EP0790408A2 - Measuring circuit for an ionic current in ignition devices for internal combustion engines - Google Patents
Measuring circuit for an ionic current in ignition devices for internal combustion engines Download PDFInfo
- Publication number
- EP0790408A2 EP0790408A2 EP97101842A EP97101842A EP0790408A2 EP 0790408 A2 EP0790408 A2 EP 0790408A2 EP 97101842 A EP97101842 A EP 97101842A EP 97101842 A EP97101842 A EP 97101842A EP 0790408 A2 EP0790408 A2 EP 0790408A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- ignition
- circuit arrangement
- arrangement according
- circuit
- resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 10
- 238000005259 measurement Methods 0.000 claims abstract description 28
- 238000004804 winding Methods 0.000 claims abstract description 22
- 239000004065 semiconductor Substances 0.000 claims abstract description 13
- 239000000523 sample Substances 0.000 claims abstract description 4
- 238000012360 testing method Methods 0.000 claims description 6
- 238000011156 evaluation Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P17/00—Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
- F02P17/12—Testing characteristics of the spark, ignition voltage or current
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P15/00—Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
- F02P15/10—Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having continuous electric sparks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P3/00—Other installations
- F02P3/02—Other installations having inductive energy storage, e.g. arrangements of induction coils
- F02P3/04—Layout of circuits
- F02P3/045—Layout of circuits for control of the dwell or anti dwell time
- F02P3/0453—Opening or closing the primary coil circuit with semiconductor devices
- F02P3/0456—Opening or closing the primary coil circuit with semiconductor devices using digital techniques
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P17/00—Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
- F02P17/12—Testing characteristics of the spark, ignition voltage or current
- F02P2017/125—Measuring ionisation of combustion gas, e.g. by using ignition circuits
Definitions
- the invention relates to a circuit arrangement for ion current measurement according to the preamble of patent claim 1.
- Such an ion current measuring circuit is known from US 5483818, which has a differential amplifier connected as an inverting amplifier, for this purpose the low potential side of the secondary winding of the ignition coil is connected via a resistor to the inverting input of the differential amplifier, while a bias voltage of approximately 40 V is applied to its non-inverting input is created.
- the output is fed back to the inverting input via a resistor and, at the same time, the output signal is fed to a threshold circuit for evaluating the ion current.
- the further inverting amplifier is constructed in a corresponding manner to the amplifier connected directly to the secondary winding, the output of which is connected via a resistor to the inverting input of the further amplifier and the non-inverting input of which is supplied with the same bias voltage.
- this known ion current measuring circuit disadvantageously requires a high level of circuitry.
- the object of the present invention is therefore to provide a circuit arrangement for ion current measurement of the type mentioned at the outset which avoids this disadvantage.
- first and second diverting circuit branches are provided for diverting the ignition current flowing during the burning time of the spark plug, each of which has a semiconductor diode and the second diverting circuit branch is arranged parallel to the inverting amplifier.
- the main advantage of this solution according to the invention lies in the use of normal semiconductor diodes, so that the problem of high leakage currents does not occur and therefore a complex circuit as proposed in the prior art can be dispensed with.
- Another advantage that can be achieved with the present invention is a lowering of the value of the measuring voltage below the voltage value of 40 V specified in the prior art.
- an ignition current measuring resistor is connected in series with the further semiconductor diode, which forms the second discharge circuit branch.
- the voltage drop occurring at this ignition current measuring resistor can advantageously serve as a measurement signal for the amount of the ignition current during the burning time of the spark plug.
- This ignition current measurement signal can be used to control the ignition sequence in the event of a secondary ignition.
- the second diverting circuit branch can preferably be connected to the ground potential of the circuit arrangement via a semiconductor switch which can be controlled by the output of the inverting amplifier, in particular a transistor. This can advantageously increase the current carrying capacity of the differential amplifier.
- a differential amplifier connected as an inverting amplifier is provided.
