EP0848397B1 - Manufacturing process of a soft magnetic iron based alloy component with nanocristalline structure - Google Patents
Manufacturing process of a soft magnetic iron based alloy component with nanocristalline structure Download PDFInfo
- Publication number
- EP0848397B1 EP0848397B1 EP97402667A EP97402667A EP0848397B1 EP 0848397 B1 EP0848397 B1 EP 0848397B1 EP 97402667 A EP97402667 A EP 97402667A EP 97402667 A EP97402667 A EP 97402667A EP 0848397 B1 EP0848397 B1 EP 0848397B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- magnetic
- crystallization
- heat treatment
- annealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 13
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 10
- 239000000956 alloy Substances 0.000 title claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 238000000137 annealing Methods 0.000 claims abstract description 36
- 238000002425 crystallisation Methods 0.000 claims abstract description 31
- 238000010438 heat treatment Methods 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 229910001004 magnetic alloy Inorganic materials 0.000 claims abstract description 8
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 8
- 230000008569 process Effects 0.000 claims abstract description 8
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 5
- 239000002159 nanocrystal Substances 0.000 claims abstract description 5
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 5
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 5
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 238000004804 winding Methods 0.000 claims abstract description 4
- 230000008025 crystallization Effects 0.000 claims description 28
- 239000010955 niobium Substances 0.000 claims description 10
- 239000010949 copper Substances 0.000 claims description 7
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 7
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 5
- 229910052735 hafnium Inorganic materials 0.000 claims description 5
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 5
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 5
- 239000011733 molybdenum Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- 229910000808 amorphous metal alloy Inorganic materials 0.000 claims description 2
- 238000001953 recrystallisation Methods 0.000 claims description 2
- 238000003723 Smelting Methods 0.000 claims 1
- 230000000295 complement effect Effects 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 abstract description 5
- 229910052796 boron Inorganic materials 0.000 abstract description 4
- 229910052802 copper Inorganic materials 0.000 abstract description 3
- -1 high-frequency Inorganic materials 0.000 abstract 1
- 230000035699 permeability Effects 0.000 description 15
- 238000011282 treatment Methods 0.000 description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- YFXPPSKYMBTNAV-UHFFFAOYSA-N bensultap Chemical compound C=1C=CC=CC=1S(=O)(=O)SCC(N(C)C)CSS(=O)(=O)C1=CC=CC=C1 YFXPPSKYMBTNAV-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
- H01F41/0213—Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
- H01F41/0226—Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15333—Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15341—Preparation processes therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/832—Nanostructure having specified property, e.g. lattice-constant, thermal expansion coefficient
- Y10S977/833—Thermal property of nanomaterial, e.g. thermally conducting/insulating or exhibiting peltier or seebeck effect
Definitions
- the present invention relates to the manufacture of magnetic components in soft magnetic alloy based on iron having a nanocrystalline structure.
- Nanocrystalline magnetic materials are well known and have been described, in particular, in European patent applications EP 0 271 657 and EP 0 299 498. These are iron-based alloys, containing more than 60 at% (atoms%) of iron, copper, silicon, boron, and possibly at least one element taken among niobium, tungsten, tantalum, zirconium, hafnium, titanium and molybdenum, cast in the form of amorphous ribbons and then subjected to a treatment which causes extremely fine crystallization (the crystals have less 100 nanometers in diameter). These materials have magnetic properties particularly suitable for the manufacture of soft magnetic cores for electrotechnical devices such as earth leakage circuit breakers.
- hysteresis (Br / Bm ⁇ 0.5), i.e. a coated hysteresis cycle (Br / Bm ⁇ 0.3); Br / Bm being the ratio of remanent magnetic induction to magnetic induction Max.
- Round hysteresis cycles are obtained when treatment thermal consists of a simple annealing at a temperature between 500 ° C and 600 ° C.
- the lying hysteresis cycles are obtained when the treatment thermal includes at least one annealing under magnetic field, this annealing can be the annealing intended to cause the formation of nanocrystals.
- Nanocrystalline ribbons, or more precisely, magnetic components produced with these ribbons have a drawback which limits their use. This drawback is insufficient stability of the magnetic properties when the temperature rises above room temperature. This stability insufficient results in unreliability of circuit breaker operation differentials fitted with such magnetic cores.
- the object of the present invention is to remedy this drawback by providing a means for manufacturing magnetic cores from material nanocrystalline having magnetic properties whose temperature stability is significantly improved.
- the thermal relaxation treatment can be a maintenance for a time between 0.1 and 10 hours, at a temperature between 250 ° C and 480 ° C.
- the relaxation heat treatment can also consist of a progressive heating from room temperature to a temperature greater than 450 ° C, at a heating rate between 30 ° C / hour and 300 ° C / hour between 250 ° C and 450 ° C.
- At least one annealing constituting the heat treatment can be carried out under magnetic field.
- This process applies more particularly to soft magnetic alloys with iron base having a nanocrystalline structure, the chemical composition of which is such that Si ⁇ 14%.
- the alloy may have low levels of impurities provided by raw materials or resulting from production.
- the amorphous ribbon is obtained in a manner known per se by solidification very fast liquid alloy, poured, for example, on a cooled wheel.
- the magnetic core blanks are also manufactured known in itself, by winding the ribbon on a mandrel, cutting it and fixing its end by a welding point, in order to obtain small toroids of rectangular section.
- the blanks are first subjected to a so-called "relaxation" annealing, at a temperature below the temperature of onset of crystallization of the amorphous strip, and preferably between 250 ° C and 480 ° C, then an annealing of crystallization which may or may not be carried out under magnetic field, and possibly be followed by annealing at lowest temperature under magnetic field.
- This annealing of relaxation had for advantage of significantly reducing the sensitivity of magnetic properties nuclei at temperature.
- the inventors have also found that the annealing of relaxation prior to crystallization annealing had the added benefit of reduce the dispersion of the magnetic properties of the nuclei observed on mass production.
- the crystallization annealing is intended to precipitate in the matrix amorphous nanocrystals of size less than 100 nanometers, preferably between 10 and 20 nanometers. This very fine crystallization makes it possible to obtain the desired magnetic properties.
- the crystallization annealing consists of a maintaining at a temperature higher than the temperature at the start of crystallization and lower than the onset temperature of the secondary phases which deteriorate the magnetic properties.
- the annealing temperature of crystallization is between 500 ° C and 600 ° C, but it can be optimized for each ribbon, for example, by determining by tests the temperature which leads to maximum magnetic permeability.
- the annealing temperature of crystallization can then be chosen equal to this temperature, or, better, be chosen to be about 30 ° C higher.
