EP0900322B1 - Turbinenwelle sowie verfahren zur kühlung einer turbinenwelle - Google Patents
Turbinenwelle sowie verfahren zur kühlung einer turbinenwelle Download PDFInfo
- Publication number
- EP0900322B1 EP0900322B1 EP97924884A EP97924884A EP0900322B1 EP 0900322 B1 EP0900322 B1 EP 0900322B1 EP 97924884 A EP97924884 A EP 97924884A EP 97924884 A EP97924884 A EP 97924884A EP 0900322 B1 EP0900322 B1 EP 0900322B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- turbine
- turbine shaft
- steam
- shaft
- cavity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D3/00—Machines or engines with axial-thrust balancing effected by working-fluid
- F01D3/02—Machines or engines with axial-thrust balancing effected by working-fluid characterised by having one fluid flow in one axial direction and another fluid flow in the opposite direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/08—Heating, heat-insulating or cooling means
- F01D5/081—Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
- F01D5/084—Cooling fluid being directed on the side of the rotor disc or at the roots of the blades the fluid circulating at the periphery of a multistage rotor, e.g. of drum type
Definitions
- the invention relates to a turbine shaft, which along a Main axis is directed, and an inflow area for Has fluid, at least in the axial direction at least two spaced-apart recesses for receiving a respective turbine blade.
- the invention further relates to a method for cooling a Inflow area of a turbine, in particular one Steam turbine, arranged turbine shaft.
- DE 34 06 071 A1 shows an annular shaft shield, that between the two rings of the first rows of guide vanes is arranged. Shielding is provided by the shaft shielding the outer circumference or the surface of the turbine shaft compared to live steam.
- the shaft shield faces upstream of the wreaths through which a partial flow of the Live steam throttled into a gap between the shaft shield and the turbine shaft.
- the inlets are like this inclined that the live steam is a flow component in the circumferential direction the turbine shaft.
- On the inner circumference the shaft shield as well as on the turbine shaft Auxiliary guide or auxiliary blades can be provided.
- the object of the invention is to provide a turbine shaft which can be cooled in a region which is subject to high thermal stress, in particular an inflow region for action fluid.
- Another object of the invention is to provide a method for cooling a turbine shaft arranged in a turbine, in particular an inflow region of the turbine shaft.
- a turbine shaft Task solved by a turbine shaft running along a Main axis is directed, an inflow area for action fluid, at least two of them and the inflow area axially spaced recesses for receiving at least a respective turbine blade and one the inflow area has associated cavity, which with a feed line and a derivative of a partial flow of the action fluid is connected as a cooling fluid.
- the supply line leads downstream of a first recess from the shaft surface into the cavity and the derivative leads from the cavity on the shaft surface downstream of a second Recess. This second recess is further downstream than the first recess.
- the Cavity is preferably rotationally symmetrical to the shaft axis.
- Cooling of the turbine shaft in the inflow area is achieved.
- the cooling fluid which is used to cool the turbine shaft Cavity is supplied, a partial flow of already cooled the turbine shaft in the inflow area supplied action fluid, in particular steam.
- the cooling fluid used for cooling becomes a cavity through heat transfer heated.
- the cooling fluid corresponds to the action fluid to operate the turbine in which the turbine shaft is arranged, the cavity provides a reheater
- the cooling fluid reheated therein can be used by the turbine, especially the steam turbine, at a suitable point again (as an action fluid) or through a Tapping out of this.
- the inflow area preferably along the main axis in the central region of the turbine shaft arranged.
- the inflow area also serves a division of the inflowing, driving the turbine, Action fluid.
- the cavity is preferably in the radial direction deep turned and lies between in the axial direction the first row of blades.
- the inflow range is in an end region of the turbine shaft, wherein according to the invention Leads through the housing, for example in the steam flow area back, downstream of the first Recess. This also results in a pressure and / or temperature difference between the inlet of the supply line and the outlet the derivation guaranteed.
- the derivation can also be too lead a tap so that the flowing out of the cavity Cooling fluid withdrawn directly from the steam turbine can be.
- the end portion is preferably as a piston formed with an enlarged diameter. This piston points a seal that covers the steam flow area between Seals turbine shaft and housing of the turbine.
- the cavity is preferably between the recess for the first Blade row and the piston formed.
- the derivative preferably leads from the cavity into the piston and ends there in the area of the seal.
