EP0844628A1 - Process for producing a magnetic core of nanocristalline soft magnetic material - Google Patents
Process for producing a magnetic core of nanocristalline soft magnetic material Download PDFInfo
- Publication number
- EP0844628A1 EP0844628A1 EP97402396A EP97402396A EP0844628A1 EP 0844628 A1 EP0844628 A1 EP 0844628A1 EP 97402396 A EP97402396 A EP 97402396A EP 97402396 A EP97402396 A EP 97402396A EP 0844628 A1 EP0844628 A1 EP 0844628A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnetic
- annealing
- magnetic alloy
- alloy
- soft iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 13
- 239000000696 magnetic material Substances 0.000 title description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 30
- 238000000137 annealing Methods 0.000 claims abstract description 29
- 230000035699 permeability Effects 0.000 claims abstract description 22
- 229910052742 iron Inorganic materials 0.000 claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 claims abstract description 14
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 9
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 7
- 239000002159 nanocrystal Substances 0.000 claims abstract description 7
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 7
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 6
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 6
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 6
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 229910001004 magnetic alloy Inorganic materials 0.000 claims description 13
- 239000010955 niobium Substances 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 9
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 7
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 6
- 229910052775 Thulium Inorganic materials 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 6
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 6
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 6
- 239000011733 molybdenum Substances 0.000 claims description 5
- 239000010936 titanium Substances 0.000 claims description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 5
- 239000010937 tungsten Substances 0.000 claims description 5
- 238000012423 maintenance Methods 0.000 claims 1
- 229910045601 alloy Inorganic materials 0.000 abstract description 12
- 239000000956 alloy Substances 0.000 abstract description 12
- 229910052796 boron Inorganic materials 0.000 abstract description 5
- 229910052710 silicon Inorganic materials 0.000 abstract description 4
- 238000004804 winding Methods 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- YFXPPSKYMBTNAV-UHFFFAOYSA-N bensultap Chemical compound C=1C=CC=CC=1S(=O)(=O)SCC(N(C)C)CSS(=O)(=O)C1=CC=CC=C1 YFXPPSKYMBTNAV-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
- H01F41/0213—Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15333—Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15341—Preparation processes therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/832—Nanostructure having specified property, e.g. lattice-constant, thermal expansion coefficient
- Y10S977/838—Magnetic property of nanomaterial
Definitions
- the present invention relates to nanocrystalline magnetic materials intended, in particular, for the manufacture of magnetic circuits for apparatus electric.
- Nanocrystalline magnetic materials are well known and have been described, in particular, in European patent applications EP 0 271 657 and EP 0 299 498. These are iron-based alloys, containing more than 60 at% (atoms%) of iron, copper, silicon, boron, and possibly at least one element taken among niobium, tungsten, tantalum, zirconium, hafnium, titanium and molybdenum, cast in the form of amorphous ribbons and then subjected to a treatment which causes extremely fine crystallization (the crystals have less 100 nanometers in diameter). These materials have magnetic properties particularly suitable for the manufacture of soft magnetic cores for electrotechnical devices such as earth leakage circuit breakers.
- hysteresis (Br / Bm ⁇ 0.5), i.e. a cycle of coated hysteresis (Br / Bm ⁇ 0.3); Br / Bm being the ratio of remanent magnetic induction to magnetic induction maximum.
- Round hysteresis cycles are obtained when treatment thermal consists of a simple annealing at a temperature of about 500 ° C.
- the lying hysteresis cycles are obtained when the heat treatment involves at least one annealing under magnetic field, this annealing being able to be the annealing intended to cause the formation of nanocrystals.
- Materials with a round hysteresis cycle may exhibit very high magnetic permeability, even higher than that of alloys of the type Classic permalloys. This very high magnetic permeability makes them, a priori, particularly suitable for the manufacture of magnetic cores for circuit breakers AC class differentials, i.e. sensitive to fault currents alternative. However, for such use to be possible, it is necessary that the magnetic properties of the nuclei are sufficiently reproducible to that mass production is satisfactory.
- an amorphous magnetic alloy ribbon capable of being used to acquire a nanocrystalline structure.
- the toroids thus obtained are then annealed in order to cause the formation of nanocrystals and, as a result, their confer the desired magnetic properties.
- the annealing temperature which located around 500 ° C, is chosen so that the magnetic permeability of the alloy is maximum.
- the magnetic cores thus obtained are intended for receive windings which generate mechanical stresses which deteriorate the magnetic properties of the nuclei.
- the toroids are arranged in protective boxes with the interior of which they are wedged for example by foam rings.
- this wedging of the toroids in their casing induces, by itself, low stresses which are detrimental to the excellent magnetic properties developed on the nucleus.
- the use of a protective case although effective not always sufficient, and, after winding, the properties of the devices obtained by industrial production are degraded and too dispersed to be even acceptable for the intended use.
- the object of the present invention is to remedy these drawbacks by proposing a means for mass production of magnetic cores of material nanocrystalline, having both magnetic permeability (relative permeability impedance at 50 Hz maximum) greater than 400,000 and a round hysteresis cycle, so that the dispersion of their magnetic properties is compatible with the use for mass production of class GFCIs AC.
- This process applies to all soft magnetic alloys based on iron capable of exhibiting a nanocrystalline structure, and more particularly to alloys whose chemical composition comprises, in% atoms: Fe ⁇ 60% 0.5% ⁇ Cu ⁇ 1.5% 5% ⁇ B ⁇ 14% 5% ⁇ Si + B ⁇ 30% 2% ⁇ Nb ⁇ 4%
- the chemical composition of the alloy may also include low contents of impurities provided by raw materials or resulting from development.
- the amorphous ribbon is obtained in a manner known per se by solidification very fast liquid alloy.