- crystallization annealing can be carried out under a transverse magnetic field.
- the crystallization treatment can also be supplemented by annealing at a temperature below the crystallization start temperature, for example towards 400 ° C, carried out under transverse magnetic field.
- the heat treatment of the blanks magnetic component include a relaxation annealing, a crystallization possibly carried out under magnetic field, and, possibly, an additional annealing carried out under magnetic field.
- the relaxation annealing which precedes the crystallization annealing, and which can be performed both on the amorphous tape itself and on the component blank magnetic, can consist in maintaining a constant temperature during a time which preferably should be between 0.1 and 10 hours.
- This annealing can also consist of a gradual rise in temperature, which precedes, by example, crystallization annealing, and which must be done at a rate of rise in temperature between 30 ° C / h and 300 ° C / h, at least between 250 ° C and 450 ° C; preferably the rate of temperature rise should be around 100 ° C / h.
- the series of blanks of magnetic cores A2 and B2 have, for comparison, been treated in accordance with the prior art by a single crystallization annealing for 3 hours at 530 ° C.
- the maximum magnetic permeability at 50 Hz was measured at different temperatures between - 25 ° C and + 100 ° C, and it was expressed as a% of the maximum magnetic permeability at 50 Hz at 20 ° C.
- the first example relates to toroidal magnetic cores produced from ribbons 20 ⁇ m thick and 10 mm wide obtained by direct quenching on a cooled wheel, of an alloy of composition (in at%) Fe 73.5 Si 13.5 B 9 Cu 1 Nb 3 . After quenching on a wheel, it was checked by X-ray that the ribbon was completely amorphous. The ribbon was then separated into three sections, one, A, remained as it was, the other two, B and C, were subjected to relaxation annealing, for one, B, 1 hour at 400 ° C, for the other, C, 1 hour at 450 ° C.
- the second example relates to toroidal magnetic cores produced from ribbons 20 ⁇ m thick and 10 mm wide obtained by direct quenching on a cooled wheel, of an alloy of composition (in at%) Fe 73 Si 15 B 8 Cu 1 Nb 3 .
- ribbons 20 ⁇ m thick and 10 mm wide obtained by direct quenching on a cooled wheel, of an alloy of composition (in at%) Fe 73 Si 15 B 8 Cu 1 Nb 3 .
- the ribbon two batches of 300 toroids with an internal diameter of 11 mm and an external diameter of 15 mm were produced using automatic winding machines. The batches were then treated in ovens with neutral atmosphere. A control batch A was only subjected to a 1 hour crystallization annealing at 530 ° C.
- the second batch was treated in accordance with the invention: a relaxation annealing of 1 hour at 400 ° C. was first carried out, then a crystallization annealing of 1 hour at 530 ° C.
- the toroids were put in a box
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Electromagnetism (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Soft Magnetic Materials (AREA)
- Thin Magnetic Films (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Hard Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
La présente invention concerne la fabrication de composants magnétiques en alliage magnétique doux à base de fer ayant une structure nanocristalline.The present invention relates to the manufacture of magnetic components in soft magnetic alloy based on iron having a nanocrystalline structure.
Les matériaux magnétiques nanocristallins sont bien connus et ont été décrits, en particulier, dans les demandes de brevet européen EP 0 271 657 et EP 0 299 498. Ce sont des alliages à base de fer, contenant plus de 60 at % (atomes %) de fer, du cuivre, du silicium, du bore, et éventuellement au moins un élément pris parmi le niobium, le tungstène, le tantale, le zirconium, le hafnium, le titane et le molybdène, coulés sous forme de rubans amorphes puis soumis à un traitement thermique qui provoque une cristallisation extrêmement fine (les cristaux ont moins de 100 nanomètres de diamètre). Ces matériaux ont des propriétés magnétiques particulièrement adaptées à la fabrication de noyaux magnétiques doux pour appareils électrotechniques tels que des disjoncteurs différentiels. En particulier, ils ont une excellente perméabilité magnétique et peuvent présenter soit un cycle d'hystérésis rond (Br/Bm ≥ 0,5), soit un cycle d'hystérésis couché (Br/Bm ≤ 0,3) ; Br/Bm étant le rapport de l'induction magnétique rémanente à l'induction magnétique maximale. Les cycles d'hystérésis ronds sont obtenus lorsque le traitement thermique est constitué d'un simple recuit à une température comprise entre 500°C et 600 °C. Les cycles d'hystérésis couchés sont obtenus lorsque le traitement thermique comporte au moins un recuit sous champ magnétique, ce recuit pouvant être le recuit destiné à provoquer la formation de nanocristaux.Nanocrystalline magnetic materials are well known and have been described, in particular, in European patent applications EP 0 271 657 and EP 0 299 498. These are iron-based alloys, containing more than 60 at% (atoms%) of iron, copper, silicon, boron, and possibly at least one element taken among niobium, tungsten, tantalum, zirconium, hafnium, titanium and molybdenum, cast in the form of amorphous ribbons and then subjected to a treatment which causes extremely fine crystallization (the crystals have less 100 nanometers in diameter). These materials have magnetic properties particularly suitable for the manufacture of soft magnetic cores for electrotechnical devices such as earth leakage circuit breakers. In particular, they have excellent magnetic permeability and can exhibit either a cycle round hysteresis (Br / Bm ≥ 0.5), i.e. a coated hysteresis cycle (Br / Bm ≤ 0.3); Br / Bm being the ratio of remanent magnetic induction to magnetic induction Max. Round hysteresis cycles are obtained when treatment thermal consists of a simple annealing at a temperature between 500 ° C and 600 ° C. The lying hysteresis cycles are obtained when the treatment thermal includes at least one annealing under magnetic field, this annealing can be the annealing intended to cause the formation of nanocrystals.
Les rubans nanocristallins, ou plus exactement, les composants magnétiques fabriqués avec ces rubans, présentent cependant un inconvénient qui limite leur utilisation. Cet inconvénient est une stabilité insuffisante des propriétés magnétiques lorsque la température s'élève au dessus de la température ambiante. Cette stabilité insuffisante entraíne un manque de fiabilité de fonctionnement des disjoncteurs différentiels équipés de tels noyaux magnétiques.Nanocrystalline ribbons, or more precisely, magnetic components produced with these ribbons, however, have a drawback which limits their use. This drawback is insufficient stability of the magnetic properties when the temperature rises above room temperature. This stability insufficient results in unreliability of circuit breaker operation differentials fitted with such magnetic cores.
