EP0826109B1 - Rückschlagventillose fluidpumpe - Google Patents
Rückschlagventillose fluidpumpe Download PDFInfo
- Publication number
- EP0826109B1 EP0826109B1 EP96930157A EP96930157A EP0826109B1 EP 0826109 B1 EP0826109 B1 EP 0826109B1 EP 96930157 A EP96930157 A EP 96930157A EP 96930157 A EP96930157 A EP 96930157A EP 0826109 B1 EP0826109 B1 EP 0826109B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- displacer
- pump
- opening
- end position
- pump body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 83
- 239000000872 buffer Substances 0.000 claims abstract description 69
- 238000005086 pumping Methods 0.000 claims description 52
- 238000000034 method Methods 0.000 claims description 9
- 230000002829 reductive effect Effects 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 238000001746 injection moulding Methods 0.000 claims description 4
- 230000002441 reversible effect Effects 0.000 claims description 3
- 239000000725 suspension Substances 0.000 claims description 3
- 230000005489 elastic deformation Effects 0.000 claims 2
- 239000012528 membrane Substances 0.000 description 55
- 239000007788 liquid Substances 0.000 description 15
- 230000007246 mechanism Effects 0.000 description 14
- 238000006073 displacement reaction Methods 0.000 description 12
- 239000007789 gas Substances 0.000 description 10
- 230000008859 change Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000001052 transient effect Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 230000002706 hydrostatic effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 230000000930 thermomechanical effect Effects 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 230000005499 meniscus Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 239000005297 pyrex Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000009757 thermoplastic moulding Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B19/00—Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
- F04B19/006—Micropumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/0009—Special features
- F04B43/0027—Special features without valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/02—Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
- F04B43/04—Pumps having electric drive
- F04B43/043—Micropumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B7/00—Piston machines or pumps characterised by having positively-driven valving
- F04B7/04—Piston machines or pumps characterised by having positively-driven valving in which the valving is performed by pistons and cylinders coacting to open and close intake or outlet ports
Definitions
- the present invention relates to fluid pumps.
- micropumps Corresponding pumps that are small in size and deliver low pump currents are called micropumps.
- the displacers of such pumps are typical designed as a membrane, see P. Gravesen, J. Branebjerg, O. S. Jensen; Microfluidics - A review; Micro Mechanics Europe Neuchatel, 1993, pages 143-164.
- the displacers can are driven by different mechanisms.
- Esashi, Micropump and sample injector for intrgrated chemical analyzing systems Sensors and actuators, A21-A23 (1990) pages 189-192, E. Stemme, G. Stemme; A valveless diffuser / nozzle-based fluid pump; Sensors & Actuators A, 39 (1993) 159-167, and T. Gerlach, H. Wurmus; Working principle and performance of the dynamic micropump; Proc. MEMS'95; (1995), pages 221-226; Amsterdam, The Netherlands, piezoelectric drive mechanisms are shown. Thermopneumatic mechanisms for driving the displacers are at F.C.M. Van de Pol, H.T.G. Van Lintel, M. Elwenspoek and J.H.J.
- micropumps can be either passive check valves or special flow nozzles can be used.
- the direction of funding of micropumps can be done without forced valve control solely by driving at a frequency above the resonance frequency of the valves are reversed.
- R. Zengerle S. Kluge, M. Richter, A. Richter; A. Bi-directional Silicone micropump; Proc. MEMS '95; Amsterdam, Netherlands; Pages 19-24, J. Ulrich, H. Meder, R. Zengerle; Static and dynamic flow simulation through a KOH-etched micro valve; Proc. TRANSDUCERS '95, Sweden, (1995), pages 17-20.
- the cause of this effect is a phase shift between the movement of the Displacer and the opening state of the valves.
- a disadvantage of this embodiment is that the execution of the valves a compromise between their mechanical Resonance in the liquid environment, its flow resistance, their fluidic capacity, i.e. the elastic Volume deformation, their size and their mechanical Stability must be found. These parameters that all can have an impact on the pump dynamics not independently adjusted to an optimum become and stand in part of a desired, further Miniaturization of the pump dimensions counter.
- An exemplary check valve micropump is disclosed in EP 0 568 902 A2. This micropump is operated by the reciprocal movement of a membrane. The volume of a changes due to the movement of the membrane Pump chamber formed by the membrane and a support member is. The outlet and inlet of the micropump are provided with an outlet valve or an inlet valve.
- WO-A-87/07218 is a piezoelectrically operated Pressure generating device known that an electrically controllable Membrane made of a first piezoelectrically excitable Layer and a firm with this stimulable layer connected support layer.
- the membrane has one piezoelectrically excitable peripheral area and a piezoelectric excitable central area, the Areas are controlled such that to generate a Membrane deflection the membrane in its peripheral area shortened by transverse contraction and in its central area is extended.
- WO-A-87/07218 also discloses a fluid pump using three interconnected Membranes of the type described above, one first membrane serves as an inlet valve, a second membrane defines a variable cavity and a third membrane serves as an outlet valve.
- FR-A-2478220 discloses a pump in which two drive devices are intended to be a flexible membrane, which is provided with a movable plate, in different To move end positions.
- the membrane is on attached to a support plate, the middle of an inlet opening having. Outlet openings are provided in the membrane.
- a suitable control can result in a pumping effect are generated from the inlet opening to the outlet openings.
- the present Invention based on the task of efficient fluid pumps with a simple structure that has no check valves have to create.
- the fluid pump according to the present invention no check valves, neither passive nor active, required. Furthermore, the fluid pump according to the present Invention for actively blocking the fluid in both directions be used. With the pump according to the present Invention is a reversal of the conveying direction without use an external positive control of valves and without the Using a resonance of passive check valves reachable.
- achievable pumping capacity can be controlled by the Timing of driving the displacer into the first and in the second end position, i.e. by controlling the clock ratio, be optimized. Furthermore, the achievable Pump power through a cross-sectional adjustment of the first and second opening can be optimized.
- the present invention is also based on the finding that that it is possible to use a self-priming fluid pump, for example a self-priming micropump create by creating the dead volume in the micropump, i.e. the volume that is only moved back and forth and does not provide a pump contribution, is drastically reduced. This makes self-filling with simple control of the pump drive reproducible.
- a self-priming fluid pump for example a self-priming micropump create by creating the dead volume in the micropump, i.e. the volume that is only moved back and forth and does not provide a pump contribution
- Fig. 1 is a first embodiment of a pump according to of the present invention.
- the pump has one Pump body 10, which is plate-like, and a displacer 12, which has connections 18, which depend on the material are attached to the pump body is on.
- a pump chamber 14 is through a recess in the pump body 10 is formed.
- In the pump body are also two openings, a first opening 15 and a second Opening 16, provided to which the fluid lines of the pumping fluids can be connected.
- An elastic one Buffer 13 is through in the first embodiment a thinning of the pump body 10 in the form of a membrane, which is deformable depending on the pressure.
- the displacer 12 can be driven (not shown) by a drive. periodically to and fro between two end positions will.
- the displacer closes in the first end position 12 the first opening 15, which is in normal operation of the pump represents the inlet.
- the Displacer 12 In the second end position, the Displacer 12, the first opening 15 open.
- the second opening 16, which is the outlet in normal operation, is irrelevant the position of the displacer 12 during an entire Pump cycle open.
