[go: up one dir, main page]

EP0890111A1 - Verfahren zum erzeugen von fehlerklassifizierungssignalen - Google Patents

Verfahren zum erzeugen von fehlerklassifizierungssignalen

Info

Publication number
EP0890111A1
EP0890111A1 EP97921599A EP97921599A EP0890111A1 EP 0890111 A1 EP0890111 A1 EP 0890111A1 EP 97921599 A EP97921599 A EP 97921599A EP 97921599 A EP97921599 A EP 97921599A EP 0890111 A1 EP0890111 A1 EP 0890111A1
Authority
EP
European Patent Office
Prior art keywords
loops
neural network
error
classification signals
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP97921599A
Other languages
English (en)
French (fr)
Inventor
Klaus Dr. Böhme
Andreas Dr. Jurisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Siemens Corp
Original Assignee
Siemens AG
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Siemens Corp filed Critical Siemens AG
Publication of EP0890111A1 publication Critical patent/EP0890111A1/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0092Details of emergency protective circuit arrangements concerning the data processing means, e.g. expert systems, neural networks

Definitions

  • test methods For the further processing of the impedance values of the other non-eliminated loops, which are detected as faulty, differently designed test methods are used with regard to the number of conductor-earth loops detected at the same time, each of which is the number of loops determined test procedures associated with conductor-earth loops are carried out.
  • FIG. 1 shows an exemplary embodiment of an arrangement for carrying out the method according to the invention with a neural network taught in with standardized resistance and reactance variables and in
  • the ⁇ o resistance or reactance measured variable obtained is standardized with regard to the excitation characteristic or the predetermined excitation polygon given by means 6 by means of reference resistance and reactance measured variables RL1-E standardized with reference to the excitation characteristic using quotient formation and XLl-E are formed.
  • the selection circuit 14 transfers the measured variables associated with the faulty loops at the output of the converter 1 to a protective device (not shown) arranged downstream of an output data bus 16 of the selection circuit 14, for example, a distance protection device, which then actuates circuit breakers located in the course of the power supply line.
  • This distinction signal UL1-E indicates whether the associated resistance or reactance measured variables RL1-E and XL1-E describe a pointer which lies within the excitation characteristic or the predefined excitation polygon specified by the device 6 .
  • an unnormalized reactance measured variable RL3-L1 and XL3-L1 is connected to further inputs 25 and 26 of the neural network 23 and a differentiation signal UL3-L1 to another assigned input 27, which also indicates whether the described measurement variables describe a pointer within the excitation characteristic or within the excitation polygon.
  • Error classification signals F3 and F4 are then output at outputs 28 and 29 of the neural network 23, which identify, for example, the loop L1-E of the power supply line, not shown, as a faulty loop and the loop L3-L1 as a further faulty loop.
  • the neural network 23 is learned in a different way than the neural network 9 according to FIG. 1.
  • the neural network 23 is namely taught in with resistance and reactance variables, taking into account classification signals, which in each case indicate whether the quantities supplied in pairs are within the range - characteristic curve or lying outside the excitation characteristic curve Describe pointer.
  • a "standardization" is thereby achieved, so that the arrangement according to FIG. 2 also works perfectly at different installation locations in a network and, via a selection circuit according to the selection circuit 14 according to FIG. 1, a measurement device, not shown, in particular a distance protection device which are to be evaluated in the respective error case.

Landscapes

  • Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Locating Faults (AREA)

Abstract

Die Erfindung bezieht sich auf ein Verfahren zum Erzeugen von Fehlerklassifizierungssignalen, die in einem mehrphasigen Energieversorgungsnetz von einer Schutzeinrichtung mit einer Anregeanordnung aus betrachtet im Fehlerfalle sich ausbildende, fehlerbehaftete Schleifen bezeichnen. Um solche Fehlerklassifizierungssignale verhältnismässig einfach erzeugen zu können, wird ein neuronales Netz (9) verwendet, das mit fehlerbehaftete Schleifen simulierenden Eingangsgrössen in Form von unter Berücksichtigung der Anregekennlinie der Anregeanordnung (5) gebildeten, normierten Resistanz- und Reaktanzgrössen angelernt ist. Zum Erzeugen der Fehlerklassifizierungssignale (F1, F2) wird das neuronale Netz (9) im Fehlerfalle mit normierten Resistanz- und Reaktanz-Messgrössen (RL1-E, XL1-E; RL3-L1, XL3-L1) beaufschlagt.

