to be used are in the range of 1 mJ and the irradiance levels are a few MW / cm 2 . It is not necessary to focus the laser beam.
- the electrode surface is illuminated, electrons are provided by photoemission from the metal surface in addition to the charge carriers formed in the gas volume.
- the trigger laser energy to be used is then, similar to DC voltage switches, lower than when the interelectrode space is only illuminated.
- a reduction in the trigger laser energy required was achieved by adding easily photoionizable gas additives such as fluorobenzene when using the KrF laser and tri-n-propylamine when using the nitrogen laser.
- easily photoionizable gas additives such as fluorobenzene when using the KrF laser and tri-n-propylamine when using the nitrogen laser.
- the lowest irradiance 300 kW / cm 2 .
- the need for light or laser energy for error-free triggering the spark gap is high. This goes hand in hand with the need on trigger light sources with higher energy, which in particular reflected in the cost of the trigger light system.
- the object is achieved by a method according to claim 1 and with a switching spark gap according to claim 6.
- the switching spark gap is used according to claim 13 as a DC voltage switch or as a dynamically stressed switch.
- the light required to trigger the switching spark gap or laser energy is very compared to the prior art low.
- the method does not require a beam-focusing Means such as lenses and the necessary fine adjustment devices.
- the process is for the optimization of existing laser switching systems applicable without significant design change. Especially The optimization of the switching behavior is advantageous of spark gaps with similar, rail-shaped electrodes, i.e. multi-channel switches, the so-called Railgap spark gaps.
- the switching spark gap 4 is a rail gap spark gap that perpendicular to the axis of the electric field lines and parallel illuminated to the two electrodes with a nitrogen trigger laser 9 becomes.
- the aerosol is a magnesium aerosol, accordingly is at least one of the two sacrificial electrodes of the aerosol generator 1 made of magnesium.
- the trigger voltage interval is not restricted by the use of metal aerosol switching gases.
- the required laser energy itself is 3 orders of magnitude lower.
- the method of operation does not depend on a specific electrode geometry tied to the spark gap.
- a targeted release of a dynamically stressed laser switch depends first Line depends on whether starting electrons at a certain laser energy can be generated. The used one plays Start charge carrier process the decisive role and not that Electrode geometry.
- the reason for the high quantum yield is the negligible one Backscattering of electrons on gas particles in the direction the particle surface with subsequent absorption of the electron viewed.
- An electron emission in the direction of the surface normal has the highest probability of leaving.
- the metal particles 2 are created using the aerosol generator 1 generated, which works on the spark erosion principle.
- the trigger method is the gas supply line 3 Switching spark gap 4 separated and the spark erosion generator 1 interposed, Fig. 1.
- This type of aerosol generation and admixture is for continuous operation of the laser switch suitable with constant switching characteristics.
- other methods of aerosol generation such as the Wire explosion method, long-term stability of the Switching properties during repeated operation of the spark gap cannot be reached.
- the spherical metal particles 2 arise in the spark erosion generator 1 as a result of the spark discharges between the two sacrificial electrodes 7, FIG. 2.
- the discharge is fed from the capacitance C S and burns repeatedly with the spark frequency f F.
- electrode material is melted and flung in liquid form into the gas space, where it solidifies in a spherical shape and is transported by the gas stream 8 into the switching spark gap 4.
- the sacrificial electrodes 7 consist of the specified metal.
- the work function of the particle material W A must be smaller than the photon energy of the trigger laser radiation W ph .
- the trigger method is used on the Railgap spark gap 4 and is investigated with the addition of magnesium particles 2.
- a basic gas mixture of argon and SF 6 was used (FIGS. 5 and 6). In principle, however, the use of a mixed gas is not necessary for the trigger method to function.
- a one-component or higher-component switching gas can also be used to operate the switching spark gap 4.
- the spark gap 4 breaks through automatically at higher voltage values considerably after the time of laser irradiation.
- the ignition delay time (FIG. 3) and the switching spread of the spark gap 4 (jitter) (FIG. 4) are correspondingly high at 145 ns and 167 ns, respectively.