- the pump mechanism is that shown in FIG. 1 Pump explained in more detail.
- the first opening 15 as an inlet opening and the second opening 16 considered as an outlet. 2 are the essential ones Parameters used to explain the pumping mechanism are shown.
- V buffer A pressure-dependent volume displacement of the elastic buffer
- dV Pumping chamber dV 0 (p) + dV buffer (p) + dV Displacer
- the displacer 12 is moved from the first end position, that is to say the end position in which it closes the inlet opening 15, upward by a defined volume dV * within a very short time, dt ⁇ 0.
- the deformed buffer volume creates a negative pressure in the pump chamber 14, which can be calculated using the characteristic V buffer (p).
- the inlet opening is now closed.
- the downward movement of the displacer 12 leads to a corresponding volume deformation of the elastic buffer, ie the membrane 13 in the first exemplary embodiment, out of the pump chamber 14, since the pump chamber content was assumed to be incompressible, and the volume change of the displacer 12 within the short time not due to the fluid flows ⁇ e and ⁇ a can be compensated through the opening 15, 16.
- the deformed buffer volume now creates an overpressure in the pump chamber, which can also be calculated from the pressure characteristic V buffer (p) of the buffer.
- the pump efficiency can vary will.
- the efficiency in the no-load case can be clearly seen be optimized more than 50%.
- the reason for this is in a significantly lower backflow of fluid from the outlet into the pumping chamber during the suction phase.
- the Increase in flow resistance on the outlet side according to Equation (6) a corresponding extension of the pumping phase result.
- Suction and pumping phases of different durations can take place at the Control of the displacer can be taken into account by a clock ratio other than 50% is used, i.e. by the timing of driving the displacer into the first and is controlled in the second end position.
- a clock ratio other than 50% is used, i.e. by the timing of driving the displacer into the first and is controlled in the second end position.
- FIG. 3 shows the transient processes in the pump according to Fig. 1 shown in diagram form.
- the curve "A" shows the course of the displacement movement during a pump cycle in the four sub-steps 1, 2, 3 and 4.
- step 1 the displacer quickly adapts deflected above and remains in step 2 during this Position.
- the inlet opening is open.
- step 3 the displacer is moved down very quickly, closes the entrance opening and remains during the Step 4 in this state.
- Curve "B” represents the response of the buffer, which according to the embodiment of FIG. 1 consists of the membrane 13.
- This elastic buffer element in the form of the membrane 13 can deform in accordance with the pressure conditions.
- step 1 the deformation of the Buffer the volume change of the displacer.
- step 2 builds up the deformation of the buffer Fluid flows through the inlet or outlet opening again from.
- step 3 the buffer element deforms downwards and thus compensates for the rapid volume change of the displacer. This deformation builds up during substep 4 due to the fluid flow through the outlet opening.
- the curve "C" represents the pump chamber pressure. Since the pump chamber pressure depends on the deformation of the buffer its course essentially the course of the volume change through the buffer.
- Curve “D” illustrates the flow through the inlet opening. From the curve “D” is a rectifier effect recognizable, since the inlet is closed in step 3 and during substep 4, during which in the pressure chamber there is overpressure, remains closed. In order to is a backflow from the pump chamber to the inlet side prevented.
- Curve "E” shows the flow through the outlet opening. Since the outlet opening in both end positions of the displacer is open, the fluid flows in both step 2 and in step 4 through the outlet opening. The net transportation of Fluid through the inlet and outlet ports results from the integral over one of the two curves "D" or "E". in the normal mode of operation is the net transport from inlet to Outlet directed.
- 4a to 4e is the pump according to the first embodiment, which is shown in Fig. 1 during the various Partial steps of a pump cycle are shown.
- FIGS 5, 6 and 7 show fluid pumps.
- Fig. 5 shows a pump in which a buffer 43 in a pump body 40 is arranged.
- the pump body 40 has one Base plate 40a and side walls 40b, which together form one Form hollow body by the side walls 40b and Base plate 40a is completed and on one side, in Fig. 5 of the upward side is open.
- Base plate has a round shape, the side walls are formed, to define a tubular structure.
- By the base plate extends an inlet opening 45 and Outlet opening 46.
- a displacer is located in the cavity 42, which closes the same towards the open side and by means of a drive (not shown) in the Direction shown by arrow 19 is piston-like in the cavity is movable.
- a pump chamber 44 is through a recess of the displacer 42 and the pump body 40 are formed.
- the elastic Buffer 43 is in the pump body 40, i.e. in the side wall 40b of the base body 40 educated.
- the side wall 40b is in one Area adjacent to pump chamber 44 is thinned by one to result in membrane-like structure.
- a pump body 50 is included constructed in the same way as the pump body 40 the pump shown in Fig. 5, except that the elastic Buffer is not formed in the same.
- the displacer 52 has the shape of an H in cross section, wherein one leg thereof has a protrusion 52a to one To close inlet opening 55 in the pump body 50.
- a Outlet opening 56 in the pump body 50 is always open.
- the displacer 52 is formed around the pump body 50 to close to the open side. He can depending on the shape of the pump body 50, seen from above, any round, polygonal, elliptical, etc., Have shape.
- the shape of the displacer 52 is between the displacer 52 and the pump body 50 in turn a pump chamber 54 Are defined.
- Pump is the elastic one But don't buffer in that Pump body 50 formed, but in the displacer 52 is the elastic buffer as membrane 53 in the displacer 52 trained.
- FIG. 7 is yet another fluid pump shown.
- Fig. 7 are components that are similar to those in Fig. 6, with the the same reference numerals.
- the pump body is identical to the pump body shown in Fig. 6.
- An elastic buffer element 63 is arranged in a displacer 62, such that the elastic buffer element 63 is an interface to one formed by the displacer 62 and the pump body 50 Has pump chamber 64. When this pump is operated, it will elastic buffer element 63 compressed and expanded, which in turn changes the previously explained mode of operation results.
- the function of the elastic buffer element also from an elastic one Medium are taken over in the pump chamber.
- examples are a gas inclusion in a liquid filled Chamber or a rubber-like material in the pump chamber.
- the elastic membrane which is called Part of the displacer or the pump body a section of the pump chamber limitation, can be dispensed with.
- the medium to be pumped is compressible, for example gas
- the buffer function can be taken over by the same itself, with no other mechanical components to be realized of the buffer are necessary.
- the stroke of the displacer in steps 1 and 3 explained above is then first through expansion or compression of the elastic medium in the pumping chamber or the medium to be pumped itself, to be compensated.
- FIG. 8 A representation of the transient processes of the individual components, for example that of the embodiment that is shown in Fig. 1, with a reaction of the pump chamber on the displacer, i.e. without forced control, is in Fig. 8 shown.
- the displacer is in Step 1 does not fully reach its final end position, but only towards the end of sub-step 2.
- the displacer must at the end of substep 3 Do not completely close the inlet opening yet, but only with increasing pressure equalization during the substep 4.
- a very fast control is also required for the pump effect of the displacer within a very short time, dt ⁇ 0, inexpensive, but not absolutely necessary.
- the position of the displacer in the deactivated mode to design the pump without any additional effort, that by blocking the inlet opening by the displacer fluid flow in both directions excluded is.