Description

Beschreibung
Verfahren zum Erzeugen von Fehlerklassifizierungssignalen
Aus dem Siemens-Gerätehandbuch „ Digitaler Abzweigschutz
7SA511 V3.0, Bestell-Nr. C53000-G1100-C98-1, 1995, Seite 36, ist ein Verfahren zum Gewinnen von fehlerbehaftete Schleifen in einem mehrphasigen elektrischen Energieversorgungsnetz kennzeichnenden Fehlerklassifizierungssignalen beschrieben. Bei diesem bekannten Verfahren erfolgt eine Impedanzanregung in Form eines schleifenbezogenen Anregeverfahrens. Dabei wer¬ den nach Durchführen eines ersten Verfahrenεschrittes zur Erdfehlererkennung bei mindestens einem erkannten Erdfehler die Leiter-Erde-Schleifen und bei keinem erfaßten Erdfehler die Leiter-Leiter-Schleifen überwacht. Eine Schleife gilt als angeregt, wenn der ermittelte entsprechende Impedanzzeiger innerhalb des für die jeweilige Schleife geltenden Anrege¬ polygons liegt. Sind mehrere Schleifen gleichzeitig angeregt, wird ein Impedanzvergleich vorgenommen, bei dem nur solche Schleifen als angeregt eingestuft werden, deren Impedanz nicht mehr als das l,5fache der kleinsten Schleifenimpedanz beträgt .
Um mit großer Sicherheit alle die Schleifen zu eliminieren, die trotz anfänglicher Anregung tatsächlich nicht fehlerbe¬ haftet sind, werden bei einem in der älteren deutschen Patentanmeldung P 195 45 267.4 beschriebenen Verfahren zum Gewinnen von fehlerbehaftete Schleifen kennzeichnenden Feh¬ lerklassifizierungssignalen bei Ermittlung ausschließlich erdfehlerfreier Schleifen durch Vergleich von hinsichtlich der erfaßten Leiter-Leiter-Schleifen errechneten virtuellen Impedanzen nach Betrag und Phase mit bei der Impedanzanregung ermittelten Impedanzen die tatsächlich fehlerbehafteten Schleifen ermittelt. Bei Feststellung mindestens einer Schleife mit Erdfehler werden durch einen Vergleich der Beträge von aus den Impedanzwerten der als Fehler behaftet erfaßten Leiter-Erde-Schleifen gebildeten virtuellen Impe¬ danzwerten mit dem kleinsten virtuellen Impedanzwert fehler¬ freie Leiter-Erde-Schleifen erkannt und eliminiert. Zur Wei- terverarbeitung der Impedanzwerte der übrigen nichtelimi- nierten, und als fehlerbehaftet erfaßten Schleifen werden im Hinblick auf die Anzahl von gleichzeitig festgestellten Lei¬ ter-Erde-Schleifen unterschiedlich ausgestaltete Prüfungs¬ verfahren verwendet, von denen jeweils das der jeweils fest- gestellten Anzahl von Leiter-Erde-Schleifen zugeordnete Prüf¬ verfahren durchlaufen wird.
Ferner ist es aus der in „Fortschritt-Berichte VDI", Reihe 21: Elektrotechnik, Nr. 173, veröffentlichten Dissertation „Einsatz neuronaler Netze im Distanzschutz", Seiten 71 bis 76 von T. Daistein bekannt, zum Erzeugen von Fehlerklassifizie¬ rungssignalen ein neuronales Netz einzusetzen. Dieses Netz ist in der Weise angelernt, daß es mit mindestens für 50.000 Störfälle simulierten Abtastwerten von Strom und Spannung beaufschlagt wird. Das Anlernen muß jeweils individuell für den jeweiligen Einbauort in einem Energieversorgungssystem durchgeführt werden, wodurch die Herstellungskosten eines mit einem solchen neuronalen Netz ausgerüsteten Schutzgeräteε extrem hoch werden, so daß es für einen praktischen Einsatz nicht in Frage kommt. Dem neuronalen Netz ist eine An¬ regeanordnung zugeordnet.
Die Erfindung geht von dem zuletzt behandelten bekannten Ver¬ fahren aus und betrifft demzufolge ein Verfahren zum Erzeugen von Fehlerklassifizierungssignalen, die in einem mehrphasigen Energieversorgungssystem von einer Schutzeinrichtung mit einer Anregeanordnung aus betrachtet im Fehlerfalle sich aus¬ bildende, fehlerbehaftete Schleifen bezeichnen, bei dem ein neuronales Netz verwendet wird, das mit fehlerbehaftete Schleifen simulierenden Eingangsgrößen angelernt ist, und bei dem das neuronale Netz im Fehlerfalle zum Erzeugen der Feh¬ lerklassifizierungssignale an seinen Eingängen mit aus Strömen und Spannungen der Schleifen des Energieversorgungs¬ systems abgeleiteten Meßgrößen beaufschlagt wird, um an sei- nen Ausgängen die Fehlerklassifizierungssignale zu erhalten.
Der Erfindung liegt die Aufgabe zugrunde, das bekannte Ver¬ fahren so fortzuentwickeln, daß es mit vergleichsweise gerin¬ gem Aufwand durchführbar und daher auch in der Praxis ein- setzbar ist.
Zur Lösung dieser Aufgabe wird erfindungsgemäß ein neuronales Netz verwendet, das mit fehlerbehaftete Schleifen simulieren¬ den Eingangsgrößen in Form von unter Berücksichtigung der An- regekennlinie der Anregeanordnung gebildeten, normierten Re¬ sistanz- und Reaktanzgrößen angelernt ist; das so angelernte neuronale Netz wird zum Erzeugen der Fehlerklassifizierungs¬ signale im Fehlerfalle mit unter Berücksichtigung der Anrege¬ kennlinie normierten Resistanz- und Reaktanzmeßgrößen der Schleifen beaufschlagt.
Es ist zwar aus der deutschen Offenlegungsschrift
