[go: up one dir, main page]

EP0848397B1 - Manufacturing process of a soft magnetic iron based alloy component with nanocristalline structure - Google Patents

Manufacturing process of a soft magnetic iron based alloy component with nanocristalline structure Download PDF

Info

Publication number
EP0848397B1
EP0848397B1 EP97402667A EP97402667A EP0848397B1 EP 0848397 B1 EP0848397 B1 EP 0848397B1 EP 97402667 A EP97402667 A EP 97402667A EP 97402667 A EP97402667 A EP 97402667A EP 0848397 B1 EP0848397 B1 EP 0848397B1
Authority
EP
European Patent Office
Prior art keywords
temperature
magnetic
crystallization
heat treatment
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97402667A
Other languages
German (de)
French (fr)
Other versions
EP0848397A1 (en
Inventor
Georges Couderchon
Philippe Verin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mecagis SNC
Original Assignee
Mecagis SNC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mecagis SNC filed Critical Mecagis SNC
Publication of EP0848397A1 publication Critical patent/EP0848397A1/en
Application granted granted Critical
Publication of EP0848397B1 publication Critical patent/EP0848397B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/832Nanostructure having specified property, e.g. lattice-constant, thermal expansion coefficient
    • Y10S977/833Thermal property of nanomaterial, e.g. thermally conducting/insulating or exhibiting peltier or seebeck effect

Definitions

  • the present invention relates to the manufacture of magnetic components in soft magnetic alloy based on iron having a nanocrystalline structure.
  • Nanocrystalline magnetic materials are well known and have been described, in particular, in European patent applications EP 0 271 657 and EP 0 299 498. These are iron-based alloys, containing more than 60 at% (atoms%) of iron, copper, silicon, boron, and possibly at least one element taken among niobium, tungsten, tantalum, zirconium, hafnium, titanium and molybdenum, cast in the form of amorphous ribbons and then subjected to a treatment which causes extremely fine crystallization (the crystals have less 100 nanometers in diameter). These materials have magnetic properties particularly suitable for the manufacture of soft magnetic cores for electrotechnical devices such as earth leakage circuit breakers.
  • hysteresis (Br / Bm ⁇ 0.5), i.e. a coated hysteresis cycle (Br / Bm ⁇ 0.3); Br / Bm being the ratio of remanent magnetic induction to magnetic induction Max.
  • Round hysteresis cycles are obtained when treatment thermal consists of a simple annealing at a temperature between 500 ° C and 600 ° C.
  • the lying hysteresis cycles are obtained when the treatment thermal includes at least one annealing under magnetic field, this annealing can be the annealing intended to cause the formation of nanocrystals.
  • Nanocrystalline ribbons, or more precisely, magnetic components produced with these ribbons have a drawback which limits their use. This drawback is insufficient stability of the magnetic properties when the temperature rises above room temperature. This stability insufficient results in unreliability of circuit breaker operation differentials fitted with such magnetic cores.
  • the object of the present invention is to remedy this drawback by providing a means for manufacturing magnetic cores from material nanocrystalline having magnetic properties whose temperature stability is significantly improved.
  • the thermal relaxation treatment can be a maintenance for a time between 0.1 and 10 hours, at a temperature between 250 ° C and 480 ° C.
  • the relaxation heat treatment can also consist of a progressive heating from room temperature to a temperature greater than 450 ° C, at a heating rate between 30 ° C / hour and 300 ° C / hour between 250 ° C and 450 ° C.
  • At least one annealing constituting the heat treatment can be carried out under magnetic field.
  • This process applies more particularly to soft magnetic alloys with iron base having a nanocrystalline structure, the chemical composition of which is such that Si ⁇ 14%.
  • the alloy may have low levels of impurities provided by raw materials or resulting from production.
  • the amorphous ribbon is obtained in a manner known per se by solidification very fast liquid alloy, poured, for example, on a cooled wheel.
  • the magnetic core blanks are also manufactured known in itself, by winding the ribbon on a mandrel, cutting it and fixing its end by a welding point, in order to obtain small toroids of rectangular section.
  • the blanks are first subjected to a so-called "relaxation" annealing, at a temperature below the temperature of onset of crystallization of the amorphous strip, and preferably between 250 ° C and 480 ° C, then an annealing of crystallization which may or may not be carried out under magnetic field, and possibly be followed by annealing at lowest temperature under magnetic field.
  • This annealing of relaxation had for advantage of significantly reducing the sensitivity of magnetic properties nuclei at temperature.
  • the inventors have also found that the annealing of relaxation prior to crystallization annealing had the added benefit of reduce the dispersion of the magnetic properties of the nuclei observed on mass production.
  • the crystallization annealing is intended to precipitate in the matrix amorphous nanocrystals of size less than 100 nanometers, preferably between 10 and 20 nanometers. This very fine crystallization makes it possible to obtain the desired magnetic properties.
  • the crystallization annealing consists of a maintaining at a temperature higher than the temperature at the start of crystallization and lower than the onset temperature of the secondary phases which deteriorate the magnetic properties.
  • the annealing temperature of crystallization is between 500 ° C and 600 ° C, but it can be optimized for each ribbon, for example, by determining by tests the temperature which leads to maximum magnetic permeability.
  • the annealing temperature of crystallization can then be chosen equal to this temperature, or, better, be chosen to be about 30 ° C higher.
  • crystallization annealing can be carried out under a transverse magnetic field.
  • the crystallization treatment can also be supplemented by annealing at a temperature below the crystallization start temperature, for example towards 400 ° C, carried out under transverse magnetic field.
  • the heat treatment of the blanks magnetic component include a relaxation annealing, a crystallization possibly carried out under magnetic field, and, possibly, an additional annealing carried out under magnetic field.
  • the relaxation annealing which precedes the crystallization annealing, and which can be performed both on the amorphous tape itself and on the component blank magnetic, can consist in maintaining a constant temperature during a time which preferably should be between 0.1 and 10 hours.
  • This annealing can also consist of a gradual rise in temperature, which precedes, by example, crystallization annealing, and which must be done at a rate of rise in temperature between 30 ° C / h and 300 ° C / h, at least between 250 ° C and 450 ° C; preferably the rate of temperature rise should be around 100 ° C / h.
  • the series of blanks of magnetic cores A2 and B2 have, for comparison, been treated in accordance with the prior art by a single crystallization annealing for 3 hours at 530 ° C.
  • the maximum magnetic permeability at 50 Hz was measured at different temperatures between - 25 ° C and + 100 ° C, and it was expressed as a% of the maximum magnetic permeability at 50 Hz at 20 ° C.
  • the first example relates to toroidal magnetic cores produced from ribbons 20 ⁇ m thick and 10 mm wide obtained by direct quenching on a cooled wheel, of an alloy of composition (in at%) Fe 73.5 Si 13.5 B 9 Cu 1 Nb 3 . After quenching on a wheel, it was checked by X-ray that the ribbon was completely amorphous. The ribbon was then separated into three sections, one, A, remained as it was, the other two, B and C, were subjected to relaxation annealing, for one, B, 1 hour at 400 ° C, for the other, C, 1 hour at 450 ° C.
  • the second example relates to toroidal magnetic cores produced from ribbons 20 ⁇ m thick and 10 mm wide obtained by direct quenching on a cooled wheel, of an alloy of composition (in at%) Fe 73 Si 15 B 8 Cu 1 Nb 3 .
  • ribbons 20 ⁇ m thick and 10 mm wide obtained by direct quenching on a cooled wheel, of an alloy of composition (in at%) Fe 73 Si 15 B 8 Cu 1 Nb 3 .
  • the ribbon two batches of 300 toroids with an internal diameter of 11 mm and an external diameter of 15 mm were produced using automatic winding machines. The batches were then treated in ovens with neutral atmosphere. A control batch A was only subjected to a 1 hour crystallization annealing at 530 ° C.
  • the second batch was treated in accordance with the invention: a relaxation annealing of 1 hour at 400 ° C. was first carried out, then a crystallization annealing of 1 hour at 530 ° C.
  • the toroids were put in a box