- Magnetic core blanks are fabricated also in a manner known per se by winding the ribbon on a mandrel, cutting it and fixing its end with a welding point, in order to obtain small tori of rectangular section.
- the blanks must then be subjected to a annealing treatment to precipitate nanocrystals in the amorphous matrix of size less than 100 nanometers. This very fine crystallization makes it possible to obtain desired magnetic properties, and thus transforming the core blank magnetic in magnetic core.
- the inventors having unexpectedly found that the effect of the conditions annealing on the magnetic properties of the nuclei depended not only on the chemical composition of the alloy, but also, and not very controllably, special manufacturing conditions for each ribbon taken individually, before to carry out the annealing, the temperature Tm which determines, for an annealing of given duration, at the maximum magnetic permeability that it is possible to obtain on a torus made with the ribbon.
- This temperature Tm is specific to each ribbon, it is therefore determined for each ribbon by tests that a person skilled in the art can do.
- the annealing is carried out at a temperature T between Tm + 10 ° C and Tm + 50 ° C, and preferably between Tm + 20 ° C and Tm + 40 ° C, for a time between 0.1 and 10 hours, and, from preferably between 0.5 and 5 hours.
- Temperature and time are two setting parameters for annealing partially equivalent. However, variations in the annealing temperature have a much stronger effect than variations in the duration of annealing, in particular at the ends of the admissible annealing temperature range. Also, the temperature is a relatively coarse adjustment parameter of the conditions of processing, time is a fine adjustment parameter.
- the specific conditions of treatment are determined based on the intended use for the magnetic core.
- each core is placed in a box protector, in which it is wedged, for example, with foam washers.
- each core can be coated in a resin.
- the annealing temperature is not equal to Tm, the magnetic permeability of nuclei is not maximum. However, the inventors have found that in doing so, one could obtain a sufficiently reliable permeability magnetic greater than 400,000. They also found that the nuclei obtained magnets were well suited for mass production of circuit breakers differentials, and, in particular, they were less sensitive to the effect of constraints winding.
- Lot A was annealed at 505 ° C (Tm + 5 ° C) for 1 hour, in accordance with the prior art, lot B was annealed at 530 ° C (Tm + 30 ° C) for 3 hours, in accordance with the prior art to the invention, and batch C was annealed at 555 ° C (Tm + 55 ° C) for 3 hours, for comparison.
- the mean and standard deviation of the magnetic permeability values were determined for each of the batches, on the one hand for the naked nuclei, and on the other hand for the cased nuclei, that is to say, subjected to light stresses due to the setting of the torus in its case.
- lots B and C are more lower than the standard deviation of the magnetic permeability values of the nuclei magnetic, in case or not, of lot A.
- the difference between lots A and B results that the magnetic cores in lot B are less sensitive to stresses mechanical than the magnetic cores in lot A.
- the magnetic cores in lot C are a priori less sensitive to mechanical stresses than cores magnetic of batch B, but have permeabilities incompatible with the application.
- the dispersion of the magnetic properties of the nuclei of batch B is lower than that of the nuclei of batch A, and because the sensitivity of these properties under mechanical stress is lower for lot B than for lot A, after winding the magnetic cores of lot B are well suited to use in class AC residual current devices, while the cores of the lot A are not reliably so.
- the magnetic cores of lot C although having theoretically lower sensitivity to mechanical stresses than lot B cores, are not suitable for use in circuit breakers differentials, especially because they have insufficient magnetic permeability.
- Such cores can be made by performing at least annealing under magnetic field.
- Annealing under magnetic field can be either the annealing which has just been described and which is intended to cause the precipitation of nanocrystals, i.e. an additional annealing carried out between 350 and 550 ° C.
- the cores thus obtained have, in the same way, a sensitivity to the stresses very low mechanical properties, which increases the reliability of mass production.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Electromagnetism (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Soft Magnetic Materials (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Heat Treatment Of Articles (AREA)
- Hard Magnetic Materials (AREA)
- Thin Magnetic Films (AREA)
- Compounds Of Iron (AREA)
Abstract
Description
La présente invention concerne les matériaux magnétiques nanocristallins destinés, notamment, à la fabrication de circuits magnétiques pour appareils électriques.The present invention relates to nanocrystalline magnetic materials intended, in particular, for the manufacture of magnetic circuits for apparatus electric.
Les matériaux magnétiques nanocristallins sont bien connus et ont été décrits, en particulier, dans les demandes de brevet européen EP 0 271 657 et EP 0 299 498. Ce sont des alliages à base de fer, contenant plus de 60 at % (atomes %) de fer, du cuivre, du silicium, du bore, et éventuellement au moins un élément pris parmi le niobium, le tungstène, le tantale, le zirconium, le hafnium, le titane et le molybdène, coulés sous forme de rubans amorphes puis soumis à un traitement thermique qui provoque une cristallisation extrêmement fine (les cristaux ont moins de 100 nanomètres de diamètre). Ces matériaux ont des propriétés magnétiques particulièrement adaptées à la fabrication de noyaux magnétiques doux pour appareils électrotechniques tels que des disjoncteurs différentiels. En particulier, ils ont une excellente perméabilité magnétique et peuvent présenter soit un cycle d'hystérésis rond (Br/Bm ≥ 0,5), soit un cycle d'hystérésis couché (Br/Bm ≤ 0,3) ; Br/Bm étant le rapport de l'induction magnétique rémanente à l'induction magnétique maximale. Les cycles d'hystérésis ronds sont obtenus lorsque le traitement thermique est constitué d'un simple recuit à une température d'environ 500°C. Les cycles d'hystérésis couchés sont obtenus lorsque le traitement thermique comporte au moins un recuit sous champ magnétique, ce recuit pouvant être le recuit destiné à provoquer la formation de nanocristaux.Nanocrystalline magnetic materials are well known and have been described, in particular, in European patent applications EP 0 271 657 and EP 0 299 498. These are iron-based alloys, containing more than 60 at% (atoms%) of iron, copper, silicon, boron, and possibly at least one element taken among niobium, tungsten, tantalum, zirconium, hafnium, titanium and molybdenum, cast in the form of amorphous ribbons and then subjected to a treatment which causes extremely fine crystallization (the crystals have less 100 nanometers in diameter). These materials have magnetic properties particularly suitable for the manufacture of soft magnetic cores for electrotechnical devices such as earth leakage circuit breakers. In particular, they have excellent magnetic permeability and can exhibit either a cycle round hysteresis (Br / Bm ≥ 0.5), i.e. a cycle of coated hysteresis (Br / Bm ≤ 0.3); Br / Bm being the ratio of remanent magnetic induction to magnetic induction maximum. Round hysteresis cycles are obtained when treatment thermal consists of a simple annealing at a temperature of about 500 ° C. The lying hysteresis cycles are obtained when the heat treatment involves at least one annealing under magnetic field, this annealing being able to be the annealing intended to cause the formation of nanocrystals.