DE 43 33 257 AI ein Verfahren zum Gewinnen eines Fehlerkenn- zeichnungs-Signals mittels einer Neuronalnetz-Anordnung be- kannt, bei dem der Neuronalnetz-Anordnung normierte Span¬ nungswerte zugeführt werden, jedoch wird nach diesem Verfah¬ ren ein Fehlerkennzeichnungs-Signal erzeugt, mit dem eine Un¬ terscheidung zwischen einem Kurzschluß mit Lichtbogen und einem metallischen Kurzschluß ermöglicht ist; außerdem er- folgt die Normierung der Spannungswerte offenbar in üblicher
Weise und nicht mit unter Berücksichtigung einer Anregekennlinie normierter Resistanz- und Reaktanzmeßgrößen, was bei dem erfindungsgemäßen Verfahren wegen eines entspre¬ chenden Anlernvorganges der Neuronalnetz-Anordnung unbedingt erforderlich ist. Entsprechendes gilt bezüglich der Verwendung normierter Ab¬ tastsignale hinsichtlich eines weiteren, aus der deutschen Offenlegungsschrift DE 43 33 260 AI bekannten Verfahrens, mit dem im Unterschied zum oben behandelten Verfahren und zum er- findungsgemäßen Verfahren ein Anregesignal in einer Selektiv¬ schutz-Anordnung gewonnen werden kann.
Es ist auch eine Distanzschutzeinrichtung bekannt (deutsche Patentschrift DE 44 33 406 Cl) , die eine Neuronalnetzanord- nung alε wesentlichen Bestandteil enthält. Diese Anordnung weist für jede auf dem zu überwachenden Abschnitt eines Ener¬ gieversorgungsnetzes mögliche Fehlerart jeweils ein eigenes neuronales Netz auf. Der Neuronalnetzanordnung ist eine Fhlerartbestimmungseinrichtung zugeordnet, die eingangsseitig an eine Merkmalsextraktionseinrichtung angeschlossen ist.
Ausgangsseitig ist diese Einrichtung mit Kontakteinrichtungen in einer Anzahl verbunden, die der der möglichen Fehlerarten entspricht. Die Ausgänge aller Kontakteinrichtungen sind zu einem gemeinsamen Ausgang geführt, an dem bei einem Fehler einer bestimmten Art auf dem zu überwachenden Abschnitt auf¬ grund einer Ansteuerung der entsprechenden Kontakteinrichtung ein Ausgangssignal des neuronalen Netzes auftritt, das für die Erfassung dieses bestimmten Fehlers vorgesehen iεt.
Es ist ferner ein Verfahren zum Erzeugen von Signalen bekannt (deutsche Offenlegungsschrift DE 43 33 258 AI), die die Art eines Fehlers im Hinblick auf einpolige Fehler gegen Erde, zweipolige Fehler mit Erdberührung, zweipolige Fehler ohne Erdberührung und dreipolige Fehler mit oder ohne Erdberührung kennzeichnen; Fehlerklassifizierungssignale, die sich im
Fehlerfalle ausbildende, fehlerbehaftete Schleifen bezeich¬ nen, werden also nicht erzeugt. Bei dem bekannten Verfahren wird ein einziges neuronales Netz mit mehreren Neuronen in seiner Ausgangsschicht verwendet, das mit in üblicher Weise normierten Strom- und Spannungswerten derart angelernt ist, daß bei einem Fehler einer bestimmten Art jeweils ein Neuron der Ausgangsschicht ein Ausgangssignal abgibt.
Darüber hinaus ist es aus dem Buch von E. Schöneburg „Industrielle Anwendung Neuronaler Netze" 1993, Seite 51 bzw. 324 bekannt, im Rahmen einer Getriebediagnose mit Neuronalen Netzen alle Hochschaltungen der zu untersuchenden Getriebe mit einem Neuronalen Netz zu erfassen, indem die unterschied¬ lichen Reaktionszeiten und Rutschzeiten normiert werden.
Ein wesentlicher Vorteil des erfindungsgemäßen Verfahrens be¬ steht darin, daß es mit einem neuronalen Netz durchführbar ist, das für Einsätze an verschiedenen Orten von Energiever¬ sorgungssystemen einheitlich angelernt ist, so daß für ver- schiedene Einsatzzwecke „Kopien" des einmal angelernten neu¬ ronalen Netzes eingesetzt werden können. Dies ist darauf zu¬ rückzuführen, daß bei dem erfindungsgemäßen Verfahren das An¬ lernen des neuronalen Netzes nicht mit im Hinblick auf im Fehlerfalle sich ausbildende, fehlerbehaftete Schleifen simu- lierenden Strömen und Spannungen erfolgt, sondern mit fehler¬ behaftete Schleifen simulierenden, normierten Resistanz- und Reaktanzgrößen; im praktischen Einsatz müssen dann im Rahmen des erfindungsgemäßen Verfahrens im Hinblick auf die jewei¬ lige Anregekennlinie der Anregeanordnung aus den jeweils be- stimmten Resistanz- und Reaktanz-Meßgrößen normierte Resi¬ stanz- und Reaktanz-Meßgrößen gebildet werden, mit denen dann das neuronale Netz beaufschlagt wird. Durch Berücksichtigung der jeweiligen Anregekennlinie bzw. des jeweiligen Anrege¬ polygons bei der Bildung der normierten Resistanz- und Reak- tanz-Meßgrößen der Schleifen erfolgt somit bei dem erfin¬ dungsgemäßen Verfahren eine Anpassung an unterschiedliche Verhältnisse am jeweiligen Einbauort im jeweiligen Energie¬ versorgungssystem. Ein weiterer Vorteil des erfindungsgemäßen Verfahrens beεteht darin, daß aufgrund der Verwendung des entsprechend angelernten neuronalen Netzes die vorteilhafte Möglichkeit besteht, auch in schwierigen Grenzsituation fehlerbehaftete Schleifen von tatsächlich nicht fehler¬ behafteten Schleifen eindeutig unterscheiden zu können.