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

The production of a magnetic component from a nanocrystalline iron based soft magnetic alloy of composition (in at. %) ≥ 60 % Fe, 0.1-3 % Cu, 0-25 % B, 0-30 (preferably ≤ 14) % Si, 0.1-30 % one or more of Nb, W, Ta, Zr, high-frequency, Ti and Mo and balance impurities, the sum of Si + B being 5-30 %, involves producing a toroidal preform by winding an amorphous strip of the alloy around a mandrel and carrying out one or more crystallisation anneal processes at 500-600 degrees C for 0.1-10 hrs. to form nanocrystals. The novelty comprises carrying out a relaxation heat treatment at below the crystallisation start temperature prior to crystallisation annealing.

Description

La présente invention concerne la fabrication de composants magnétiques en alliage magnétique doux à base de fer ayant une structure nanocristalline.The present invention relates to the manufacture of magnetic components in soft magnetic alloy based on iron having a nanocrystalline structure.

Les matériaux magnétiques nanocristallins sont bien connus et ont été décrits, en particulier, dans les demandes de brevet européen EP 0 271 657 et EP 0 299 498. Ce sont des alliages à base de fer, contenant plus de 60 at % (atomes %) de fer, du cuivre, du silicium, du bore, et éventuellement au moins un élément pris parmi le niobium, le tungstène, le tantale, le zirconium, le hafnium, le titane et le molybdène, coulés sous forme de rubans amorphes puis soumis à un traitement thermique qui provoque une cristallisation extrêmement fine (les cristaux ont moins de 100 nanomètres de diamètre). Ces matériaux ont des propriétés magnétiques particulièrement adaptées à la fabrication de noyaux magnétiques doux pour appareils électrotechniques tels que des disjoncteurs différentiels. En particulier, ils ont une excellente perméabilité magnétique et peuvent présenter soit un cycle d'hystérésis rond (Br/Bm ≥ 0,5), soit un cycle d'hystérésis couché (Br/Bm ≤ 0,3) ; Br/Bm étant le rapport de l'induction magnétique rémanente à l'induction magnétique maximale. Les cycles d'hystérésis ronds sont obtenus lorsque le traitement thermique est constitué d'un simple recuit à une température comprise entre 500°C et 600 °C. Les cycles d'hystérésis couchés sont obtenus lorsque le traitement thermique comporte au moins un recuit sous champ magnétique, ce recuit pouvant être le recuit destiné à provoquer la formation de nanocristaux.Nanocrystalline magnetic materials are well known and have been described, in particular, in European patent applications EP 0 271 657 and EP 0 299 498. These are iron-based alloys, containing more than 60 at% (atoms%) of iron, copper, silicon, boron, and possibly at least one element taken among niobium, tungsten, tantalum, zirconium, hafnium, titanium and molybdenum, cast in the form of amorphous ribbons and then subjected to a treatment which causes extremely fine crystallization (the crystals have less 100 nanometers in diameter). These materials have magnetic properties particularly suitable for the manufacture of soft magnetic cores for electrotechnical devices such as earth leakage circuit breakers. In particular, they have excellent magnetic permeability and can exhibit either a cycle round hysteresis (Br / Bm ≥ 0.5), i.e. a coated hysteresis cycle (Br / Bm ≤ 0.3); Br / Bm being the ratio of remanent magnetic induction to magnetic induction Max. Round hysteresis cycles are obtained when treatment thermal consists of a simple annealing at a temperature between 500 ° C and 600 ° C. The lying hysteresis cycles are obtained when the treatment thermal includes at least one annealing under magnetic field, this annealing can be the annealing intended to cause the formation of nanocrystals.

Les rubans nanocristallins, ou plus exactement, les composants magnétiques fabriqués avec ces rubans, présentent cependant un inconvénient qui limite leur utilisation. Cet inconvénient est une stabilité insuffisante des propriétés magnétiques lorsque la température s'élève au dessus de la température ambiante. Cette stabilité insuffisante entraíne un manque de fiabilité de fonctionnement des disjoncteurs différentiels équipés de tels noyaux magnétiques.Nanocrystalline ribbons, or more precisely, magnetic components produced with these ribbons, however, have a drawback which limits their use. This drawback is insufficient stability of the magnetic properties when the temperature rises above room temperature. This stability insufficient results in unreliability of circuit breaker operation differentials fitted with such magnetic cores.

Le but de la présente invention est de remédier à cet inconvénient en proposant un moyen pour fabriquer des noyaux magnétiques en matériau nanocristallin ayant des propriétés magnétiques dont la stabilité en température est sensiblement améliorée.The object of the present invention is to remedy this drawback by providing a means for manufacturing magnetic cores from material nanocrystalline having magnetic properties whose temperature stability is significantly improved.