Le but de la présente invention est de remédier à cet inconvénient en proposant un moyen pour fabriquer des noyaux magnétiques en matériau nanocristallin ayant des propriétés magnétiques dont la stabilité en température est sensiblement améliorée.The object of the present invention is to remedy this drawback by providing a means for manufacturing magnetic cores from material nanocrystalline having magnetic properties whose temperature stability is significantly improved.
A cet effet, l'invention a pour objet un procédé de fabrication d'un composant magnétique en alliage magnétique doux à base de fer ayant une structure nanocristalline dont la composition chimique comprend, en atomes %, Fe ≥ 60 %, 0,1 % ≤ Cu ≤ 3 %, 0 % ≤ B ≤ 25 %, 0 % ≤ Si ≤ 30 %, et au moins un élément pris parmi le niobium, le tungstène, le tantale, le zirconium, le hafnium, le titane, et le molybdène en des teneurs comprises entre 0,1 % et 30 %, le reste étant des impuretés résultant de l'élaboration, la composition satisfaisant en outre la relation 5 % ≤ Si + B ≤ 30 %, selon lequel :
- on fabrique avec l'alliage magnétique un ruban amorphe,
- avec le ruban on fabrique une ébauche de composant magnétique,
- et on soumet le composant magnétique à un traitement thermique de cristallisation comprenant au moins un recuit de cristallisation à une température comprise entre 500°C et 600°C pendant un temps de maintien compris entre 0,1 et 10 heures, afin de provoquer la formation de nanocristaux, et, avant d'effectuer le traitement thermique de cristallisation, on réalise un traitement thermique de relaxation à une température inférieure à la température de début de recristallisation de l'alliage amorphe.
- an amorphous ribbon is made with the magnetic alloy,
- with the ribbon we make a blank of magnetic component,
- and the magnetic component is subjected to a crystallization heat treatment comprising at least one crystallization anneal at a temperature between 500 ° C and 600 ° C for a holding time between 0.1 and 10 hours, in order to cause the formation nanocrystals, and before performing the crystallization heat treatment, a relaxation heat treatment is carried out at a temperature below the temperature at the start of recrystallization of the amorphous alloy.
Le traitement thermique de relaxation peut être un maintien pendant un temps compris entre 0,1 et 10 heures, à une température comprise entre 250 °C et 480 °C.The thermal relaxation treatment can be a maintenance for a time between 0.1 and 10 hours, at a temperature between 250 ° C and 480 ° C.
Le traitement thermique de relaxation peut également consister en un chauffage progressif depuis la température ambiante jusqu'à une température supérieure à 450 °C, à une vitesse de chauffage comprise entre 30 °C/heure et 300 °C/heure entre 250 °C et 450 °C.The relaxation heat treatment can also consist of a progressive heating from room temperature to a temperature greater than 450 ° C, at a heating rate between 30 ° C / hour and 300 ° C / hour between 250 ° C and 450 ° C.
Selon les propriétés magnétiques souhaitées, en particulier selon la forme désirée pour le cycle d'hystérésis, et conformément à l'état de l'art, au moins un recuit constituant le traitement thermique peut être effectué sous champ magnétique.According to the desired magnetic properties, in particular according to the shape desired for the hysteresis cycle, and in accordance with the state of the art, at least one annealing constituting the heat treatment can be carried out under magnetic field.
Ce procédé s'applique plus particulièrement aux alliages magnétiques doux à base de fer ayant une structure nanocristalline, dont la composition chimique est telle que Si ≤ 14 %.This process applies more particularly to soft magnetic alloys with iron base having a nanocrystalline structure, the chemical composition of which is such that Si ≤ 14%.
L'invention va maintenant être décrite plus en détails, mais de façon non limitative et illustrée par des exemples.The invention will now be described in more detail, but not in detail. limiting and illustrated by examples.
Pour fabriquer en série des composants magnétiques, par exemple noyaux magnétiques pour disjoncteur différentiel de la classe AC (sensible aux courants de défaut alternatifs), on utilise un ruban en alliage magnétique doux ayant une structure amorphe, susceptible d'acquérir une structure nanocristalline, constitué principalement de fer en une teneur supérieure à 60 atomes %, et contenant en outre :
- de 0,1 à 3 at %, et de préférence, de 0,5 à 1,5 at % de cuivre ;
- de 0,1 à 30 at %, et, de préférence, de 2 à 5 at % d'au moins un élément pris parmi le niobium, le tungstène, le tantale, le zirconium, le hafnium, le titane, et le molybdène ; de préférence, la teneur en niobium est comprise entre 2 et 4 at % ;
- du silicium et du bore, la somme des teneurs en ces éléments étant comprise entre 5 et 30 at %, et, de préférence, entre 15 et 25 at % ; la teneur en bore pouvant aller jusqu'à 25 at %, et, de préférence, étant comprise entre 5 et 14 at % ; la teneur en silicium pouvant atteindre 30 at %, et, de préférence, étant comprise entre 12 et 17 at %.
- 0.1 to 3 at%, and preferably 0.5 to 1.5 at% copper;
- from 0.1 to 30 at%, and preferably from 2 to 5 at% of at least one element chosen from niobium, tungsten, tantalum, zirconium, hafnium, titanium, and molybdenum; preferably, the niobium content is between 2 and 4 at%;
- silicon and boron, the sum of the contents of these elements being between 5 and 30 at%, and preferably between 15 and 25 at%; the boron content which can range up to 25 at%, and preferably being between 5 and 14 at%; the silicon content being able to reach 30 at%, and preferably being between 12 and 17 at%.
Outre ces éléments, l'alliage peut comporter de faibles teneurs en impuretés apportées par les matières premières ou résultant de l'élaboration.In addition to these elements, the alloy may have low levels of impurities provided by raw materials or resulting from production.
Le ruban amorphe est obtenu de façon connue en elle même par solidification très rapide de l'alliage liquide, coulé, par exemple, sur une roue refroidie.The amorphous ribbon is obtained in a manner known per se by solidification very fast liquid alloy, poured, for example, on a cooled wheel.
Les ébauches de noyau magnétique sont fabriquées également de façon connue en elle même, en enroulant le ruban sur un mandrin, en le coupant et en fixant son extrémité par un point de soudure, afin d'obtenir des petits tores de section rectangulaire.The magnetic core blanks are also manufactured known in itself, by winding the ribbon on a mandrel, cutting it and fixing its end by a welding point, in order to obtain small toroids of rectangular section.