Bei einer alternativen vorteilhaften Ausführungsform des er¬ findungsgemäßen Verfahrens wird erfindungsgemäß ein neurona¬ les Netz verwendet, das mit fehlerbehaftete Schleifen simu¬ lierenden Eingangsgrößen in Form von Resistanz- und Reak¬ tanzgrößen der Schleifen und die Lage dieser Größen in bezug auf die Anregekennlinie beschreibenden Einordnungssignalen angelernt ist; das so angelernte neuronale Netz wird zum Er¬ zeugen der Fehlerklassifizierungssignale im Fehlerfalle mit Resistanz- und Reaktanzmeßgrößen der Schleifen und mit die Lage dieser Meßgrößen in bezug auf die jeweilige Anregekenn- linie bezeichnenden Unterscheidungsεignalen beaufschlagt.
Auch diese Ausführungεform des erfindungsgemäßen Verfahrens beruht darauf, daß das neuronale Netz mit gewissermaßen nor¬ mierten Eingangsgrößen angelernt wird, indem bei dieser Aus- führungsform daε Anlernen deε neuronalen Netzes nicht nur mit fehlerbehaftete Schleifen simulierenden Eingangsgrößen in Form von Resistanz- und Reaktanzgrößen der Schleifen erfolgt, sondern zusätzlich unter Berücksichtigung von Einordnungs¬ signalen, die die Lage dieser Größen in bezug auf die Anre- gekennlinie der Anregeanordnung beschreiben. Dadurch läßt sich auch diese Auεführungεform deε erfindungεgemäßen Verfah- renε unabhängig von den jeweiligen Netzverhältnissen ohne weiteres an verschiedenen Orten von Energieversorgungs- syεtemen einsetzen, indem nur eine Anpaεεung an die jeweili- gen Gegebenheiten durch die im Hinblick auf die jeweilige An¬ regekennlinie der Anregeanordnung erzeugten Unterscheidungε- signale vorgenommen wird.
Zur Erläuterung der Erfindung ist in Figur 1 ein Ausfuhrungsbeispiel einer Anordnung zur Durch¬ führung des erfindungsgemäßen Verfahrens mit einem mit normierten Resistanz- und Reaktanzgrößen ange¬ lernten neuronalen Netz und in
Figur 2 ein Ausführungsbeispiel einer Anordnung zur Durch¬ führung des erfindungsgemäßen Verfahrens mit einem mit Resistanz- und Reaktanzgrößen unter Berücksich¬ tigung von Unterεcheidungεsignalen angelernten neu¬ ronalen Netz dargestellt.
Der Figur 1 ist zu entnehmen, daß ein Analog-Digital-Wandler 1 eingangsseitig mit Strömen in den Leitern eines nicht dar¬ gestellten mehrphasigen Energieversorgungssystems proportio¬ nalen Strömen I über Stromwandler 2 und mit Spannungen an den Leitern proportionalen Spannungen U über Spannungswandler 3 beaufschlagt ist. Der Analog-Digital-Wandler 1 ist aus¬ gangsseitig über einen Datenbus 4 mit einer Anregeanordnung 5 verbunden, die nach Art einer Impedanzanregung auεgebildet εein kann und somit für jede Leiterschleife aus den Strömen und Spannungen der beiden beteiligten Leiter Impedanzen bildet und den jeweils gebildeten Impedanzzeiger dahingehend überprüft, ob er innerhalb der jeweiligen Anregekennlinie liegt. Die Anregeanordnung 5 ist außerdem mit einer Einrich¬ tung 6 zur Einstellung der Parameter der Anregekennlinie der Anregeanordnung 5 verεehen.
In der Anregeanordnung 5 werden im Hinblick auf vom Einbauort der Anordnung aus betrachtet im Fehlerfalle sich ausbildende Schleifen dahingehend auεgemessen, daß aus dem jeder Schleife zugeordneten Strom sowie zugeordneter Spannung eine Reεi- stanz-Meßgröße, beiεpielεweiεe RLl-E, und eine Reaktanz-Me߬ größe XLl-E gewonnen wird, wenn es sich bei diesem Fehlerfall um einen Kurzschluß zwischen einem (nicht dargestellten) Leiter LI einer ebenfalls nicht gezeigten mehrphasigen Energieversorgungsleitung und Erde E handelt, somit also eine Leiter-Erde-Schleife durch den Fehler gebildet ist. Die εo gewonnene Resistanz- bzw. Reaktanz-Meßgröße wird im Hinblick auf die mittels der Einrichtung 6 vorgegebene Anregekennlinie bzw. das vorgegebene Anregepolygon dadurch normiert, daß unter Bezugnahme auf die Anregekennlinie mittels Quotien¬ tenbildung normierte Resistanz- bzw. Reaktanz-Meßgrößen RLl-E und XLl-E gebildet werden. Diese normierten Resistanz- bzw. Reaktanzgrößen werden Eingängen 7 und 8 eines neuronalen Netzes 9 zugeführt, das über weitere jeder möglichen Schleife zugeordnete Eingänge mit entsprechenden weiteren Resiεtanz- bzw. Reaktanz-Meßgrößen beaufεchlagt werden kann; nur bei¬ spielsweise ist zusätzlich gezeigt, daß an weiteren Eingängen 10 und 11 des neuronalen Netzes 9 eine normierte Resistanz- Meßgröße RL3-L1 und eine weitere normierte Reaktanz-Meßgröße XL3-L1 anstehen kann, wenn ein Fehler zwischen den Leitern L3 und Ll der nicht dargestellten mehrphasigen Ener¬ gieversorgungsleitung aufgetreten ist. An jedem Eingang 7, 8 sowie 10, 11 und weiteren Eingängen des neuronalen Netzes 9 liegt ein Eingangsneuron des neuronalen Netzes 9, das in be- kannter Weise als ein mehrschichtiges neuronales Netz ausge¬ führt sein kann. Das neuronale Netz 9 weist eine Reihe von Ausgängen auf, von denen in der Figur 1 nur die Ausgänge 12 und 13 dargestellt sind. Die Zahl der Ausgänge bemißt sich nach der Anzahl der