[go: up one dir, main page]

EP0936320B1 - Betonbauelement - Google Patents

Betonbauelement Download PDF

Info

Publication number
EP0936320B1
EP0936320B1 EP99102328A EP99102328A EP0936320B1 EP 0936320 B1 EP0936320 B1 EP 0936320B1 EP 99102328 A EP99102328 A EP 99102328A EP 99102328 A EP99102328 A EP 99102328A EP 0936320 B1 EP0936320 B1 EP 0936320B1
Authority
EP
European Patent Office
Prior art keywords
concrete
member according
shell
concrete member
structural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99102328A
Other languages
English (en)
French (fr)
Other versions
EP0936320A1 (de
Inventor
Herbert H. Dr.-Ing. Kahmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SYSPRO-GRUPPE BETONBAUTEILE E.V.
Original Assignee
Syspro-Gruppe Betonbauteile eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Syspro-Gruppe Betonbauteile eV filed Critical Syspro-Gruppe Betonbauteile eV
Publication of EP0936320A1 publication Critical patent/EP0936320A1/de
Application granted granted Critical
Publication of EP0936320B1 publication Critical patent/EP0936320B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/84Walls made by casting, pouring, or tamping in situ
    • E04B2/86Walls made by casting, pouring, or tamping in situ made in permanent forms
    • E04B2/8611Walls made by casting, pouring, or tamping in situ made in permanent forms with spacers being embedded in at least one form leaf
    • E04B2/8617Walls made by casting, pouring, or tamping in situ made in permanent forms with spacers being embedded in at least one form leaf with spacers being embedded in both form leaves
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/32Floor structures wholly cast in situ with or without form units or reinforcements
    • E04B5/36Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor
    • E04B5/38Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor with slab-shaped form units acting simultaneously as reinforcement; Form slabs with reinforcements extending laterally outside the element
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/06Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced

Definitions

  • the invention relates to a concrete building element with a concrete shell and elements for connection the concrete shell with a plate element arranged at a distance from the concrete shell, wherein the connecting elements are cast into the concrete shell first reinforcement strands include and poured further reinforcement strands in the concrete shell are.
  • the present invention provides a new concrete component that can be used as lost formwork of the type mentioned above, which is compared to components Transport and assemble according to the state of the art with less effort leaves.
  • the concrete structural element according to the invention that solves this problem is characterized in that that as further reinforcement strands only such reinforcement strands are cast in, which form the first reinforcement strands to form a single one cross mesh reinforcement grid.
  • concrete components with reduced concrete shells can be made produce by a reinforcement grid at least partially through the connecting elements is formed.
  • the state of the art in addition to the first reinforcement strands cast in reinforcement mesh required more space and a corresponding large plate thickness.
  • the additional reinforcement strands are the connecting elements when pouring the concrete shell at a distance from Spacers holding the scarf bottom are formed.
  • parts of the Reinforcement grid has a double function.
  • the connecting elements are preferably through lattice girders and the first reinforcement strands formed by straps of the lattice girders.
  • the concrete component is a double-wall component with another concrete shell having the reinforcement grid mentioned as a plate element.
  • the concrete exhibits a shrinkage crack formation counteracting, in particular by plastic fibers formed fiber additive, wherein the thickness of the concrete shell or further concrete shell below about 40 mm, preferably is in the range of 25 to 30 mm.
  • the grid length is 20 to 40 cm, and there are square grid areas provided.
  • the fiber dimensions and the fiber concentrations are chosen such that Shrinkage crack widths of less than 0.04 mm result, with the strength of the reinforcement grid and the shell thickness are provided in such a way that the concrete pressure resilience the concrete chute or further concrete shell from the crack size 0 to the crack size from drops about 0.04 mm by less than 10%.
  • Such a small waste can in particular then achieve when the ratio of the concrete shell thickness to the grid dimension is less than 0.1 and in particular is about 0.08.
  • Fiber lengths of 4 to 18 mm, preferably with a length of 6 mm, are preferably used. used.
  • the fiber length should in particular be smaller than the cross-sectional dimensions of the first reinforcement strands or / and further reinforcement strands. In this case when the reinforcement grid is pressed into the poured concrete up to the stop against the spacers or when pressing in the lattice girders together with the spacers an even fiber distribution is maintained in the concrete. With longer ones Fibers would compress in the direction of insertion before the reinforcement strands result, while behind it a lack of fibers favoring the formation of shrinkage prevails.
  • the fiber mass content in the concrete shell or further concrete shell is preferably below 5 kg / m 3 . Such an amount is sufficient to limit the shrinkage cracking or shrinkage cracking to the above-mentioned level.
  • the fiber tensile strength T is preferably in the range from 300 to 400 N / mm 2 , in particular approximately 350 N / mm 2 , with a concrete compressive strength P without fiber reinforcement between 25 and 35 N / mm 2 .
  • the ratio of the fiber tensile strength T to the concrete compressive strength P is preferably chosen to be less than 15.
  • FIG. 1 shows a concrete building element according to the prior art with the Reference numerals 1 'and 2' each denote 5 cm thick concrete slabs, which are connected via lattice girders 3 ' are connected to an 18 cm thick double wall component.
  • Into the concrete slabs 1 ' and 2 ' is a reinforcement grid 20 or 21 with reinforcing bars crossing each other cast.
  • reference numerals 1 and 2 denote concrete slabs, the thickness of which is 30 mm in the exemplary embodiment shown.
  • the concrete slabs 1 and 2 are over Lattice girder 3, the straps 4 and 5 are cast into the concrete slabs, connected to each other.
  • the straps 4 and 5 are further from in forming a square grid crossed the concrete cast reinforcement strands 6 or 7.
  • the grid length R is in the embodiment shown 35 cm. With 8 are on the reinforcement strands 6 and 7 attached, to be placed on a formwork support frames.
  • the distance between the concrete slabs 1 and 2 is in the embodiment shown 40 mm.
  • Plastic fibers are embedded in the concrete of the plates 1 and 2.
  • the plastic fibers are acrylic fibers, preferably polyacrylonitrile fibers.
  • the plastic fibers have a length of 6 mm and are not profiled.
  • the length of the fibers is less than 1 g / km.
  • the fiber tensile strength T is about 350 N / mm 2 , the fiber dosage just below 5 kg / m 3 . At this dosage, the tensile strength of the concrete is not significantly increased by the fibers. The increase is less than 10%.
  • the concrete used, without the fibers, has a concrete compressive strength P in the range from 35 to 35 N / mm 2 after complete hardening.
  • the ratio of fiber tensile strength T / concrete compressive strength P is less than 15.
  • FIG. 3 where the concrete component according to 1 and 2 is shown when used as lost formwork.
  • the gap between the concrete slabs 1 and 2 is poured through in-situ concrete 9, depending on the pouring speed. i.e. depending on the increase in level per unit of time.
  • different concreting pressures Arrows 10 drawn accordingly.
  • the concrete pressure increases with increasing pouring speed, in each case with the pouring speed Amount of still liquid. Concrete capable of exerting a heavy pressure grows. to fast processing of the concrete components is a high load capacity of the Concrete slabs 1 and 2 desirable.
  • a high concrete load capacity is achieved by the reinforcement grid formed from the lattice girder straps and spacer strands. although its grid length R is significantly larger than the corresponding length conventionally reinforcement mesh used.
  • the load-bearing capacity of the concrete building element is included both the reinforcement grid and the concrete itself are decisive. Concrete slabs with a reinforcement grid formed in this way can be in with high accuracy produce relatively small thickness because of the spacers that are necessary anyway and connecting elements no additional reinforcement strands to form a reinforcement grid must be provided.
  • a high load capacity of the concrete slabs 1 and 2 due to concrete pressure is also ensures that the fiber additive at least when the concrete is still young Counteracts shrinkage cracking in the concrete slabs.
  • By setting and curing of the concrete shrinkage cracks increases the tensile strength of the concrete slabs 1 and 2 with increasing shrinkage width.
  • the concrete pressure load capacity Pb is dependent on the crack width W based on curves 11 and 12, wherein curve 11 relates to a double-walled concrete component, as described above, with a plate thickness of 30 mm and a grid length of 35 cm and curve 12 on such a component with a plate thickness of 40 mm and a grid length of 40 cm. All other parameters including fiber addition vote for the concrete components on which the two curves 11 and 12 are based match.
  • the concreting pressure capacity increases with the lower one At first curve 11 with increasing crack width W hardly goes off. With a crack width of 0.04 mm the decrease is still less than 10%.
  • the curve 11 corresponds to a ratio of the plate thickness to the grid length of 0.08. In the upper curve 12, which has such a ratio of 0.1 is based, there is a greater decrease in the concrete pressure resistance.
  • the dimensions, the strength of the reinforcement grid and the inherent strength are advantageous the concrete of the concrete component described with reference to FIGS. 1 to 3 is selected that there is a broad plateau according to curve 11, so that even when Shrinkage cracks up to a shrinkage crack width of 0.04 mm are not yet significantly reduced the concrete pressure load capacity occurs.
  • a special feature of the component described here is that through the addition of fibers Shrinkage and shrinkage cracks can be prevented while the concrete is still young is.
  • the concrete slabs 1 and 2 ensures that the concrete slabs can be used immediately after their manufacture, preferably at the age of 8 to 16 hours, to process and by the concrete pressure of the in-situ concrete. Due to unwanted overload at Concreting, e.g. Cracks formed by using compaction equipment can be rearranged become.
  • the short length of the fibers ensures that the freshly poured concrete slabs pressed-in spacers and lattice girders, especially in the node areas, do not affect the uniformity of the fiber distribution in the concrete by the short fibers can be rearranged with the displaced concrete.
  • the spacer parts can have a low tensile strength.
  • the concrete tensile strength can be activated within the mesh grid. By the opportunity to process the concrete components in the young state of the concrete slabs time can be saved.
  • the fiber addition is particularly in the knot areas between the lattice girder belts and the spacer strands of formation prevented from thrust and bending cracks.
  • the lattice girder straps and spacer strands can be connected together, e.g. welded. his.
  • FIG. 6 shows a further exemplary embodiment of a concrete component according to the invention, for the same or equivalent parts with the same, but with the letter a provided reference numerals as in the previous embodiment.
  • FIG. 6 differs from the previous embodiment in that U-profiles 3a as connecting elements instead of lattice girders with U-legs 4a and 5a to form reinforcement strands 7a crossing strands are used.
  • the U-profiles consist of a 0.6 mm thick sheet.
  • the length of the U-legs is 50 mm; the length of the base leg 100 mm.
  • Such connecting elements with a U-shaped cross section can e.g. through aluminum profiles be educated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Rod-Shaped Construction Members (AREA)