Les matériaux dont le cycle d'hystérésis est rond peuvent présenter une perméabilité magnétique très élevée, supérieure même à celle des alliages du type Permalloys classiques. Cette perméabilité magnétique très élevée les rend, a priori, particulièrement adaptés à la fabrication de noyaux magnétiques pour disjoncteurs différentiels de la classe AC, c'est à dire, sensibles aux courants de défaut alternatifs. Cependant, pour qu'une telle utilisation soit possible, il est nécessaire que les propriétés magnétiques des noyaux soient suffisamment reproductibles pour qu'une fabrication en série soit satisfaisante.Materials with a round hysteresis cycle may exhibit very high magnetic permeability, even higher than that of alloys of the type Classic permalloys. This very high magnetic permeability makes them, a priori, particularly suitable for the manufacture of magnetic cores for circuit breakers AC class differentials, i.e. sensitive to fault currents alternative. However, for such use to be possible, it is necessary that the magnetic properties of the nuclei are sufficiently reproducible to that mass production is satisfactory.
Pour fabriquer en série des noyaux magnétiques pour disjoncteur différentiel de la classe AC, on utilise un ruban d'alliage magnétique amorphe susceptible d'acquérir une structure nanocristalline. On fabrique une série de tores de section sensiblement rectangulaire en enroulant une certaine longueur de ruban sur un mandrin et en effectuant un point de soudure. Les tores ainsi obtenus sont alors soumis à un recuit afin de provoquer la formation de nanocristaux et, de ce fait, leur conférer les propriétés magnétiques souhaitées. La température de recuit , qui se situe aux environs de 500°C, est choisie pour que la perméabilité magnétique de l'alliage soit maximale. Les noyaux magnétiques ainsi obtenus sont destinés à recevoir des bobinages qui engendrent des contraintes mécaniques qui détériorent les propriétés magnétiques des noyaux. Pour limiter les conséquences des contraintes de bobinage, les tores sont disposés dans des boítiers protecteurs à l'intérieur desquels ils sont calés par exemple par des rondelles de mousse. Cependant, ce calage des tores dans leur boítier induit, par lui même, de faibles contraintes qui sont préjudiciables aux excellentes propriétés magnétiques développées sur le noyau. L'utilisation d'un boítier protecteur bien qu'efficace n'est pas toujours suffisante, et, après bobinage, les propriétés des dispositifs obtenus par une fabrication industrielle sont dégradées et trop dispersées pour être encore acceptables pour l'utilisation envisagée.To mass produce magnetic cores for earth leakage circuit breakers of class AC, an amorphous magnetic alloy ribbon capable of being used to acquire a nanocrystalline structure. We make a series of section tori substantially rectangular by winding a certain length of ribbon on a mandrel and by making a solder point. The toroids thus obtained are then annealed in order to cause the formation of nanocrystals and, as a result, their confer the desired magnetic properties. The annealing temperature, which located around 500 ° C, is chosen so that the magnetic permeability of the alloy is maximum. The magnetic cores thus obtained are intended for receive windings which generate mechanical stresses which deteriorate the magnetic properties of the nuclei. To limit the consequences of winding stresses, the toroids are arranged in protective boxes with the interior of which they are wedged for example by foam rings. However, this wedging of the toroids in their casing induces, by itself, low stresses which are detrimental to the excellent magnetic properties developed on the nucleus. The use of a protective case although effective not always sufficient, and, after winding, the properties of the devices obtained by industrial production are degraded and too dispersed to be even acceptable for the intended use.
Le but de la présente invention est de remédier à ces inconvénients en proposant un moyen pour fabriquer en série des noyaux magnétiques en matériau nanocristallin, ayant à la fois une perméabilité magnétique (perméabilité relative d'impédance à 50 Hz maximale) supérieure à 400 000 et un cycle d'hystérésis rond, de telle sorte que la dispersion de leurs propriétés magnétiques soit compatible avec l'utilisation pour la fabrication en série de disjoncteurs différentiels de la classe AC.The object of the present invention is to remedy these drawbacks by proposing a means for mass production of magnetic cores of material nanocrystalline, having both magnetic permeability (relative permeability impedance at 50 Hz maximum) greater than 400,000 and a round hysteresis cycle, so that the dispersion of their magnetic properties is compatible with the use for mass production of class GFCIs AC.