- the feed line and / or the discharge line preferably have one largely axial bore and a largely radial bore on.
- the radial bore leads in from the shaft surface the turbine shaft and goes into the axial bore, which extends from the cavity in the axial direction.
- the diameter of the inlet and outlet are the corresponding ones Steam conditions and adapted to the desired cooling. Accordingly, the size of the cavity is the required one Cooling capacity adjusted.
- the cavity is preferably through one, in particular for Shaft axis rotationally symmetrical, cover closed, which also serve as a flow deflecting element can.
- the cover is preferably welded to the turbine shaft, which ensures that cooling fluid and action fluid performed separately from one another in the inflow region become. There are flow losses due to mixing thus avoided.
- the cooling fluid is none in the cavity direct contact with that on the outer surface of the Cover hitting hot action fluid, which in particular Is steam with a supercritical steam state.
- the Cover serves as a heat exchanger, so that heat from the turbine shaft both over the lid and over the walls of the cavity is transferred to the cooling fluid.
- the turbine shaft with cooling in the inflow range from hot action fluid is particularly suitable in a steam turbine, which with steam with a supercritical steam state is applied.
- the steam turbine can be a double flow Medium pressure partial turbine or a single-flow steam turbine his.
- the steam turbine is already fed of live steam so coolable behind the first row of blades, that safe operation of the turbine shaft in steam conditions guaranteed with temperatures above 550 ° C.
- the on a method for cooling an inflow area in a turbine, in particular a steam turbine Turbine shaft is solved according to the invention in that downstream of a first row of moving blades, in particular action fluid Steam with a supercritical steam state, as Cooling fluid in a cavity assigned to the inflow area flows and from there via a discharge from the turbine shaft is brought out. This will heat from the inflowing Action fluid, which is delivered to the turbine shaft was, over the walls of the cavity to that in the cavity passed cooling fluid, so that cooling the Turbine shaft is guaranteed.
- the one that serves as the cooling fluid Partial flow of the action fluid is at a first pressure level removed in the inflow area and in a second, opposite the first pressure level lower, pressure level led out of the turbine shaft.
- This cooling is constructive simply by creating an appropriate cavity, for example by deep turning, with the associated discharge and supply lines produced. Possible influences from training of the cavity in terms of thermomechanical Properties of the turbine shaft are carried out by the Cooling more than compensated.
- the turbine shaft with Cooling of the inflow area is therefore particularly suitable also for steam with supercritical steam condition with temperatures of over 550 ° C.
- the cooling fluid is used, in particular, with a steam double-flow medium pressure turbine downstream of one second row of blades, which is further downstream than the first Blade row is arranged, led out of the turbine shaft. Because between the inflow into the feed line and a pressure and / or temperature gradient for the outflow from the discharge line prevails, the flow of the cooling fluid maintained through the cavity without coercive measures.
- the cooling fluid from the cavity over an end region of the turbine shaft through the derivative into the the housing enclosing the turbine shaft can the cooling fluid directly into a tap or downstream of one further downstream than the first row of blades Guide vane row again (as action fluid) in the steam flow be introduced between the housing and the turbine shaft.
- the removed from the steam flow driving the turbine shaft Partial stream is thus made usable again, so that at most a slight influence on the efficiency the turbine occurs. Since also the inflowing into the cavity Cooling fluid is heated up - the cavity thus acts as a reheater - may even increase efficiency to reach.
- the volume is preferably a volume flow of steam from 1% to 4%, in particular 1.5 to 3%, of the total live steam volume flow, which drives the turbine shaft.
- the amount of steam supplied for cooling depends on individual parameters, such as steam conditions, used Materials and output size of the steam turbine system, from.
- FIG. 1 is a section of a longitudinal section through a double-flow medium pressure turbine 15 of a steam turbine system shown.
- a housing 19 is a turbine shaft 1 arranged.
- the turbine shaft 1 extends along a main axis 2 and has 10 in its central region an inflow area 3 for action fluid 4a, in particular Steam with a supercritical steam state.
- the housing 19 has a steam inlet assigned to the inflow region 3 22, so that steam between the housing 19 and the turbine shaft 1 flows.
- the steam is in the inflow area 3 in two sub-streams, as shown by flow arrows, divided.
- the steam turbine 15 has a preferably deep-turned cavity 7 arranged in its central region 10 on.