- the displacer positively controlled and its position due to the pressure prevailing in the pump chamber is affected by the blocking of the fluid line in given both directions without additional effort. If there is a reaction between the displacement position and the pump chamber pressure exists, the drive of the displacer can be interpreted in such a way that the active displacer presses on the inlet opening and thus the fluid flow is active prevents.
- the pumping direction can be one Fluid pump can be reversed according to the present invention. If the displacer is driven with a frequency that above the mechanical resonance of the buffer in that Environment, i.e. in the fluid to be pumped, this results in a phase shift of more than 90 ° between the expansion or compression of the buffer element and the opening condition defined by the displacement position the inlet opening.
- the buffer in the pumping chamber thus increases Pump medium while the inlet opening is closed, and releases pumping medium when the inlet and outlet openings are open are. This results in an inverse to that described above Pump direction. In this case there is a reversal the pumping direction from the outlet opening to the inlet opening.
- the advantage over the existing, bidirectional Micropump lies in the fact that (i) passive Valves can be dispensed with entirely, and (ii) the resonance frequency of the buffer differently than with the resonance of a passive Check valve, regardless of other important Variables such as the flow resistance of the valve, the fluidic capacity, the size of the valve and its mechanical stability can be adjusted.
- the resonance frequencies can range from ⁇ 200 Hertz can be lowered, which means that the effort at electrical and mechanical control of the displacer is significantly reduced.
- passive Valves resonate in the range between 2000 Hertz and 6000 Hertz. By reducing the resonance frequency the inertial forces acting on the displacer are clear less.
- the mechanism cannot be limited to microscopic Pumps that deliver small moving masses but can also be realized in a macroscopic design.
- micropumps can transport both liquids and gases, they are not self-priming throughout, i.e. she are unable to hold a pump chamber filled with gas To be replaced independently by liquid during the pumping process. This makes it difficult to use the pumps in practice quite considerably. The following is the causes of the nonexistent self-priming.
- Capillary forces play in micropumps with passive check valves a major role. As soon as the liquid level reaches the inlet valve and the movable valve part, the valve flap or the valve membrane, wetted, capillary forces occur which severely restrict movement or which the necessary effort to move the enlarge the elastic valve part considerably. Only when that entire movable valve part completely with liquid is washed around, these forces cancel each other out and the pump is in its normal pump mode.
- the actuator directly in the pump according to the invention be used to overcome the capillary forces.
- the direct power transmission of the drive to that of one Liquid wetted parts are subject to much higher forces Overcoming capillary forces available.
- the Work displacer despite wetting.
- Fig. 9 is a second embodiment of a pump according to the present invention.
- the displacer 82 is part of a second pump body 90.
- the second pump body 90 is structured, i.e. it exhibits thickening and thinning 89 to create an elastic suspension for the displacer 82 to deliver.
- the second pump body 90 is via connections 88 attached to a pump body 80.
- the pumping chamber 84 is as a capillary gap between the pump body 80, the displacer 82 and the second pump body 90 educated.
- the pump body 80 has an inlet opening 85 which is closed by the displacer 82 when it is in the first end position.
- the displacer 82 can in turn be moved in the direction of arrow 19.
- the buffer is in this embodiment again designed as a membrane, which is in the pump body 80.
- the buffer could through the dilutions 89, which are called elastic suspensions serve for the displacer 82, be realized, the Buffer in the pump body 80 would then be eliminated. In this Case it would be advantageous if the dilutions 89 opposite 9 would be enlarged.
- the pump chamber 84 fills itself as soon as a fluid meniscus abuts this gap.
- Such a reduction in Pump chamber height is in conventional micropumps with check valves excluded, as this causes the movement of the Valves is restricted.
- For micropumps with flow nozzles provides the pump chamber with a drastic reduction the pump chamber height an additional flow resistance This internal flow resistance of the pump chamber dominates about the flow resistance of the nozzles, so that the Pump effect breaks down based on the preferred direction of the nozzles.
- the second opening, the outlet opening during normal operation of the pump always corresponds to open.
- 10a to 10e is a third embodiment a pump according to the present invention during the different sub-steps of a pump cycle are shown.
- the buffer is in the displacer formed such that the displacer and the Buffer formed as different areas of a membrane which spans the pump body to the pump chamber define.
- the pump body is similar to that of the first Embodiment formed, with the exception that the Buffer is not formed in the same.
- the pump according to the invention enables a further simplified Making the same.
- the present invention thus provides a pump based on is based on a new mechanism, completely without check valves gets along and a reversal of the pump direction without external valve reversal. Consequently the pump according to the present invention has one essential simpler construction. Furthermore, the displacer simultaneously used to flow over a fluid the pump is passive in both directions after it is switched off or actively shut off.
- the present invention also provides a pump that Provides advantages when switching the pump direction.
- the resonance of the mechanical Component which in the conventional case the valve and in the present invention the buffer element is independent the flow resistance of a valve whose Size, its fluidic capacity and its mechanical Stability can be set. This makes it possible on the one hand to further miniaturize the components and on the other hand to lower the resonance frequencies on average. In conventional micropumps, these stand up opposite effects.
- the inventive one Pump that works without check valves, one increased efficiency per pump cycle of more than 50% on.
- the pump can only be structured from a single one Component in which the displacer is implemented, and one Base plate with two openings. These simple ones Structures allow the entire system to be assembled without any problems.
- a basic structure made of Pyrex allows the anodic Bonding the structured silicon component to the Pyrex base body, which serves as a pump body.
- the openings in the basic structure can be as simple holes or any be shaped. This reduces the effort compared to the production of flow nozzles considerably. Further the basic design of the micropump can be round or any have any shape.
- the materials for the micropump come as well almost all other materials are considered, for example metals, Plastics, glasses, ceramics. It is a simple one Production in plastic injection molding technology also possible such as production using metal pressure casting technology or the LIGA process.
- the drive of the micropump i.e. of the displacer, can by all known actuator processes take place, for example piezoelectric, pneumatic, thermopneumatic, thermomechanical, electrostatic, magnetic, magnetostrictive or hydraulic.
- the field of application of the pump according to the invention covers the whole Area of microfluidics and fluidics as the medium both conveyed bidirectionally and blocked in a defined manner can be.
- the minimal size enables the Development of minimal mixing and dosing systems in the medical, Chemical and analysis technology.
- B.H. van de Schoot, S. Jeanneret, A. van den Berg and N.F. de Rooij; A silicon integrated miniature chemical analysis system; Sensors and Actuators, B, 6 (1992), pages 57-60, are for such Application uses two pumps, whereas one uses only a pump according to the invention would do.
- the pump principle is suitable for a wide range of sizes, so that in many cases the injection molding technology as inexpensive Manufacturing technology can be used.
- Fig. 11 shows a fourth embodiment of a self-priming Fluid pump according to the present invention.
- the Fluid pump has a pump body 110, on which by means a connecting device 112 a displacer 114 in the Form of a membrane 114 is attached.
- the membrane 114 can on the sections where the displacer on the pump body 110 is attached, be thickened.
- the membrane 114 is by means of a drive device 116, which is a piezoelectric, a pneumatic, a thermopneumatic, a thermomechanical, electrostatic, magnetic, a magnetostrictive or a hydraulic drive arrangement can be from the position shown in Fig. 11 and is referred to below as the first end position, movable into a second end position.
- openings 118 and in the pump body 110 120 are two openings 118 and in the pump body 110 120 arranged, for example, with an inlet or Outlet fluid line (not shown) may be connected.