A cet effet, l'invention a pour objet un procédé de fabrication d'un composant magnétique en alliage magnétique doux à base de fer ayant une structure nanocristalline dont la composition chimique comprend, en atomes %, Fe ≥ 60 %, 0,1 % ≤ Cu ≤ 3 %, 0 % ≤ B ≤ 25 %, 0 % ≤ Si ≤ 30 %, et au moins un élément pris parmi le niobium, le tungstène, le tantale, le zirconium, le hafnium, le titane, et le molybdène en des teneurs comprises entre 0,1 % et 30 %, le reste étant des impuretés résultant de l'élaboration, la composition satisfaisant en outre la relation 5 % ≤ Si + B ≤ 30 %, selon lequel :

  • on fabrique avec l'alliage magnétique un ruban amorphe,
  • avec le ruban on fabrique une ébauche de composant magnétique,
  • et on soumet le composant magnétique à un traitement thermique de cristallisation comprenant au moins un recuit de cristallisation à une température comprise entre 500°C et 600°C pendant un temps de maintien compris entre 0,1 et 10 heures, afin de provoquer la formation de nanocristaux, et, avant d'effectuer le traitement thermique de cristallisation, on réalise un traitement thermique de relaxation à une température inférieure à la température de début de recristallisation de l'alliage amorphe.
To this end, the subject of the invention is a method for manufacturing a magnetic component made of a soft magnetic alloy based on iron having a nanocrystalline structure whose chemical composition comprises, in atoms%, Fe ≥ 60%, 0.1% ≤ Cu ≤ 3%, 0% ≤ B ≤ 25%, 0% ≤ Si ≤ 30%, and at least one element selected from niobium, tungsten, tantalum, zirconium, hafnium, titanium, and molybdenum in contents of between 0.1% and 30%, the remainder being impurities resulting from the preparation, the composition also satisfying the relationship 5% ≤ Si + B ≤ 30%, according to which:
  • an amorphous ribbon is made with the magnetic alloy,
  • with the ribbon we make a blank of magnetic component,
  • and the magnetic component is subjected to a crystallization heat treatment comprising at least one crystallization anneal at a temperature between 500 ° C and 600 ° C for a holding time between 0.1 and 10 hours, in order to cause the formation nanocrystals, and before performing the crystallization heat treatment, a relaxation heat treatment is carried out at a temperature below the temperature at the start of recrystallization of the amorphous alloy.

Le traitement thermique de relaxation peut être un maintien pendant un temps compris entre 0,1 et 10 heures, à une température comprise entre 250 °C et 480 °C.The thermal relaxation treatment can be a maintenance for a time between 0.1 and 10 hours, at a temperature between 250 ° C and 480 ° C.

Le traitement thermique de relaxation peut également consister en un chauffage progressif depuis la température ambiante jusqu'à une température supérieure à 450 °C, à une vitesse de chauffage comprise entre 30 °C/heure et 300 °C/heure entre 250 °C et 450 °C.The relaxation heat treatment can also consist of a progressive heating from room temperature to a temperature greater than 450 ° C, at a heating rate between 30 ° C / hour and 300 ° C / hour between 250 ° C and 450 ° C.

Selon les propriétés magnétiques souhaitées, en particulier selon la forme désirée pour le cycle d'hystérésis, et conformément à l'état de l'art, au moins un recuit constituant le traitement thermique peut être effectué sous champ magnétique.According to the desired magnetic properties, in particular according to the shape desired for the hysteresis cycle, and in accordance with the state of the art, at least one annealing constituting the heat treatment can be carried out under magnetic field.

Ce procédé s'applique plus particulièrement aux alliages magnétiques doux à base de fer ayant une structure nanocristalline, dont la composition chimique est telle que Si ≤ 14 %.This process applies more particularly to soft magnetic alloys with iron base having a nanocrystalline structure, the chemical composition of which is such that Si ≤ 14%.

L'invention va maintenant être décrite plus en détails, mais de façon non limitative et illustrée par des exemples.The invention will now be described in more detail, but not in detail. limiting and illustrated by examples.

Pour fabriquer en série des composants magnétiques, par exemple noyaux magnétiques pour disjoncteur différentiel de la classe AC (sensible aux courants de défaut alternatifs), on utilise un ruban en alliage magnétique doux ayant une structure amorphe, susceptible d'acquérir une structure nanocristalline, constitué principalement de fer en une teneur supérieure à 60 atomes %, et contenant en outre :

  • de 0,1 à 3 at %, et de préférence, de 0,5 à 1,5 at % de cuivre ;
  • de 0,1 à 30 at %, et, de préférence, de 2 à 5 at % d'au moins un élément pris parmi le niobium, le tungstène, le tantale, le zirconium, le hafnium, le titane, et le molybdène ; de préférence, la teneur en niobium est comprise entre 2 et 4 at % ;
  • du silicium et du bore, la somme des teneurs en ces éléments étant comprise entre 5 et 30 at %, et, de préférence, entre 15 et 25 at % ; la teneur en bore pouvant aller jusqu'à 25 at %, et, de préférence, étant comprise entre 5 et 14 at % ; la teneur en silicium pouvant atteindre 30 at %, et, de préférence, étant comprise entre 12 et 17 at %.
To mass produce magnetic components, for example magnetic cores for differential circuit breaker of class AC (sensitive to alternating fault currents), a ribbon of soft magnetic alloy having an amorphous structure is used, capable of acquiring a nanocrystalline structure, consisting mainly iron in a content greater than 60 atom%, and also containing:
  • 0.1 to 3 at%, and preferably 0.5 to 1.5 at% copper;
  • from 0.1 to 30 at%, and preferably from 2 to 5 at% of at least one element chosen from niobium, tungsten, tantalum, zirconium, hafnium, titanium, and molybdenum; preferably, the niobium content is between 2 and 4 at%;
  • silicon and boron, the sum of the contents of these elements being between 5 and 30 at%, and preferably between 15 and 25 at%; the boron content which can range up to 25 at%, and preferably being between 5 and 14 at%; the silicon content being able to reach 30 at%, and preferably being between 12 and 17 at%.

Outre ces éléments, l'alliage peut comporter de faibles teneurs en impuretés apportées par les matières premières ou résultant de l'élaboration.In addition to these elements, the alloy may have low levels of impurities provided by raw materials or resulting from production.

Le ruban amorphe est obtenu de façon connue en elle même par solidification très rapide de l'alliage liquide, coulé, par exemple, sur une roue refroidie.The amorphous ribbon is obtained in a manner known per se by solidification very fast liquid alloy, poured, for example, on a cooled wheel.

Les ébauches de noyau magnétique sont fabriquées également de façon connue en elle même, en enroulant le ruban sur un mandrin, en le coupant et en fixant son extrémité par un point de soudure, afin d'obtenir des petits tores de section rectangulaire.The magnetic core blanks are also manufactured known in itself, by winding the ribbon on a mandrel, cutting it and fixing its end by a welding point, in order to obtain small toroids of rectangular section.