- one input of such a differential amplifier is connected to the low potential side of the secondary winding of the ignition coil, while a reference voltage is supplied to the other input, the value of which corresponds to the measuring voltage and in which the output is connected to the one input via a measuring resistor.
- the ion current is converted into a voltage serving as a measurement signal, which voltage is then fed to an evaluation.
- the reference voltage supplied to such a differential amplifier is generated in the simplest way with a constant voltage source.
- the measuring sections of the spark plugs serving as ion current probes can be connected in parallel, so that the advantage of a low circuit complexity is retained. If, on the other hand, the measuring sections of the spark plugs serving as ion current probes are to be measured completely independently of one another, there may also be multiple circuits whose output signals are then time-multiplexed in a suitable form.
- a parallel circuit comprising a dissipation resistor and at least one zener diode can be connected in series with the secondary winding in order to rapidly dissipate the energy which is still in the ignition coil or the secondary capacitances after the ignition spark has broken off, so that the ion current measurement can then be carried out without great time delay.
- two antiserially connected zener diodes can preferably be used instead of only a single zener diode in order to achieve a decay behavior compared to the use of only a single zener diode, the duration of which is shorter and also symmetrical.
- FIG. 1 shows a transistor ignition system of a 4-cylinder internal combustion engine, each with an ignition output stage assigned to a cylinder, each ignition output stage comprising an ignition coil Tr 1 ,..., Tr 4 , a primary winding P 1 ,..., P 4 and a secondary winding S 1 , ... S 4 , and an ignition transistor 1a, ..., 1d connected to the primary winding P 1 , ..., P 4 with associated spark plug Zk 1 , ..., Zk 4 is constructed.
- the primary windings P 1 , ..., P 4 are connected by their one connection to an on-board battery voltage U B of 12 V, for example, while the other connection is connected to the associated ignition transistor 1a, ..., 1d.
- the ignition transistors 1a, ..., 1d are controlled via their control electrodes by a circuit 2a for cylinder selection, which in turn is connected to a control circuit 2, which supplies the corresponding ignition trigger pulses for the individual cylinders of this circuit 2a.
- the figure also shows a control unit 4, which takes over the function of an engine management and in turn controls the control circuit 2.
- engine parameters such as load, speed and temperature are fed to this control unit 4 via an input E.
- Corresponding actuators are controlled via outputs A.
- the secondary windings S 1 , ..., S 4 are each connected with their high-voltage side to the associated spark plug Zk 1 , ..., Zk 4 , while their low potential side are brought together in a circuit node S via a dissipation resistor R 3 .
- This circuit node S is connected to the input of a differential amplifier 3 connected as a non-inverting amplifier, in that this circuit node S is connected to the inverting input of this differential amplifier 3.
- a constant reference voltage U ref preferably 20 V
- This constant reference voltage U ref is fed to the secondary windings S 1 , ..., S 4 via this differential amplifier 3 by means of a measuring resistor R1 fed back to the inverting input, and thus reaches the spark plugs Zk 1 , ... working as ion measuring current paths as the test voltage U test . , Mark 4 .
- the circuit according to the figure has a first and second diverting circuit branches A1 and A2.
- the first discharge circuit branch A1 connects the circuit node S to the ground potential of the circuit via a semiconductor diode D 2
- the second discharge circuit branch A2 consists of a series connection of an ignition current discharge resistor R 2 , a further semiconductor diode D 1 and a pnp transistor T
- the ignition current measurement resistor R 2 is connected to the circuit node S and the collector electrode of the transistor T is at the ground potential of the circuit.
- the base electrode of this transistor T is driven by the output of the differential amplifier 3.
- the first diverting circuit branch A1 serves to derive negative voltage peaks occurring in one of the spark plugs Zk 1 ,... Zk 4 at the moment of a high voltage breakdown.
- the actual ignition current is derived via the second derivation switching branch A 2 , which can also be constructed without the transistor T, which only serves to increase the current carrying capacity of the differential amplifier 3. If such a transistor T is dispensed with, the cathode of the semiconductor diode D 1 is directly connected to the output of the differential amplifier 3 Connected so that the diverting branch A 2 is connected in parallel to the ion measuring resistor R 1 .