Schleifen, die mit dem neuronalen Netz 9 im Hinblick auf die jeweilige Energieversorgungsleitung als fehlerbehaftet erkannt werden sollen. Die Ausgänge deε neuro¬ nalen Netzes 9 stellen Ausgänge jeweils eines Ausgangεneuronε deε neuronalen Netzes 9 dar. An dem Ausgang 12 tritt ein Fehlerklassifizierungssignal Fl auf, wenn ein Fehler zwisc en dem Leiter Ll und Erde E aufgetreten iεt, während beispiel¬ weise am Ausgang 13 ein Signal F2 erscheint, wenn ein Fehler zwischen dem Leiter L3 und Ll der Energieversorgungsleitung aufgetreten ist . An die Ausgänge 12 und 13 des neuronalen Netzes 9 iεt eine Auswahlschaltung 14 angeschloεεen, die eingangεseitig mit einem Datenbus 15 an den Ausgang des Analog-Digital-Wandlers 1 angeschlossen ist. Entsprechend den Signalen an den Ausgän- gen 12 und 13 des neuronalen Netzeε 9 werden von der Auεwahl- εchaltung 14 die den fehlerbehafteten Schleifen zugeordneten Meßgrößen am Ausgang des Wandlers 1 auf eine über einen Aus- gangsdatenbuε 16 der Auswahlschaltung 14 nachgeordnete, nicht dargestellte Schutzeinrichtung, beispielsweise eine Distanzschutzeinrichtung, zugeführt, die daraufhin im Zuge der Energieversorgungsleitung liegende Leistungsεchalter be¬ tätigt .
Wesentlich für die Wirkungεweiεe der Anordnung nach Figur 1 ist, daß das neuronale Netz 9 so angelernt ist, daß es aus den ihm zugeführten normierten Resistanz- und Reaktanzme߬ größen, z.B. RLl-E und XLl-E und RL3-L1 und XL3-L1 an den Eingängen 7 und 8 sowie 10 und 11, an den Ausgängen 12 und 13 Fehlerklasεifizierungssignale Fl und F2 erzeugt. Dies ist dadurch erreicht, daß das neuronale Netz 9 mit normierten Resistanz- und Reaktanzgrößen angelernt ist, mit denen feh¬ lerbehaftete Schleifen simuliert sind. Durch Berücksichtigung der Anregekennlinie der Anregeanordnung bei der Bildung der normierten Resistanz- und Reaktanzgrößen iεt das neuronale Netz 9 unabhängig vom jeweiligen Einsatzort anwendbar, sofern ihm eingangsseitig im jeweiligen Einsatzfalle normierte Resistanz- und Reaktanz-Meßgrößen zugeführt werden. Dieε iεt gewährleistet durch die Einrichtung 6, von der die bevorzugt in Form eines Rechners ausgebildete Anregeanordnung 5 in die Lage gesetzt wird, die normierten Resistanz- und Reaktanz- Meßgrößen zu bilden, die das neuronale Netz 9 aufgrund seines Anlernens erkennt und mit denen eε gezielt und zuverläεεig Fehlerklassifizierungssignale, unter anderem Fl und F2, erzeugt . Bei der Anordnung gemäß Figur 2 sind mit der Anordnung nach Figur 1 übereinstimmende Bestandteile mit gleichen Bezugszei¬ chen versehen. Die Anregeanordnung 20 ist hier in anderer Weise ausgeführt, da sie an ihren Ausgängen unnormierte Resi- stanz- und Reaktanz-Meßgrößen RLl-E, XLl-E bzw. RL3-L1, XL3-L1 ausgibt, also Meßgrößen, die sich aus Strömen und Spannungen der jeweiligen Schleifen errechnen lassen. Die unnormierten Resistanz- und Reaktanz-Meßgrößen RLl-E und XLl-E werden Eingängen 21 und 22 eines neuronalen Netzes 23 zugeführt. Außerdem wird einem weiteren Eingang 24 des neuro¬ nalen Netzes 23 ein Unterscheidungssignal UL1-E von der Anre¬ geanordnung 20 zugeführt. Dieses Unterscheidungssignal ULl-E zeigt an, ob mit den zugeordneten Resistanz- bzw. Reaktanz- Meßgrößen RLl-E und XLl-E ein Zeiger beschrieben ist, der in- nerhalb der durch die Einrichtung 6 vorgegebenen Anregekenn¬ linie bzw. des vorgegebenen Anregepolygons liegt. Entεpre- chend iεt beiεpielsweise an weiteren Eingängen 25 und 26 des neuronalen Netzes 23 eine unnormierte Reaktanz-Meßgröße RL3- Ll und XL3-L1 angeεchloεsen sowie an einen weiteren zugeord- neten Eingang 27 ein Unterscheidungεsignal UL3-L1, das auch hier angibt, ob die genannten Meßgrößen einen Zeiger inner¬ halb der Anregekennlinie bzw. innerhalb des Anregepolygons beschreiben. An Ausgängen beispielsweise 28 und 29 des neuro¬ nalen Netzes 23 werden dann Fehlerklassifizierungssignale F3 und F4 abgegeben, die beispielsweise die Schleife Ll-E der nicht dargestellten Energieversorgungsleitung als fehlerbe¬ haftete Schleife und die Schleife L3-L1 als weitere fehlerbe¬ haftete Schleife kennzeichnen.
Das neuronale Netz 23 ist in anderer Weise angelernt als das neuronale Netz 9 gemäß Figur 1. Das neuronale Netz 23 ist nämlich mit Resistanz- und Reaktanzgrößen angelernt unter Be¬ rücksichtigung von Einordnungεsignalen, die jeweils angeben, ob die paarweise zugeführten Größen einen innerhalb der Anre- gekennlinie oder außerhalb der Anregekennlinie liegenden Zeiger beschreiben. Dadurch ist eine „Normierung" erzielt, so daß die Anordnung gemäß Figur 2 auch an verschiedenen Einbau¬ orten in einem Netz einwandfrei arbeitet und über eine Aus¬ wahlschaltung gemäß der Auswahlschaltung 14 nach Figur 1 einer nicht dargestellten Schutzeinrichtung, insbesondere einer Distanzεchutzeinrichtung, die Meßgrößen zuleitet, die im jeweiligen Fehlerfall auεzuwerten sind.