A cet effet, l'invention a pour objet un procédé de fabrication d'au moins un noyau magnétique en alliage magnétique doux à base de fer ayant une structure nanocristalline, selon lequel :
- on fabrique avec l'alliage magnétique un ruban amorphe,
- on détermine la température Tm de recuit qui, pour le ruban, conduit à la perméabilité magnétique maximale,
- avec le ruban on fabrique au moins une ébauche de noyau,
- et on soumet l'au moins une ébauche de noyau à au moins un recuit effectué à une température T comprise entre Tm + 10°C et Tm + 50°C, et de préférence, entre Tm + 20°C et Tm + 40°C, pendant un temps de maintien t compris entre 0,1 et 10 heures, et de préférence, entre 0,5 et 5 heures, afin de provoquer la formation de nanocristaux. Au moins un recuit peut être effectué sous champ magnétique.
- an amorphous ribbon is made with the magnetic alloy,
- the annealing temperature Tm is determined which, for the ribbon, leads to the maximum magnetic permeability,
- with the ribbon at least one core blank is made,
- and at least one core blank is subjected to at least one annealing carried out at a temperature T of between Tm + 10 ° C and Tm + 50 ° C, and preferably between Tm + 20 ° C and Tm + 40 ° C, for a holding time t of between 0.1 and 10 hours, and preferably between 0.5 and 5 hours, in order to cause the formation of nanocrystals. At least one annealing can be carried out under magnetic field.
Ce procédé s'applique à tous les alliages magnétiques doux à base de fer
susceptibles de présenter une structure nanocristalline, et plus particulièrement aux
alliages dont la composition chimique comprend, en atomes % :
L'invention va maintenant être décrite plus en détails, mais de façon non limitative et illustrée par un exemple.The invention will now be described in more detail, but not in detail. limiting and illustrated by an example.
Pour fabriquer en série des noyaux magnétiques pour disjoncteur différentiel de la classe AC (sensible aux courants de défaut alternatifs), on utilise un ruban en alliage magnétique doux ayant une structure amorphe, susceptible d'acquérir une structure nanocristalline, constitué principalement de fer en une teneur supérieure à 60 atomes %, et contenant en outre :
- de 0,1 à 3 at %, et de préférence, de 0,5 à 1,5 at % de cuivre ;
- de 0,1 à 30 at %, et, de préférence, de 2 à 5 at % d'au moins un élément pris parmi le niobium, le tungstène, le tantale, le zirconium, le hafnium, le titane, et le molybdène ; de préférence, la teneur en niobium est comprise entre 2 et 4 at % ;
- du silicium et du bore, la somme des teneurs en ces éléments étant comprise entre 5 et 30 at %, et, de préférence, entre 15 et 25 at % ; la teneur en bore pouvant aller jusqu'à 25 at %, et, de préférence, étant comprise entre 5 et 14 at % ; la teneur en silicium pouvant atteindre 30 at %, et, de préférence, étant comprise entre 12 et 17 at %.
- 0.1 to 3 at%, and preferably 0.5 to 1.5 at% copper;
- from 0.1 to 30 at%, and preferably from 2 to 5 at% of at least one element chosen from niobium, tungsten, tantalum, zirconium, hafnium, titanium, and molybdenum; preferably, the niobium content is between 2 and 4 at%;
- silicon and boron, the sum of the contents of these elements being between 5 and 30 at%, and preferably between 15 and 25 at%; the boron content which can range up to 25 at%, and preferably being between 5 and 14 at%; the silicon content being able to reach 30 at%, and preferably being between 12 and 17 at%.
La composition chimique de l'alliage peut également comporter de faibles teneurs en impuretés apportées par les matières premières ou résultant de l'élaboration.The chemical composition of the alloy may also include low contents of impurities provided by raw materials or resulting from development.
Le ruban amorphe est obtenu de façon connue en elle même par solidification très rapide de l'alliage liquide. Les ébauches de noyau magnétique sont fabriquées également de façon connue en elle même en enroulant le ruban sur un mandrin, en le coupant et en fixant son extrémité par un point de soudure, afin d'obtenir des petits tores de section rectangulaire. Les ébauches doivent alors être soumises à un traitement de recuit pour faire précipiter dans la matrice amorphe des nanocristaux de taille inférieure à 100 nanomètres. Cette cristallisation très fine permet d'obtenir les propriétés magnétiques souhaitées, et, ainsi, de transformer l'ébauche de noyau magnétique en noyau magnétique.The amorphous ribbon is obtained in a manner known per se by solidification very fast liquid alloy. Magnetic core blanks are fabricated also in a manner known per se by winding the ribbon on a mandrel, cutting it and fixing its end with a welding point, in order to obtain small tori of rectangular section. The blanks must then be subjected to a annealing treatment to precipitate nanocrystals in the amorphous matrix of size less than 100 nanometers. This very fine crystallization makes it possible to obtain desired magnetic properties, and thus transforming the core blank magnetic in magnetic core.
Les inventeurs ayant constaté, de façon inattendue, que l'effet des conditions de recuit sur les propriétés magnétiques des noyaux dépendaient non seulement de la composition chimique de l'alliage, mais aussi, et de façon peu contrôlable, des conditions particulières de fabrication de chaque ruban pris individuellement, avant d'effectuer le recuit, on détermine la température Tm qui conduit, pour un recuit de durée donnée, à la perméabilité magnétique maximale qu'il est possible d'obtenir sur un tore fabriqué avec le ruban. Cette température Tm est propre à chaque ruban, elle est donc déterminée pour chaque ruban par des essais que l'Homme du Métier sait faire. The inventors having unexpectedly found that the effect of the conditions annealing on the magnetic properties of the nuclei depended not only on the chemical composition of the alloy, but also, and not very controllably, special manufacturing conditions for each ribbon taken individually, before to carry out the annealing, the temperature Tm which determines, for an annealing of given duration, at the maximum magnetic permeability that it is possible to obtain on a torus made with the ribbon. This temperature Tm is specific to each ribbon, it is therefore determined for each ribbon by tests that a person skilled in the art can do.