- This cavity 7 is at its steam inlet 22 facing Side closed by a lid 11, which is welded to the turbine shaft 1.
- the lid 11 is in Direction of the steam inlet 22 arched, so that the Division of the steam 4a into two steam streams supported becomes.
- the turbine shaft 1 shows itself in the axial direction the inflow area 3 adjoining each other spaced recesses 5a and 5b.
- This recess 5a, 5b serve to hold turbine blades 6a, 6b each form a blade row 16 or 17.
- the clarity for the sake of further recesses and in it arranged blades not shown.
- Guide vane row 21 is provided before each row of blades 16, 17 is a corresponding one on the housing 19 Guide vane row 21 is provided.
- the cavity 7 closed by the cover 11 takes place an intermediate overheating of the steam serving as cooling fluid 4b instead, which in addition to cooling the turbine shaft 1, if necessary also an increase in efficiency of the steam turbine 15 can be reached.
- the through the feed line 8, the cavity 7 and discharge line 9 guided volume flow of steam 4b depends on the amount of heat to be dissipated, the output of the steam turbine 15 and other parameters. It can be between 1.5 % and 3.0% of the total live steam volume flow. Possibly is about an asymmetrical loading of the arranged left and right of the inflow area Turbine blades 6a, 6b due to the steam throughput to avoid a suitable division through the cavity 7 of the total live steam flow in two approximately the same partial flows flowing to the left or right are provided.
- FIG. 2 shows a longitudinal flow of a single-flow medium-pressure steam turbine 15 shown, with the clarity for the sake of only the one above a main axis 2 Part is shown.
- the steam turbine 15 has a housing 19, in which an extending along the main axis 2 Turbine shaft 1 is shown. In an end region 18 the turbine shaft 1 with a shaft seal 24 opposite Housing 19 sealed.
- the steam 4a for driving the turbine shaft 1 is through a steam inlet 22 of the steam turbine 15 fed and flows substantially along the Main axis 2 by alternating rows of blades 16,17 and guide vane rows 21 to an outflow nozzle 23.
- An inflow region adjoins the steam inlet 22 3, that between the end region 18 and the first row of blades 16 lies.
- the Turbine shaft 1 has a cavity 7, which with a cover 11 is closed towards the inflow region 3. Downstream the first blade row 16 carries a feed line 8 the turbine shaft 1 through to the cavity 7. From this Cavity 7 leads a discharge line 9 through the turbine shaft 1 through to the shaft seal 24 and from there through the housing 19 through to a tap 20. Between the first Blade row 16 and the tap 20 is located Temperature and / or pressure difference before, so that steam 4b without additional coercive measures through the supply line 8 in the Cavity 7 and from there via the lead 9 to the tap 20 flows.
- This steam 4b takes over the walls, in particular the cover 11, heat from the turbine shaft 1, and thus causes cooling of the turbine shaft 1 Absorbing the heat, the steam 4b is reheated in the cavity 7 and can therefore continue for the entire Steam process optionally used to increase efficiency become.
- the lead 8 and the derivative 9 can be constructive simply be designed as holes.
- the invention is characterized by a turbine shaft, which in a thermally highly stressed inflow area Has cavity, the fluid for cooling can be supplied.
- the cooling fluid supplied to the cavity is preferably made of the total flow of steam driving the turbine shaft or Branched gas.
- Through a fluidic connection of the Cavity in areas where different pressure and / or temperature states of the steam or gas prevail, is a constant without additional coercive measures Guaranteed flow through the cavity.
- Through the Walls of the cavity find heat transfer from the turbine shaft on the cooling fluid, in particular Water vapor, instead, which ensures safe cooling of the turbine shaft and there is an intermediate overheating of the cooling fluid.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Heat Treatment Of Articles (AREA)
Description
Eine weitere Aufgabe der Erfindung liegt darin, ein Verfahren zur Kühlung einer in einer Turbine angeordneten Turbinenwelle, insbesondere eines Einströmbereiches der Turbinenwelle, anzugeben.
- FIG 1
- einen Ausschnitt eines Längsschnittes durch eine zweiflutige Mitteldruck-Teilturbine und
- FIG 2
- einen Längsschnitt einer einflutigen Mitteldruck-Dampfturbine.