- the opening is 118 the inlet opening, while opening 120 the outlet opening represents.
- the membrane 114 is preferably directly over the Inlet opening 118 connected to drive device 116, to the operation of the pump, referring to below 14 will be explained.
- To attach the Drive device the membrane 114 in place of the same, at which it is connected to the drive device 116 is thickened.
- the self-priming, self-filling shown in Fig. 11 Micropump differs from known micropumps in that they alternate the first in pump mode Opening 118 opens while second opening 120 closes remains to then open the second opening 120 while the first opening is closed. In the case of Fig. 11 pump is always only one at any time Opening, 118 or 120, opened while the other opening closed is. Both openings 118 are at rest and 120 closed, whereby the pumping medium is shut off in a defined manner becomes.
- the fluid pump has again a pump body 110, on which by means of a Connection device 112 a membrane 124 is attached. In this embodiment, however, is between the membrane and a capillary gap 126 is formed in the pump body.
- a drive device on the membrane 116 attached.
- Structures can be formed on the side of the membrane 124 be the optimal buffer volume adjustment and emptying enable. Structuring, which can be designed, for example, as flow channels, on the top of the pump body, i.e. the top that faces the membrane 124, or the underside of the membrane used for optimal filling or emptying of the pump will.
- openings 118 and 120 made in the pump body 110 are arranged, further surveys, the same surrounded, have.
- the membrane 124 would have to have no thickenings facing the pump body 110, to allow openings 118 and 120 to be closed.
- FIG. 13 is a sixth embodiment of a fluid pump according to the present invention.
- the pump shown in Fig. 13 is between the pump body 110 and a membrane 136 forming a displacer is a capillary Gap formed.
- a membrane 136 forming a displacer is a capillary Gap formed.
- This asymmetrical structure of the invention Pump is a self-priming or self-filling Operation of the micropump according to the present invention possible.
- FIG. 12 illustrated embodiment of the present invention undergoes a similar pump cycle during operation.
- the displacer i.e. the membrane 114
- the inlet opening, opening 118 being opened, while the outlet opening, the opening 120, is closed remains.
- the position shown in Fig. 14b can be second End position of the displacer can be considered.
- Fig. 14c it is shown how by the upward movement the displacer a medium to be pumped through the inlet opening, i.e. the opening 118 into which by the upward movement of the displacer pump chamber is drawn. Subsequently, as shown in Fig. 14d, the displacer suddenly, selectively moved down and closed hence the inlet opening. Due to the displacement deformation, i.e. the deformation of membrane 114 becomes a buffer volume formed between the diaphragm and the pump body, which is the absorbed Fluid volume corresponds to what causes the Exhaust opening is released.
- volume of the medium received through an opening corresponds to the volume dispensed through the second opening of the medium.
- Backflow or dead volume i.e. that volume that is only moved back and forth and does not provide a pump contribution, go with this arrangement in contrast to known micropumps towards zero.
- Micropump with simple control of the drive device self-filling in connection with membrane deformation and the sequential opening of the openings reproducible.
- FIG. 15a to 15e is a pump cycle of that in FIG. 13 shown sixth embodiment of a pump according to of the present invention.
- the membrane 136 is initially based on a Rest position moved downwards by means of the drive device 116, such that the opening 118 is closed.
- opening 118 be that Inlet opening referred to as opening 120 as the Exhaust opening is called.
- the one shown in Fig. 15a The position of the membrane 136 can be referred to as the first end position will.
- the membrane 136 becomes subsequently moved jerkily upwards. In this case it is not only one opening is closed while the other is open is. As shown in Figs. 15b and 15c here both openings briefly opened, however a different dimension of the medium through the openings flows because the opening height, i.e. the distance of the membrane above the openings, and thus the flow resistance. Thus flows in through the inlet opening 118 greater fluid flow than through outlet opening 120. This is shown in Fig. 15c by the different strengths Arrows appear.
- the membrane is subsequently moved jerkily downward, closing the opening 118 becomes. Again is between the membrane and the Pump body formed a pump volume that, as in Fig. 15e is shown, then by reshaping the displacer is emptied through the opening 120.
- the micropump according to FIGS. 11 and 12 can be operated with a fill the constant drive frequency yourself. After that too pumping medium has filled the pump chamber or the pump chamber and emerges at the outlet opening, the drive frequency the drive device that drives the displacer, in the case of pumping a liquid medium by a factor 10 can be reduced because air is no longer displaced must, but only the liquid medium.
- the pump mechanism is displacement and the arrangement of the openings.
- the one to be pumped Medium is received through opening 118 and to the opening 120 "shifted" or via a “roll displacement" transported.
- the pump body and displacement devices according to the present Invention can preferably consist of silicon. In addition, they can also be used in plastic injection molding be made. As drive devices can all drives known in the art can be used. The transient waveforms characteristic of the micropump for the stroke, the pump chamber pressure, the displacement volume change and the flow can be derived easily will.
- a capillary Gap between the displacer membrane and the pump body plate also through a recess in the pump body plate be educated.
- the present invention enables according to the second and third aspect of the same, the production for the first time non-return valve, self-priming, i.e. self-filling, Micropumps.
- the field of application of the invention Pumping covers the entire field of microfluidics and Fluidics, since the medium to be pumped is both bidirectional can be promoted as well as blocked. Further are the pumps according to the invention with minimal effort and can be manufactured with minimal sizes. Through this Small sizes, the present invention enables Development of minimal mixing and dosing systems in the medical, Chemical and analytical technology, the ones used Pumps have good efficiency.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Reciprocating Pumps (AREA)
- Check Valves (AREA)
- Medicines Containing Plant Substances (AREA)
Description
- Fig. 1
- eine schematische Querschnittdarstellung eines ersten Ausführungsbeispiels der vorliegenden Erfindung;
- Fig. 2
- eine Darstellung der wesentlichen Pumpparameter der Pumpe, die in Fig. 1 gezeigt ist;
- Fig. 3
- eine Darstellung der transienten Vorgänge der einzelnen Komponenten der in den Figuren 1 und 2 dargestellten Pumpe;
- Fig. 4a bis 4e
- graphische Darstellungen der Pumpe von Fig. 1 während eines Pumpzyklusses;
- Fig. 5
- eine Schnittansicht einer Fluidpumpe;
- Fig. 6
- eine Querschnittansicht einer weiteren Fluidpumpe;
- Fig. 7
- eine Schnittansicht noch einer weiteren Fluidpumpe;
- Fig. 8
- eine Darstellung der transienten Vorgänge der einzelnen Komponenten bei einer Rückwirkung der Pumpkammer auf den Verdränger;
- Fig. 9
- ein zweites Ausführungsbeispiel einer Pumpe gemäß der vorliegenden Erfindung; und
- Fig. 10a bis 10e
- graphische Darstellungen einer Pumpe gemäß einem dritten Ausführungsbeispiel der Erfindung während eines Pumpzyklusses.
- Fig. 11
- eine Querschnittdarstellung eines vierten Ausführungsbeispiels einer Fluidpumpe gemäß der vorliegenden Erfindung;
- Fig. 12
- eine Querschnittdarstellung eines fünften Ausführungsbeispiels einer Fluidpumpe gemäß der vorliegenden Erfindung;
- Fig. 13
- eine Querschnittdarstellung eines sechsten Ausführungsbeispiels einer Fluidpumpe gemäß der vorliegenden Erfindung;
- Fig. 14a bis 14e
- grafische Darstellungen der Pumpe von Fig. 11 während eines Pumpzyklusses; und
- Fig. 15a bis 15e
- grafische Darstellungen der Pumpe von Fig. 13 während eines Pumpzyklusses.