Après avoir déterminé la température Tm, on effectue le recuit à une température T comprise entre Tm + 10°C et Tm + 50°C, et , de préférence, entre Tm + 20°C et Tm + 40°C, pendant un temps compris entre 0,1 et 10 heures, et, de préférence, entre 0,5 et 5 heures.After determining the temperature Tm, the annealing is carried out at a temperature T between Tm + 10 ° C and Tm + 50 ° C, and preferably between Tm + 20 ° C and Tm + 40 ° C, for a time between 0.1 and 10 hours, and, from preferably between 0.5 and 5 hours.
La température et le temps sont deux paramètre de réglage du recuit partiellement équivalents. Mais, les variations de la température de recuit ont un effet beaucoup plus marqué que les variations de la durée du recuit, en particulier aux extrémités de la plage de température de recuit admissible. Aussi, la température est un paramètre d'ajustement relativement grossier des conditions de traitement, le temps est un paramètre d'ajustement fin.Temperature and time are two setting parameters for annealing partially equivalent. However, variations in the annealing temperature have a much stronger effect than variations in the duration of annealing, in particular at the ends of the admissible annealing temperature range. Also, the temperature is a relatively coarse adjustment parameter of the conditions of processing, time is a fine adjustment parameter.
Les conditions particulières du traitement sont déterminées en fonction de l'utilisation envisagée pour le noyau magnétique.The specific conditions of treatment are determined based on the intended use for the magnetic core.
Après le traitement thermique, chaque noyau est disposé dans un boítier protecteur, dans lequel il est calé, par exemple, avec des rondelles de mousse. Pour certaines applications, chaque noyau peut être enrobé dans une résine.After the heat treatment, each core is placed in a box protector, in which it is wedged, for example, with foam washers. For some applications, each core can be coated in a resin.
La température de recuit n'étant pas égale à Tm, la perméabilité magnétique des noyaux n'est pas maximale. Cependant, les inventeurs ont constaté qu'en procédant ainsi, on pouvait obtenir de façon suffisamment fiable une perméabilité magnétique supérieure à 400 000. Ils ont également constaté que les noyaux magnétiques obtenus étaient bien adapté à la fabrication en série de disjoncteurs différentiels, et, qu'en particulier, ils étaient moins sensibles à l'effet des contraintes de bobinage.The annealing temperature is not equal to Tm, the magnetic permeability of nuclei is not maximum. However, the inventors have found that in doing so, one could obtain a sufficiently reliable permeability magnetic greater than 400,000. They also found that the nuclei obtained magnets were well suited for mass production of circuit breakers differentials, and, in particular, they were less sensitive to the effect of constraints winding.
A titre d'exemple d'une part, et de comparaison d'autre part, on a fabriqué
trois lots A, B et C de 200 noyaux magnétiques toriques géométriquement identiques
( int = 11 mm, ext = 15 mm, hauteur = 10 mm). Les trois lots ont été fabriqués
avec l'alliage Fe73Cu1Nb3Si15B8 (en atomes %), coulé sous forme d'un ruban
amorphe de 22 µm d'épaisseur. Après fabrication des ébauches de noyau
magnétique, on a déterminé la température Tm qui était de 500°C pendant 1 heure.
Le lot A a été recuit à 505°C (Tm + 5°C) pendant 1 heure, conformément à l'art
antérieur, le lot B a été recuit à 530°C (Tm + 30°C) pendant 3 heures, conformément
à l'invention, et le lot C a été recuit à 555°C (Tm + 55°C) pendant 3 heures, à titre de
comparaison. La moyenne et l'écart type des valeurs de perméabilité magnétique
ont été déterminées pour chacun des lots, d'une part pour les noyaux nus, et d'autre
part pour les noyaux sous boítier, c'est à dire, soumis à de légères contraintes dues
au calage du tore dans son boítier. Les résultats de l'ensemble des mesures étaient
les suivants (dans les trois cas, le rapport Br/Bm était de 0,5 environ) :
Ces résultats montrent que, contrairement à ce qu'on observe pour le lot A, la moyenne des valeurs de perméabilité magnétique des noyaux du lot B est peu affectée par la mise sous boítier et les contraintes qu'elle engendre. Il en est de même pour le lot C. Par contre, alors que la moyenne des valeurs de perméabilité magnétique des noyaux magnétiques sous boítier des lots A et B sont comparables, la moyenne des valeurs de perméabilité magnétique des noyaux magnétiques sous boítier du lot C est sensiblement plus faible.These results show that, contrary to what is observed for lot A, the average of the magnetic permeability values of the nuclei of lot B is little affected by the packaging and the constraints it generates. So is even for lot C. However, while the average permeability values magnetic magnetic cores in the housing of lots A and B are comparable, the mean of the magnetic permeability values of the magnetic cores under case of lot C is significantly lower.
On constate également que les écarts types des valeurs de perméabilité magnétique des noyaux magnétiques, sous boítier ou non, des lots B et C sont plus faibles que l'écart type des valeurs de perméabilité magnétique des noyaux magnétiques, sous boítier ou non, du lot A. La différence entre les lots A et B résulte de ce que les noyaux magnétiques du lot B sont moins sensibles aux contraintes mécaniques que les noyaux magnétiques du lot A. Les noyaux magnétiques du lot C sont, à priori moins sensibles aux contraintes mécaniques que les noyaux magnétiques du lot B, mais présentent des perméabilités incompatibles avec l'application.We also note that the standard deviations of the permeability values magnetic magnetic cores, in a case or not, lots B and C are more lower than the standard deviation of the magnetic permeability values of the nuclei magnetic, in case or not, of lot A. The difference between lots A and B results that the magnetic cores in lot B are less sensitive to stresses mechanical than the magnetic cores in lot A. The magnetic cores in lot C are a priori less sensitive to mechanical stresses than cores magnetic of batch B, but have permeabilities incompatible with the application.