Claims (10)
- Turbinenwelle (1), die sich entlang einer Hauptachse (2) erstreckt, mit einem Einströmbereich (3) für Aktionsfluid (4a), zumindest zwei untereinander sowie von dem Einströmbereich (3) axial beabstandete Ausnehmungen (5a,5b) zur Aufnahme zumindest einer jeweiligen Turbinenschaufel (6a, 6b), dadurch gekennzeichnet daß die Turbinenwelle einen dem Einströmbereich (3) zugeordneten Hohlraum (7) aufweist, welcher mit einer Zuleitung (8) und einer Ableitung (9) eines Teilstroms des Aktionsfluids als Kühlfluid (4b) verbunden ist, wobei die Zuleitung (8) stromab einer ersten Ausnehmung (5a) und die Ableitung (9) stromab einer weiter stromab angeordneten Ausnehmung (5b) an der Wellenoberfläche (12) mündet.
- Turbinenwelle (1) nach Anspruch 1, bei der der Einströmbereich (3) zur Fluidstromteilung in Richtung der Hauptachse (2) in ihrem Mittelbereich (10) angeordnet ist.
- Turbinenwelle (1) nach Anspruch 1 oder 2 in einer Dampfturbine (15), insbesondere einer zweiflutigen Mitteldruck-Teilturbine.
- Turbinenwelle (1) nach Anspruch 3, bei der die Zuleitung (8) stromab einer ersten Laufschaufelreihe (16) und die Ableitung (9) stromab einer zweiten Laufschaufelreihe (17), die stromab der ersten Laufschaufelreihe (16) angeordnet ist, an der Wellenoberfläche (12) mündet.
- Dampfturbine, insbesondere einflutige Mitteldruck-Teilturbine, mit einem Gehäuse (19) mit einer Turbinenwelle (1), die sich entlang der Hauptachse (2) erstreckt, mit einem Einströmbereich (3) für Aktionsfluid (4a), mit zumindest zwei untereinander sowie von dem Einströmbereich (3) axial beabstandete Ausnehmungen (5a,5b) zur Aufnahme zumindest einer jeweiligen Turbinenschaufel (6a, 6b), dadurch gekennzeichnet daß die Dampfturbine einen in der Turbinenwelle (1) angeordneten, dem Einströmbereich (3) zugeordneten Hohlraum (7) aufweist, welcher Hohlraum (7) mit einer Zuleitung (8) und einer Ableitung (9) eines Teilstroms des Aktionsfluids als Kühlfluid (4b) verbunden ist, wobei die Zuleitung (8) stromab einer ersten Ausnehmung (5a) an der Wellenoberfläche (12) mündet und die Ableitung (9) über einen Endbereich (18) der Turbinenwelle (1) in das Gehäuse (19) hinein und darin bis zu einem Bereich stromab einer weiter stromab angeordneten Ausnehmung (5b) geführt ist.
- Turbinenwelle (1) nach Anspruch 5, die Ableitung (9) in eine stromab einer ersten Laufschaufelreihe (16) angeordneten Anzapfung (20) mündet.
- Turbinenwelle (1) nach einem der vorhergehenden Ansprüche, bei der der Hohlraum (7) durch einen Deckel (11) verschlossen ist.
- Turbinenwelle (1) nach einem der vorhergehenden Ansprüche, bei der die Zuleitung (8) und/oder die Ableitung (9) eine weitgehend axiale Bohrung (13) und eine weitgehend radiale Bohrung (14) aufweist bzw. aufweisen.
- Verfahren zur Kühlung eines Einströmbereichs (3) einer in einer Turbine, insbesondere einer Dampfturbine (15), angeordneten Turbinenwelle (1), dadurch gekennzeichnet daß bei dem einem in der Turbinenwelle (1) angeordneten und dem Einströmbereich (3) zugeordneten Hohlraum (7) von der Wellenoberfläche (12) stromab einer ersten Laufschaufelreihe (16) ein Teilstrom des Aktionsfluids als Kühlfluid (4b) bei einem ersten Druckniveau zugeführt und über eine an der Wellenoberfläche (12) mündende Ableitung (9) aus der Turbinenwelle (1) bei einem zweiten gegenüber dem ersteren niedrigeren Druckniveau herausgeführt wird.