- the generation of an ignition pulse by the control circuit 2 leads to the activation of the corresponding ignition transistor 1a, ..., 1d.
- the ignition spark generated in this way on the associated spark plug Zk 1 ,..., Zk 4 leads to a certain burning duration, which is accompanied by an ignition current.
- This ignition current flows through the low-resistance leakage circuit branch A 2 to a part via the differential amplifier 3 and to another part in accordance with the set operating point of the transistor T to ground potential.
- This operating point of the transistor T is determined by the output signal U ion of the differential amplifier 3, which, by means of the feedback via the ion measuring resistor R 1, regulates its potential at the inverting input to the U ref potential, which represents the measuring voltage for the subsequent ion current measurement. Overloading of the differential amplifier 3 by the ignition current is thus avoided by using such a transistor T.
- the measuring voltage for the level of the ignition current could also be tapped at the emitter of the transistor T or with high resistance at the anode of the diode D 1 .
- the tolerances of the base-emitter voltage of the transistor T or the diode forward voltage of the diode D 1 would then not be included in the measurement come in.
- Another possibility for generating a measuring voltage for the ignition current is given in FIG. 2 explained below.
- the residual energy still remaining in the corresponding secondary winding S 1 ,... S 4 or in the secondary capacitances must be rapidly dissipated.
- the already mentioned dissipation resistor R 3 to which two antiserially connected Zener diodes Z 1 and Z 2 are connected in parallel.
- Such a parallel connection substantially shortens the duration of the decay after the ignition spark has broken off, so that an ion current measurement which is not impaired by the decay behavior can be carried out immediately thereafter.
- the value of the dissipation resistance R 3 is preferably chosen so that it corresponds to the value (L sek / C sek ) 1/2 , the quantities L sek and C sek representing the coil inductance or coil and stray capacitances effective on the secondary side.
- the value of this dissipation resistance R 2 will usually be in the range between 10 k ⁇ and 100 k ⁇ and thus causes the energy to dissipate rapidly.
- the two Zener diodes Z 1 and Z 2 are necessary to limit the voltage drop occurring across the dissipation resistor R 3 , which would otherwise result in a considerable reduction in the ignition energy.
- an ignition current of 100 mA at a resistor of 50 k ⁇ would cause a voltage drop of 5000 V.
- the Zener voltages of the Zener diodes Z 1 and Z 2 are therefore chosen so that there is only a slight reduction in the ignition energy, for example in the amount of 50 V.
- Zener diodes Z 1 and Z 2 instead of using two Zener diodes Z 1 and Z 2 , it is also possible to provide only the Zener diode Z 2 and to dispense with the Zener diode Z 1 . However, this would make the swing-out behavior asymmetrical and the swing-out period can be extended somewhat. On the other hand, it would be advantageous that the voltage loss in ignition mode would be less than 1 V.
- Zener diodes are in series with the secondary winding of the ignition coils Tr 1 ,... Tr 4 and the ion current measuring resistor R 1 , their leakage currents have no negative effect in the subsequent ion current measurement.
- the reference voltage U ref serving as measurement voltage U test is applied by the inverting differential amplifier 3 to the secondary windings S 1 ,... S 4 , which then generates an ion current at the corresponding spark plug.
- the inverting differential amplifier 3 converts this ion current into a voltage signal U ion , which is now fed to the evaluation unit 5 as a measurement signal of the ion current, the evaluation result of which is then forwarded to the control unit 4.
- the measuring voltage U test supplied to the secondary windings S 1 , ..., S 4 of the ignition coils Tr 1 , ..., Tr 4 which can be between 5 and 30 V, preferably 20 V, is constant during the entire ion current measurement period. Since the ion current is in the ⁇ A range, a differential amplifier 3 with a low input current is used, which is available inexpensively today.