Pour conférer aux ébauches leurs propriétés magnétiques définitives, on les soumet d'abord à un recuit dit "de relaxation", à une température inférieure à la température de début de cristallisation de la bande amorphe, et, de préférence, comprise entre 250°C et 480 °C, puis à un recuit de cristallisation pouvant, ou non, être effectué sous champ magnétique, et, éventuellement, être suivi par un recuit à plus basse température effectué sous champ magnétique. Les inventeurs ont, en effet, constaté de façon tout à fait inattendue, que ce recuit de relaxation avait pour avantage de réduire de façon très sensible la sensibilité des propriétés magnétiques des noyaux à la température. Les inventeurs ont également constaté que le recuit de relaxation préalable au recuit de cristallisation avait l'avantage supplémentaire de réduire la dispersion des propriétés magnétiques des noyaux observées sur des fabrications en série.To give the blanks their final magnetic properties, they are first subjected to a so-called "relaxation" annealing, at a temperature below the temperature of onset of crystallization of the amorphous strip, and preferably between 250 ° C and 480 ° C, then an annealing of crystallization which may or may not be carried out under magnetic field, and possibly be followed by annealing at lowest temperature under magnetic field. The inventors have, in effect, noticed in a completely unexpected way, that this annealing of relaxation had for advantage of significantly reducing the sensitivity of magnetic properties nuclei at temperature. The inventors have also found that the annealing of relaxation prior to crystallization annealing had the added benefit of reduce the dispersion of the magnetic properties of the nuclei observed on mass production.

Le recuit de cristallisation est destiné à faire précipiter dans la matrice amorphe des nanocristaux de taille inférieure à 100 nanomètres, de préférence comprise entre 10 et 20 nanomètres. Cette cristallisation très fine permet d'obtenir les propriétés magnétiques souhaitées. Le recuit de cristallisation consiste en un maintien à une température supérieure à la température de début de cristallisation et inférieure à la température de début d'apparition des phases secondaires qui détériorent les propriétés magnétiques. En général, la température de recuit de cristallisation est comprises entre 500 °C et 600 °C, mais elle peut être optimisée pour chaque ruban, par exemple, en déterminant par des essais la température qui conduit à la perméabilité magnétique maximale. La température de recuit de cristallisation peut alors être choisie égale à cette température, ou, mieux, être choisie pour lui être supérieure d'environ 30 °C.The crystallization annealing is intended to precipitate in the matrix amorphous nanocrystals of size less than 100 nanometers, preferably between 10 and 20 nanometers. This very fine crystallization makes it possible to obtain the desired magnetic properties. The crystallization annealing consists of a maintaining at a temperature higher than the temperature at the start of crystallization and lower than the onset temperature of the secondary phases which deteriorate the magnetic properties. In general, the annealing temperature of crystallization is between 500 ° C and 600 ° C, but it can be optimized for each ribbon, for example, by determining by tests the temperature which leads to maximum magnetic permeability. The annealing temperature of crystallization can then be chosen equal to this temperature, or, better, be chosen to be about 30 ° C higher.

Afin de modifier la forme du cycle d'hystéresis ce qui est nécessaire pour les disjoncteurs différentiels de la classe A (sensibles aux courants de défaut polarisés), le recuit de cristallisation peut être effectué sous champ magnétique transversal. Le traitement de cristallisation peut également être complété par un recuit à une température inférieure à la température de début de cristallisation, par exemple vers 400°C, effectué sous champ magnétique transversal.In order to modify the shape of the hysteresis cycle what is necessary for Class A residual current devices (sensitive to polarized fault currents), crystallization annealing can be carried out under a transverse magnetic field. The crystallization treatment can also be supplemented by annealing at a temperature below the crystallization start temperature, for example towards 400 ° C, carried out under transverse magnetic field.

D'une façon plus générale, le traitement thermique des ébauches de composant magnétique comportent un recuit de relaxation, un recuit de cristallisation éventuellement effectué sous champ magnétique, et, éventuellement, un recuit complémentaire effectué sous champ magnétique.More generally, the heat treatment of the blanks magnetic component include a relaxation annealing, a crystallization possibly carried out under magnetic field, and, possibly, an additional annealing carried out under magnetic field.

Le recuit de relaxation qui précède le recuit de cristallisation, et qui peut être effectué aussi bien sur le ruban amorphe lui même que sur l'ébauche de composant magnétique, peut consister en un maintien à une température constante pendant un temps qui, de préférence, doit être compris entre 0,1 et 10 heures. Ce recuit peut également consister en une montée progressive en température, qui précède, par exemple, le recuit de cristallisation, et qui doit se faire à une vitesse de montée en température comprise entre 30 °C/ h et 300 °C/h, au moins entre 250°C et 450 °C ; de préférence, la vitesse de montée en température doit être d'environ 100 °C/h.The relaxation annealing which precedes the crystallization annealing, and which can be performed both on the amorphous tape itself and on the component blank magnetic, can consist in maintaining a constant temperature during a time which preferably should be between 0.1 and 10 hours. This annealing can also consist of a gradual rise in temperature, which precedes, by example, crystallization annealing, and which must be done at a rate of rise in temperature between 30 ° C / h and 300 ° C / h, at least between 250 ° C and 450 ° C; preferably the rate of temperature rise should be around 100 ° C / h.

Dans tous les cas, il est préférable d'effectuer les traitements thermiques dans des fours à atmosphère contrôlée, neutre ou réductrice.In all cases, it is preferable to carry out heat treatments in ovens with controlled, neutral or reducing atmosphere.