Claims (24)
- Fluidpumpe mit folgenden Merkmalen:einem Pumpenkörper (10; 80); undeinem Verdränger (12; 82), der mittels eines Antriebs in eine erste und eine zweite Endstellung positionierbar ist, wobei der Verdränger und der Pumpenkörper derart ausgebildet sind, daß zwischen denselben eine Pumpkammer (14; 84), die über eine erste (15; 85) und eine zweite (16; 86a, 86b) Öffnung, die nicht mit Rückschlagventilen versehen sind, mit einem Einlaß und einem Auslaß fluidmäßig verbindbar ist, definiert ist,wobei der Verdränger (12; 82) in der Form einer Platte ausgebildet ist, die auf dem Pumpenkörper (10; 80) befestigt ist, wobei der Pumpenkörper (10; 80) eine Aussparung aufweist, die die Pumpkammer (14; 84) definiert;einen elastischen Puffer (13; 83), der an die Pumpkammer angrenzt,wobei der Antrieb im wesentlichen im Bereich der ersten Öffnung (15; 85) auf den Verdränger (12; 82) einwirkt,wobei der Verdränger (12; 82) die erste Öffnung (15; 85) verschließt, wenn er in der ersten Endstellung ist und die erste Öffnung offen läßt, wenn er in der zweiten Endstellung ist, undwobei die Antriebseinrichtung den Verdränger so schlagartig aus der zweiten in die erste Endstellung bewegt, daß durch die Verdrängerbewegung eine Verformung der Puffereinrichtung bewirkt wird.
- Fluidpumpe gemäß Anspruch 1, dadurch gekennzeichnet,
daß der Puffer (13; 83) in dem Pumpenkörper (10; 80) angeordnet ist. - Fluidpumpe gemäß Anspruch 1 oder 2, dadurch gekennzeichnet,
daß der Puffer in dem Verdränger angeordnet ist. - Fluidpumpe gemäß Anspruch 2, dadurch gekennzeichnet,
daß der Puffer (13; 83) durch eine Verdünnung einer Wand des Pumpenkörpers als eine Membran ausgebildet ist. - Fluidpumpe gemäß Anspruch 3, dadurch gekennzeichnet,
daß der Puffer durch eine Verdünnung des Verdrängers als eine Membran ausgebildet ist. - Fluidpumpe gemäß Anspruch 1, dadurch gekennzeichnet,
daß der Puffer durch ein elastisches Medium in der Pumpkammer gebildet ist. - Fluidpumpe gemäß Anspruch 1, dadurch gekennzeichnet,
daß der Puffer durch das zu übertragende Medium selbst gebildet ist. - Fluidpumpe gemäß Anspruch 1, dadurch gekennzeichnet,
daß der Verdränger (82) in einen zweiten Pumpenkörper (90) integriert ist, der Verdünnungen (89) aufweist, um eine elastische Aufhängung für den Verdränger (82) zu liefern. - Fluidpumpe gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet,
daß der Verdränger (12; 82) die erste Öffnung nach dem Abschalten der Pumpe passiv oder aktiv in beide Flußrichtungen verschließt. - Fluidpumpe gemäß Anspruch 9, dadurch gekennzeichnet,
daß das aktive Verschließen der ersten Öffnung durch den Antrieb, der den Verdränger auf die erste Öffnung drückt, bewirkt wird. - Fluidpumpe gemäß einem der Ansprüche 1 bis 10, dadurch gekennzeichnet,
daß die Pumprichtung der Pumpe durch ein Betreiben des Verdrängers mit einer Frequenz, die oberhalb der Resonanzfrequenz des Puffers ist, umkehrbar ist. - Fluidpumpe gemäß einem der Ansprüche 1 bis 11, dadurch gekennzeichnet,
daß die Pumpkammer (84) als ein kapillarer Spalt ausgebildet ist. - Fluidpumpe gemäß Anspruch 1, dadurch gekennzeichnet,
daß der Verdränger und der Puffer als verschiedene Bereiche einer Membran gebildet sind, die den Pumpenkörper zur Bildung der Pumpkammer überspannt. - Rückschlagventillose Fluidpumpe mit folgenden Merkmalen:einem Pumpenkörper (110); undeinem flexiblen Verdränger (114; 124), der entlang seines Umfangs fluiddicht an dem Pumpenkörper (110) angebracht ist und mittels einer Antriebseinrichtung (116) in eine erste und eine zweite Endstellung bewegbar ist,wobei der Pumpenkörper (110) und der flexible Verdränger (114; 124) einen Pumpenraum definieren, der über eine erste Öffnung (118) und eine zweite, von der ersten Öffnung beabstandete Öffnung (120) mit einem Einlaß und einem Auslaß fluidmäßig verbindbar ist,wobei der Verdränger (114; 124) in der ersten Endstellung die erste und die zweite Öffnung verschließt, undwobei der Verdränger (114; 124) die erste Öffnung (118) öffnet, während die zweite Öffnung (120) im wesentlichen geschlossen ist, wenn der Verdränger (114; 124) durch die Antriebseinrichtung (116) aus der ersten Endstellung in die zweite Endstellung bewegt wird,daß die Antriebseinrichtung (116) im wesentlichen im Bereich der ersten Öffnung (118) auf den flexiblen Verdränger (114; 124) einwirkt, unddaß die Antriebseinrichtung den Verdränger so schlagartig aus der zweiten Endstellung in die erste Endstellung bewegt, daß durch eine elastische Verdrängerverformung ein Puffervolumen zwischen Verdränger und Pumpenkörper gebildet wird.