Claims

Patentansprüche
1. Verfahren zum Erzeugen von Fehlerklassifizierungssignalen, die in einem mehrphasigen Energieversorgungssystem von einer Schutzeinrichtung mit einer Anregeanordnung aus betrachtet im Fehlerfalle sich ausbildende, fehlerbehaftete Schleifen be¬ zeichnen, bei dem
- ein neuronales Netz verwendet wird, das mit fehlerbehaftete Schleifen simulierenden Eingangsgrößen angelernt ist, und bei dem
- daε neuronale Netz im Fehlerfalle zum Erzeugen der Fehler- klaεεifizierungεεignale an seinen Eingängen mit aus Strömen und Spannungen der Schleifen des Energieversorgungssystemε abgeleiteten Meßgrößen beaufschlagt wird, um an seinen Aus- gangen die Fehlerklasεi f i zierungεsignale zu erhalten , d a d u r c h g e k e n n z e i c h n e t , d a ß
- ein neuronales Netz (9) verwendet wird, das mit fehlerbe¬ haftete Schleifen simulierenden Eingangsgrößen in Form von unter Berücksichtigung der Anregekennlinie der Anregeanord- nung (5) gebildeten, normierten Reεiεtanz- und Reaktanz¬ größen angelernt ist, und
- das so angelernte neuronale Netz (9) zum Erzeugen der Fehlerklasεifizierungεεignale (F1;F2) im Fehlerfalle mit unter Berücksichtigung der Anregekennlinie normierten Resiεtanz- und Reaktanzmeßgrößen (RLl-E, XLl-E; RL3-L1, XL3-L1) der Schleifen beaufεchlagt wird.
2. Verfahren zum Erzeugen von Fehlerklasεifizierungssignalen, die in einem mehrphasigen Energieversorgungssystem von einer Schutzeinrichtung mit einer Anregean^rdnung aus betrachtet im Fehlerfalle εich auεbildende, fehle ^haftete Schleifen be¬ zeichnen, bei dem
- ein neuronaleε Netz verwendet wird, das mit fehlerbehaftete Schleifen simulierenden Eingangsgrößen angelernt ist, und bei dem
- daε neuronale Netz im Fehlerfalle zum Erzeugen der Fehler¬ klassifizierungssignale an seinen Eingängen mit aus Strömen und Spannungen der Schleifen des Energieversorgungssystemε abgeleiteten Meßgroßen beaufschlagt wird, um an seinen Aus¬ gangen die Fehlerklasεiflzierungεsignale zu erhalten, d a d u r c h g e k e n n z e i c h n e t, d a ß - ein neuronales Netz (20) verwendet wird, das mit fehlerbe¬ haftete Schleifen simulierenden Eingangsgroßen in Form von Resistanz- und Reaktanzgrößen der Schleifen und die Lage dieser Großen in bezug auf die Anregekennlinie beschreiben¬ den Einordnungssignalen angelernt iεt, und - daε so angelernte neuronale Netz (20) zum Erzeugen der
Fehlerklassifizierungsεignale (F1;F2) im Fehlerfalle mit Resiεtanz- und Reaktanzmeßgroßen (RLl-E, XLl-E; RL3-L1, XL3-L1) der Schleifen und mit die Lage dieεer Meßgrößen in bezug auf die jeweilige Anregekennlinie bezeichnenden Unterscheidungsεignale (ULl-E; UL3-L1) beaufεchlagt wird.
EP97921599A 1996-03-25 1997-03-25 Verfahren zum erzeugen von fehlerklassifizierungssignalen Ceased EP0890111A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19613012 1996-03-25
DE19613012A DE19613012C1 (de) 1996-03-25 1996-03-25 Verfahren zum Erzeugen von Fehlerklassifizierungssignalen
PCT/DE1997/000682 WO1997036185A1 (de) 1996-03-25 1997-03-25 Verfahren zum erzeugen von fehlerklassifizierungssignalen

