EP0936320B1 - Betonbauelement - Google Patents
Betonbauelement Download PDFInfo
- Publication number
- EP0936320B1 EP0936320B1 EP99102328A EP99102328A EP0936320B1 EP 0936320 B1 EP0936320 B1 EP 0936320B1 EP 99102328 A EP99102328 A EP 99102328A EP 99102328 A EP99102328 A EP 99102328A EP 0936320 B1 EP0936320 B1 EP 0936320B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- concrete
- member according
- shell
- concrete member
- structural
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B2/00—Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
- E04B2/84—Walls made by casting, pouring, or tamping in situ
- E04B2/86—Walls made by casting, pouring, or tamping in situ made in permanent forms
- E04B2/8611—Walls made by casting, pouring, or tamping in situ made in permanent forms with spacers being embedded in at least one form leaf
- E04B2/8617—Walls made by casting, pouring, or tamping in situ made in permanent forms with spacers being embedded in at least one form leaf with spacers being embedded in both form leaves
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/16—Load-carrying floor structures wholly or partly cast or similarly formed in situ
- E04B5/32—Floor structures wholly cast in situ with or without form units or reinforcements
- E04B5/36—Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor
- E04B5/38—Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor with slab-shaped form units acting simultaneously as reinforcement; Form slabs with reinforcements extending laterally outside the element
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/04—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
- E04C2/06—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
Definitions
- the invention relates to a concrete building element with a concrete shell and elements for connection the concrete shell with a plate element arranged at a distance from the concrete shell, wherein the connecting elements are cast into the concrete shell first reinforcement strands include and poured further reinforcement strands in the concrete shell are.
- the present invention provides a new concrete component that can be used as lost formwork of the type mentioned above, which is compared to components Transport and assemble according to the state of the art with less effort leaves.
- the concrete structural element according to the invention that solves this problem is characterized in that that as further reinforcement strands only such reinforcement strands are cast in, which form the first reinforcement strands to form a single one cross mesh reinforcement grid.
- concrete components with reduced concrete shells can be made produce by a reinforcement grid at least partially through the connecting elements is formed.
- the state of the art in addition to the first reinforcement strands cast in reinforcement mesh required more space and a corresponding large plate thickness.
- the additional reinforcement strands are the connecting elements when pouring the concrete shell at a distance from Spacers holding the scarf bottom are formed.
- parts of the Reinforcement grid has a double function.
- the connecting elements are preferably through lattice girders and the first reinforcement strands formed by straps of the lattice girders.
- the concrete component is a double-wall component with another concrete shell having the reinforcement grid mentioned as a plate element.
- the concrete exhibits a shrinkage crack formation counteracting, in particular by plastic fibers formed fiber additive, wherein the thickness of the concrete shell or further concrete shell below about 40 mm, preferably is in the range of 25 to 30 mm.
- the grid length is 20 to 40 cm, and there are square grid areas provided.
- the fiber dimensions and the fiber concentrations are chosen such that Shrinkage crack widths of less than 0.04 mm result, with the strength of the reinforcement grid and the shell thickness are provided in such a way that the concrete pressure resilience the concrete chute or further concrete shell from the crack size 0 to the crack size from drops about 0.04 mm by less than 10%.
- Such a small waste can in particular then achieve when the ratio of the concrete shell thickness to the grid dimension is less than 0.1 and in particular is about 0.08.
- Fiber lengths of 4 to 18 mm, preferably with a length of 6 mm, are preferably used. used.
- the fiber length should in particular be smaller than the cross-sectional dimensions of the first reinforcement strands or / and further reinforcement strands. In this case when the reinforcement grid is pressed into the poured concrete up to the stop against the spacers or when pressing in the lattice girders together with the spacers an even fiber distribution is maintained in the concrete. With longer ones Fibers would compress in the direction of insertion before the reinforcement strands result, while behind it a lack of fibers favoring the formation of shrinkage prevails.
- the fiber mass content in the concrete shell or further concrete shell is preferably below 5 kg / m 3 . Such an amount is sufficient to limit the shrinkage cracking or shrinkage cracking to the above-mentioned level.