- Rückschlagventillose Fluidpumpe gemäß Anspruch 14, dadurch gekennzeichnet,
daß der Pumpenkörper (110) in der Form einer Platte und der Verdränger (114) in der Form einer Membran ausgebildet ist, derart, daß die Membran auf einer Hauptoberfläche der Platte aufliegt, wenn der Verdränger (114) in der ersten Endstellung ist. - Rückschlagventillose Fluidpumpe gemäß Anspruch 14, dadurch gekennzeichnet,
daß der Pumpenkörper (110) in der Form einer Platte und der Verdränger (124) in der Form einer Membran ausgebildet ist, derart, daß zwischen einer Hauptoberfläche der Platte und der Membran ein kapillarer Spalt (126) gebildet ist. - Rückschlagventillose Fluidpumpe gemäß Anspruch 14, dadurch gekennzeichnet,
daß die erste und die zweite Öffnung (118, 120) in dem Pumpenkörper (110) angeordnet sind, wobei die Membran (124) eine erste und eine zweite zu der Platte (110) hin gerichtete Verdickung aufweist, die die erste und die zweite Öffnung verschließen, wenn der Verdränger (124) in der ersten Endstellung ist. - Rückschlagventillose Fluidpumpe gemäß Anspruch 14, dadurch gekennzeichnet,
daß die erste und die zweite Öffnung (118, 120) in dem Pumpenkörper (110) angeordnet sind, wobei um die erste und die zweite Öffnung (118, 120) Erhebungen vorgesehen sind, derart, daß die Membran die erste und die zweite Öffnung (118, 120) in der ersten Endstellung verschließt. - Rückschlagventillose Fluidpumpe gemäß einem der Ansprüche 14 bis 18, dadurch gekennzeichnet,
daß der Verdränger (114; 124) nach dem Abschalten der Pumpe die erste und die zweite Öffnung (118, 120) passiv und/oder aktiv verschließt. - Rückschlagventillose Fluidpumpe mit folgenden Merkmalen:einem Pumpenkörper (110); undeinem flexiblen Verdränger (136), der entlang seines Umfangs fluiddicht an dem Pumpenkörper (110) angebracht ist und mittels einer Antriebseinrichtung (116) in eine erste und eine zweite Endstellung bewegbar ist,wobei der Pumpenkörper (110) und der flexible Verdränger (136) einen Pumpenraum definieren, der über eine erste Öffnung (118) und eine zweite Öffnung (120) mit einem Einlaß und einem Auslaß fluidmäßig verbindbar ist, undwobei der Verdränger (136) die erste Öffnung (118) verschließt, wenn er in der ersten Endstellung ist, und die erste Öffnung (118) offen läßt, wenn er in der zweiten Endstellung ist,daß die erste und die zweite Öffnung (118, 120) beabstandet zueinander auf unterschiedlichen Seiten einer Mittelachse des Verdrängers (136) angeordnet sind,daß die Antriebseinrichtung (116) im wesentlichen im Bereich der ersten Öffnung (118) auf den flexiblen Verdränger (136) einwirkt, um den Verdränger (136) in die erste und die zweite Endstellung zu bewegen, unddaß die Antriebseinrichtung den Verdränger so schlagartig aus der zweiten Endstellung in die erste Endstellung bewegt, daß durch eine elastische Verdrängerverformung ein Puffervolumen zwischen Verdränger und Pumpenkörper gebildet wird.
- Rückschlagventillose Fluidpumpe gemäß Anspruch 20, dadurch gekennzeichnet
daß der Pumpenkörper (110) in der Form einer Platte und der Verdränger (136) in der Form einer Membran ausgebildet ist, derart, daß zwischen einer Hauptoberfläche der Platte und der Membran ein kapillarer Spalt gebildet ist. - Rückschlagventillose Fluidpumpe gemäß einem der Ansprüche 14 bis 21, dadurch gekennzeichnet,
daß der Pumpenkörper (110) und der Verdränger (114; 124; 136) aus Silizium hergestellt sind. - Rückschlagventillose Fluidpumpe gemäß einem der Ansprüche 14 bis 21, dadurch gekennzeichnet,
daß der Pumpenkörper (110) und der Verdränger (114; 124; 136) mittels Kunststoffspritztechnik hergestellt sind. - Rückschlagventillose Fluidpumpe gemäß einem der Ansprüche 14 bis 23, dadurch gekennzeichnet,
daß die Pumprichtung der Pumpe durch ein Betreiben des Verdrängers (114; 124; 136) mit einer Frequenz, die oberhalb der Resonanzfrequenz ist, umkehrbar ist.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19534378A DE19534378C1 (de) | 1995-09-15 | 1995-09-15 | Fluidpumpe |
DE19534378 | 1995-09-15 | ||
DE19624271 | 1996-06-18 | ||
DE19624271A DE19624271C1 (de) | 1996-06-18 | 1996-06-18 | Rückschlagventillose Fluidpumpe |
PCT/EP1996/003863 WO1997010435A2 (de) | 1995-09-15 | 1996-09-03 | Rückschlagventillose fluidpumpe |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0826109A2 EP0826109A2 (de) | 1998-03-04 |
EP0826109B1 true EP0826109B1 (de) | 1998-12-09 |
Family
ID=26018662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96930157A Expired - Lifetime EP0826109B1 (de) | 1995-09-15 | 1996-09-03 | Rückschlagventillose fluidpumpe |
Country Status (6)
Country | Link |
---|---|
US (1) | US6227824B1 (de) |
EP (1) | EP0826109B1 (de) |
JP (1) | JP3035854B2 (de) |
AT (1) | ATE174406T1 (de) |
DE (1) | DE59600973D1 (de) |
WO (1) | WO1997010435A2 (de) |
Families Citing this family (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19802368C1 (de) | 1998-01-22 | 1999-08-05 | Hahn Schickard Ges | Mikrodosiervorrichtung |
DE19933458B4 (de) * | 1999-07-15 | 2015-08-20 | Eppendorf Ag | Einrichtungen und Systeme zum Handhaben von Flüssigkeitsproben |
US6485273B1 (en) * | 2000-09-01 | 2002-11-26 | Mcnc | Distributed MEMS electrostatic pumping devices |
US6590267B1 (en) | 2000-09-14 | 2003-07-08 | Mcnc | Microelectromechanical flexible membrane electrostatic valve device and related fabrication methods |
US7198250B2 (en) * | 2000-09-18 | 2007-04-03 | Par Technologies, Llc | Piezoelectric actuator and pump using same |
MXPA03002388A (es) * | 2000-09-18 | 2004-09-06 | Par Technologies Llc | Accionador piezoelectrico y bomba que lo utiliza. |
WO2002068823A1 (en) * | 2000-11-06 | 2002-09-06 | Nanostream Inc. | Uni-directional flow microfluidic components |
AU2002239823B2 (en) * | 2001-01-08 | 2008-01-17 | President And Fellows Of Harvard College | Valves and pumps for microfluidic systems and method for making microfluidic systems |
US6743636B2 (en) * | 2001-05-24 | 2004-06-01 | Industrial Technology Research Institute | Microfluid driving device |
US6715733B2 (en) * | 2001-08-08 | 2004-04-06 | Agilent Technologies, Inc. | High temperature micro-machined valve |
US20040073175A1 (en) * | 2002-01-07 | 2004-04-15 | Jacobson James D. | Infusion system |
DE10202996A1 (de) * | 2002-01-26 | 2003-08-14 | Eppendorf Ag | Piezoelektrisch steuerbare Mikrofluidaktorik |