Publications (1)

Publication Number Publication Date
EP0890111A1 true EP0890111A1 (de) 1999-01-13

Family

ID=7790160

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97921599A Ceased EP0890111A1 (de) 1996-03-25 1997-03-25 Verfahren zum erzeugen von fehlerklassifizierungssignalen

Country Status (4)

Country Link
US (1) US6405184B1 (de)
EP (1) EP0890111A1 (de)
DE (1) DE19613012C1 (de)
WO (1) WO1997036185A1 (de)

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636841B1 (en) * 1997-04-01 2003-10-21 Cybula Ltd. System and method for telecommunications system fault diagnostics
DE19920654A1 (de) * 1999-05-05 2000-11-09 Abb Research Ltd Verfahren zur Bestimmung eines Leitungsimpedanz-Grenzwertes in einem Distanzschutzgerät
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
FI118059B (fi) * 2005-01-28 2007-06-15 Valtion Teknillinen Asennontunnistin ja menetelmä asennontunnistimen diagnosoimiseksi
US8086355B1 (en) * 2007-02-28 2011-12-27 Global Embedded Technologies, Inc. Method, a system, a computer-readable medium, and a power controlling apparatus for applying and distributing power
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
FR2983987B1 (fr) * 2011-12-09 2014-01-10 Thales Sa Dispositif d'entree de donnees a potentiometre et manche destine au pilotage d'un aeronef, le manche comprenant le dispositif d'entree de donnees
JP6165780B2 (ja) 2012-02-10 2017-07-19 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. ロボット制御式の手術器具
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US11058475B2 (en) 2015-09-30 2021-07-13 Cilag Gmbh International Method and apparatus for selecting operations of a surgical instrument based on user intention
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US10779849B2 (en) 2016-01-15 2020-09-22 Ethicon Llc Modular battery powered handheld surgical instrument with voltage sag resistant battery pack
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US12193698B2 (en) 2016-01-15 2025-01-14 Cilag Gmbh International Method for self-diagnosing operation of a control switch in a surgical instrument system
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
EP3293854B1 (de) * 2016-09-13 2020-01-08 Siemens Aktiengesellschaft Verfahren zum ermitteln einer ursache eines fehlers in einem elektrischen energieversorgungsnetz und schutzgerät zur durchführung eines solchen verfahrens
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US12336747B2 (en) 2019-12-30 2025-06-24 Cilag Gmbh International Method of operating a combination ultrasonic / bipolar RF surgical device with a combination energy modality end-effector
US11723716B2 (en) 2019-12-30 2023-08-15 Cilag Gmbh International Electrosurgical instrument with variable control mechanisms
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US11707318B2 (en) 2019-12-30 2023-07-25 Cilag Gmbh International Surgical instrument with jaw alignment features
US12064109B2 (en) 2019-12-30 2024-08-20 Cilag Gmbh International Surgical instrument comprising a feedback control circuit
US12023086B2 (en) 2019-12-30 2024-07-02 Cilag Gmbh International Electrosurgical instrument for delivering blended energy modalities to tissue
US12076006B2 (en) 2019-12-30 2024-09-03 Cilag Gmbh International Surgical instrument comprising an orientation detection system
US12114912B2 (en) 2019-12-30 2024-10-15 Cilag Gmbh International Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11986201B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Method for operating a surgical instrument
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US12053224B2 (en) 2019-12-30 2024-08-06 Cilag Gmbh International Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US12262937B2 (en) 2019-12-30 2025-04-01 Cilag Gmbh International User interface for surgical instrument with combination energy modality end-effector
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US12343063B2 (en) 2019-12-30 2025-07-01 Cilag Gmbh International Multi-layer clamp arm pad for enhanced versatility and performance of a surgical device
US12082808B2 (en) 2019-12-30 2024-09-10 Cilag Gmbh International Surgical instrument comprising a control system responsive to software configurations
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11550682B2 (en) 2020-10-20 2023-01-10 International Business Machines Corporation Synthetic system fault generation
EP4012864B1 (de) * 2020-12-09 2023-11-01 Siemens Aktiengesellschaft Schutzeinrichtung und verfahren zum überwachen eines elektrischen energieversorgungsnetzes
US20240030696A1 (en) 2021-04-23 2024-01-25 Hitachi Energy Switzerland Ag Computer-implemented method of power line protection, intelligent electronic device and electric power system
EP4080702A1 (de) 2021-04-23 2022-10-26 Hitachi Energy Switzerland AG Computerimplementiertes verfahren zum stromleitungsschutz, intelligente elektronische vorrichtung und stromsystem
CN114137360B (zh) * 2021-11-24 2024-01-05 广东电网有限责任公司 一种配电网故障定位方法、装置及存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5377201A (en) * 1991-06-18 1994-12-27 Nec Research Institute, Inc. Transitive closure based process for generating test vectors for VLSI circuit
DE4333259C1 (de) * 1993-09-27 1995-05-24 Siemens Ag Verfahren zum Erzeugen eines die Richtung eines Kurzschlußstromes angebenden Richtungssignals
DE4333260C2 (de) * 1993-09-27 1997-09-11 Siemens Ag Verfahren zum Erzeugen eines Anregesignals
DE4333258A1 (de) * 1993-09-27 1995-03-30 Siemens Ag Verfahren zum Erzeugen von die Art eines Fehlers in einem zu überwachenden elektrischen Energieversorgungsnetz kennzeichnenden Signalen
DE4333257C2 (de) * 1993-09-27 1997-09-04 Siemens Ag Verfahren zum Gewinnen eines Fehlerkennzeichnungs-Signals
DE4433406C1 (de) * 1994-09-12 1995-12-21 Siemens Ag Distanzschutzeinrichtung
DE19545267C2 (de) 1995-11-27 1999-04-08 Siemens Ag Verfahren zum Gewinnen von fehlerbehaftete Schleifen in einem mehrphasigen elektrischen Energieversorgungsnetz kennzeichnenden Signalen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9736185A1 *