- the fiber tensile strength T is preferably in the range from 300 to 400 N / mm 2 , in particular approximately 350 N / mm 2 , with a concrete compressive strength P without fiber reinforcement between 25 and 35 N / mm 2 .
- the ratio of the fiber tensile strength T to the concrete compressive strength P is preferably chosen to be less than 15.
- FIG. 1 shows a concrete building element according to the prior art with the Reference numerals 1 'and 2' each denote 5 cm thick concrete slabs, which are connected via lattice girders 3 ' are connected to an 18 cm thick double wall component.
- Into the concrete slabs 1 ' and 2 ' is a reinforcement grid 20 or 21 with reinforcing bars crossing each other cast.
- reference numerals 1 and 2 denote concrete slabs, the thickness of which is 30 mm in the exemplary embodiment shown.
- the concrete slabs 1 and 2 are over Lattice girder 3, the straps 4 and 5 are cast into the concrete slabs, connected to each other.
- the straps 4 and 5 are further from in forming a square grid crossed the concrete cast reinforcement strands 6 or 7.
- the grid length R is in the embodiment shown 35 cm. With 8 are on the reinforcement strands 6 and 7 attached, to be placed on a formwork support frames.
- the distance between the concrete slabs 1 and 2 is in the embodiment shown 40 mm.
- Plastic fibers are embedded in the concrete of the plates 1 and 2.
- the plastic fibers are acrylic fibers, preferably polyacrylonitrile fibers.
- the plastic fibers have a length of 6 mm and are not profiled.
- the length of the fibers is less than 1 g / km.
- the fiber tensile strength T is about 350 N / mm 2 , the fiber dosage just below 5 kg / m 3 . At this dosage, the tensile strength of the concrete is not significantly increased by the fibers. The increase is less than 10%.
- the concrete used, without the fibers, has a concrete compressive strength P in the range from 35 to 35 N / mm 2 after complete hardening.
- the ratio of fiber tensile strength T / concrete compressive strength P is less than 15.
- FIG. 3 where the concrete component according to 1 and 2 is shown when used as lost formwork.
- the gap between the concrete slabs 1 and 2 is poured through in-situ concrete 9, depending on the pouring speed. i.e. depending on the increase in level per unit of time.
- different concreting pressures Arrows 10 drawn accordingly.
- the concrete pressure increases with increasing pouring speed, in each case with the pouring speed Amount of still liquid. Concrete capable of exerting a heavy pressure grows. to fast processing of the concrete components is a high load capacity of the Concrete slabs 1 and 2 desirable.
- a high concrete load capacity is achieved by the reinforcement grid formed from the lattice girder straps and spacer strands. although its grid length R is significantly larger than the corresponding length conventionally reinforcement mesh used.
- the load-bearing capacity of the concrete building element is included both the reinforcement grid and the concrete itself are decisive. Concrete slabs with a reinforcement grid formed in this way can be in with high accuracy produce relatively small thickness because of the spacers that are necessary anyway and connecting elements no additional reinforcement strands to form a reinforcement grid must be provided.
- a high load capacity of the concrete slabs 1 and 2 due to concrete pressure is also ensures that the fiber additive at least when the concrete is still young Counteracts shrinkage cracking in the concrete slabs.
- By setting and curing of the concrete shrinkage cracks increases the tensile strength of the concrete slabs 1 and 2 with increasing shrinkage width.
- the concrete pressure load capacity Pb is dependent on the crack width W based on curves 11 and 12, wherein curve 11 relates to a double-walled concrete component, as described above, with a plate thickness of 30 mm and a grid length of 35 cm and curve 12 on such a component with a plate thickness of 40 mm and a grid length of 40 cm. All other parameters including fiber addition vote for the concrete components on which the two curves 11 and 12 are based match.
- the concreting pressure capacity increases with the lower one At first curve 11 with increasing crack width W hardly goes off. With a crack width of 0.04 mm the decrease is still less than 10%.
- the curve 11 corresponds to a ratio of the plate thickness to the grid length of 0.08. In the upper curve 12, which has such a ratio of 0.1 is based, there is a greater decrease in the concrete pressure resistance.