Il résulte des différences entre les moyennes d'une part, et les écarts type d'autre part, que 23% environ des noyaux du lot A et 80% environ des noyaux du lot C ont une perméabilité magnétique inférieure à 400 000, alors que 13% seulement des noyaux du lot B ont une perméabilité magnétique inférieure à 400 000.It results from differences between the means on the one hand, and the standard deviations on the other hand, that about 23% of the nuclei of lot A and about 80% of the nuclei of lot C have a magnetic permeability of less than 400,000, while only 13% lot B cores have a magnetic permeability of less than 400,000.
Par ailleurs, parce que la dispersion des propriétés magnétiques des noyaux du lot B est plus faible que celle des noyaux du lot A, et parce que la sensibilité de ces propriétés aux contraintes mécaniques est plus faible pour le lot B que pour le lot A, après bobinage les noyaux magnétiques du lot B sont bien adaptés à l'utilisation dans des disjoncteurs différentiels de classe AC, alors que les noyaux du lot A ne le sont pas de façon fiable. Les noyaux magnétiques du lot C, bien qu'ayant une sensibilité aux contraintes mécaniques théoriquement plus faible que les noyaux du lot B, ne sont pas adaptés à l'utilisation dans des disjoncteurs différentiels, notamment parce qu'ils ont une perméabilité magnétique insuffisante.Furthermore, because the dispersion of the magnetic properties of the nuclei of batch B is lower than that of the nuclei of batch A, and because the sensitivity of these properties under mechanical stress is lower for lot B than for lot A, after winding the magnetic cores of lot B are well suited to use in class AC residual current devices, while the cores of the lot A are not reliably so. The magnetic cores of lot C, although having theoretically lower sensitivity to mechanical stresses than lot B cores, are not suitable for use in circuit breakers differentials, especially because they have insufficient magnetic permeability.
Pour certaines applications (par exemple les disjoncteurs différentiels de classe A), il est nécessaire d'utiliser des noyaux magnétiques ayant des cycles d'hystéresis couchés. De tels noyaux peuvent être fabriqués en effectuant au moins un recuit sous champ magnétique. Le recuit sous champ magnétique peut être soit le recuit qui vient d'être décrit et qui est destiné à provoquer la précipitation des nanocristaux, soit un recuit complémentaire effectué entre 350 et 550 °C. Les noyaux ainsi obtenus ont, de la même façon, une sensibilité aux contraintes mécaniques très réduite, ce qui augmente la fiabilité des fabrications en série.For certain applications (for example earth leakage circuit breakers class A), it is necessary to use magnetic cores with cycles lying hysteresis. Such cores can be made by performing at least annealing under magnetic field. Annealing under magnetic field can be either the annealing which has just been described and which is intended to cause the precipitation of nanocrystals, i.e. an additional annealing carried out between 350 and 550 ° C. The cores thus obtained have, in the same way, a sensitivity to the stresses very low mechanical properties, which increases the reliability of mass production.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9612996A FR2755292B1 (en) | 1996-10-25 | 1996-10-25 | PROCESS FOR MANUFACTURING A MAGNETIC CORE IN NANOCRYSTALLINE SOFT MAGNETIC MATERIAL |
FR9612996 | 1996-10-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0844628A1 true EP0844628A1 (en) | 1998-05-27 |
EP0844628B1 EP0844628B1 (en) | 2001-12-05 |
Family
ID=9496996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97402396A Expired - Lifetime EP0844628B1 (en) | 1996-10-25 | 1997-10-13 | Process for producing a magnetic core of nanocristalline soft magnetic material |
Country Status (18)
Country | Link |
---|---|
US (1) | US5922143A (en) |
EP (1) | EP0844628B1 (en) |
JP (1) | JPH10130797A (en) |
KR (1) | KR19980032982A (en) |
CN (1) | CN1134033C (en) |
AT (1) | ATE210332T1 (en) |
AU (1) | AU715096B2 (en) |
CZ (1) | CZ293222B6 (en) |
DE (1) | DE69708828T2 (en) |
ES (1) | ES2166516T3 (en) |
FR (1) | FR2755292B1 (en) |
HK (1) | HK1011578A1 (en) |
HU (1) | HU221412B1 (en) |
PL (1) | PL184054B1 (en) |
SK (1) | SK284075B6 (en) |
TR (1) | TR199701235A3 (en) |
TW (1) | TW354842B (en) |
ZA (1) | ZA979359B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8699190B2 (en) | 2010-11-23 | 2014-04-15 | Vacuumschmelze Gmbh & Co. Kg | Soft magnetic metal strip for electromechanical components |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6960860B1 (en) * | 1998-06-18 | 2005-11-01 | Metglas, Inc. | Amorphous metal stator for a radial-flux electric motor |
US6580347B1 (en) * | 1998-11-13 | 2003-06-17 | Vacuumschmelze Gmbh | Magnetic core that is suitable for use in a current transformer, method for the production of a magnetic core and current transformer with a magnetic core |
EP1131830B1 (en) * | 1998-11-13 | 2006-05-10 | Vacuumschmelze GmbH | Magnetic core that is suitable for use in a current transformer, method for the production of a magnetic core and current transformer with a magnetic core |
DE10134056B8 (en) * | 2001-07-13 | 2014-05-28 | Vacuumschmelze Gmbh & Co. Kg | Process for the production of nanocrystalline magnetic cores and apparatus for carrying out the process |
DE10331883B4 (en) | 2003-07-14 | 2018-01-18 | Vacuumschmelze Gmbh & Co. Kg | Measuring method and measuring arrangement for measuring currents with a large dynamic range |