- Verfahren nach Anspruch 9, bei dem in einer Dampfturbine (15) dem Hohlraum (7) als Kühlfluid (4b) ein Volumenstrom an Dampf von 1,0 % bis 4,0 %, insbesondere 1,5% bis 3%, des gesamten Frischdampfvolumenstroms zugeführt wird.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19620828 | 1996-05-23 | ||
DE19620828A DE19620828C1 (de) | 1996-05-23 | 1996-05-23 | Turbinenwelle sowie Verfahren zur Kühlung einer Turbinenwelle |
PCT/DE1997/000970 WO1997044568A1 (de) | 1996-05-23 | 1997-05-14 | Turbinenwelle sowie verfahren zur kühlung einer turbinenwelle |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0900322A1 EP0900322A1 (de) | 1999-03-10 |
EP0900322B1 true EP0900322B1 (de) | 2003-08-20 |
Family
ID=7795152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97924884A Expired - Lifetime EP0900322B1 (de) | 1996-05-23 | 1997-05-14 | Turbinenwelle sowie verfahren zur kühlung einer turbinenwelle |
Country Status (10)
Country | Link |
---|---|
US (1) | US6082962A (de) |
EP (1) | EP0900322B1 (de) |
JP (1) | JP3943135B2 (de) |
CN (1) | CN1079491C (de) |
AT (1) | ATE247767T1 (de) |
CZ (1) | CZ296698A3 (de) |
DE (2) | DE19620828C1 (de) |
ES (1) | ES2206713T3 (de) |
PL (1) | PL329689A1 (de) |
WO (1) | WO1997044568A1 (de) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1378630A1 (de) * | 2002-07-01 | 2004-01-07 | ALSTOM (Switzerland) Ltd | Dampfturbine |
EP1452688A1 (de) * | 2003-02-05 | 2004-09-01 | Siemens Aktiengesellschaft | Dampfturbinenrotor sowie Verfahren und Verwendung einer aktiven Kühlung eines Dampfturbinenrotors |
DE50312764D1 (de) * | 2003-03-06 | 2010-07-15 | Siemens Ag | Verfahren zur Kühlung einer Strömungsmaschine und Strömungsmaschine dafür |
DE10355738A1 (de) | 2003-11-28 | 2005-06-16 | Alstom Technology Ltd | Rotor für eine Turbine |
EP1705339B1 (de) * | 2005-03-23 | 2016-11-30 | General Electric Technology GmbH | Rotorwelle, insbesondere für eine Gasturbine |
US7357618B2 (en) * | 2005-05-25 | 2008-04-15 | General Electric Company | Flow splitter for steam turbines |
EP1785586B1 (de) * | 2005-10-20 | 2014-05-07 | Siemens Aktiengesellschaft | Rotor einer Strömungsmaschine |
EP1780376A1 (de) * | 2005-10-31 | 2007-05-02 | Siemens Aktiengesellschaft | Dampfturbine |
US7322789B2 (en) * | 2005-11-07 | 2008-01-29 | General Electric Company | Methods and apparatus for channeling steam flow to turbines |
EP1806476A1 (de) * | 2006-01-05 | 2007-07-11 | Siemens Aktiengesellschaft | Turbine für ein thermisches Kraftwerk |
EP1892376B1 (de) * | 2006-08-25 | 2013-06-19 | Siemens Aktiengesellschaft | Gekühlter Dampfturbinenrotor mit Innenrohr |
JP4908137B2 (ja) * | 2006-10-04 | 2012-04-04 | 株式会社東芝 | タービンロータおよび蒸気タービン |
EP2093866A1 (de) * | 2008-02-25 | 2009-08-26 | Siemens Aktiengesellschaft | Dynamoelektrische Maschine |
US8317458B2 (en) * | 2008-02-28 | 2012-11-27 | General Electric Company | Apparatus and method for double flow turbine tub region cooling |
US8096748B2 (en) * | 2008-05-15 | 2012-01-17 | General Electric Company | Apparatus and method for double flow turbine first stage cooling |
CH699978A1 (de) * | 2008-11-26 | 2010-05-31 | Alstom Technology Ltd | Dampfturbine. |
EP2211017A1 (de) * | 2009-01-27 | 2010-07-28 | Siemens Aktiengesellschaft | Rotor mit Hohlraum für eine Strömungsmaschine |
CH701914A1 (de) | 2009-09-30 | 2011-03-31 | Alstom Technology Ltd | Dampfturbine mit Entlastungsnut am Rotor im Bereich des Schubausgleichskolbens. |
EP2412937A1 (de) * | 2010-07-30 | 2012-02-01 | Siemens Aktiengesellschaft | Dampfturbine sowie Verfahren zum Kühlen einer solchen |