- the dimensions, the strength of the reinforcement grid and the inherent strength are advantageous the concrete of the concrete component described with reference to FIGS. 1 to 3 is selected that there is a broad plateau according to curve 11, so that even when Shrinkage cracks up to a shrinkage crack width of 0.04 mm are not yet significantly reduced the concrete pressure load capacity occurs.
- a special feature of the component described here is that through the addition of fibers Shrinkage and shrinkage cracks can be prevented while the concrete is still young is.
- the concrete slabs 1 and 2 ensures that the concrete slabs can be used immediately after their manufacture, preferably at the age of 8 to 16 hours, to process and by the concrete pressure of the in-situ concrete. Due to unwanted overload at Concreting, e.g. Cracks formed by using compaction equipment can be rearranged become.
- the short length of the fibers ensures that the freshly poured concrete slabs pressed-in spacers and lattice girders, especially in the node areas, do not affect the uniformity of the fiber distribution in the concrete by the short fibers can be rearranged with the displaced concrete.
- the spacer parts can have a low tensile strength.
- the concrete tensile strength can be activated within the mesh grid. By the opportunity to process the concrete components in the young state of the concrete slabs time can be saved.
- the fiber addition is particularly in the knot areas between the lattice girder belts and the spacer strands of formation prevented from thrust and bending cracks.
- the lattice girder straps and spacer strands can be connected together, e.g. welded. his.
- FIG. 6 shows a further exemplary embodiment of a concrete component according to the invention, for the same or equivalent parts with the same, but with the letter a provided reference numerals as in the previous embodiment.
- FIG. 6 differs from the previous embodiment in that U-profiles 3a as connecting elements instead of lattice girders with U-legs 4a and 5a to form reinforcement strands 7a crossing strands are used.
- the U-profiles consist of a 0.6 mm thick sheet.
- the length of the U-legs is 50 mm; the length of the base leg 100 mm.
- Such connecting elements with a U-shaped cross section can e.g. through aluminum profiles be educated.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Reinforcement Elements For Buildings (AREA)
- Rod-Shaped Construction Members (AREA)
Description
- Fig. 1
- ein Betonbauelement nach dem Stand der Technik in einer Querschnittsansicht,
- Fig. 2
- ein erfindungsgemäßes Betonbauelement in einer Querschnittsansicht,
- Fig. 3
- das erfindungsgemäße Betonbauelement von Fig. 1 in einer geschnittenen Draufsicht,
- Fig. 4
- das erfindungsgemäße Bauelement gemäß den Fig. 1 und 2 bei einer Verwendung als verlorene Schalung,
- Fig. 5
- ein Diagramm, das für verschieden bemessene erfindungsgemäße Betonbauelemente die Belastbarkeit durch Betonierdruck Pb in Abhängigkeit von der Rißweite im Beton zeigt, und
- Fig. 6
- ein weiteres Ausführungsbeispiel für ein erfindungsgemäßes Betonbauelement in einer Querschnittsansicht.