Also Published As

Publication number Publication date
US6405184B1 (en) 2002-06-11
WO1997036185A1 (de) 1997-10-02
DE19613012C1 (de) 1997-08-14

Similar Documents

Publication Publication Date Title
WO1997036185A1 (de) Verfahren zum erzeugen von fehlerklassifizierungssignalen
DE4333257C2 (de) Verfahren zum Gewinnen eines Fehlerkennzeichnungs-Signals
DE2915407C2 (de)
EP0904549B1 (de) Verfahren zur prüfung von differentialschutzrelais/-systemen
EP0721685B1 (de) Verfahren zum erzeugen eines die richtung eines kurzschlussstromes angebenden richtungssignals
DE19545267C2 (de) Verfahren zum Gewinnen von fehlerbehaftete Schleifen in einem mehrphasigen elektrischen Energieversorgungsnetz kennzeichnenden Signalen
EP3451477B1 (de) Erkennen eines fehlers in einem gleichstromübertragungssystem
EP2697880A1 (de) Verfahren zum erzeugen eines fehlersignals
EP0665625B1 (de) Verfahren zur Erzeugung eines Impedanzwertes und zu dessen Verarbeitung in einer Distanzschutzeinrichtung
EP0696830A1 (de) Erdschlussortung in elektrischen Netzen mit einer Erdschlussspule
EP2057726B1 (de) Differentialschutzverfahren und differentialschutzeinrichtung
WO2022122441A1 (de) Schutzeinrichtung und verfahren zum überwachen eines elektrischen energieversorgungsnetzes
EP3422027B1 (de) Vorrichtung, verfahren, herstellverfahren für das testen von kabelbäumen
DE10297214T5 (de) Überkreuzungsfehlerklassifikation für Netzleitungen mit Parallelschaltungen
EP1348970A1 (de) Plausibilitätsprüfung von Stromwandlern in Unterstationen
WO1995009464A1 (de) Verfahren zum erzeugen von die art eines fehlers in einem zu überwachenden elektrischen energieversorgungsnetz kennzeichnenden signalen
DE4434705C2 (de) Verfahren und Vorrichtung zur Überwachung von mindestens zwei redundanten Reglerkanälen einer Erregereinrichtung eines elektrischen Generators
DE69824420T2 (de) Steuer- und Überwachungseinrichtung für die Öffnung oder die Schliessung eines elektrischen Betätigungselementes
EP1533623A2 (de) Verfahren zur Bestimmung eines erdschlussbehafteten Abzweiges
DE10253865B4 (de) Verfahren zur Ermittelung von ein mehrphasiges elektrotechnisches Betriebsmittel charakterisierenden elektrischen Größen
EP1001270A2 (de) Verfahren zur Prüfung einer Erdverbindung
EP3913382B1 (de) Verfahren und einrichtung zum ermitteln des fehlerortes eines dreipoligen unsymmetrischen fehlers auf einer leitung eines dreiphasigen elektrischen energieversorgungsnetzes
EP0782788B1 (de) Verfahren und vorrichtung zur überwachung von mindestens zwei redundanten reglerkanälen einer erregereinrichtung eines elektrischen generators
EP4175090A1 (de) Schutzeinrichtung und verfahren zum überwachen eines elektrischen energieversorgungsnetzes sowie computerprogrammprodukt
EP4556926A1 (de) Verfahren zum prüfen einer verdrahtung einer elektrischen anlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980922

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20011004

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20020401