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
- Lasers (AREA)
Description
Es zeigt:
- 1
- Funkenerosionsgenerator, Aerosolgeneratror
- 2
- Metallpartikel
- 3
- Gaszuleitung, Verbindungsleitung
- 4
- Schaltfunkenstrecke, Railgap-Funkenstrecke, Funkenstrecke
- 5
- Gaszuleitung, Zuleitung
- 6
- Schaltgasversorgung
- 7
- Elektroden, Opferelektroden
- 8
- Gasstrom
- 9
- Triggerlichtquelle, Triggerlaser, N2-Triggerlaser
Claims (13)
- Verfahren zur Triggerung einer gasisolierten und unter vorgegebenen Isoliergasdruck gestellten Schaltfunkenstrecke mit einer Lichtquelle, bestehend aus den Schritten:ein Funkenerosionsgenerator (1) wird in die Zuleitung (3) einer Isoliergaskomponente zur Schaltfunkenstrecke (4) eingebaut und unter vorgegebenen Druck gestellt,im Funkenerosionsgenerator (1), in dem Funkenentladungen zwischen zwei Elektroden (7), den Opferelektroden, stattfinden und der mit einer vorgebbaren Repetierfrequenz betrieben wird, wird am Fußpunkt des durch die jeweilige Entladung erzeugten Funkenlichtbogens Elektrodenmaterial aufgeschmolzen und in flüssiger Form in den Zwischenraum der Opferelektroden (7) geschleudert, wo es zu kleinen kugelförmigen, in der durchströmenden Isoliergaskomponente nicht absinkenden, schwebefähigen Partikeln, Metall-Aerosol genannt, erstarrt, von dem Gasstrom mitgerissen und zur Schaltfunkenstrecke (4) transportiert wird,der Zwischenraum zwischen den Elektroden der Funkenstrecke wird zum Zwecke der Zündung mit einer Lichtquelle (9) vorbestimmter Wellenlänge, der Triggerlichtquelle, zumindest teilausgeleuchtet, wodurch die Startelektronen zum Aufbau mindestens eines Entladungskanals zwischen den Elektroden der Schaltfunkenstrecke (4) zum vorgegebenen Zeitpunkt über Photoemission aus den im Isoliergas vorhandenen Metall-Aerosol-Partikeln freigesetzt werden,die Achse des Triggerlichtstrahls (9)wird zentral durch den Raum zwischen den Elektroden der Schaltfunkenstrecke (4) gelenkt.
- Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß
der Schaltfunkenstrecke (4) ein einkomponentiges Isoliergas, wie SF6 oder N2, oder ein mindestens zweikomponentiges Isoliergas, wie ein N2/Ar-Gemisch oder Luft im einfachsten Fall, verwendet wird. - Verfahren nach Anspruch 2,
dadurch gekennzeichnet, daßals Isolier- oder Schaltgas eine Mischung aus 98 - 86 % Ar und komplementär dazu SF6 verwendet wird, unddie nichtelektronegative Gaskomponente Ar durch den Aerosolgenerator (1) strömt. - Verfahren nach Anspruch 3,
dadurch gekennzeichnet, daß
als Triggerlichtquelle (9) eine inkohärente, zur Photoemission von Elektronen aus Aerosolpartikeln geeignete Lichtquelle verwendet wird . - Verfahren nach Anspruch 3,
dadurch gekennzeichnet, daß
als Triggerlichtquelle (9) ein Laser verwendet wird, der durch Photoemission aus Partikel des Isoliergasaerosols Elektronen auslöst. - Vorrichtung zur Durchführung des Verfahrens nach den Verfahrensansprüchen 1 bis 5, bestehend aus einer lichtgetriggerten Schaltfunkenstrecke, mit folgenden Merkmalen:bei Quertriggerung geht die Achse des Lichtstrahls der Triggerlichtquelle (9) durch ein lichtdurchlässiges Fenster, wie Quarzglas, in der Wand der Schaltfunkenstrecke (4) und durch das Zentrum des Elektrodenzwischenraums oderbei Längstriggerung durch ein solches Fenster in einer der beiden Elektroden,ein Funkenerosionsgenerator (1) unmittelbar an eine Schaltgasversorgung (6) mit Druckreguliereinrichtungen angeschlossen und weiter über eine Druckgasleitung (3) an die Kammer der Schaltfunkenstrecke (4) gekoppelt ist,in der Verbindungsleitung (3) zwischen dem Funkenerosionsgenerator (1) und der Funkenkammer der Schaltfunkenstrecke (4) mindestens eine weitere Zuleitung (5) für eine weitere Isoliergaskomponente ist, so daß ein mindestens einkomponentiges Isoliergas der Schaltfunkenstrecke (4) zugeführt werden kann,mindestens eine der beiden Elektroden des Funkenerosionsgenerators (1) als Opferelektrode ausgebildet ist, welche die Quelle für das Metall-Aerosol ist, und aus einem leicht ablatierbaren, metallischen Material besteht oder damit beschichtet ist.