- this measuring voltage U test means that there is no need to recharge stray capacitances, as can occur in other known systems when exposed to alternating current, such as, for example, with knocking combustion. This advantage is particularly noticeable when several ion measuring sections are operated in parallel, as shown in the figure, since effective stray capacities can then be multiplied.
- a further resistor (not shown in the figure) can be provided in the feed line to its inverting input.
- FIG. 2 shows a detail of the circuit diagram of Figure 1 with the inverting amplifier connected as a differential amplifier 3 and the associated two Ableitscenszweigen A 1 and A2.
- the difference from FIG. 1 lies in the wiring of the ignition current measuring resistor R 2 , which is now arranged on the ground side, namely between the collector of the transistor T and the ground potential.
- the measurement voltage U Zünd which is proportional to the ignition current, is therefore ground-related, which is advantageous for the further use of this measurement signal.
- the ion current signal can be used to detect the knocking of the internal combustion engine and to set up a corresponding knock control by controlling the ignition timing.
- Another application is to use the ion current signal both to detect misfires and to detect the camshaft position.
- the circuit arrangement according to the invention for ion current measurement can be used not only in transistor ignition systems, as shown in the exemplary embodiment, but also in alternating current ignitions or high-voltage capacitor ignitions.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
Abstract
Die Erfindung betrifft eine Schaltungsanordnung zur Ionenstrommessung im Verbrennungsraum einer Brennkraftmaschine mit einer aus Primär- und Sekundärwicklung bestehenden Zündspule, deren Sekundärwicklung sowohl an eine Zündkerze, die gleichzeitig als Ionenstromsonde dient, angeschlossen ist als auch über deren Niedrigpotentialseite mit einem invertierenden Verstärker zur Erzeugung einer konstanten Meßspannung zur Ionenstrommessung verbunden ist. Erfindungsgemäß ist zur Ableitung des während der Brenndauer der Zündkerze fließenden Zündstromes auf das Massepotential der Schaltungsanordnung sowohl ein erster Ableitschaltungszweig mit einer ersten Halbleiterdiode als auch ein zweiter, parallel zum invertierenden Verstärker geschalteten Ableitschaltungszweig mit einer zweiten Halbleiterdiode vorgesehen. The invention relates to a circuit arrangement for ion current measurement in the combustion chamber of an internal combustion engine with an ignition coil consisting of primary and secondary windings, the secondary winding of which is connected both to a spark plug, which also serves as an ion current probe, and also via its low potential side with an inverting amplifier to generate a constant measurement voltage is connected to the ion current measurement. According to the invention, both a first discharge circuit branch with a first semiconductor diode and a second discharge circuit branch connected in parallel with the inverting amplifier with a second semiconductor diode are provided for deriving the ignition current flowing during the burning time of the spark plug to the ground potential of the circuit arrangement.
Description
Die Erfindung betrifft eine Schaltungsanordnung zur Ionenstrommessung gemäß dem Oberbegriff des Patentanspruches 1.The invention relates to a circuit arrangement for ion current measurement according to the preamble of
Eine solche Ionenstrommeßschaltung ist aus der US 5483818 bekannt, die einen als invertierenden Verstärker geschalteten Differenzverstärker aufweist, hierzu ist die Niedrigpotentialseite der Sekundärwicklung der Zündspule über einen Widerstand mit dem invertierenden Eingang des Differenzverstärkers verbunden, während an dessen nichtinvertierenden Eingang eine Vorspannung von ca. 40 V angelegt wird. Zur Erzielung der invertierenden Verstärkereigenschaft wird der Ausgang über einen Widerstand auf den invertierenden Eingang rückgekoppelt und gleichzeitig das Ausgangssignal zur Auswertung des Ionenstromes einer Schwellwertschaltung zugeführt. Ebenfalls an die Niedrigpotentialseite der Sekundärwicklung sind zwei in Reihe geschaltete Zenerdioden