Claims (18)
- Betonbauelement mit einer Betonschale (1,2) und Elementen (3) zur Verbindung der Betonschale (1,2) mit einem zu der Betonschale im Abstand angeordneten Plattenelement, wobei die Verbindungselemente (3) in die Betonschale eingegossene erste Bewehrungsstränge umfassen und in die Betonschale (1,2) weitere Bewehrungsstränge (6,7) eingegossen sind,
dadurch gekennzeichnet, dass als weitere Bewehrungsstränge ausschließlich solche Bewehrungsstränge (6,7) eingegossen sind, welche die ersten Bewehrungsstränge unter Bildung eines einzigen maschenförmigen Bewehrungsrasters kreuzen. - Betonbauelement nach Anspruch 1,
dadurch gekennzeichnet, dass an den weiteren Bewehrungssträngen (6,7) die Verbindungselemente beim Ausgießen der Betonschale im Abstand vom Schalboden haltende Abstandhalter (8) gebildet sind. - Betonbauelement nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass die Verbindungselemente durch Gitterträger (3) und die ersten Bewehrungsstränge durch Gurte (4,5) der Gitterträger (3) gebildet sind. - Betonbauelement nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass das Bauelement doppelschalig mit einer das genannte Bewehrungsraster aufweisenden weiteren Betonschale (1,2) als das Plattenelement ausgebildet ist. - Betonbeauelement nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, dass der Beton einen der Schrumpf- und Schwindrissbildung entgegenwirkenden. insbesondere durch Kunststofffasem gebildeten Faserzusatz aufweist. - Betonbauelement nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet, dass die Dicke der Betonschale bzw. weiteren Betonschale unterhalb von etwa 40 mm, vorzugsweise im Bereich von 25 mm bis 30 mm, liegt. - Betonbauelement nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, dass die Rasterlänge im Bereich von etwa 20 cm bis 40 cm liegt. - Betonbauelement nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet, dass das Verhältnis des Rasterabstandes zwischen den ersten Bewehrungssträngen und den diese kreuzenden weiteren Bewehrungssträngen (6,7) im Bereich von 0,5 bis 2 liegt. - Betonbauelement nach einem der Ansprüche 5 bis 8,
dadurch gekennzeichnet, dass Faserabmessungen und Faserkonzentration so gewählt sind, dass sich Schrumpf- und Schwindrissweiten kleiner etwa 0,04 mm ergeben. - Betonbauelement nach einem der Ansprüche 1 bis 9,
dadurch gekennzeichnet, dass Abmessungen und Strangfestigkeit des Bewehrungsrasters und die Schalendicke so gewählt sind, dass die Betonierdruckbelastbarkeit der Betonschale bzw. weiteren Betonschale von der Rissweite 0 an bis zu einer Rissweite von etwa 0.04 mm um weniger als etwa 10% abfällt. - Betonbauelement nach einem der Ansprüche 1 bis 10,
dadurch gekennzeichnet, dass das Verhältnis von Betonschalendicke und Rasterlänge kleiner 0,1 ist und insbesondere bei 0,08 liegt. - Betonbauelement noch einem der Ansprüche 5 bis 11,
dadurch gekennzeichnet, dass Faserlängen kleiner als oder vergleichbar groß wie die Querschnittsabmessungen der Bewehrungsstränge und/oder weiteren Bewehrungssträngen sind. - Betonbauelement nach einem der Ansprüche 5 bis 12,
dadurch gekennzeichnet, dass die Faserlänge im Bereich von 4 bis 18 mm, vorzugsweise bei etwa 6 mm, liegt. - Betonbauelement nach einem der Ansprüche 5 bis 13,
dadurch gekennzeichnet, dass die Längenmasse der Fasern etwa zwischen 0.01 g/km und 10 g/km und vorzugsweise 1 g/kg liegt. - Betonbauelement nach einem der Ansprüche 5 bis 14,
dadurch gekennzeichnet, dass der Fasermassegehalt in der Betonschale bzw. weiteren Betonschale unterhalb 5 kg/m3 liegt. - Betonbauelement nach einem der Ansprüche 5 bis 15,
dadurch gekennzeichnet, dass die Faserzugfestigkeit T im Bereich von 300 bis 400 N/mm2, vorzugsweise bei etwa 350 N/mm2, liegt. - Betonbauelement nach einem der Ansprüche 5 bis 16,
dadurch gekennzeichnet, dass die Betondruckfestigkeit P ohne Faserbewehrung im Bereich von 25 bis 35 N/mm2 liegt. - Betonbauelement nach einem der Ansprüche 5 bis 17,