A titre d'exemple, on a fabriqué deux rubans en alliage Fe73Si15B8Cu1Nb3, (73 at % de fer, 15 at % de silicium, etc), de 20 µm d'épaisseur et 10 mm de largeur obtenus par trempe directe sur une roue refroidie. Avec chacun des rubans, on a fabriqué deux séries d'ébauches de noyaux magnétiques repérés respectivement A1 et A2 (pour le premier ruban) et B1 et B2 (pour le deuxième ruban). Les séries d'ébauches de noyaux magnétiques A1 et B1 ont été soumises à un traitement thermique conforme à l'invention et consistant en un recuit de relaxation de 3 heures à 400°C suivi d'un recuit de cristallisation de 3 heures à 530 °C. Les séries d'ébauches de noyaux magnétiques A2 et B2 ont, à titre de comparaison, été traité conformément à l'Art Antérieur par un unique recuit de cristallisation de 3 heures à 530 °C. Sur les quatre séries d'ébauches de noyaux magnétiques on a mesuré la perméabilité magnétique maximale à 50 Hz à différentes températures comprises entre - 25°C et + 100°C, et on l'a exprimée en % de la perméabilité magnétique maximale à 50 Hz à 20°C. Les résultats sont les suivants : échantillon - 25°C - 5°C 20°C 80°C 100°C A1 (inv) 100 % 102 % 100 % 93 % 86 % A2 (comp) 102 % 103 % 100 % 87 % 78 % B1 (inv) 97 % 98 % 100 % 88 % 78 % B2 (comp) 98 % 99 % 100 % 75 % 60 % For example, two strips of Fe 73 Si 15 B 8 Cu 1 Nb 3 alloy (73 at% iron, 15 at% silicon, etc.), 20 μm thick and 10 mm thick, were produced. width obtained by direct quenching on a cooled wheel. With each of the ribbons, two series of blanks of magnetic cores were made, labeled A1 and A2 respectively (for the first ribbon) and B1 and B2 (for the second ribbon). The series of blanks of magnetic cores A1 and B1 were subjected to a heat treatment in accordance with the invention and consisting of a relaxation annealing of 3 hours at 400 ° C followed by a crystallization annealing of 3 hours at 530 ° vs. The series of blanks of magnetic cores A2 and B2 have, for comparison, been treated in accordance with the prior art by a single crystallization annealing for 3 hours at 530 ° C. On the four series of blanks of magnetic cores, the maximum magnetic permeability at 50 Hz was measured at different temperatures between - 25 ° C and + 100 ° C, and it was expressed as a% of the maximum magnetic permeability at 50 Hz at 20 ° C. The results are as follows: sample - 25 ° C - 5 ° C 20 ° C 80 ° C 100 ° C A1 (inv) 100% 102% 100% 93% 86% A2 (comp) 102% 103% 100% 87% 78% B1 (inv) 97% 98% 100% 88% 78% B2 (comp) 98% 99% 100% 75% 60%

Ces résultats doivent être interprétés en examinant séparément le cas des échantillons A1 et A2 d'une part, et des échantillons B1 et B2 d'autre part. En effet, bien que l'alliage constituant tous les échantillons soit le même, on a utilisé deux rubans fabriqués séparément et qui, de ce fait, ont des propriétés un peu différentes.These results must be interpreted by examining separately the case of samples A1 and A2 on the one hand, and samples B1 and B2 on the other. Indeed, although the alloy making up all the samples is the same, two ribbons produced separately and which therefore have slightly different properties.

Cette remarque faite, on peut constater que, aussi bien pour le groupe A1, A2 que pour le groupe B1, B2, la dégradation de la perméabilité magnétique engendrée par un échauffement à 80 °C ou 100 °C, est beaucoup plus faible pour les échantillons conformes à l'invention que pour les échantillons donnés à titre de comparaison. A 100 °C, par exemple, la perte de perméabilité magnétique est, pour les échantillons conforme à l'invention, environ moitié de ce qu'elle est pour les échantillons fabriqués conformément à l'art antérieur.This remark made, we can see that, as well for the group A1, A2 that for group B1, B2, the degradation of the magnetic permeability generated by heating to 80 ° C or 100 ° C, is much lower for samples in accordance with the invention only for samples given as comparison. At 100 ° C, for example, the loss of magnetic permeability is, for the samples according to the invention, about half of what it is for them samples made in accordance with the prior art.

Outre l'effet obtenu sur la stabilité en température des propriétés magnétiques, les inventeurs ont constaté que l'invention améliorait la reproductibilité des propriétés magnétiques de noyaux fabriqués en série. Cet effet favorable va maintenant être illustré par les deux exemples suivants.Besides the effect obtained on the temperature stability of the properties magnetic, the inventors have found that the invention improves reproducibility magnetic properties of mass-produced cores. This favorable effect will now be illustrated by the following two examples.

Le premier exemple, concerne des noyaux magnétiques toriques fabriqués à partir de rubans de 20 µm d'épaisseur et 10 mm de largeur obtenus par trempe directe sur une roue refroidie, d'un alliage de composition (en at %) Fe73,5Si13,5B9Cu1Nb3. Après la trempe sur roue, on a vérifié par rayons X que le ruban était bien complètement amorphe. On a alors séparé le ruban en trois tronçons, l'un, A, est resté en l'état, les deux autres, B et C, ont été soumis à un recuit de relaxation, pour l'un, B, 1 heure à 400 °C, pour l'autre, C, 1 Heure à 450 °C. On a mesuré le champ coercitif dont les valeurs minimales et maximales étaient, en mOe (1 mOe = 0,079577 A/m) :A de 80 à 200 mOe, B et C de 25 à 35 mOe. Ces résultats montrent l'effet du traitement de relaxation qui non seulement réduit la dispersion du champ coercitif, mais également, réduit très sensiblement sa valeur.The first example relates to toroidal magnetic cores produced from ribbons 20 µm thick and 10 mm wide obtained by direct quenching on a cooled wheel, of an alloy of composition (in at%) Fe 73.5 Si 13.5 B 9 Cu 1 Nb 3 . After quenching on a wheel, it was checked by X-ray that the ribbon was completely amorphous. The ribbon was then separated into three sections, one, A, remained as it was, the other two, B and C, were subjected to relaxation annealing, for one, B, 1 hour at 400 ° C, for the other, C, 1 hour at 450 ° C. The coercive field was measured, the minimum and maximum values of which were, in mOe (1 mOe = 0.079577 A / m): A from 80 to 200 mOe, B and C from 25 to 35 mOe. These results show the effect of the relaxation treatment which not only reduces the dispersion of the coercive field, but also very significantly reduces its value.

Les trois portions de ruban ont alors été utilisées pour former des ébauches de noyaux magnétiques toriques et ces noyaux ont été d'abord soumis à un recuit de cristallisation de 1 heure à 530 °C pour obtenir un cycle d'hystérésis rond, puis à un recuit sous champ magnétique transverse d'1 heure à 400 °C pour obtenir un cycle d'hystérésis couché. Les valeurs de champ coercitif, perméabilité maximale à 50 Hz, et, pour les cycles couchés uniquement, le rapport Br/Bm (induction rémanente sur induction à saturation) ont été déterminés.The three portions of ribbon were then used to form sketches of toric magnetic nuclei and these nuclei were first annealed with 1 hour crystallization at 530 ° C to obtain a round hysteresis cycle, then at a annealing under transverse magnetic field for 1 hour at 400 ° C to obtain a cycle lying hysteresis. Coercive field values, maximum permeability at 50 Hz, and, for the coated cycles only, the Br / Bm ratio (remanent induction on saturation induction) have been determined.