Description

Die Erfindung betrifft ein Betonbauelement mit einer Betonschale und Elementen zur Verbindung der Betonschale mit einem zu der Betonschale im Abstand angeordneten Plattenelement, wobei die Verbindungselemente in die Betonschale eingegossene erste Bewehrungsstränge umfassen und in die Betonschale weitere Bewehrungsstränge eingegossen sind.
Aus der DE-U-1 998 630 ist ein solches Betonbauelement bekannt, dass doppeischolig mit einer weiteren Betonschale als Plattenelement ausgebildet ist und als Verbindungselemente Gitterträger verwendet sind. Daneben ist in die Schalen ein Bewehrungsgitter aus sich kreuzenden Bewehrungsshängen eingegossen.
Bei der Errichtung von Wänden oder Böden dienen diese Betonbauelemente zumeist als verlorene Schalung, indem der Raum zwischen den Betonschalen durch Ortbeton ausgegossen wird. In die Betonschalen solcher herkömmlichen Betonbauelemente sind gewöhnlich Bewehrungsgitter eingegossen. Die Betonschalendicke beträgt ca. 5 cm bei einer Gesamtdicke der Doppelwand von ca. 18 cm.
Durch die vorliegende Erfindung wird ein als verlorene Schalung verwendbares neues Betonbauelement der eingangs erwähnten Art geschaffen, das sich gegenüber Bauelementen nach dem Stand der Technik mit geringerem Aufwand transportieren und montieren lässt.
Das diese Aufgabe lösende Betonbauelement nach der Erfindung ist dadurch gekennzeichnet, dass als weitere Bewehrungsstränge ausschließlich solche Bewehrungsstränge eingegossen sind, welche die ersten Bewehrungsstränge unter Bildung eines einzigen maschenförmigen Bewehrungsrasters kreuzen. Durch diese Erfindungslösung lassen sich Betonbauteile mit in ihrer Dicke reduzierten Betonschalen herstellen, indem ein Bewehrungsraster wenigstens zum Teil durch die Verbindungselemente gebildet wird. Die nach dem Stand der Technik zusätzlich zu den ersten Bewehrungssträngen eingegossenen Bewehrungsgitter erforderten mehr Platz und eine entsprechend große Plattendicke.
Gemäß einer bevorzugten Ausführungsform der Erfindung sind an den weiteren Bewehrungssträngen die Verbindungselemente beim Ausgießen der Betonschale im Abstand vom Schalboden haltende Abstandhalter gebildet. Vorteilhaft kommt in diesem Fall Teilen des Bewehrungsrasters eine Doppelfunktion zu.
Vorzugsweise sind die Verbindungselemente durch Gitterträger und die ersten Bewehrungsstränge durch Gurte der Gitterträger gebildet.
In einer besonders bevorzugten Ausführungsform ist das Betonbauelement ein Doppelwondbauelement mit einer das genannte Bewehrungsraster aufweisenden weiteren Betonschale als Plattenelement.
In vorteilhafter Ausgestaltung der Erfindung weist der Beton einen der Schwindrissbildung entgegenwirkenden, insbesondere durch Kunststofffasem gebildeten Faserzusatz auf, wobei die Dicke der Betonschale bzw. weiteren Betonschale unterhalb von etwa 40 mm, vorzugsweise im Bereich von 25 bis 30 mm, liegt. Die Rasterlänge beträgt 20 bis 40 cm, und es sind quadratische Rasterbereiche vorgesehen.
Insbesondere sind die Faserabmessungen und die Faserkonzentrationen so gewählt, dass sich Schwindrissweiten kleiner als 0,04 mm ergeben, wobei die Festigkeit des Bewehrungsrasters und die Schalendicke derart vorgesehen sind, dass die Betonierdruckbelastbarkeit der Betonschate bzw. weiteren Betonschale von der Rissweite 0 an bis zu der Rissweite von etwa 0,04 mm um weniger als 10% abfällt. Ein solcher geringer Abfall lässt sich insbesondere dann erreichen, wenn das Verhältnis von Betonschalendicke und Rastermaß kleiner 0,1 ist und insbesondere bei etwa 0,08 liegt.
Vorzugsweise werden Faserlängen von 4 bis 18 mm, vorzugsweise mit einer Länge von 6 mm, verwendet. Die Faserlänge sollte insbesondere kleiner als die Querschnittsabmessungen der ersten Bewehrungsstränge oder/und weiteren Bewehrungsstränge sein. In diesem Fall wird bei einem Eindrücken des Bewehrungsgitters in den ausgegossenen Beton bis zum Anschlag gegen die Abstandhalter oder beim Eindrücken der Gitterträger zusammen mit den Abstandhaltem im Beton eine gleichmäßige Faserverteilung erhalten bleiben. Bei längeren Fasern würde sich in Eindrückrichtung vor den Bewehrungssträngen eine Faserverdichtung ergeben, während dahinter ein die Schwindrißbildung begünstigender Fasermangel herrscht.
Der Fasermassegehalt in der Betonschale bzw. weiteren Betonschale liegt vorzugsweise unterhalb 5 kg/m3. Eine solche Menge reicht aus, um die Schwindrißbildung bzw. Schrumpfrißbildung auf das obengenannte Maß zu begrenzen.
Die Faserzugfestigkeit T liegt vorzugsweise im Bereich von 300 bis 400 N/mm2, insbesondere bei etwa 350 N/mm2, bei einer Betondruckfestigkeit P ohne Faserbewehrung zwischen 25 und 35 N/mm2. Vorzugsweise wird das Verhältnis der Faserzugfestigkeit T zur Betondruckfestigkeit P kleiner als 15 gewählt.