US6561224B1 (en) | 2002-02-14 | 2003-05-13 | Abbott Laboratories | Microfluidic valve and system therefor |
US7094040B2 (en) * | 2002-03-27 | 2006-08-22 | Minolta Co., Ltd. | Fluid transferring system and micropump suitable therefor |
DE10224750A1 (de) | 2002-06-04 | 2003-12-24 | Fresenius Medical Care De Gmbh | Vorrichtung zur Behandlung einer medizinischen Flüssigkeit |
EP1576294B1 (de) * | 2003-03-11 | 2006-08-09 | Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. | Normal doppelt geschlossenes mikroventil |
CA2554502A1 (en) * | 2004-01-21 | 2005-08-04 | Imi Vision Limited | Beverage dispenser |
WO2005071267A1 (en) * | 2004-01-21 | 2005-08-04 | Imi Vision Limited | Fluid metering with a disposable membrane type pump unit |
US7287965B2 (en) * | 2004-04-02 | 2007-10-30 | Adaptiv Energy Llc | Piezoelectric devices and methods and circuits for driving same |
US20050225201A1 (en) * | 2004-04-02 | 2005-10-13 | Par Technologies, Llc | Piezoelectric devices and methods and circuits for driving same |
US7312554B2 (en) | 2004-04-02 | 2007-12-25 | Adaptivenergy, Llc | Piezoelectric devices and methods and circuits for driving same |
US7290993B2 (en) * | 2004-04-02 | 2007-11-06 | Adaptivenergy Llc | Piezoelectric devices and methods and circuits for driving same |
US7458222B2 (en) * | 2004-07-12 | 2008-12-02 | Purity Solutions Llc | Heat exchanger apparatus for a recirculation loop and related methods and systems |
JP2008507673A (ja) * | 2004-07-23 | 2008-03-13 | エイエフエイ・コントロールズ,リミテッド・ライアビリティ・カンパニー | マイクロバルブアセンブリの動作方法および関連構造および関連デバイス |
GB0419050D0 (en) * | 2004-08-26 | 2004-09-29 | Munster Simms Eng Ltd | A diaphragm and a diaphragm pump |
US20060147329A1 (en) * | 2004-12-30 | 2006-07-06 | Tanner Edward T | Active valve and active valving for pump |
US7258533B2 (en) * | 2004-12-30 | 2007-08-21 | Adaptivenergy, Llc | Method and apparatus for scavenging energy during pump operation |
US20060232166A1 (en) * | 2005-04-13 | 2006-10-19 | Par Technologies Llc | Stacked piezoelectric diaphragm members |
US20060232171A1 (en) * | 2005-04-13 | 2006-10-19 | Par Technologies, Llc | Piezoelectric diaphragm assembly with conductors on flexible film |
US7717682B2 (en) * | 2005-07-13 | 2010-05-18 | Purity Solutions Llc | Double diaphragm pump and related methods |
US8197231B2 (en) | 2005-07-13 | 2012-06-12 | Purity Solutions Llc | Diaphragm pump and related methods |
US20070075286A1 (en) * | 2005-10-04 | 2007-04-05 | Par Technologies, Llc | Piezoelectric valves drive |
US20070129681A1 (en) * | 2005-11-01 | 2007-06-07 | Par Technologies, Llc | Piezoelectric actuation of piston within dispensing chamber |
US7345407B2 (en) * | 2005-11-18 | 2008-03-18 | Adaptivenergy, Llc. | Human powered piezoelectric power generating device |
US20070122299A1 (en) * | 2005-11-29 | 2007-05-31 | Chih-Yung Wen | Valveless micro impedance pump |
JP4638820B2 (ja) * | 2006-01-05 | 2011-02-23 | 財団法人神奈川科学技術アカデミー | マイクロポンプ及びその製造方法 |
DE102006002924B3 (de) * | 2006-01-20 | 2007-09-13 | Albert-Ludwigs-Universität Freiburg | Fluidhandhabungsvorrichtung und Verfahren zum Handhaben eines Fluids |
US7550810B2 (en) * | 2006-02-23 | 2009-06-23 | Qualcomm Mems Technologies, Inc. | MEMS device having a layer movable at asymmetric rates |
WO2008069264A1 (ja) | 2006-12-09 | 2008-06-12 | Murata Manufacturing Co., Ltd. | 圧電ポンプ |
US20080246367A1 (en) * | 2006-12-29 | 2008-10-09 | Adaptivenergy, Llc | Tuned laminated piezoelectric elements and methods of tuning same |
EP2123913A1 (de) | 2007-03-12 | 2009-11-25 | Murata Manufacturing Co. Ltd. | Flüssigkeitstransportvorrichtung |
US8016260B2 (en) * | 2007-07-19 | 2011-09-13 | Formulatrix, Inc. | Metering assembly and method of dispensing fluid |
US8038640B2 (en) * | 2007-11-26 | 2011-10-18 | Purity Solutions Llc | Diaphragm pump and related systems and methods |
EP2286125B1 (de) | 2008-05-16 | 2015-07-08 | President and Fellows of Harvard College | Ventile und andere durchflussregulierende vorrichtungen im fuidsystemen insbesonder microfluidsystemen |
EP2138233B1 (de) * | 2008-06-02 | 2010-10-20 | Boehringer Ingelheim microParts GmbH | Mikrofluidische Folienstruktur zum Dosierren von Flüssigkeiten |
US8100293B2 (en) * | 2009-01-23 | 2012-01-24 | Formulatrix, Inc. | Microfluidic dispensing assembly |
US8197235B2 (en) * | 2009-02-18 | 2012-06-12 | Davis David L | Infusion pump with integrated permanent magnet |
US20100211002A1 (en) * | 2009-02-18 | 2010-08-19 | Davis David L | Electromagnetic infusion pump with integral flow monitor |
US8353864B2 (en) * | 2009-02-18 | 2013-01-15 | Davis David L | Low cost disposable infusion pump |
US8192401B2 (en) | 2009-03-20 | 2012-06-05 | Fresenius Medical Care Holdings, Inc. | Medical fluid pump systems and related components and methods |
US20100282766A1 (en) * | 2009-05-06 | 2010-11-11 | Heiko Arndt | Low-Dead Volume Microfluidic Component and Method |
US8230744B2 (en) | 2009-05-06 | 2012-07-31 | Cequr Sa | Low-dead volume microfluidic circuit and methods |
WO2010137578A1 (ja) * | 2009-05-25 | 2010-12-02 | 株式会社村田製作所 | バルブ、流体装置及び流体供給装置 |
WO2011008858A1 (en) | 2009-07-15 | 2011-01-20 | Fresenius Medical Care Holdings, Inc. | Medical fluid cassettes and related systems and methods |
US9963739B2 (en) | 2010-05-21 | 2018-05-08 | Hewlett-Packard Development Company, L.P. | Polymerase chain reaction systems |
US9090084B2 (en) | 2010-05-21 | 2015-07-28 | Hewlett-Packard Development Company, L.P. | Fluid ejection device including recirculation system |
US10132303B2 (en) * | 2010-05-21 | 2018-11-20 | Hewlett-Packard Development Company, L.P. | Generating fluid flow in a fluidic network |
GB201101870D0 (en) * | 2011-02-03 | 2011-03-23 | The Technology Partnership Plc | Pump |
US9624915B2 (en) | 2011-03-09 | 2017-04-18 | Fresenius Medical Care Holdings, Inc. | Medical fluid delivery sets and related systems and methods |
WO2012154352A1 (en) | 2011-04-21 | 2012-11-15 | Fresenius Medical Care Holdings, Inc. | Medical fluid pumping systems and related devices and methods |
JP5682513B2 (ja) * | 2011-09-06 | 2015-03-11 | 株式会社村田製作所 | 流体制御装置 |
GB2515239B (en) | 2012-04-19 | 2018-12-19 | Murata Manufacturing Co | Valve and fluid control apparatus |
US9610392B2 (en) | 2012-06-08 | 2017-04-04 | Fresenius Medical Care Holdings, Inc. | Medical fluid cassettes and related systems and methods |