Les résultats ont été les suivants The results were as follows

a) cycles ronds : a) round cycles:

échantillonsample traitement relaxationrelaxation treatment champ coercitif (mOe)coercive field (mOe) perméabilité max à 50 Hzmax permeability at 50 Hz AAT sanswithout 6,16.1 650 000650,000 BB 1 h à 400 °C1 h at 400 ° C 5,25.2 690 000690,000 CVS 1 h à 450 °C1 h at 450 ° C 5,15.1 760 000760,000

b) cycles couchés : b) recumbent cycles:

échantillonsample Trait relaxRelaxed trait ch coercitif (mOe)ch coercive (mOe) Br / BmBr / Bm perm max à 50 Hzperm max at 50 Hz AAT sanswithout 55 0,120.12 200 000200,000 BB 1 h à 400 °C1 h at 400 ° C 3,83.8 0,080.08 215 000215,000 CVS 1 h à 450 °C1 h at 450 ° C 3,43.4 0,070.07 205 000205,000

Ces résultats montrent bien l'amélioration des propriétés magnétiques engendrée par le traitement de relaxation : diminution du champ coercitif, augmentation de la perméabilité maximale, et plus grande facilité pour obtenir des cycles couchés.These results clearly show the improvement in magnetic properties generated by the relaxation treatment: reduction of the coercive field, increased maximum permeability, and greater ease in obtaining recumbent cycles.

Le deuxième exemple, concerne des noyaux magnétiques toriques fabriqués à partir de rubans de 20 µm d'épaisseur et 10 mm de largeur obtenus par trempe directe sur une roue refroidie, d'un alliage de composition (en at %) Fe73Si15B8Cu1Nb3. Avec le ruban, on a fabriqué deux lots de 300 tores de diamètre intérieur 11 mm et diamètre extérieur 15 mm à l'aide de machines à enrouler automatiques. Les lots ont alors été traités dans de fours à atmosphère neutre. Un lot témoin A n'a été soumis qu'à un recuit de cristallisation d'1 heure à 530 °C. Le deuxième lot a été traité conformément à l'invention : on a d'abord réalisé un recuit de relaxation d'1 heure à 400 °C, puis un recuit de cristallisation d'1 heure à 530 °C. Les tores ont été mis sous boítier et calés avec une rondelle de mousse. Pour chaque lot, on a déterminé la moyenne et l'écart type de la perméabilité maximale à 50 Hz.The second example relates to toroidal magnetic cores produced from ribbons 20 µm thick and 10 mm wide obtained by direct quenching on a cooled wheel, of an alloy of composition (in at%) Fe 73 Si 15 B 8 Cu 1 Nb 3 . With the ribbon, two batches of 300 toroids with an internal diameter of 11 mm and an external diameter of 15 mm were produced using automatic winding machines. The batches were then treated in ovens with neutral atmosphere. A control batch A was only subjected to a 1 hour crystallization annealing at 530 ° C. The second batch was treated in accordance with the invention: a relaxation annealing of 1 hour at 400 ° C. was first carried out, then a crystallization annealing of 1 hour at 530 ° C. The toroids were put in a box and wedged with a foam washer. For each lot, the mean and standard deviation of the maximum permeability at 50 Hz were determined.

Les résultats ont été les suivants : traitement perméabilité max à 50 Hz moyenne perméabilité max à 50 Hz écart type sans relaxation (lot A) 585 000 28 000 avec relaxation (lot B) 615 000 20 000 The results were as follows: treatment max permeability at 50 Hz average max permeability at 50 Hz standard deviation without relaxation (lot A) 585,000 28,000 with relaxation (lot B) 615,000 20,000

Ils montrent l'effet du recuit de relaxation qui, d'une part, améliore la valeur moyenne de la perméabilité maximale, et, d'autre part, réduit la dispersion.They show the effect of relaxation annealing which, on the one hand, improves the value average maximum permeability, and, on the other hand, reduces dispersion.

Les deux lots ont ensuite été traités pendant 1 heure à 400 °C sous champ magnétique transverse afin d'obtenir des cycles d'hystérésis couchés. On a mesuré le champ coercitif, le rapport Br/Bm et la perméabilité à 5 mOe à 50Hz. Les résultats ont été les suivants : Traitement ch coercitif (mOe) Br / Bm perm à 5mOe à 50 Hz sans relaxation (lot A) 5,2 0,08 117 000 avec relaxation (lot B) 4,3 0,06 124 000 The two batches were then treated for 1 hour at 400 ° C. under a transverse magnetic field in order to obtain coated hysteresis cycles. The coercive field, the Br / Bm ratio and the permeability at 5 mOe at 50 Hz were measured. The results were as follows: Treatment ch coercive (mOe) Br / Bm perm at 5mOe at 50 Hz without relaxation (lot A) 5.2 0.08 117,000 with relaxation (lot B) 4.3 0.06 124,000

Ces résultats montrent bien l'amélioration des propriétés magnétiques engendrées par le traitement de relaxation : diminution du champ coercitif, augmentation de la perméabilité dans 5 mOe à 50 Hz, et plus grande facilité pour obtenir des cycles couchés.These results clearly show the improvement in magnetic properties generated by the relaxation treatment: reduction of the coercive field, increased permeability in 5 mOe at 50 Hz, and greater ease for get recumbent cycles.

Claims (6)

  1. Process for manufacturing a magnetic component made of an iron-based soft magnetic alloy having a nanocrystalline structure, the chemical composition of which is, in at.%, Fe ≥ 60%, 0.1% ≤ Cu ≤ 3%, 0% ≤ B ≤ 25%, 0% ≤ Si ≤ 30%, and at least one element selected from niobium, tungsten, tantalum, zirconium, hafnium, titanium and molybdenum in proportions of between 0.1% and 30%, the balance being impurities resulting from the smelting, the composition furthermore satisfying the relationship 5% ≤ Si + B ≤ 30%, according to which:
    an amorphous ribbon is manufactured from the magnetic alloy,
    a blank for a magnetic component is manufactured from the ribbon by winding the magnetic ribbon around a mandrel in such a manner as to form a forum,
    and the magnetic component is subjected to a crystallization heat treatment comprising at least one annealing step at a temperature of between 500°C and 600°C for a temperature hold time of between 0.1 and 10 hours so as to cause nanocrystals to form, characterized in that, before the crystallization heat treatment, a relaxation heat treatment is carried out at a temperature below the temperature for the onset of recrystallization of the amorphous alloy.
  2. Process according to Claim 1, characterized in that the relaxation heat treatment is a temperature hold for a time of between 0.1 and 10 hours at a temperature of between 250°C and 480°C.
  3. Process according to Claim 1, characterized in that the relaxation heat treatment consists of a gradual heating from ambient temperature up to a temperature above 450°C, at a heating rate of between 30°C/hour and 300°C/hour between 250°C and 450°C.
  4. Process according to any one of Claims 1 to 3, characterized in that the crystallization annealing is carried out in a magnetic field.
  5. Process according to any one of Claims 1 to 4, characterized in that a complementary annealing step is carried out in a magnetic field at a temperature below the crystallization on set temperature.
  6. Process according to any one of Claims 1 to 5, characterized in that the chemical composition of the alloy is such that Si ≤ 14 %.
EP97402667A 1996-12-11 1997-11-07 Manufacturing process of a soft magnetic iron based alloy component with nanocristalline structure Expired - Lifetime EP0848397B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9615197A FR2756966B1 (en) 1996-12-11 1996-12-11 METHOD FOR MANUFACTURING A MAGNETIC COMPONENT MADE OF SOFT MAGNETIC ALLOY IRON BASED HAVING A NANOCRYSTALLINE STRUCTURE
FR9615197 1996-12-11