Pour conférer aux ébauches leurs propriétés magnétiques définitives, on les soumet d'abord à un recuit dit "de relaxation", à une température inférieure à la température de début de cristallisation de la bande amorphe, et, de préférence, comprise entre 250°C et 480 °C, puis à un recuit de cristallisation pouvant, ou non, être effectué sous champ magnétique, et, éventuellement, être suivi par un recuit à plus basse température effectué sous champ magnétique. Les inventeurs ont, en effet, constaté de façon tout à fait inattendue, que ce recuit de relaxation avait pour avantage de réduire de façon très sensible la sensibilité des propriétés magnétiques des noyaux à la température. Les inventeurs ont également constaté que le recuit de relaxation préalable au recuit de cristallisation avait l'avantage supplémentaire de réduire la dispersion des propriétés magnétiques des noyaux observées sur des fabrications en série.To give the blanks their final magnetic properties, they are first subjected to a so-called "relaxation" annealing, at a temperature below the temperature of onset of crystallization of the amorphous strip, and preferably between 250 ° C and 480 ° C, then an annealing of crystallization which may or may not be carried out under magnetic field, and possibly be followed by annealing at lowest temperature under magnetic field. The inventors have, in effect, noticed in a completely unexpected way, that this annealing of relaxation had for advantage of significantly reducing the sensitivity of magnetic properties nuclei at temperature. The inventors have also found that the annealing of relaxation prior to crystallization annealing had the added benefit of reduce the dispersion of the magnetic properties of the nuclei observed on mass production.
Le recuit de cristallisation est destiné à faire précipiter dans la matrice amorphe des nanocristaux de taille inférieure à 100 nanomètres, de préférence comprise entre 10 et 20 nanomètres. Cette cristallisation très fine permet d'obtenir les propriétés magnétiques souhaitées. Le recuit de cristallisation consiste en un maintien à une température supérieure à la température de début de cristallisation et inférieure à la température de début d'apparition des phases secondaires qui détériorent les propriétés magnétiques. En général, la température de recuit de cristallisation est comprises entre 500 °C et 600 °C, mais elle peut être optimisée pour chaque ruban, par exemple, en déterminant par des essais la température qui conduit à la perméabilité magnétique maximale. La température de recuit de cristallisation peut alors être choisie égale à cette température, ou, mieux, être choisie pour lui être supérieure d'environ 30 °C.The crystallization annealing is intended to precipitate in the matrix amorphous nanocrystals of size less than 100 nanometers, preferably between 10 and 20 nanometers. This very fine crystallization makes it possible to obtain the desired magnetic properties. The crystallization annealing consists of a maintaining at a temperature higher than the temperature at the start of crystallization and lower than the onset temperature of the secondary phases which deteriorate the magnetic properties. In general, the annealing temperature of crystallization is between 500 ° C and 600 ° C, but it can be optimized for each ribbon, for example, by determining by tests the temperature which leads to maximum magnetic permeability. The annealing temperature of crystallization can then be chosen equal to this temperature, or, better, be chosen to be about 30 ° C higher.
Afin de modifier la forme du cycle d'hystéresis ce qui est nécessaire pour les disjoncteurs différentiels de la classe A (sensibles aux courants de défaut polarisés), le recuit de cristallisation peut être effectué sous champ magnétique transversal. Le traitement de cristallisation peut également être complété par un recuit à une température inférieure à la température de début de cristallisation, par exemple vers 400°C, effectué sous champ magnétique transversal.In order to modify the shape of the hysteresis cycle what is necessary for Class A residual current devices (sensitive to polarized fault currents), crystallization annealing can be carried out under a transverse magnetic field. The crystallization treatment can also be supplemented by annealing at a temperature below the crystallization start temperature, for example towards 400 ° C, carried out under transverse magnetic field.
D'une façon plus générale, le traitement thermique des ébauches de composant magnétique comportent un recuit de relaxation, un recuit de cristallisation éventuellement effectué sous champ magnétique, et, éventuellement, un recuit complémentaire effectué sous champ magnétique.More generally, the heat treatment of the blanks magnetic component include a relaxation annealing, a crystallization possibly carried out under magnetic field, and, possibly, an additional annealing carried out under magnetic field.
Le recuit de relaxation qui précède le recuit de cristallisation, et qui peut être effectué aussi bien sur le ruban amorphe lui même que sur l'ébauche de composant magnétique, peut consister en un maintien à une température constante pendant un temps qui, de préférence, doit être compris entre 0,1 et 10 heures. Ce recuit peut également consister en une montée progressive en température, qui précède, par exemple, le recuit de cristallisation, et qui doit se faire à une vitesse de montée en température comprise entre 30 °C/ h et 300 °C/h, au moins entre 250°C et 450 °C ; de préférence, la vitesse de montée en température doit être d'environ 100 °C/h.The relaxation annealing which precedes the crystallization annealing, and which can be performed both on the amorphous tape itself and on the component blank magnetic, can consist in maintaining a constant temperature during a time which preferably should be between 0.1 and 10 hours. This annealing can also consist of a gradual rise in temperature, which precedes, by example, crystallization annealing, and which must be done at a rate of rise in temperature between 30 ° C / h and 300 ° C / h, at least between 250 ° C and 450 ° C; preferably the rate of temperature rise should be around 100 ° C / h.
Dans tous les cas, il est préférable d'effectuer les traitements thermiques dans des fours à atmosphère contrôlée, neutre ou réductrice.In all cases, it is preferable to carry out heat treatments in ovens with controlled, neutral or reducing atmosphere.
A titre d'exemple, on a fabriqué deux rubans en alliage Fe73Si15B8Cu1Nb3,
(73 at % de fer, 15 at % de silicium, etc), de 20 µm d'épaisseur et 10 mm de largeur
obtenus par trempe directe sur une roue refroidie. Avec chacun des rubans, on a
fabriqué deux séries d'ébauches de noyaux magnétiques repérés respectivement A1
et A2 (pour le premier ruban) et B1 et B2 (pour le deuxième ruban). Les séries
d'ébauches de noyaux magnétiques A1 et B1 ont été soumises à un traitement
thermique conforme à l'invention et consistant en un recuit de relaxation de 3 heures
à 400°C suivi d'un recuit de cristallisation de 3 heures à 530 °C. Les séries
d'ébauches de noyaux magnétiques A2 et B2 ont, à titre de comparaison, été traité
conformément à l'Art Antérieur par un unique recuit de cristallisation de 3 heures à
530 °C. Sur les quatre séries d'ébauches de noyaux magnétiques on a mesuré la
perméabilité magnétique maximale à 50 Hz à différentes températures comprises
entre - 25°C et + 100°C, et on l'a exprimée en % de la perméabilité magnétique
maximale à 50 Hz à 20°C. Les résultats sont les suivants :
Ces résultats doivent être interprétés en examinant séparément le cas des échantillons A1 et A2 d'une part, et des échantillons B1 et B2 d'autre part. En effet, bien que l'alliage constituant tous les échantillons soit le même, on a utilisé deux rubans fabriqués séparément et qui, de ce fait, ont des propriétés un peu différentes.These results must be interpreted by examining separately the case of samples A1 and A2 on the one hand, and samples B1 and B2 on the other. Indeed, although the alloy making up all the samples is the same, two ribbons produced separately and which therefore have slightly different properties.