US9500188B2 (en) | 2012-06-11 | 2016-11-22 | Fresenius Medical Care Holdings, Inc. | Medical fluid cassettes and related systems and methods |
JP6172711B2 (ja) * | 2012-07-05 | 2017-08-02 | 国立研究開発法人理化学研究所 | マイクロチップ用の流体制御デバイスおよびその利用 |
US9561323B2 (en) | 2013-03-14 | 2017-02-07 | Fresenius Medical Care Holdings, Inc. | Medical fluid cassette leak detection methods and devices |
US10117985B2 (en) | 2013-08-21 | 2018-11-06 | Fresenius Medical Care Holdings, Inc. | Determining a volume of medical fluid pumped into or out of a medical fluid cassette |
JP5850208B1 (ja) * | 2014-02-21 | 2016-02-03 | 株式会社村田製作所 | 流体制御装置およびポンプ |
WO2016013390A1 (ja) * | 2014-07-25 | 2016-01-28 | 株式会社村田製作所 | 流体制御装置 |
DE102016217435B4 (de) * | 2016-09-13 | 2018-08-02 | Albert-Ludwigs-Universität Freiburg | Fluidpumpe und Verfahren zum Betreiben einer Fluidpumpe |
IT201900005804A1 (it) * | 2019-04-15 | 2020-10-15 | St Microelectronics Srl | Valvola microfluidica a membrana ad attuazione piezoelettrica e relativo procedimento di fabbricazione |
CN116428162B (zh) * | 2023-04-14 | 2024-07-26 | 汉得利(常州)电子股份有限公司 | 一种高频驱动机构及无阀压电泵 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR957405A (de) * | 1950-02-20 | |||
US3661060A (en) * | 1970-08-05 | 1972-05-09 | Duriron Co | Diaphragms for high pressure compressors and pumps |
FR2210722B1 (de) * | 1973-11-26 | 1975-06-06 | Poclain Sa | |
CS167689B1 (de) * | 1973-12-10 | 1976-04-29 | ||
FR2478220A1 (fr) * | 1980-03-17 | 1981-09-18 | Evrard Robert | Pompe et procede de pompage d'un fluide |
NL8302860A (nl) * | 1983-08-15 | 1985-03-01 | Stichting Ct Voor Micro Elektr | Piezo-elektrische micropomp. |
DE3618106A1 (de) * | 1986-05-30 | 1987-12-03 | Siemens Ag | Piezoelektrisch betriebene fluidpumpe |
IL84286A (en) * | 1987-10-26 | 1992-07-15 | D F Lab Ltd | Diaphragm and diaphragm-actuated fluid-transfer control device |
JPH02149778A (ja) | 1988-11-30 | 1990-06-08 | Seiko Epson Corp | 圧電マイクロポンプ |
CH679555A5 (de) * | 1989-04-11 | 1992-03-13 | Westonbridge Int Ltd | |
JPH02283877A (ja) | 1989-04-21 | 1990-11-21 | Mitsubishi Kasei Corp | 振動子ポンプ及びその運転方法 |
JPH02308988A (ja) | 1989-05-23 | 1990-12-21 | Seiko Epson Corp | 圧電マイクロポンプ |
EP0491026B1 (de) | 1990-07-10 | 1995-03-01 | Westonbridge International Limited | Ventil, Methode zur Herstellung dises Ventils und mit diesem Ventil versehene Mikropumpe |
JPH0486388A (ja) | 1990-07-27 | 1992-03-18 | Seiko Epson Corp | 圧電マイクロポンプの流路構成 |
JPH05272457A (ja) * | 1992-01-30 | 1993-10-19 | Terumo Corp | マイクロポンプおよびその製造方法 |
JPH0647675A (ja) | 1992-07-30 | 1994-02-22 | I N R Kenkyusho:Kk | ショットブラスト粒 |
DE4332720C2 (de) * | 1993-09-25 | 1997-02-13 | Karlsruhe Forschzent | Mikromembranpumpe |
JPH0842457A (ja) * | 1994-07-27 | 1996-02-13 | Aisin Seiki Co Ltd | マイクロポンプ |
-
1996
- 1996-09-03 AT AT96930157T patent/ATE174406T1/de active
- 1996-09-03 DE DE59600973T patent/DE59600973D1/de not_active Expired - Lifetime
- 1996-09-03 US US09/043,236 patent/US6227824B1/en not_active Expired - Lifetime
- 1996-09-03 WO PCT/EP1996/003863 patent/WO1997010435A2/de active IP Right Grant
- 1996-09-03 JP JP09511614A patent/JP3035854B2/ja not_active Expired - Lifetime
- 1996-09-03 EP EP96930157A patent/EP0826109B1/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP0826109A2 (de) | 1998-03-04 |
ATE174406T1 (de) | 1998-12-15 |
WO1997010435A2 (de) | 1997-03-20 |
WO1997010435A3 (de) | 1997-05-09 |
DE59600973D1 (en) | 1999-01-21 |
JPH10511165A (ja) | 1998-10-27 |
JP3035854B2 (ja) | 2000-04-24 |
US6227824B1 (en) | 2001-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0826109B1 (de) | Rückschlagventillose fluidpumpe | |
EP0835381B1 (de) | Fluidpumpe | |
DE60317850T2 (de) | Pumpenventil | |
DE102016217435B4 (de) | Fluidpumpe und Verfahren zum Betreiben einer Fluidpumpe | |
DE69420744T2 (de) | Verdrängungspumpe des membrantyps | |
DE60313885T2 (de) | Hydroimpedanzpumpe | |
EP2205869B1 (de) | Membranpumpe | |
DE4135655C2 (de) | ||
DE10048376C2 (de) | Mikroventil mit einem normalerweise geschlossenen Zustand | |
DE69500529T2 (de) | Mikropumpe | |
DE2215309A1 (de) | Druckmittel-Steuerventil | |
WO2007020029A1 (de) | Mikropumpe | |
DE19534378C1 (de) | Fluidpumpe | |
DE102019117261A1 (de) | Ventillose bi-direktionale Mikropumpe mit integrierter Ventilfunktion | |
DE102006016571A1 (de) | Verfahren und Vorrichtung zum automatisierten Fördern von Flüssigkeiten oder Gasen | |
DE19844518A1 (de) | Hydraulischer Wegverstärker für Mikrosysteme | |
DE19938239B4 (de) | Mikropumpe zum Fördern, Dosieren und Plazieren von Flüssigkeiten | |
EP3861238B1 (de) | Hydraulisches mikroventil | |
EP2945754B1 (de) | Dosiervorrichtung | |
WO2020211936A1 (de) | Hydraulische übersetzungseinheit für eine aktoreinrichtung | |
DE19711270C2 (de) | Mikropumpe für fluide Medien | |
DE19624271C1 (de) | Rückschlagventillose Fluidpumpe | |
DE69128246T2 (de) | Eine ventilvorrichtung für flüssigkeiten und eine verdrängerpumpe | |
DE202020104050U1 (de) | Mikrodämpfer | |
DE19958013A1 (de) | Pneumatisches Bauelement für ein Schaltlager |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17P | Request for examination filed |
Effective date: 19971209 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT CH DE GB LI |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 19980225 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: HAHN-SCHICKARD-GESELLSCHAFT FUER ANGEWANDTE FORSCH |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE GB LI |
|
REF | Corresponds to: |
Ref document number: 174406 Country of ref document: AT Date of ref document: 19981215 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19981210 |
|
REF | Corresponds to: |
Ref document number: 59600973 Country of ref document: DE Date of ref document: 19990121 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20130919 Year of fee payment: 18 Ref country code: CH Payment date: 20130919 Year of fee payment: 18 Ref country code: AT Payment date: 20130911 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20130919 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59600973 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 174406 Country of ref document: AT Kind code of ref document: T Effective date: 20140903 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140930 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150401 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140903 |