Die Erfindung soll nun anhand eines Ausführungsbeispiels und der beiliegenden, sich auf dieses Ausführungsbeispiel beziehenden Zeichnungen näher erläutert und beschrieben werden. Es zeigen:
Fig. 1
ein Betonbauelement nach dem Stand der Technik in einer Querschnittsansicht,
Fig. 2
ein erfindungsgemäßes Betonbauelement in einer Querschnittsansicht,
Fig. 3
das erfindungsgemäße Betonbauelement von Fig. 1 in einer geschnittenen Draufsicht,
Fig. 4
das erfindungsgemäße Bauelement gemäß den Fig. 1 und 2 bei einer Verwendung als verlorene Schalung,
Fig. 5
ein Diagramm, das für verschieden bemessene erfindungsgemäße Betonbauelemente die Belastbarkeit durch Betonierdruck Pb in Abhängigkeit von der Rißweite im Beton zeigt, und
Fig. 6
ein weiteres Ausführungsbeispiel für ein erfindungsgemäßes Betonbauelement in einer Querschnittsansicht.
In der ein Betonbauelement nach dem Stand der Technik zeigenden Fig. 1 sind mit dem Bezugszeichen 1' und 2' jeweils 5 cm dicke Betonplatten bezeichnet, die über Gitterträger 3' zu einem 18 cm dicken Doppelwandbauelement verbunden sind. In die Betonplatten 1' und 2' ist jeweils ein Bewehrungsgitter 20 bzw. 21 mit sich kreuzenden Bewehrungsstäben eingegossen.
In den Fig. 2 bis 4 sind mit den Bezugszeichen 1 und 2 Betonplatten bezeichnet, deren Dicke in dem gezeigten Ausführungsbeispiel 30 mm beträgt. Die Betonplatten 1 und 2 sind über Gitterträger 3, deren Gurte 4 und 5 in die Betonplatten eingegossen sind, miteinander verbunden. Die Gurte 4 und 5 werden unter Bildung eines quadratischen Rasters von ferner in den Beton eingegossenen Bewehrungssträngen 6 bzw. 7 gekreuzt. Die Rasterlänge R beträgt in dem gezeigten Ausführungsbeispiel 35 cm. Mit 8 sind an den Bewehrungssträngen 6 und 7 angebrachte, auf einen Schalboden aufsetzbare Trägerböcke bezeichnet.
Der Abstand zwischen den Betonplatten 1 und 2 beträgt in dem gezeigten Ausführungsbeispiel 40 mm.
In den Beton der Platten 1 und 2 sind in den Figuren nicht dargestellte Kunststofffasem eingebettet. Bei den Kunststofffasem handelt es sich um Acrylfasern, vorzugsweise Polyacrylnitrilfasem. Die Kunststofffasem weisen in dem gezeigten Ausführungsbeispiel eine Länge von 6 mm auf und sind nicht profiliert. Die Längenmasse der Fasern beträgt weniger als 1 g/km. Die Faserzugfestigkeit T liegt bei etwas 350 N/mm2, die Faserdosierung knapp unterhalb 5 kg/m3. Bei dieser Dosierung ist die Betonzugfestigkeit durch die Fasern nicht wesentlich erhöht. Die Erhöhung beträgt weniger als 10%.
Der verwendete Beton weist ohne die Fasern nach vollständiger Aushärtung eine Betondruckfestigkeit P im Bereich von 35 bis 35 N/mm2 auf. Das Verhältnis von Faserzugfestigkeit T/Betondruckfestigkeit P ist kleiner als 15.
Es wird nun insbesondere auf Fig. 3 Bezug genommen, wo das Betonbauelement gemäß den Fig. 1 und 2 bei einer Verwendung als verlorene Schalung gezeigt ist. Der Zwischenraum zwischen den Betonplatten 1 und 2 ist durch Ortbeton 9 ausgegossen, wobei je nach Ausgießgeschwindigkeit. d.h. je nach Zunahme der Füllhöhe je Zeiteinheit. unterschiedliche Betonierdrücke entsprechend eingezeichneten Pfeilen 10 entstehen. Der Betonierdruck wächst mit steigender Ausgießgeschwindigkeit, indem mit der Ausgießgeschwindigkeit jeweils die Höhe des noch flüssigen. zur Ausübung eines Schweredrucks fähigen Betons anwächst. Zur schnellen Verarbeitung der Betonbauelemente ist eine hohe Betonierbelastbarkeit der Betonplatten 1 und 2 wünschenswert.
Bei dem beschriebenen Betonbauelement wird eine hohe Betonierbelastbarkeit durch das aus den Gitterträgergurten und Abstandhaltersträngen gebildete Bewehrungsraster erreicht. obwohl dessen Rasterlänge R wesentlich größer als die entsprechende Länge herkömmlich verwendeter Bewehrungsgitter ist. Für die Tragfähigkeit des Betonbauelements sind dabei sowohl das Bewehrungsraster als auch der Beton selbst maßgebend. Betonplatten mit einem auf diese Weise gebildeten Bewehrungsraster lassen sich mit hoher Genauigkeit in verhältnismäßig geringer Dicke herstellen, weil über die ohnehin notwendigen Abstandhalter und Verbindungselemente hinaus keine zusätzlichen Bewehrungsstränge zur Bildung eines Bewehrungsgitters vorgesehen werden müssen.
Eine hohe Belastbarkeit der Betonplatten 1 und 2 durch Betonierdruck ist andererseits aber auch dadurch gewährleistet, daß der Faserzusatz wenigstens bei noch jungem Beton einer Schwindrißbildung in den Betonplatten entgegenwirkt. Durch die beim Abbinden und Aushärten des Betons auftretenden Schwindrisse nimmt die Zugfestigkeit der Betonplatten 1 und 2 mit wachsender Schwindrißweite ab.