Publications (2)

Publication Number Publication Date
EP0848397A1 EP0848397A1 (en) 1998-06-17
EP0848397B1 true EP0848397B1 (en) 2002-09-18

Family

ID=9498537

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97402667A Expired - Lifetime EP0848397B1 (en) 1996-12-11 1997-11-07 Manufacturing process of a soft magnetic iron based alloy component with nanocristalline structure

Country Status (18)

Country Link
US (1) US5911840A (en)
EP (1) EP0848397B1 (en)
JP (1) JPH10195528A (en)
KR (1) KR19980064039A (en)
CN (1) CN1134034C (en)
AT (1) ATE224582T1 (en)
AU (1) AU731520B2 (en)
CZ (1) CZ293837B6 (en)
DE (1) DE69715575T2 (en)
ES (1) ES2184047T3 (en)
FR (1) FR2756966B1 (en)
HK (1) HK1010938A1 (en)
HU (1) HU216168B (en)
PL (1) PL184208B1 (en)
SK (1) SK284008B6 (en)
TR (1) TR199701599A2 (en)
TW (1) TW561193B (en)
ZA (1) ZA9710780B (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645314B1 (en) * 2000-10-02 2003-11-11 Vacuumschmelze Gmbh Amorphous alloys for magneto-acoustic markers in electronic article surveillance having reduced, low or zero co-content and method of annealing the same
DE10134056B8 (en) 2001-07-13 2014-05-28 Vacuumschmelze Gmbh & Co. Kg Process for the production of nanocrystalline magnetic cores and apparatus for carrying out the process
JP5435840B2 (en) 2003-02-14 2014-03-05 ザ・ナノスティール・カンパニー・インコーポレーテッド Method for property modification of amorphous or partially crystalline coated amorphous
DE102004024337A1 (en) * 2004-05-17 2005-12-22 Vacuumschmelze Gmbh & Co. Kg Process for producing nanocrystalline current transformer cores, magnetic cores produced by this process, and current transformers with same
CN1297994C (en) * 2004-11-26 2007-01-31 中国兵器工业第五二研究所 Method for preparing specific squareness ratio nanocrystalline soft magnetic material without magnetic field treatment
KR100647150B1 (en) * 2004-12-22 2006-11-23 (주) 아모센스 Earth Leakage Circuit Breaker with Magnetic Core
CN1332593C (en) * 2005-01-19 2007-08-15 华南理工大学 Manufacturing method of compound electromagnetic shield magnet of nanocry stal magnetically soft alloy powder polymer
EP1724792A1 (en) * 2005-05-20 2006-11-22 Imphy Alloys Verfahren zur Herstellung eines Bandes aus nanocrystallinem Material sowie eine Vorrichtung zur Herstellung eines von diesem Band ausgehenden Wickelkernes
DE102005034486A1 (en) 2005-07-20 2007-02-01 Vacuumschmelze Gmbh & Co. Kg Process for the production of a soft magnetic core for generators and generator with such a core
US20070151630A1 (en) * 2005-12-29 2007-07-05 General Electric Company Method for making soft magnetic material having ultra-fine grain structure
DE502007000329D1 (en) 2006-10-30 2009-02-05 Vacuumschmelze Gmbh & Co Kg Soft magnetic iron-cobalt based alloy and process for its preparation
US8012270B2 (en) 2007-07-27 2011-09-06 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it
US9057115B2 (en) 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
WO2009038105A1 (en) * 2007-09-18 2009-03-26 Japan Science And Technology Agency Metal glass, magnetic recording medium produced by using the metal glass, and method for production of the magnetic recording medium
CN101853726A (en) * 2010-05-17 2010-10-06 南京新康达磁业有限公司 A kind of soft magnetic material and preparation method thereof
CN101935742B (en) * 2010-09-21 2013-01-02 中国矿业大学 Annealing method for preparing nanocrystalline alloy with excellent soft magnetic property
US8699190B2 (en) 2010-11-23 2014-04-15 Vacuumschmelze Gmbh & Co. Kg Soft magnetic metal strip for electromechanical components
CN102129907B (en) * 2010-12-30 2012-05-30 上海世路特种金属材料有限公司 Nanocrystalline soft magnetic alloy iron core with high initial permeability and low remanence and preparation method thereof
CN102254675B (en) * 2011-07-14 2013-09-11 江西大有科技有限公司 Heat treatment process of magnetically soft alloy iron core
CN102543347B (en) * 2011-12-31 2015-10-14 中国科学院宁波材料技术与工程研究所 A kind of Fe-based nanocrystalline magnetically soft alloy and preparation method thereof
CN102856031A (en) * 2012-09-10 2013-01-02 任静儿 Magnetic powder alloy material
CN102867605A (en) * 2012-09-10 2013-01-09 任静儿 Magnetic alloy
CN102867604A (en) * 2012-09-10 2013-01-09 任静儿 Magnetically soft alloy
CN102875024A (en) * 2012-10-19 2013-01-16 张家港市清大星源微晶有限公司 Microcrystalline material with high magnetic inductivity
CN102912257A (en) * 2012-10-19 2013-02-06 张家港市清大星源微晶有限公司 Microcrystalline material
DE102013103268B4 (en) * 2013-04-02 2016-06-02 Vacuumschmelze Gmbh & Co. Kg Shielding foil and method for producing a shielding foil
CN103390492B (en) * 2013-07-31 2016-08-31 河北申科电子股份有限公司 A kind of production technology of the ultracrystallite cutting iron core of open-close type transformer
CN104200982A (en) * 2014-03-28 2014-12-10 北京冶科磁性材料有限公司 Manufacturing method of nanocrystalline magnetic core for high-frequency electrostatic dust collection power transformer
US10546674B2 (en) 2014-12-22 2020-01-28 Hitachi Metals, Ltd. Fe-based soft magnetic alloy ribbon and magnetic core comprising same
CN104485192B (en) * 2014-12-24 2016-09-07 江苏奥玛德新材料科技有限公司 A kind of iron-based amorphous and nanocrystalline soft magnetic alloy and preparation method thereof
US11230754B2 (en) * 2015-01-07 2022-01-25 Metglas, Inc. Nanocrystalline magnetic alloy and method of heat-treatment thereof
US11264156B2 (en) * 2015-01-07 2022-03-01 Metglas, Inc. Magnetic core based on a nanocrystalline magnetic alloy
DE102015211487B4 (en) 2015-06-22 2018-09-20 Vacuumschmelze Gmbh & Co. Kg METHOD FOR PRODUCING A NANOCRYSTALLINE MAGNETIC CORE
TWI609972B (en) * 2015-11-05 2018-01-01 中國鋼鐵股份有限公司 Method of preparing specimen of iron-based amorphous alloy and application thereof
CN105695704B (en) * 2016-01-19 2017-11-10 兆晶股份有限公司 A kind of transformer superparamagnetism iron core heat treatment method
CN106555047A (en) * 2016-11-23 2017-04-05 宜春学院 The heat treatment method of iron-base nanometer crystal alloy soft magnetic ribbon
CN109837452B (en) * 2019-01-23 2021-09-21 信维通信(江苏)有限公司 High Bs nanocrystalline material and preparation method thereof
CN113990650B (en) * 2021-10-19 2023-03-31 河北申科磁性材料有限公司 High-permeability open transformer magnetic core and processing technology thereof and open transformer
CN115029541A (en) * 2022-06-20 2022-09-09 浙江晶精新材料科技有限公司 Vacuum and copper-clad nanocrystalline strip-based composite heat treatment method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4116728B1 (en) * 1976-09-02 1994-05-03 Gen Electric Treatment of amorphous magnetic alloys to produce a wide range of magnetic properties
JPS6047407A (en) * 1983-08-25 1985-03-14 Matsushita Electric Works Ltd Method for producing magnetic core
TW226034B (en) * 1991-03-06 1994-07-01 Allied Signal Inc
US5252144A (en) * 1991-11-04 1993-10-12 Allied Signal Inc. Heat treatment process and soft magnetic alloys produced thereby
DE69408916T2 (en) * 1993-07-30 1998-11-12 Hitachi Metals Ltd Magnetic core for pulse transmitters and pulse transmitters
US5611871A (en) * 1994-07-20 1997-03-18 Hitachi Metals, Ltd. Method of producing nanocrystalline alloy having high permeability