CN100372033C (en) * | 2005-06-23 | 2008-02-27 | 安泰科技股份有限公司 | Anti-DC-bias mutual inductor magnet-core for leakage protector and mfg. method thereof |
DE102005034486A1 (en) * | 2005-07-20 | 2007-02-01 | Vacuumschmelze Gmbh & Co. Kg | Process for the production of a soft magnetic core for generators and generator with such a core |
US20070273467A1 (en) * | 2006-05-23 | 2007-11-29 | Jorg Petzold | Magnet Core, Methods For Its Production And Residual Current Device |
DE502007000329D1 (en) * | 2006-10-30 | 2009-02-05 | Vacuumschmelze Gmbh & Co Kg | Soft magnetic iron-cobalt based alloy and process for its preparation |
US9057115B2 (en) * | 2007-07-27 | 2015-06-16 | Vacuumschmelze Gmbh & Co. Kg | Soft magnetic iron-cobalt-based alloy and process for manufacturing it |
US8012270B2 (en) * | 2007-07-27 | 2011-09-06 | Vacuumschmelze Gmbh & Co. Kg | Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it |
DE102010060740A1 (en) | 2010-11-23 | 2012-05-24 | Vacuumschmelze Gmbh & Co. Kg | Soft magnetic metal strip for electromechanical components |
CN102496450B (en) * | 2011-12-28 | 2017-03-15 | 天津三环奥纳科技有限公司 | A kind of strong magnetic anneal technique of microcrystalline iron core and its special equipment |
CN102912257A (en) * | 2012-10-19 | 2013-02-06 | 张家港市清大星源微晶有限公司 | Microcrystalline material |
CN102875024A (en) * | 2012-10-19 | 2013-01-16 | 张家港市清大星源微晶有限公司 | Microcrystalline material with high magnetic inductivity |
KR101470513B1 (en) * | 2013-07-17 | 2014-12-08 | 주식회사 아모그린텍 | Soft Magnetic Cores Having Excellent DC Biased Characteristics in High Current and Core Loss Characteristics, and Manufacturing Methods thereof |
FR3017750B1 (en) * | 2014-02-18 | 2016-03-04 | Tronico | TRANSMISSION LINE IMPLEMENTING WITHIN A PIPE OF THE TYPE COMPRISING A TUBE OF TANK AND A PRODUCTION TUBE, WITH USE OF ROLLS OF MAGNETIC MATERIAL. |
KR102203689B1 (en) * | 2014-07-29 | 2021-01-15 | 엘지이노텍 주식회사 | Soft magnetic alloy, wireless power transmitting apparatus and wireless power receiving apparatus comprising the same |
CN106521287A (en) * | 2016-11-16 | 2017-03-22 | 黄忠波 | Nanocrystalline soft magnetic alloy material and preparation method |
CN111593273A (en) * | 2020-05-29 | 2020-08-28 | 唐山先隆纳米金属制造股份有限公司 | Novel soft magnetic alloy material |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04275411A (en) * | 1991-03-04 | 1992-10-01 | Mitsui Petrochem Ind Ltd | Heat treatment method for magnetic core |
JPH04275410A (en) * | 1991-03-04 | 1992-10-01 | Mitsui Petrochem Ind Ltd | Heat treatment method for magnetic core |
EP0527233A1 (en) * | 1991-03-04 | 1993-02-17 | Mitsui Petrochemical Industries, Ltd. | Method of manufacturing magnetic core by heat-treating the same |
EP0612082A1 (en) * | 1989-09-01 | 1994-08-24 | Masaaki Yagi | Thin soft magnetic alloy strip |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5055144A (en) * | 1989-10-02 | 1991-10-08 | Allied-Signal Inc. | Methods of monitoring precipitates in metallic materials |
DE69408916T2 (en) * | 1993-07-30 | 1998-11-12 | Hitachi Metals Ltd | Magnetic core for pulse transmitters and pulse transmitters |
US5611871A (en) * | 1994-07-20 | 1997-03-18 | Hitachi Metals, Ltd. | Method of producing nanocrystalline alloy having high permeability |
-
1996
- 1996-10-25 FR FR9612996A patent/FR2755292B1/en not_active Expired - Fee Related
-
1997
- 1997-10-13 AT AT97402396T patent/ATE210332T1/en not_active IP Right Cessation
- 1997-10-13 DE DE69708828T patent/DE69708828T2/en not_active Expired - Fee Related
- 1997-10-13 ES ES97402396T patent/ES2166516T3/en not_active Expired - Lifetime
- 1997-10-13 EP EP97402396A patent/EP0844628B1/en not_active Expired - Lifetime
- 1997-10-16 AU AU41029/97A patent/AU715096B2/en not_active Ceased
- 1997-10-17 TW TW086115296A patent/TW354842B/en active
- 1997-10-20 KR KR1019970053787A patent/KR19980032982A/en active IP Right Grant
- 1997-10-20 ZA ZA9709359A patent/ZA979359B/en unknown
- 1997-10-21 HU HU9701672A patent/HU221412B1/en not_active IP Right Cessation
- 1997-10-22 SK SK1445-97A patent/SK284075B6/en unknown
- 1997-10-23 TR TR97/01235A patent/TR199701235A3/en unknown
- 1997-10-23 CZ CZ19973372A patent/CZ293222B6/en not_active IP Right Cessation
- 1997-10-24 PL PL97322808A patent/PL184054B1/en not_active IP Right Cessation
- 1997-10-24 CN CNB97125284XA patent/CN1134033C/en not_active Expired - Fee Related
- 1997-10-27 US US08/957,937 patent/US5922143A/en not_active Expired - Fee Related
- 1997-10-27 JP JP9311379A patent/JPH10130797A/en not_active Withdrawn
-
1998
- 1998-12-02 HK HK98112657A patent/HK1011578A1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0612082A1 (en) * | 1989-09-01 | 1994-08-24 | Masaaki Yagi | Thin soft magnetic alloy strip |
JPH04275411A (en) * | 1991-03-04 | 1992-10-01 | Mitsui Petrochem Ind Ltd | Heat treatment method for magnetic core |
JPH04275410A (en) * | 1991-03-04 | 1992-10-01 | Mitsui Petrochem Ind Ltd | Heat treatment method for magnetic core |
EP0527233A1 (en) * | 1991-03-04 | 1993-02-17 | Mitsui Petrochemical Industries, Ltd. | Method of manufacturing magnetic core by heat-treating the same |
Non-Patent Citations (2)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 017, no. 071 (E - 1319) 12 February 1993 (1993-02-12) * |