dadurch gekennzeichnet, dass das Verhältnis der Faserzugfestigkeit T zur Betondruckfestigkeit P kleiner 15 ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19805571A DE19805571C2 (de) | 1998-02-12 | 1998-02-12 | Betonbauelement |
DE19805571 | 1998-02-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0936320A1 EP0936320A1 (de) | 1999-08-18 |
EP0936320B1 true EP0936320B1 (de) | 2004-09-15 |
Family
ID=7857392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99102328A Expired - Lifetime EP0936320B1 (de) | 1998-02-12 | 1999-02-06 | Betonbauelement |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0936320B1 (de) |
AT (1) | ATE276407T1 (de) |
DE (2) | DE19805571C2 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8839580B2 (en) | 2011-05-11 | 2014-09-23 | Composite Technologies Corporation | Load transfer device |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2356647B (en) * | 1999-11-27 | 2003-11-26 | Kvaerner Cementation Found Ltd | Pile wall capping |
DE10116976A1 (de) * | 2001-04-05 | 2002-10-10 | Hofmann Gmbh & Co | Selbsttragendes Deckenelement und Verfahren zu dessen Herstellung |
DE10211804B4 (de) * | 2002-03-16 | 2006-04-13 | Syspro-Gruppe Betonbauteile E.V. | Hohlraumfreies vorgefertigtes Plattenbauelement |
DE10214967B4 (de) * | 2002-04-04 | 2008-04-17 | Syspro-Gruppe Betonbauteile E.V. | Vorgefertigtes Deckenbauelement |
DE10324760A1 (de) | 2003-05-26 | 2004-12-30 | Construction Systems Marketing Gmbh | Wandbauelement, Verfahren zur Herstellung eines Wandbauelements und ein Verbindungsmittel für ein Wandbauelement |
ES2310138B1 (es) * | 2007-06-08 | 2009-09-22 | Navarra Intelligent Concrete System, S.L. | Metodo de fabricacion de paneles de doble pared de hormigon. |
DE102008006127A1 (de) * | 2008-01-25 | 2009-08-06 | Erich Kastner | Mehrschaliges Halbfertig-Bauteil |
EP2775063B1 (de) | 2013-03-05 | 2016-10-12 | PreConTech Precast Concrete Technology e.K. | Verbindungsanordnung zur Bildung zweischaliger Betonfertigteile |
AT516242A1 (de) | 2014-09-08 | 2016-03-15 | Univ Wien Tech | Doppelwand aus hochfestem oder ultrahochfestem Stahlbeton |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1998630U (de) * | 1968-05-14 | 1968-12-19 | Rheinbau Gmbh | Bewehrte betonplatte. |
GB1284402A (en) * | 1968-08-06 | 1972-08-09 | Rheinbau Gmbh | Improvements in and relating to building constructions |
DE2114494C3 (de) * | 1971-03-25 | 1979-11-15 | Kaiser-Decken Gmbh & Co, 6000 Frankfurt | Vorgefertigte Stahlbeton-Doppelschale zur Herstellung von Stahlbetonwänden |
US4104842A (en) * | 1977-02-25 | 1978-08-08 | Rockstead Raymond H | Building form and reinforcing matrix |
DE2939877A1 (de) * | 1979-10-02 | 1981-05-07 | Walther Ing.(grad.) 4952 Porta Westfalica Schröder | Sandwich-verbundplatte |
DE4422310A1 (de) * | 1994-06-17 | 1995-12-21 | Herbert Wellner | PAN(Polyacrylnitril)-Faserbetondecke mit integrierter Schalung |
DE4434499A1 (de) * | 1994-09-27 | 1996-03-28 | Ainedter Dieter | Deckenplatte für die Herstellung von Geschoßdecken |
DE19520082A1 (de) * | 1995-06-01 | 1996-12-05 | Norbert Bittscheidt | Verlorene Schalung |
DE19654202A1 (de) * | 1996-10-25 | 1998-05-28 | Syspro Gruppe Betonbauteile E | Betonbauelement |
-
1998
- 1998-02-12 DE DE19805571A patent/DE19805571C2/de not_active Expired - Fee Related
-
1999
- 1999-02-06 EP EP99102328A patent/EP0936320B1/de not_active Expired - Lifetime
- 1999-02-06 AT AT99102328T patent/ATE276407T1/de not_active IP Right Cessation
- 1999-02-06 DE DE59910475T patent/DE59910475D1/de not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8839580B2 (en) | 2011-05-11 | 2014-09-23 | Composite Technologies Corporation | Load transfer device |
Also Published As
Publication number | Publication date |
---|---|
ATE276407T1 (de) | 2004-10-15 |
DE19805571C2 (de) | 2003-10-16 |
DE19805571A1 (de) | 1999-08-26 |
EP0936320A1 (de) | 1999-08-18 |
DE59910475D1 (de) | 2004-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68921644T2 (de) | Vorgefertigtes gebäudefundamentelement. | |
EP0936320B1 (de) | Betonbauelement | |
EP0051101B1 (de) | Zementplatte, sowie Verfahren und Vorrichtung zu deren Herstellung | |