Die Betonierdruckbelastbarkeit Pb ist in Abhängigkeit von der Rißweite W anhand von Kurven 11 und 12 dargestellt, wobei sich die Kurve 11 auf ein doppelwandiges Betonbauelement, wie vorangehend beschrieben, mit einer Plattendicke von 30 mm und einer Rasterlänge von 35 cm und die Kurve 12 auf ein solches Bauelement mit einer Plattendicke von 40 mm und einer Rasterlänge von 40 cm bezieht. Alle anderen Parameter einschließlich Faserzusatz stimmen für die den beiden Kurven 11 und 12 zugrundeliegenden Betonbauelemente überein.
Wie Fig. 4 entnommen werden kann, nimmt die Betonierdruckbelastbarkeit bei der unteren Kurve 11 mit wachsender Rißweite W zunächst kaum ab. Bei einer Rißweite von 0,04 mm ist die Abnahme noch geringer als 10% ist. Der Kurve 11 entspricht ein Verhältnis der Plattendicke zur Rasterlänge von 0,08. Bei der oberen Kurve 12, der ein solches Verhältnis von 0,1 zugrundeliegt, ist ein stärkerer Abfall der Betonierdruckbelastbarkeit zu verzeichnen.
Vorteilhaft sind die Abmessungen, die Festigkeit des Bewehrungsrasters und die Eigenfestigkeit des Betons des anhand der Fig. 1 bis 3 beschriebenen Betonbauelements so gewählt, daß sich ein breites Plateau gemäß Kurve 11 ergibt, so daß selbst bei Auftreten von Schwindrissen bis zu einer Schwindrißweite von 0,04 mm noch keine nennenswerte Verringerung der Betonierdruckbelastbarkeit auftritt.
Eine Besonderheit des hier beschriebenen Bauelements besteht darin, daß durch den Faserzusatz Schrumpf- und Schwindrißbildungen verhindert werden, solange der Beton noch jung ist. Somit ist im jungen Zustand des Betons eine verhältnismäßig hohe Betonierdruckbelastbarkeit der Betonplatten 1 und 2 gewährleistet, die es ermöglicht, die Betonplatten unmittelbar nach ihrer Herstellung, vorzugsweise im Alter von 8 bis 16 Stunden, zu verarbeiten und durch den Betonierdruck des Ortbetons zu belasten. Durch ungewollte Überlastung beim Betonieren, z.B. durch Verwendung von Verdichtungsgeräten, gebildete Risse können umgelagert werden.
Durch die geringe Länge der Fasern ist gewährleistet, dass in die frisch ausgegossenen Betonplatten eingedrückte Abstandhalter und Gitterträger, insbesondere in den Knotenbereichen, die Gleichmäßigkeit der Faserverteilung im Beton nicht beeinträchtigen, indem die kurzen Fasern mit dem verdrängten Beton umgelagert werden.
Die Abstandhalterteile können eine geringe Zugfestigkeit aufweisen. Es sind Stahlströnge mit Durchmessern kleiner 4 mm oder Kunststoffstränge mit Durchmessern kleiner 15 mm verwendbar.
Durch den mit der Dünnwandigkeit der Platten verbundenen Raumgewinn sinkt der für den Transport von der Fertigungsstätte zur Baustelle erforderliche Aufwand. Auch der Montageaufwand ist verringert.
Die Betonzugfestigkeit kann zielsicher innerhalb der Maschenraster aktiviert werden. Durch die Möglichkeit, die Betonbauelemente im jungen Zustand der Betonplatten verarbeiten zu können, ergibt sich ein Zeitgewinn. Durch den Faserzusatz wird insbesondere in den Knotenbereichen zwischen den Gitterträgergurten und den Abstandhaltersträngen einer Bildung von Schub- und Biegerissen vorgebeugt.
Die Gitterträgergurte und Abstandhalterstränge können miteinander verbunden, z.B. verschweißt. sein.
Fig. 6 zeigt ein weiteres Ausführungsbeispiel für ein erfindungsgemäßes Betonbauelement, bei dem gleiche oder gleichwirkende Teile mit derselben, jedoch mit dem Buchstaben a versehene Bezugszahl wie bei dem vorangehenden Ausführungsbeispiel bezeichnet sind.
Das Ausführungsbeispiel von Fig. 6 unterscheidet sich von dem vorangehenden Ausführungsbeispiel dadurch, dass als Verbindungselemente anstelle von Gitterträgern U-Profile 3a mit U-Schenkeln 4a und 5a zur Bildung von Bewehrungsstränge 7a kreuzenden Strängen verwendet sind. In dem gezeigten Ausführungsbeispiel bestehen die U-Profile aus einem 0,6 mm starken Blech. Die Länge der U-Schenkel beträgt 50 mm; die Länge des Basisschenkels 100 mm. Vorzugsweise variiert je nach den Abmessungen des Betonbauelements die Länge des Basisschenkels in Rasterabständen von 25 mm zwischen 50 mm und 150 mm. Solche Verbindungselemente mit U-förmigem Querschnitt können z.B. durch Aluminiumprofile gebildet sein.
Die vorangeehend beschriebenen Betonbauelemente können z.B. zur Errichtung von Innenwänden verwendet werden. In einer weiteren Verwendungs- bzw. Ausführungsvariante könnte ein solches Betonbauelement ein Dachelement sein. Schließlich kommt ein solches Betonbauelement als Boden- bzw. Deckenelement für Balkone in Betracht, wobei auf ein einschaliges solches Element mit nach oben vorstehenden Verbindungselementen unter Bildung des Balkonbodens Ortbeton gießbar ist.