Cette remarque faite, on peut constater que, aussi bien pour le groupe A1, A2 que pour le groupe B1, B2, la dégradation de la perméabilité magnétique engendrée par un échauffement à 80 °C ou 100 °C, est beaucoup plus faible pour les échantillons conformes à l'invention que pour les échantillons donnés à titre de comparaison. A 100 °C, par exemple, la perte de perméabilité magnétique est, pour les échantillons conforme à l'invention, environ moitié de ce qu'elle est pour les échantillons fabriqués conformément à l'art antérieur.This remark made, we can see that, as well for the group A1, A2 that for group B1, B2, the degradation of the magnetic permeability generated by heating to 80 ° C or 100 ° C, is much lower for samples in accordance with the invention only for samples given as comparison. At 100 ° C, for example, the loss of magnetic permeability is, for the samples according to the invention, about half of what it is for them samples made in accordance with the prior art.
Outre l'effet obtenu sur la stabilité en température des propriétés magnétiques, les inventeurs ont constaté que l'invention améliorait la reproductibilité des propriétés magnétiques de noyaux fabriqués en série. Cet effet favorable va maintenant être illustré par les deux exemples suivants.Besides the effect obtained on the temperature stability of the properties magnetic, the inventors have found that the invention improves reproducibility magnetic properties of mass-produced cores. This favorable effect will now be illustrated by the following two examples.
Le premier exemple, concerne des noyaux magnétiques toriques fabriqués à partir de rubans de 20 µm d'épaisseur et 10 mm de largeur obtenus par trempe directe sur une roue refroidie, d'un alliage de composition (en at %) Fe73,5Si13,5B9Cu1Nb3. Après la trempe sur roue, on a vérifié par rayons X que le ruban était bien complètement amorphe. On a alors séparé le ruban en trois tronçons, l'un, A, est resté en l'état, les deux autres, B et C, ont été soumis à un recuit de relaxation, pour l'un, B, 1 heure à 400 °C, pour l'autre, C, 1 Heure à 450 °C. On a mesuré le champ coercitif dont les valeurs minimales et maximales étaient, en mOe (1 mOe = 0,079577 A/m) :A de 80 à 200 mOe, B et C de 25 à 35 mOe. Ces résultats montrent l'effet du traitement de relaxation qui non seulement réduit la dispersion du champ coercitif, mais également, réduit très sensiblement sa valeur.The first example relates to toroidal magnetic cores produced from ribbons 20 µm thick and 10 mm wide obtained by direct quenching on a cooled wheel, of an alloy of composition (in at%) Fe 73.5 Si 13.5 B 9 Cu 1 Nb 3 . After quenching on a wheel, it was checked by X-ray that the ribbon was completely amorphous. The ribbon was then separated into three sections, one, A, remained as it was, the other two, B and C, were subjected to relaxation annealing, for one, B, 1 hour at 400 ° C, for the other, C, 1 hour at 450 ° C. The coercive field was measured, the minimum and maximum values of which were, in mOe (1 mOe = 0.079577 A / m): A from 80 to 200 mOe, B and C from 25 to 35 mOe. These results show the effect of the relaxation treatment which not only reduces the dispersion of the coercive field, but also very significantly reduces its value.
Les trois portions de ruban ont alors été utilisées pour former des ébauches de noyaux magnétiques toriques et ces noyaux ont été d'abord soumis à un recuit de cristallisation de 1 heure à 530 °C pour obtenir un cycle d'hystérésis rond, puis à un recuit sous champ magnétique transverse d'1 heure à 400 °C pour obtenir un cycle d'hystérésis couché. Les valeurs de champ coercitif, perméabilité maximale à 50 Hz, et, pour les cycles couchés uniquement, le rapport Br/Bm (induction rémanente sur induction à saturation) ont été déterminés.The three portions of ribbon were then used to form sketches of toric magnetic nuclei and these nuclei were first annealed with 1 hour crystallization at 530 ° C to obtain a round hysteresis cycle, then at a annealing under transverse magnetic field for 1 hour at 400 ° C to obtain a cycle lying hysteresis. Coercive field values, maximum permeability at 50 Hz, and, for the coated cycles only, the Br / Bm ratio (remanent induction on saturation induction) have been determined.
Les résultats ont été les suivants The results were as follows
Ces résultats montrent bien l'amélioration des propriétés magnétiques engendrée par le traitement de relaxation : diminution du champ coercitif, augmentation de la perméabilité maximale, et plus grande facilité pour obtenir des cycles couchés.These results clearly show the improvement in magnetic properties generated by the relaxation treatment: reduction of the coercive field, increased maximum permeability, and greater ease in obtaining recumbent cycles.
Le deuxième exemple, concerne des noyaux magnétiques toriques fabriqués à partir de rubans de 20 µm d'épaisseur et 10 mm de largeur obtenus par trempe directe sur une roue refroidie, d'un alliage de composition (en at %) Fe73Si15B8Cu1Nb3. Avec le ruban, on a fabriqué deux lots de 300 tores de diamètre intérieur 11 mm et diamètre extérieur 15 mm à l'aide de machines à enrouler automatiques. Les lots ont alors été traités dans de fours à atmosphère neutre. Un lot témoin A n'a été soumis qu'à un recuit de cristallisation d'1 heure à 530 °C. Le deuxième lot a été traité conformément à l'invention : on a d'abord réalisé un recuit de relaxation d'1 heure à 400 °C, puis un recuit de cristallisation d'1 heure à 530 °C. Les tores ont été mis sous boítier et calés avec une rondelle de mousse. Pour chaque lot, on a déterminé la moyenne et l'écart type de la perméabilité maximale à 50 Hz.The second example relates to toroidal magnetic cores produced from ribbons 20 µm thick and 10 mm wide obtained by direct quenching on a cooled wheel, of an alloy of composition (in at%) Fe 73 Si 15 B 8 Cu 1 Nb 3 . With the ribbon, two batches of 300 toroids with an internal diameter of 11 mm and an external diameter of 15 mm were produced using automatic winding machines. The batches were then treated in ovens with neutral atmosphere. A control batch A was only subjected to a 1 hour crystallization annealing at 530 ° C. The second batch was treated in accordance with the invention: a relaxation annealing of 1 hour at 400 ° C. was first carried out, then a crystallization annealing of 1 hour at 530 ° C. The toroids were put in a box and wedged with a foam washer. For each lot, the mean and standard deviation of the maximum permeability at 50 Hz were determined.