US20120067054A1 (en) * | 2010-09-21 | 2012-03-22 | Palmer Labs, Llc | High efficiency power production methods, assemblies, and systems |
CN103174464B (zh) * | 2011-12-22 | 2015-02-11 | 北京全四维动力科技有限公司 | 一种中部进汽双向流动结构的汽轮机转子冷却系统 |
CN103603694B (zh) * | 2013-12-04 | 2015-07-29 | 上海金通灵动力科技有限公司 | 一种降低汽轮机主轴轴承处工作温度的结构 |
US9702261B2 (en) | 2013-12-06 | 2017-07-11 | General Electric Company | Steam turbine and methods of assembling the same |
EP3009610B1 (de) * | 2014-10-14 | 2020-11-25 | General Electric Technology GmbH | Dampfturbinenwellendichtungsanordnung |
CN109386317B (zh) * | 2017-08-09 | 2022-01-11 | 西门子公司 | 蒸汽轮机与燃气轮机以及其末级结构 |
CN111520195B (zh) * | 2020-04-03 | 2022-05-10 | 东方电气集团东方汽轮机有限公司 | 一种汽轮机低压进汽室导流结构及其参数设计方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH133001A (de) * | 1928-06-11 | 1929-05-15 | Bbc Brown Boveri & Cie | Einrichtung zur Heizung von Scheibenrotoren bei Dampf- und Gasturbinen. |
CH341940A (de) * | 1956-08-08 | 1959-10-31 | Bbc Brown Boveri & Cie | Einrichtung zum Stabilisieren des Betriebes mehrstufiger parallel geschalteter Kreiselverdichter |
US3291447A (en) * | 1965-02-15 | 1966-12-13 | Gen Electric | Steam turbine rotor cooling |
JPS5650084B2 (de) * | 1972-04-26 | 1981-11-26 | ||
JPS5857606B2 (ja) * | 1981-12-11 | 1983-12-21 | 株式会社東芝 | 蒸気タ−ビン |
US4465429A (en) * | 1982-02-01 | 1984-08-14 | Westinghouse Electric Corp. | Steam turbine with superheated blade disc cavities |
JPS58133402A (ja) * | 1982-02-04 | 1983-08-09 | Toshiba Corp | 軸流タ−ビンのロ−タ冷却機構 |
DE3209506A1 (de) * | 1982-03-16 | 1983-09-22 | Kraftwerk Union AG, 4330 Mülheim | Axial beaufschlagte dampfturbine, insbesondere in zweiflutiger ausfuehrung |
JPS59153901A (ja) * | 1983-02-21 | 1984-09-01 | Fuji Electric Co Ltd | 蒸気タ−ビンロ−タの冷却装置 |
JPS59155503A (ja) * | 1983-02-24 | 1984-09-04 | Toshiba Corp | 軸流タ−ビンのロ−タ冷却装置 |
JPS60159304A (ja) * | 1984-01-27 | 1985-08-20 | Toshiba Corp | 蒸気タ−ビンのデイスク冷却装置 |
FR2666846B1 (fr) * | 1990-09-13 | 1992-10-16 | Alsthom Gec | Grille d'aubes pour turbomachine munie de fentes d'aspiration dans le plafond et/ou dans le plancher et turbomachine comportant ces grilles. |
-
1996
- 1996-05-23 DE DE19620828A patent/DE19620828C1/de not_active Expired - Lifetime
-
1997
- 1997-05-14 DE DE59710620T patent/DE59710620D1/de not_active Expired - Lifetime
- 1997-05-14 ES ES97924884T patent/ES2206713T3/es not_active Expired - Lifetime
- 1997-05-14 CZ CZ982966A patent/CZ296698A3/cs unknown
- 1997-05-14 CN CN97194241A patent/CN1079491C/zh not_active Expired - Lifetime
- 1997-05-14 PL PL97329689A patent/PL329689A1/xx unknown
- 1997-05-14 AT AT97924884T patent/ATE247767T1/de not_active IP Right Cessation
- 1997-05-14 WO PCT/DE1997/000970 patent/WO1997044568A1/de active IP Right Grant
- 1997-05-14 JP JP54136497A patent/JP3943135B2/ja not_active Expired - Fee Related
- 1997-05-14 EP EP97924884A patent/EP0900322B1/de not_active Expired - Lifetime
-
1998
- 1998-11-23 US US09/198,218 patent/US6082962A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
ES2206713T3 (es) | 2004-05-16 |
WO1997044568A1 (de) | 1997-11-27 |
CZ296698A3 (cs) | 1999-02-17 |
DE19620828C1 (de) | 1997-09-04 |
DE59710620D1 (de) | 2003-09-25 |
US6082962A (en) | 2000-07-04 |
EP0900322A1 (de) | 1999-03-10 |
PL329689A1 (en) | 1999-04-12 |
ATE247767T1 (de) | 2003-09-15 |
CN1217042A (zh) | 1999-05-19 |
JP3943135B2 (ja) | 2007-07-11 |
CN1079491C (zh) | 2002-02-20 |