- Vorrichtung nach Anspruch 6,
dadurch gekennzeichnet, daß
die Elektroden der Schaltfunkenstrecke (4) derart gestaltet sind, daß im durchgeschalteten Zustand mindestens ein Lichtbogenkanal zwischen den beiden Elektroden besteht. - Vorrichtung nach Anspruch 7,
dadurch gekennzeichnet, daß
die beiden Elektroden der Schaltfunkenstrecke (4) gleich, schienenförmig sind und parallel (Rail-Gap) zueinander liegen. - Vorrichtung nach Anspruch 8,
dadurch gekennzeichnet, daß
die Triggerlichtquelle (9) eine inkohärent strahlende Lichtquelle ist wie z. B. eine UV-Lichtquelle ist, deren Wellenlänge geringer als die langwellige Grenze für Photoemission von Elektronen aus den Aerosolpartikel ist, und in vorgegebener Intensität abstrahlt. - Vorrichtung nach Anspruch 9,
dadurch gekennzeichnet, daß
die Triggerlichtquelle (9) ein Laser wie z. B. ein Stickstofflaser ist. - Vorrichtung nach Anspruch 10,
dadurch gekennzeichnet, daß
die Quelle für die Metallpartikel des Aerosols aus Magnesium oder Kupfer oder einem sonst leicht Metallpartikel spendenden Metall ist. - Vorrichtung nach Anspruch 11,
dadurch gekennzeichnet, daß
die Gaszuführung (3) am Funkenerosionsgenerator (1) unmittelbar am Zwischenraum der beiden Opferelektroden (7) mündet. - Verwendung der Schaltfunkenstrecke, die nach den Verfahrensansprüche 1 bis 5 betrieben wird und gemäß den Vorrichtungsansprüchen 6 bis 12 aufgebaut ist,
dadurch gekennzeichnet, daß
die Schaltfunkenstrecke (4) als Gleichspannungsschalter oder als dynamisch beanspruchter Schalter verwendet wird.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19718660 | 1997-05-02 | ||
DE19718660A DE19718660C2 (de) | 1997-05-02 | 1997-05-02 | Verfahren zur Triggerung einer gasisolierten Schaltfunkenstrecke und Vorrichtung zur Anwendung des Verfahrens |
PCT/EP1998/001877 WO1998050990A1 (de) | 1997-05-02 | 1998-04-01 | Verfahren zur triggerung einer gasisolierten schaltfunkenstrecke und vorrichtung zur anwendung des verfahrens |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0979548A1 EP0979548A1 (de) | 2000-02-16 |
EP0979548B1 true EP0979548B1 (de) | 2001-03-14 |
Family
ID=7828491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98919199A Expired - Lifetime EP0979548B1 (de) | 1997-05-02 | 1998-04-01 | Verfahren zur triggerung einer gasisolierten schaltfunkenstrecke und vorrichtung zur anwendung des verfahrens |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0979548B1 (de) |
JP (1) | JP2000513139A (de) |
DE (2) | DE19718660C2 (de) |
WO (1) | WO1998050990A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7663856B2 (en) | 2004-01-13 | 2010-02-16 | Siemens Aktiengesellschaft | Spark gap comprising an optically triggered power semiconductor component |
US11769991B2 (en) | 2021-10-05 | 2023-09-26 | Unison Industries, Llc | Glow discharge tube with a set of electrodes within a gas-sealed envelope |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004002582A1 (de) * | 2004-01-13 | 2005-08-04 | Siemens Ag | Optisch gezündete Funkenstrecke |
JP6112864B2 (ja) * | 2009-11-16 | 2017-04-12 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 除細動器に関する過電圧保護 |
US10103519B2 (en) | 2016-08-17 | 2018-10-16 | General Electric Company | Krypton-85-free spark gap with photo-emission |
US10916919B2 (en) | 2016-08-18 | 2021-02-09 | General Electric Company | Krypton-85-free spark gap with a discharge probe |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4604554A (en) * | 1984-06-05 | 1986-08-05 | The United States Of America As Represented By The Secretary Of The Air Force | Triggered spark gap discharger |
JPS6481185A (en) * | 1987-09-24 | 1989-03-27 | Hitachi Ltd | Vacuum trigger gap |
US4978893A (en) * | 1988-09-27 | 1990-12-18 | The United States Of American As Epresented By The United States The Department Of Energy | Laser-triggered vacuum switch |
-
1997
- 1997-05-02 DE DE19718660A patent/DE19718660C2/de not_active Expired - Fee Related
-
1998
- 1998-04-01 EP EP98919199A patent/EP0979548B1/de not_active Expired - Lifetime