Les résultats ont été les suivants :
Ils montrent l'effet du recuit de relaxation qui, d'une part, améliore la valeur moyenne de la perméabilité maximale, et, d'autre part, réduit la dispersion.They show the effect of relaxation annealing which, on the one hand, improves the value average maximum permeability, and, on the other hand, reduces dispersion.
Les deux lots ont ensuite été traités pendant 1 heure à 400 °C sous champ
magnétique transverse afin d'obtenir des cycles d'hystérésis couchés. On a mesuré
le champ coercitif, le rapport Br/Bm et la perméabilité à 5 mOe à 50Hz. Les résultats
ont été les suivants :
Ces résultats montrent bien l'amélioration des propriétés magnétiques engendrées par le traitement de relaxation : diminution du champ coercitif, augmentation de la perméabilité dans 5 mOe à 50 Hz, et plus grande facilité pour obtenir des cycles couchés.These results clearly show the improvement in magnetic properties generated by the relaxation treatment: reduction of the coercive field, increased permeability in 5 mOe at 50 Hz, and greater ease for get recumbent cycles.
Claims (6)
- Process for manufacturing a magnetic component made of an iron-based soft magnetic alloy having a nanocrystalline structure, the chemical composition of which is, in at.%, Fe ≥ 60%, 0.1% ≤ Cu ≤ 3%, 0% ≤ B ≤ 25%, 0% ≤ Si ≤ 30%, and at least one element selected from niobium, tungsten, tantalum, zirconium, hafnium, titanium and molybdenum in proportions of between 0.1% and 30%, the balance being impurities resulting from the smelting, the composition furthermore satisfying the relationship 5% ≤ Si + B ≤ 30%, according to which:an amorphous ribbon is manufactured from the magnetic alloy,a blank for a magnetic component is manufactured from the ribbon by winding the magnetic ribbon around a mandrel in such a manner as to form a forum,and the magnetic component is subjected to a crystallization heat treatment comprising at least one annealing step at a temperature of between 500°C and 600°C for a temperature hold time of between 0.1 and 10 hours so as to cause nanocrystals to form, characterized in that, before the crystallization heat treatment, a relaxation heat treatment is carried out at a temperature below the temperature for the onset of recrystallization of the amorphous alloy.
- Process according to Claim 1, characterized in that the relaxation heat treatment is a temperature hold for a time of between 0.1 and 10 hours at a temperature of between 250°C and 480°C.
- Process according to Claim 1, characterized in that the relaxation heat treatment consists of a gradual heating from ambient temperature up to a temperature above 450°C, at a heating rate of between 30°C/hour and 300°C/hour between 250°C and 450°C.
- Process according to any one of Claims 1 to 3, characterized in that the crystallization annealing is carried out in a magnetic field.
- Process according to any one of Claims 1 to 4, characterized in that a complementary annealing step is carried out in a magnetic field at a temperature below the crystallization on set temperature.
- Process according to any one of Claims 1 to 5, characterized in that the chemical composition of the alloy is such that Si ≤ 14 %.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9615197A FR2756966B1 (en) | 1996-12-11 | 1996-12-11 | METHOD FOR MANUFACTURING A MAGNETIC COMPONENT MADE OF SOFT MAGNETIC ALLOY IRON BASED HAVING A NANOCRYSTALLINE STRUCTURE |
FR9615197 | 1996-12-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0848397A1 EP0848397A1 (en) | 1998-06-17 |
EP0848397B1 true EP0848397B1 (en) | 2002-09-18 |
Family
ID=9498537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97402667A Expired - Lifetime EP0848397B1 (en) | 1996-12-11 | 1997-11-07 | Manufacturing process of a soft magnetic iron based alloy component with nanocristalline structure |
Country Status (18)
Country | Link |
---|---|
US (1) | US5911840A (en) |
EP (1) | EP0848397B1 (en) |
JP (1) | JPH10195528A (en) |
KR (1) | KR19980064039A (en) |
CN (1) | CN1134034C (en) |
AT (1) | ATE224582T1 (en) |
AU (1) | AU731520B2 (en) |
CZ (1) | CZ293837B6 (en) |
DE (1) | DE69715575T2 (en) |
ES (1) | ES2184047T3 (en) |
FR (1) | FR2756966B1 (en) |
HK (1) | HK1010938A1 (en) |
HU (1) | HU216168B (en) |
PL (1) | PL184208B1 (en) |
SK (1) | SK284008B6 (en) |
TR (1) | TR199701599A2 (en) |
TW (1) | TW561193B (en) |
ZA (1) | ZA9710780B (en) |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6645314B1 (en) * | 2000-10-02 | 2003-11-11 | Vacuumschmelze Gmbh | Amorphous alloys for magneto-acoustic markers in electronic article surveillance having reduced, low or zero co-content and method of annealing the same |
DE10134056B8 (en) | 2001-07-13 | 2014-05-28 | Vacuumschmelze Gmbh & Co. Kg | Process for the production of nanocrystalline magnetic cores and apparatus for carrying out the process |
JP5435840B2 (en) | 2003-02-14 | 2014-03-05 | ザ・ナノスティール・カンパニー・インコーポレーテッド | Method for property modification of amorphous or partially crystalline coated amorphous |
DE102004024337A1 (en) * | 2004-05-17 | 2005-12-22 | Vacuumschmelze Gmbh & Co. Kg | Process for producing nanocrystalline current transformer cores, magnetic cores produced by this process, and current transformers with same |
CN1297994C (en) * | 2004-11-26 | 2007-01-31 | 中国兵器工业第五二研究所 | Method for preparing specific squareness ratio nanocrystalline soft magnetic material without magnetic field treatment |
KR100647150B1 (en) * | 2004-12-22 | 2006-11-23 | (주) 아모센스 | Earth Leakage Circuit Breaker with Magnetic Core |
CN1332593C (en) * | 2005-01-19 | 2007-08-15 | 华南理工大学 | Manufacturing method of compound electromagnetic shield magnet of nanocry stal magnetically soft alloy powder polymer |
EP1724792A1 (en) * | 2005-05-20 | 2006-11-22 | Imphy Alloys | Verfahren zur Herstellung eines Bandes aus nanocrystallinem Material sowie eine Vorrichtung zur Herstellung eines von diesem Band ausgehenden Wickelkernes |