JP2000511257A (ja) | 2000-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0900322B1 (de) | Turbinenwelle sowie verfahren zur kühlung einer turbinenwelle | |
EP0906494B1 (de) | Turbinenwelle sowie verfahren zur kühlung einer turbinenwelle | |
EP0991850B1 (de) | Turbinenwelle einer dampfturbine mit interner kühlung sowie verfahren zur kühlung einer turbinenwelle | |
EP1945911B1 (de) | Dampfturbine | |
DE3407218C2 (de) | Gasturbine | |
DE69937652T2 (de) | Bürstendichtung für eine Turbomaschine | |
DE69018338T2 (de) | Gasturbine. | |
DE3428892A1 (de) | Schaufel- und dichtspaltoptimierungseinrichtung fuer verdichter von gasturbinentriebwerken, insbesondere gasturbinenstrahltriebwerken | |
EP2596213B1 (de) | Dampfturbine mit einer internen kühlung | |
EP0953099B1 (de) | Dampfturbine | |
EP2718545B1 (de) | Dampfturbine umfassend einen schubausgleichskolben | |
EP2078137B1 (de) | Rotor für eine strömungsmaschine | |
EP0122872A1 (de) | MD-Dampfturbine in einflutiger Bauweise für eine Hochtemperaturdampfturbinenanlage mit Zwischenüb erhitzung | |
EP1413711B1 (de) | Gasturbine und Verfahren zum Kühlen einer Gasturbine | |
EP1206627B1 (de) | Turbine sowie verfahren zur abführung von leckfluid | |
DE830853C (de) | Duesenring fuer mit hohen Betriebstemperaturen arbeitende Turbinen, insbesondere Gasturbinen | |
WO2001086121A1 (de) | Verfahren zur kühlung einer welle in einem hochdruck-expansionsabschnitt einer dampfturbine | |
DE60224746T2 (de) | Dampfrohrleitungsstruktur einer Gasturbine | |
DE1941873A1 (de) | Gaturbinentriebwerk | |
EP2324208B1 (de) | Turbinenleitschaufelträger für eine gasturbine und verfahren zum betrieb einer gasturbine | |
EP2159377A1 (de) | Leitschaufelträger für eine Gasturbine und entsprechende Gasturbinenanlage | |
EP2598724A1 (de) | Dampfturbine sowie verfahren zum kühlen einer solchen | |
EP3183426B1 (de) | Kontrollierte kühlung von turbinenwellen | |
EP2173973B1 (de) | Dampfzuführung für eine dampfturbine | |
DE102023106604A1 (de) | Dynamische Dichtung, Dichtungsanordnung, Drehdurchführung, Blasformmaschine und Verfahren zum Kühlen einer dynamischen Dichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19981117 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT CH DE ES FR GB IT LI NL SE |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT CH DE ES FR GB IT LI NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030820 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SERVOPATENT GMBH |
|
REF | Corresponds to: |
Ref document number: 59710620 Country of ref document: DE Date of ref document: 20030925 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20031120 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040514 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2206713 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040524 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH) |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20160627 Year of fee payment: 20 Ref country code: GB Payment date: 20160512 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20160527 Year of fee payment: 20 Ref country code: FR Payment date: 20160512 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20160802 Year of fee payment: 20 Ref country code: DE Payment date: 20160720 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59710620 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20170513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20170513 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20180508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20170515 |