- 1998-04-01 DE DE59800537T patent/DE59800537D1/de not_active Expired - Fee Related
- 1998-04-01 WO PCT/EP1998/001877 patent/WO1998050990A1/de active IP Right Grant
- 1998-04-01 JP JP10547651A patent/JP2000513139A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7663856B2 (en) | 2004-01-13 | 2010-02-16 | Siemens Aktiengesellschaft | Spark gap comprising an optically triggered power semiconductor component |
US11769991B2 (en) | 2021-10-05 | 2023-09-26 | Unison Industries, Llc | Glow discharge tube with a set of electrodes within a gas-sealed envelope |
Also Published As
Publication number | Publication date |
---|---|
JP2000513139A (ja) | 2000-10-03 |
DE59800537D1 (de) | 2001-04-19 |
DE19718660A1 (de) | 1998-11-19 |
WO1998050990A1 (de) | 1998-11-12 |
DE19718660C2 (de) | 2002-08-14 |
EP0979548A1 (de) | 2000-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0140005B1 (de) | Vorrichtung zur Erzeugung einer Plasmaquelle mit hoher Strahlungsintensität in Röntgenbereich | |
DE2804393C2 (de) | Verfahren zum Erzeugen und Beschleunigen von Elektronen bzw. Ionen in einem Entladungsgefäß, sowie dazugehöriger Teilchenbeschleuniger und ferner dazugehörige Anwendungen des Verfahrens | |
DE4108474C2 (de) | ||
DE10151080C1 (de) | Einrichtung und Verfahren zum Erzeugen von extrem ultravioletter (EUV-)Strahlung auf Basis einer Gasentladung | |
DE3721529A1 (de) | Triggerung und isolation von pseudofunkenschaltern | |
EP1036488B1 (de) | Vorrichtung und verfahren zur erzeugung von extrem-ultraviolettstrahlung und weicher röntgenstrahlung aus einer gasentladung | |
DE1789071B1 (de) | Vorrichtung zur Untersuchung plasmaphysikalischer Vorgaenge | |
DE10256663B3 (de) | Gasentladungslampe für EUV-Strahlung | |
EP0979548B1 (de) | Verfahren zur triggerung einer gasisolierten schaltfunkenstrecke und vorrichtung zur anwendung des verfahrens | |
Anders et al. | High ion charge states in a high‐current, short‐pulse, vacuum arc ion source | |
DE2602078A1 (de) | Niederdruck-gasentladungsrohr mit zuendeinrichtung | |
DE602004008091T2 (de) | Beschleuniger mit gepulstem plasma und betriebsverfahren dazu | |
DE3942307C2 (de) | ||
EP1384394B1 (de) | Verfahren zum erzeugen von extrem-ultravioletter strahlung oder weicher röntgenstrahlung | |
WO1989010003A1 (en) | Plasma x-ray tube, in particular for x-ray preionizing of gas lasers, and use as electron gun | |
DE2704434A1 (de) | Elektronenstrahlgesteuerte entladungsschaltvorrichtung niedriger impedanz | |
DE3046687A1 (de) | Elektronenstrahlgeschaltete entladung fuer schnellgepulste laser | |
EP3262671A1 (de) | Röntgenquelle zur ionisierung von gasen | |
DE2657680A1 (de) | Gaslaservorrichtung | |
EP1168895B9 (de) | Pulsbare Vorrichtung mit einer Anordnung zur Erzeugung von Strahlung sowie Verfahren zur Erzeugung von Strahlung | |
DE102013001940B4 (de) | Vorrichtung und Verfahren zur Erzeugung von EUV-und/oder weicher Röntgenstrahlung | |
DE2824775A1 (de) | Verfahren zur unterbrechung von gleichstrom und anordnung zur durchfuehrung des verfahrens | |
DE1947077C3 (de) | Steuerbare Niederdruck Gasentla dungsrohre | |
Frey | Low-intensity laser-triggering of rail-gaps with magnesium-aerosol switching-gases | |
DE10051986A1 (de) | Verfahren zum Strippen von Ionen in einer aus einem Gasentladungsplasma bestehenden Umladestrecke und Vorrichtung zur Durchführung des Verfahrens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19990730 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20000517 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 59800537 Country of ref document: DE Date of ref document: 20010419 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20010612 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20030121 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20030429 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040126 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040401 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041231 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051101 |