DE102005034486A1 (en) | 2005-07-20 | 2007-02-01 | Vacuumschmelze Gmbh & Co. Kg | Process for the production of a soft magnetic core for generators and generator with such a core |
US20070151630A1 (en) * | 2005-12-29 | 2007-07-05 | General Electric Company | Method for making soft magnetic material having ultra-fine grain structure |
DE502007000329D1 (en) | 2006-10-30 | 2009-02-05 | Vacuumschmelze Gmbh & Co Kg | Soft magnetic iron-cobalt based alloy and process for its preparation |
US8012270B2 (en) | 2007-07-27 | 2011-09-06 | Vacuumschmelze Gmbh & Co. Kg | Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it |
US9057115B2 (en) | 2007-07-27 | 2015-06-16 | Vacuumschmelze Gmbh & Co. Kg | Soft magnetic iron-cobalt-based alloy and process for manufacturing it |
WO2009038105A1 (en) * | 2007-09-18 | 2009-03-26 | Japan Science And Technology Agency | Metal glass, magnetic recording medium produced by using the metal glass, and method for production of the magnetic recording medium |
CN101853726A (en) * | 2010-05-17 | 2010-10-06 | 南京新康达磁业有限公司 | A kind of soft magnetic material and preparation method thereof |
CN101935742B (en) * | 2010-09-21 | 2013-01-02 | 中国矿业大学 | Annealing method for preparing nanocrystalline alloy with excellent soft magnetic property |
US8699190B2 (en) | 2010-11-23 | 2014-04-15 | Vacuumschmelze Gmbh & Co. Kg | Soft magnetic metal strip for electromechanical components |
CN102129907B (en) * | 2010-12-30 | 2012-05-30 | 上海世路特种金属材料有限公司 | Nanocrystalline soft magnetic alloy iron core with high initial permeability and low remanence and preparation method thereof |
CN102254675B (en) * | 2011-07-14 | 2013-09-11 | 江西大有科技有限公司 | Heat treatment process of magnetically soft alloy iron core |
CN102543347B (en) * | 2011-12-31 | 2015-10-14 | 中国科学院宁波材料技术与工程研究所 | A kind of Fe-based nanocrystalline magnetically soft alloy and preparation method thereof |
CN102856031A (en) * | 2012-09-10 | 2013-01-02 | 任静儿 | Magnetic powder alloy material |
CN102867605A (en) * | 2012-09-10 | 2013-01-09 | 任静儿 | Magnetic alloy |
CN102867604A (en) * | 2012-09-10 | 2013-01-09 | 任静儿 | Magnetically soft alloy |
CN102875024A (en) * | 2012-10-19 | 2013-01-16 | 张家港市清大星源微晶有限公司 | Microcrystalline material with high magnetic inductivity |
CN102912257A (en) * | 2012-10-19 | 2013-02-06 | 张家港市清大星源微晶有限公司 | Microcrystalline material |
DE102013103268B4 (en) * | 2013-04-02 | 2016-06-02 | Vacuumschmelze Gmbh & Co. Kg | Shielding foil and method for producing a shielding foil |
CN103390492B (en) * | 2013-07-31 | 2016-08-31 | 河北申科电子股份有限公司 | A kind of production technology of the ultracrystallite cutting iron core of open-close type transformer |
CN104200982A (en) * | 2014-03-28 | 2014-12-10 | 北京冶科磁性材料有限公司 | Manufacturing method of nanocrystalline magnetic core for high-frequency electrostatic dust collection power transformer |
US10546674B2 (en) | 2014-12-22 | 2020-01-28 | Hitachi Metals, Ltd. | Fe-based soft magnetic alloy ribbon and magnetic core comprising same |
CN104485192B (en) * | 2014-12-24 | 2016-09-07 | 江苏奥玛德新材料科技有限公司 | A kind of iron-based amorphous and nanocrystalline soft magnetic alloy and preparation method thereof |
US11230754B2 (en) * | 2015-01-07 | 2022-01-25 | Metglas, Inc. | Nanocrystalline magnetic alloy and method of heat-treatment thereof |
US11264156B2 (en) * | 2015-01-07 | 2022-03-01 | Metglas, Inc. | Magnetic core based on a nanocrystalline magnetic alloy |
DE102015211487B4 (en) | 2015-06-22 | 2018-09-20 | Vacuumschmelze Gmbh & Co. Kg | METHOD FOR PRODUCING A NANOCRYSTALLINE MAGNETIC CORE |
TWI609972B (en) * | 2015-11-05 | 2018-01-01 | 中國鋼鐵股份有限公司 | Method of preparing specimen of iron-based amorphous alloy and application thereof |
CN105695704B (en) * | 2016-01-19 | 2017-11-10 | 兆晶股份有限公司 | A kind of transformer superparamagnetism iron core heat treatment method |
CN106555047A (en) * | 2016-11-23 | 2017-04-05 | 宜春学院 | The heat treatment method of iron-base nanometer crystal alloy soft magnetic ribbon |
CN109837452B (en) * | 2019-01-23 | 2021-09-21 | 信维通信(江苏)有限公司 | High Bs nanocrystalline material and preparation method thereof |
CN113990650B (en) * | 2021-10-19 | 2023-03-31 | 河北申科磁性材料有限公司 | High-permeability open transformer magnetic core and processing technology thereof and open transformer |
CN115029541A (en) * | 2022-06-20 | 2022-09-09 | 浙江晶精新材料科技有限公司 | Vacuum and copper-clad nanocrystalline strip-based composite heat treatment method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4116728B1 (en) * | 1976-09-02 | 1994-05-03 | Gen Electric | Treatment of amorphous magnetic alloys to produce a wide range of magnetic properties |
JPS6047407A (en) * | 1983-08-25 | 1985-03-14 | Matsushita Electric Works Ltd | Method for producing magnetic core |
TW226034B (en) * | 1991-03-06 | 1994-07-01 | Allied Signal Inc | |
US5252144A (en) * | 1991-11-04 | 1993-10-12 | Allied Signal Inc. | Heat treatment process and soft magnetic alloys produced thereby |
DE69408916T2 (en) * | 1993-07-30 | 1998-11-12 | Hitachi Metals Ltd | Magnetic core for pulse transmitters and pulse transmitters |
US5611871A (en) * | 1994-07-20 | 1997-03-18 | Hitachi Metals, Ltd. | Method of producing nanocrystalline alloy having high permeability |
-
1996
- 1996-12-11 FR FR9615197A patent/FR2756966B1/en not_active Expired - Fee Related
-
1997
- 1997-11-07 AT AT97402667T patent/ATE224582T1/en not_active IP Right Cessation
- 1997-11-07 ES ES97402667T patent/ES2184047T3/en not_active Expired - Lifetime
- 1997-11-07 EP EP97402667A patent/EP0848397B1/en not_active Expired - Lifetime
- 1997-11-07 DE DE69715575T patent/DE69715575T2/en not_active Expired - Fee Related
- 1997-11-13 TW TW086116891A patent/TW561193B/en not_active IP Right Cessation
- 1997-11-14 AU AU45199/97A patent/AU731520B2/en not_active Ceased
- 1997-11-28 SK SK1618-97A patent/SK284008B6/en unknown
- 1997-12-01 ZA ZA9710780A patent/ZA9710780B/en unknown
- 1997-12-09 CZ CZ19973983A patent/CZ293837B6/en not_active IP Right Cessation