Claims (18)

  1. Betonbauelement mit einer Betonschale (1,2) und Elementen (3) zur Verbindung der Betonschale (1,2) mit einem zu der Betonschale im Abstand angeordneten Plattenelement, wobei die Verbindungselemente (3) in die Betonschale eingegossene erste Bewehrungsstränge umfassen und in die Betonschale (1,2) weitere Bewehrungsstränge (6,7) eingegossen sind,
    dadurch gekennzeichnet, dass als weitere Bewehrungsstränge ausschließlich solche Bewehrungsstränge (6,7) eingegossen sind, welche die ersten Bewehrungsstränge unter Bildung eines einzigen maschenförmigen Bewehrungsrasters kreuzen.
  2. Betonbauelement nach Anspruch 1,
    dadurch gekennzeichnet, dass an den weiteren Bewehrungssträngen (6,7) die Verbindungselemente beim Ausgießen der Betonschale im Abstand vom Schalboden haltende Abstandhalter (8) gebildet sind.
  3. Betonbauelement nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass die Verbindungselemente durch Gitterträger (3) und die ersten Bewehrungsstränge durch Gurte (4,5) der Gitterträger (3) gebildet sind.
  4. Betonbauelement nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass das Bauelement doppelschalig mit einer das genannte Bewehrungsraster aufweisenden weiteren Betonschale (1,2) als das Plattenelement ausgebildet ist.
  5. Betonbeauelement nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass der Beton einen der Schrumpf- und Schwindrissbildung entgegenwirkenden. insbesondere durch Kunststofffasem gebildeten Faserzusatz aufweist.
  6. Betonbauelement nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass die Dicke der Betonschale bzw. weiteren Betonschale unterhalb von etwa 40 mm, vorzugsweise im Bereich von 25 mm bis 30 mm, liegt.
  7. Betonbauelement nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, dass die Rasterlänge im Bereich von etwa 20 cm bis 40 cm liegt.
  8. Betonbauelement nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, dass das Verhältnis des Rasterabstandes zwischen den ersten Bewehrungssträngen und den diese kreuzenden weiteren Bewehrungssträngen (6,7) im Bereich von 0,5 bis 2 liegt.
  9. Betonbauelement nach einem der Ansprüche 5 bis 8,
    dadurch gekennzeichnet, dass Faserabmessungen und Faserkonzentration so gewählt sind, dass sich Schrumpf- und Schwindrissweiten kleiner etwa 0,04 mm ergeben.
  10. Betonbauelement nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet, dass Abmessungen und Strangfestigkeit des Bewehrungsrasters und die Schalendicke so gewählt sind, dass die Betonierdruckbelastbarkeit der Betonschale bzw. weiteren Betonschale von der Rissweite 0 an bis zu einer Rissweite von etwa 0.04 mm um weniger als etwa 10% abfällt.
  11. Betonbauelement nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet, dass das Verhältnis von Betonschalendicke und Rasterlänge kleiner 0,1 ist und insbesondere bei 0,08 liegt.
  12. Betonbauelement noch einem der Ansprüche 5 bis 11,
    dadurch gekennzeichnet, dass Faserlängen kleiner als oder vergleichbar groß wie die Querschnittsabmessungen der Bewehrungsstränge und/oder weiteren Bewehrungssträngen sind.
  13. Betonbauelement nach einem der Ansprüche 5 bis 12,
    dadurch gekennzeichnet, dass die Faserlänge im Bereich von 4 bis 18 mm, vorzugsweise bei etwa 6 mm, liegt.
  14. Betonbauelement nach einem der Ansprüche 5 bis 13,
    dadurch gekennzeichnet, dass die Längenmasse der Fasern etwa zwischen 0.01 g/km und 10 g/km und vorzugsweise 1 g/kg liegt.
  15. Betonbauelement nach einem der Ansprüche 5 bis 14,
    dadurch gekennzeichnet, dass der Fasermassegehalt in der Betonschale bzw. weiteren Betonschale unterhalb 5 kg/m3 liegt.
  16. Betonbauelement nach einem der Ansprüche 5 bis 15,
    dadurch gekennzeichnet, dass die Faserzugfestigkeit T im Bereich von 300 bis 400 N/mm2, vorzugsweise bei etwa 350 N/mm2, liegt.
  17. Betonbauelement nach einem der Ansprüche 5 bis 16,
    dadurch gekennzeichnet, dass die Betondruckfestigkeit P ohne Faserbewehrung im Bereich von 25 bis 35 N/mm2 liegt.
  18. Betonbauelement nach einem der Ansprüche 5 bis 17,
    dadurch gekennzeichnet, dass das Verhältnis der Faserzugfestigkeit T zur Betondruckfestigkeit P kleiner 15 ist.
EP99102328A 1998-02-12 1999-02-06 Betonbauelement Expired - Lifetime EP0936320B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19805571A DE19805571C2 (de) 1998-02-12 1998-02-12 Betonbauelement
DE19805571 1998-02-12