Also Published As

Publication number Publication date
SK161897A3 (en) 1998-12-02
TR199701599A3 (en) 2000-07-21
CN1185012A (en) 1998-06-17
KR19980064039A (en) 1998-10-07
FR2756966A1 (en) 1998-06-12
FR2756966B1 (en) 1998-12-31
ZA9710780B (en) 1998-06-12
AU4519997A (en) 1998-06-18
DE69715575T2 (en) 2003-05-22
CZ398397A3 (en) 1998-07-15
SK284008B6 (en) 2004-07-07
HUP9702383A2 (en) 1998-07-28
AU731520B2 (en) 2001-03-29
HUP9702383A3 (en) 1998-08-28
PL184208B1 (en) 2002-09-30
PL323663A1 (en) 1998-06-22
HU216168B (en) 1999-04-28
DE69715575D1 (en) 2002-10-24
CN1134034C (en) 2004-01-07
CZ293837B6 (en) 2004-08-18
TR199701599A2 (en) 2000-07-21
EP0848397A1 (en) 1998-06-17
JPH10195528A (en) 1998-07-28
TW561193B (en) 2003-11-11
US5911840A (en) 1999-06-15
ES2184047T3 (en) 2003-04-01
ATE224582T1 (en) 2002-10-15
HK1010938A1 (en) 1999-07-02

Similar Documents

Publication Publication Date Title
EP0848397B1 (en) Manufacturing process of a soft magnetic iron based alloy component with nanocristalline structure
EP0844628B1 (en) Process for producing a magnetic core of nanocristalline soft magnetic material
US6270591B2 (en) Amorphous and nanocrystalline glass-covered wires
FR2459839A1 (en) PROCESS FOR PRODUCING AN AMORPHOUS MAGNETIC ALLOY AND ALLOY OBTAINED
EP2387788B1 (en) Process for manufacturing a magnetic core made of a magnetic alloy having a nanocrystalline structure
JP3962093B2 (en) Broadband contrast polarizing glass
EP0003466B1 (en) Process for the thermal treatment of Fe-Co-Cr alloys for permanent magnets
US4367102A (en) Method for the manufacture of a superconductor containing an intermetallic compounds
EP0921541B1 (en) Fabrication process of a soft nanocrystalline magnetic core for use in a differential circuit breaker
EP0921540B1 (en) Fabrication process of a magnetic core of a soft magnetic nanocrystalline alloy and use in a differential circuit breaker
EP0408469B1 (en) Copper-iron-cobalt-titanium alloy featuring high mechanical and electrical properties and process for the manufacture thereof
EP0293286B1 (en) Method and device for manufacturing articles for magnetic use
FR2547927A1 (en) SATURABLE CORE PROBE, IN PARTICULAR FOR MAGNETOMETER
FR2767538A1 (en) Iron-nickel alloy strip production from continuously cast slab or strip
BE371669A (en)
JPH0526861B2 (en)
FR2689300A1 (en) Soft magnetic torus mfg. process - for reproducible prodn. of flat magnetic hysteresis loop
CH278120A (en) A method of manufacturing an anisotropic permanent magnet and magnet obtained by this method.
WO2005006354A1 (en) PROCESS FOR PRODUCING Ge-ADDED Nb3Al BASE SUPERCONDUCTING WIRE MATERIAL
BE823868A (en) HIGH MAGNETIC SATURATION ALLOYS
JPS58224157A (en) Method for manufacturing Co-Fe soft magnetic alloy material
BE389839A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19981217

AKX Designation fees paid

Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20000713

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020918

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020918

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020918

REF Corresponds to:

Ref document number: 224582

Country of ref document: AT

Date of ref document: 20021015

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 69715575

Country of ref document: DE

Date of ref document: 20021024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021218

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021219

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030121

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2184047

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030601

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030619

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031029

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20031030

Year of fee payment: 7

Ref country code: CH

Payment date: 20031030

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20031031

Year of fee payment: 7

Ref country code: IE

Payment date: 20031031

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031103

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031107

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20031120

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20031209

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041107

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041108

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

BERE Be: lapsed

Owner name: *MECAGIS

Effective date: 20041130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041107

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050729

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050601

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051107

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20041108

BERE Be: lapsed

Owner name: *MECAGIS

Effective date: 20041130