DE60308261T2 (de) | Selbsttragender Gitterträger für die Herstellung von Stahlbetonverbundträgern | |
EP0752033B1 (de) | Bauwerk, bestehend aus vorgefertigten bauteilen | |
DE602005004450T2 (de) | Bewehrte verlorene Schalung, insbesondere für kreuzförmig bewehrte Böden, und damit hergestellter Boden | |
EP0745169B1 (de) | Bewehrungskörper für eine rippendecke aus gussbeton | |
DE202007007286U1 (de) | Gerippte vorgefertigte Platte | |
DE4006529A1 (de) | Hohldecke aus deckenhohlplatten und unterzuegen | |
DE3119623A1 (de) | Tragendes, plattenfoermiges bauelement | |
EP1307326B1 (de) | Spannbetonhohlplatte und verfahren zur herstellung derselben | |
EP2175079B1 (de) | Verfahren zum Bilden einer biegesteifen Eckbewehrung für den Stahlbetonbau, Bewehrungselement sowie biegesteife Eckbewehrung | |
DE3025135A1 (de) | Verbundbauelement aus beton, insbesondere deckenelement, verfahren zu seiner herstellung und verwendung im bauwesen | |
EP0016007B1 (de) | Satz von einachsig tragenden, mattenartigen Bewehrungselementen | |
WO2007042144A1 (de) | Wandelement | |
DE10211804B4 (de) | Hohlraumfreies vorgefertigtes Plattenbauelement | |
EP1428954A1 (de) | Leicht-Hochlochziegel | |
DE69824745T2 (de) | Hohlraumplatte aus beton mit sicherheitsausrüstung | |
DE2115846A1 (de) | Tragelemente | |
AT206623B (de) | Hohlformstein, Verfahren zu dessen Herstellung, aus solchen Hohlformsteinen gebildeter Hohlsteinbalken und Deckenkonstruktion mit solchen Hohlformsteinen | |
EP0949387A1 (de) | Beton-Deckenelement | |
AT404957B (de) | Bewehrungselement | |
DE916729C (de) | Fuell-, Isolier- und Schalkoerper fuer Stahlbetonrippendecken aus gebundenen Faserstoffen | |
DE102020128055A1 (de) | Schalungselement zum Erzeugen einer verzahnten Arbeitsfuge in einem Betonteil | |
DE2535705A1 (de) | Vorgefertigte schalung zur herstellung von ringankern an bauwerken |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK FR IT LI LU NL |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20000215 |
|
AKX | Designation fees paid |
Free format text: AT BE CH DE DK FR IT LI LU NL |
|
RAX | Requested extension states of the european patent have changed |
Free format text: SI PAYMENT 20000215 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE CH DE DK FR IT LI LU NL |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SYSPRO-GRUPPE BETONBAUTEILE E.V. |
|
17Q | First examination report despatched |
Effective date: 20030306 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK FR IT LI LU NL |
|
AX | Request for extension of the european patent |
Extension state: SI |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 20040915 Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040915 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59910475 Country of ref document: DE Date of ref document: 20041021 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PA ALDO ROEMPLER |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050228 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
BERE | Be: lapsed |
Owner name: SYSPRO-GRUPPE BETONBAUTEILE E.V. Effective date: 20050228 |
|
26N | No opposition filed |
Effective date: 20050616 |
|
EN | Fr: translation not filed | ||
BERE | Be: lapsed |
Owner name: *SYSPRO-GRUPPE BETONBAUTEILE E.V. Effective date: 20050228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20080211 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20080220 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20080222 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: ALDO ROEMPLER PATENTANWALT;BRENDENWEG 11 POSTFACH 154;9424 RHEINECK (CH) |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090228 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090206 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20090901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090901 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20100330 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59910475 Country of ref document: DE Effective date: 20110901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110901 |