Publications (2)

Publication Number Publication Date
EP0936320A1 EP0936320A1 (de) 1999-08-18
EP0936320B1 true EP0936320B1 (de) 2004-09-15

Family

ID=7857392

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99102328A Expired - Lifetime EP0936320B1 (de) 1998-02-12 1999-02-06 Betonbauelement

Country Status (3)

Country Link
EP (1) EP0936320B1 (de)
AT (1) ATE276407T1 (de)
DE (2) DE19805571C2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8839580B2 (en) 2011-05-11 2014-09-23 Composite Technologies Corporation Load transfer device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2356647B (en) * 1999-11-27 2003-11-26 Kvaerner Cementation Found Ltd Pile wall capping
DE10116976A1 (de) * 2001-04-05 2002-10-10 Hofmann Gmbh & Co Selbsttragendes Deckenelement und Verfahren zu dessen Herstellung
DE10211804B4 (de) * 2002-03-16 2006-04-13 Syspro-Gruppe Betonbauteile E.V. Hohlraumfreies vorgefertigtes Plattenbauelement
DE10214967B4 (de) * 2002-04-04 2008-04-17 Syspro-Gruppe Betonbauteile E.V. Vorgefertigtes Deckenbauelement
DE10324760A1 (de) 2003-05-26 2004-12-30 Construction Systems Marketing Gmbh Wandbauelement, Verfahren zur Herstellung eines Wandbauelements und ein Verbindungsmittel für ein Wandbauelement
ES2310138B1 (es) * 2007-06-08 2009-09-22 Navarra Intelligent Concrete System, S.L. Metodo de fabricacion de paneles de doble pared de hormigon.
DE102008006127A1 (de) * 2008-01-25 2009-08-06 Erich Kastner Mehrschaliges Halbfertig-Bauteil
EP2775063B1 (de) 2013-03-05 2016-10-12 PreConTech Precast Concrete Technology e.K. Verbindungsanordnung zur Bildung zweischaliger Betonfertigteile
AT516242A1 (de) 2014-09-08 2016-03-15 Univ Wien Tech Doppelwand aus hochfestem oder ultrahochfestem Stahlbeton