UEDA Y ET AL: "PERMEABILITY AND ALPHA-FE PHASE PRECIPITATED IN FE-SI-B-CU-NB AMORPHOUS ALLOYS", IEEE TRANSLATION JOURNAL ON MAGNETICS IN JAPAN, vol. 9, no. 6, 1 November 1994 (1994-11-01), pages 39 - 46, XP000548724 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8699190B2 (en) | 2010-11-23 | 2014-04-15 | Vacuumschmelze Gmbh & Co. Kg | Soft magnetic metal strip for electromechanical components |
Also Published As
Publication number | Publication date |
---|---|
TW354842B (en) | 1999-03-21 |
CN1188317A (en) | 1998-07-22 |
ZA979359B (en) | 1998-05-12 |
JPH10130797A (en) | 1998-05-19 |
HUP9701672A3 (en) | 2002-03-28 |
DE69708828T2 (en) | 2002-06-20 |
EP0844628B1 (en) | 2001-12-05 |
AU715096B2 (en) | 2000-01-13 |
KR19980032982A (en) | 1998-07-25 |
HK1011578A1 (en) | 1999-07-16 |
PL184054B1 (en) | 2002-08-30 |
CN1134033C (en) | 2004-01-07 |
HU221412B1 (en) | 2002-09-28 |
TR199701235A2 (en) | 1999-10-21 |
US5922143A (en) | 1999-07-13 |
SK284075B6 (en) | 2004-09-08 |
CZ293222B6 (en) | 2004-03-17 |
DE69708828D1 (en) | 2002-01-17 |
FR2755292A1 (en) | 1998-04-30 |
PL322808A1 (en) | 1998-04-27 |
CZ337297A3 (en) | 1999-01-13 |
TR199701235A3 (en) | 1999-10-21 |
HU9701672D0 (en) | 1997-12-29 |
AU4102997A (en) | 1998-04-30 |
HUP9701672A2 (en) | 1999-06-28 |
FR2755292B1 (en) | 1998-11-20 |
ATE210332T1 (en) | 2001-12-15 |
ES2166516T3 (en) | 2002-04-16 |
SK144597A3 (en) | 1998-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0844628B1 (en) | Process for producing a magnetic core of nanocristalline soft magnetic material | |
EP0848397B1 (en) | Manufacturing process of a soft magnetic iron based alloy component with nanocristalline structure | |
US6270591B2 (en) | Amorphous and nanocrystalline glass-covered wires | |
EP1805772B1 (en) | Nanocrystalline core for a current sensor, single and double-stage energy meters and current probes containing same | |
EP2387788B1 (en) | Process for manufacturing a magnetic core made of a magnetic alloy having a nanocrystalline structure | |
EP1413632A2 (en) | Method for treating a brittle thin metal strip and magnetic parts made from a nanocrystalline alloy strip | |
FR2764430A1 (en) | METHOD FOR MAGNETIC FIELD THERMAL TREATMENT OF A SOFT MAGNETIC MATERIAL COMPONENT | |
EP0921541B1 (en) | Fabrication process of a soft nanocrystalline magnetic core for use in a differential circuit breaker | |
EP0921540B1 (en) | Fabrication process of a magnetic core of a soft magnetic nanocrystalline alloy and use in a differential circuit breaker | |
EP0157669B1 (en) | Composite magnetic circuit and method for manufacturing such a circuit | |
JP3433678B2 (en) | Antimony-doped silicon single crystal wafer and epitaxial silicon wafer, and methods for producing them | |
FR2547927A1 (en) | SATURABLE CORE PROBE, IN PARTICULAR FOR MAGNETOMETER | |
FR2873849A1 (en) | PROCESS FOR OBTAINING SOFT MAGNETIC THIN FILM, WITH HIGH MAGNET, INSULATION, INTEGRATED FILM AND INTEGRATED CIRCUIT | |
Chiriac et al. | Comparative study of the magnetic behavior of Co-rich amorphous fibers and amorphous glass-covered wires | |
WO2024200375A1 (en) | Precision resistive alloy based on copper, manganese, nickel and tin | |
FR2491499A1 (en) | ANISOTROPIC MAGNETIC ALLOY AND PROCESS FOR PRODUCING THE SAME | |
BE371669A (en) | ||
JPH04144122A (en) | Manufacture of polycrystalline silicon thin film | |
JPS5980905A (en) | Transformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17P | Request for examination filed |
Effective date: 19981127 |
|
AKX | Designation fees paid |
Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20010126 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20011205 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20011205 Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20011205 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20011205 |
|
REF | Corresponds to: |
Ref document number: 210332 Country of ref document: AT Date of ref document: 20011215 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: FRENCH |
|
REF | Corresponds to: |
Ref document number: 69708828 Country of ref document: DE Date of ref document: 20020117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020305 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020305 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020305 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2166516 Country of ref document: ES Kind code of ref document: T3 |
|
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20011205 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021013 |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030501 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20041007 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20041008 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20041011 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20041012 Year of fee payment: 8 Ref country code: FR Payment date: 20041012 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20041019 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20041117 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051013 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051014 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051031 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060503 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060630 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20060501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20060630 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20051014 |
|
BERE | Be: lapsed |
Owner name: *MECAGIS Effective date: 20051031 |