- 1997-12-10 CN CNB971253668A patent/CN1134034C/en not_active Expired - Fee Related
- 1997-12-10 HU HUP9702383A patent/HU216168B/en not_active IP Right Cessation
- 1997-12-11 PL PL97323663A patent/PL184208B1/en not_active IP Right Cessation
- 1997-12-11 TR TR97/01599A patent/TR199701599A2/en unknown
- 1997-12-11 KR KR1019970067847A patent/KR19980064039A/en not_active Application Discontinuation
- 1997-12-11 US US08/989,083 patent/US5911840A/en not_active Expired - Fee Related
- 1997-12-11 JP JP9362223A patent/JPH10195528A/en not_active Withdrawn
-
1998
- 1998-11-17 HK HK98112053A patent/HK1010938A1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
SK161897A3 (en) | 1998-12-02 |
TR199701599A3 (en) | 2000-07-21 |
CN1185012A (en) | 1998-06-17 |
KR19980064039A (en) | 1998-10-07 |
FR2756966A1 (en) | 1998-06-12 |
FR2756966B1 (en) | 1998-12-31 |
ZA9710780B (en) | 1998-06-12 |
AU4519997A (en) | 1998-06-18 |
DE69715575T2 (en) | 2003-05-22 |
CZ398397A3 (en) | 1998-07-15 |
SK284008B6 (en) | 2004-07-07 |
HUP9702383A2 (en) | 1998-07-28 |
AU731520B2 (en) | 2001-03-29 |
HUP9702383A3 (en) | 1998-08-28 |
PL184208B1 (en) | 2002-09-30 |
PL323663A1 (en) | 1998-06-22 |
HU216168B (en) | 1999-04-28 |
DE69715575D1 (en) | 2002-10-24 |
CN1134034C (en) | 2004-01-07 |
CZ293837B6 (en) | 2004-08-18 |
TR199701599A2 (en) | 2000-07-21 |
EP0848397A1 (en) | 1998-06-17 |
JPH10195528A (en) | 1998-07-28 |
TW561193B (en) | 2003-11-11 |
US5911840A (en) | 1999-06-15 |
ES2184047T3 (en) | 2003-04-01 |
ATE224582T1 (en) | 2002-10-15 |
HK1010938A1 (en) | 1999-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0848397B1 (en) | Manufacturing process of a soft magnetic iron based alloy component with nanocristalline structure | |
EP0844628B1 (en) | Process for producing a magnetic core of nanocristalline soft magnetic material | |
US6270591B2 (en) | Amorphous and nanocrystalline glass-covered wires | |
FR2459839A1 (en) | PROCESS FOR PRODUCING AN AMORPHOUS MAGNETIC ALLOY AND ALLOY OBTAINED | |
EP2387788B1 (en) | Process for manufacturing a magnetic core made of a magnetic alloy having a nanocrystalline structure | |
JP3962093B2 (en) | Broadband contrast polarizing glass | |
EP0003466B1 (en) | Process for the thermal treatment of Fe-Co-Cr alloys for permanent magnets | |
US4367102A (en) | Method for the manufacture of a superconductor containing an intermetallic compounds | |
EP0921541B1 (en) | Fabrication process of a soft nanocrystalline magnetic core for use in a differential circuit breaker | |
EP0921540B1 (en) | Fabrication process of a magnetic core of a soft magnetic nanocrystalline alloy and use in a differential circuit breaker | |
EP0408469B1 (en) | Copper-iron-cobalt-titanium alloy featuring high mechanical and electrical properties and process for the manufacture thereof | |
EP0293286B1 (en) | Method and device for manufacturing articles for magnetic use | |
FR2547927A1 (en) | SATURABLE CORE PROBE, IN PARTICULAR FOR MAGNETOMETER | |
FR2767538A1 (en) | Iron-nickel alloy strip production from continuously cast slab or strip | |
BE371669A (en) | ||
JPH0526861B2 (en) | ||
FR2689300A1 (en) | Soft magnetic torus mfg. process - for reproducible prodn. of flat magnetic hysteresis loop | |
CH278120A (en) | A method of manufacturing an anisotropic permanent magnet and magnet obtained by this method. | |
WO2005006354A1 (en) | PROCESS FOR PRODUCING Ge-ADDED Nb3Al BASE SUPERCONDUCTING WIRE MATERIAL | |
BE823868A (en) | HIGH MAGNETIC SATURATION ALLOYS | |
JPS58224157A (en) | Method for manufacturing Co-Fe soft magnetic alloy material | |
BE389839A (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 19981217 |
|
AKX | Designation fees paid |
Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20000713 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020918 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020918 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020918 |
|
REF | Corresponds to: |
Ref document number: 224582 Country of ref document: AT Date of ref document: 20021015 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: FRENCH |
|
REF | Corresponds to: |
Ref document number: 69715575 Country of ref document: DE Date of ref document: 20021024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021218 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021219 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20030121 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2184047 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030601 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030619 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20031029 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20031030 Year of fee payment: 7 Ref country code: CH Payment date: 20031030 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20031031 Year of fee payment: 7 Ref country code: IE Payment date: 20031031 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20031103 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20031107 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20031120 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20031209 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041107 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041108 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041130 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041130 |
|
BERE | Be: lapsed |
Owner name: *MECAGIS Effective date: 20041130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050601 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050601 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20041107 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050729 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20050601 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051107 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20041108 |
|
BERE | Be: lapsed |
Owner name: *MECAGIS Effective date: 20041130 |