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1998630U (de) * 1968-05-14 1968-12-19 Rheinbau Gmbh Bewehrte betonplatte.
GB1284402A (en) * 1968-08-06 1972-08-09 Rheinbau Gmbh Improvements in and relating to building constructions
DE2114494C3 (de) * 1971-03-25 1979-11-15 Kaiser-Decken Gmbh & Co, 6000 Frankfurt Vorgefertigte Stahlbeton-Doppelschale zur Herstellung von Stahlbetonwänden
US4104842A (en) * 1977-02-25 1978-08-08 Rockstead Raymond H Building form and reinforcing matrix
DE2939877A1 (de) * 1979-10-02 1981-05-07 Walther Ing.(grad.) 4952 Porta Westfalica Schröder Sandwich-verbundplatte
DE4422310A1 (de) * 1994-06-17 1995-12-21 Herbert Wellner PAN(Polyacrylnitril)-Faserbetondecke mit integrierter Schalung
DE4434499A1 (de) * 1994-09-27 1996-03-28 Ainedter Dieter Deckenplatte für die Herstellung von Geschoßdecken
DE19520082A1 (de) * 1995-06-01 1996-12-05 Norbert Bittscheidt Verlorene Schalung
DE19654202A1 (de) * 1996-10-25 1998-05-28 Syspro Gruppe Betonbauteile E Betonbauelement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8839580B2 (en) 2011-05-11 2014-09-23 Composite Technologies Corporation Load transfer device

Also Published As

Publication number Publication date
ATE276407T1 (de) 2004-10-15
DE19805571C2 (de) 2003-10-16
DE19805571A1 (de) 1999-08-26
EP0936320A1 (de) 1999-08-18
DE59910475D1 (de) 2004-10-21

Similar Documents

Publication Publication Date Title
DE68921644T2 (de) Vorgefertigtes gebäudefundamentelement.
EP0936320B1 (de) Betonbauelement
EP0051101B1 (de) Zementplatte, sowie Verfahren und Vorrichtung zu deren Herstellung
DE60308261T2 (de) Selbsttragender Gitterträger für die Herstellung von Stahlbetonverbundträgern
EP0752033B1 (de) Bauwerk, bestehend aus vorgefertigten bauteilen
DE602005004450T2 (de) Bewehrte verlorene Schalung, insbesondere für kreuzförmig bewehrte Böden, und damit hergestellter Boden
EP0745169B1 (de) Bewehrungskörper für eine rippendecke aus gussbeton
DE202007007286U1 (de) Gerippte vorgefertigte Platte
DE4006529A1 (de) Hohldecke aus deckenhohlplatten und unterzuegen
DE3119623A1 (de) Tragendes, plattenfoermiges bauelement
EP1307326B1 (de) Spannbetonhohlplatte und verfahren zur herstellung derselben
EP2175079B1 (de) Verfahren zum Bilden einer biegesteifen Eckbewehrung für den Stahlbetonbau, Bewehrungselement sowie biegesteife Eckbewehrung
DE3025135A1 (de) Verbundbauelement aus beton, insbesondere deckenelement, verfahren zu seiner herstellung und verwendung im bauwesen
EP0016007B1 (de) Satz von einachsig tragenden, mattenartigen Bewehrungselementen
WO2007042144A1 (de) Wandelement
DE10211804B4 (de) Hohlraumfreies vorgefertigtes Plattenbauelement
EP1428954A1 (de) Leicht-Hochlochziegel
DE69824745T2 (de) Hohlraumplatte aus beton mit sicherheitsausrüstung
DE2115846A1 (de) Tragelemente
AT206623B (de) Hohlformstein, Verfahren zu dessen Herstellung, aus solchen Hohlformsteinen gebildeter Hohlsteinbalken und Deckenkonstruktion mit solchen Hohlformsteinen
EP0949387A1 (de) Beton-Deckenelement
AT404957B (de) Bewehrungselement
DE916729C (de) Fuell-, Isolier- und Schalkoerper fuer Stahlbetonrippendecken aus gebundenen Faserstoffen
DE102020128055A1 (de) Schalungselement zum Erzeugen einer verzahnten Arbeitsfuge in einem Betonteil
DE2535705A1 (de) Vorgefertigte schalung zur herstellung von ringankern an bauwerken

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK FR IT LI LU NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000215

AKX Designation fees paid

Free format text: AT BE CH DE DK FR IT LI LU NL

RAX Requested extension states of the european patent have changed

Free format text: SI PAYMENT 20000215

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK FR IT LI LU NL

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SYSPRO-GRUPPE BETONBAUTEILE E.V.

17Q First examination report despatched

Effective date: 20030306

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK FR IT LI LU NL

AX Request for extension of the european patent

Extension state: SI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20040915

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040915

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59910475

Country of ref document: DE

Date of ref document: 20041021

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PA ALDO ROEMPLER

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: SYSPRO-GRUPPE BETONBAUTEILE E.V.

Effective date: 20050228

26N No opposition filed

Effective date: 20050616

EN Fr: translation not filed
BERE Be: lapsed

Owner name: *SYSPRO-GRUPPE BETONBAUTEILE E.V.

Effective date: 20050228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080211

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080222

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ALDO ROEMPLER PATENTANWALT;BRENDENWEG 11 POSTFACH 154;9424 RHEINECK (CH)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090206

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100330

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59910475

Country of ref document: DE

Effective date: 20110901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110901