angeschlossen, deren Verbindungsknoten von einem weiteren invertierenden Verstärker derart angesteuert wird, daß die während einer Ionenstrommessung auftretenden Leckströme vermieden werden, um damit unverfälschte Ionenstromsignale zu erzeugen. Der weitere invertierende Verstärker ist entsprechender Weise wie der direkt an die Sekundärwicklung angeschlossene Verstärker aufgebaut, wobei dessen Ausgang über einen Widerstand mit dem invertierenden Eingang des weiteren Verstärkers verbunden ist und dessen nichtinvertierenden Eingang die gleiche Vorspannung zugeführt wird.Such an ion current measuring circuit is known from US 5483818, which has a differential amplifier connected as an inverting amplifier, for this purpose the low potential side of the secondary winding of the ignition coil is connected via a resistor to the inverting input of the differential amplifier, while a bias voltage of approximately 40 V is applied to its non-inverting input is created. To achieve the inverting amplifier property, the output is fed back to the inverting input via a resistor and, at the same time, the output signal is fed to a threshold circuit for evaluating the ion current. Also connected to the low potential side of the secondary winding are two series-connected zener diodes, the connection nodes of which are controlled by a further inverting amplifier in such a way that the leakage currents which occur during an ion current measurement are avoided, in order to generate unadulterated ion current signals. The further inverting amplifier is constructed in a corresponding manner to the amplifier connected directly to the secondary winding, the output of which is connected via a resistor to the inverting input of the further amplifier and the non-inverting input of which is supplied with the same bias voltage.
Zur Vermeidung der durch die verwendeten Zenerdioden erzeugten Leckströme bedarf es bei dieser bekannten Ionenstrommeßschaltung in nachteiliger Weise eines hohen Schaltungsaufwandes.In order to avoid the leakage currents generated by the Zener diodes used, this known ion current measuring circuit disadvantageously requires a high level of circuitry.
Die Aufgabe der vorliegenden Erfindung besteht daher darin, eine Schaltungsanordnung zur Ionenstrommessung der eingangs genannten Art anzugeben, die diesen Nachteil vermeidet.The object of the present invention is therefore to provide a circuit arrangement for ion current measurement of the type mentioned at the outset which avoids this disadvantage.
Die Lösung dieser Aufgabe ist durch das kennzeichnende Merkmal des Patentanspruches 1 gegeben. Hiernach sind zur Ableitung des während der Brenndauer der Zündkerze fließenden Zündstromes ein erster und zweiter Ableitschaltungszweig vorgesehen, die jeweils eine Halbleiterdiode aufweisen und der zweite Ableitschaltungszweig parallel zum invertierenden Verstärker angeordnet ist. Der wesentlichste Vorteil dieser erfindungsgemäßen Lösung liegt in der Verwendung von normalen Halbleiterdioden, so daß das Problem von hohen Leckströmen nicht auftritt und daher eine wie im Stand der Technik vorgeschlagene aufwendige Schaltung entfallen kann.The solution to this problem is given by the characterizing feature of
Ein weiterer mit der vorliegenden Erfindung erzielbarer Vorteil liegt in einer Absenkung des Wertes der Meßspannung unter den im stand der Technik angegebenen Spannungswert von 40 V.Another advantage that can be achieved with the present invention is a lowering of the value of the measuring voltage below the voltage value of 40 V specified in the prior art.
In einer vorteilhaften Weiterbildung der Erfindung ist zur weiteren Halbleiterdiode, die den zweiten Ableitschaltungszweig bildet, ein Zündstrommeßwiderstand in Reihe geschaltet. Der an diesem Zündstrommeßwiderstand auftretende Spannungsabfall kann während der Brenndauer der Zündkerze in vorteilhafter Weise als Meßsignal für die Höhe des Zündstromes dienen. Dieses Zündstrommeßsignal kann dazu verwendet werden, den Zündablauf bei einer Folgezündung zu steuern.In an advantageous development of the invention, an ignition current measuring resistor is connected in series with the further semiconductor diode, which forms the second discharge circuit branch. The voltage drop occurring at this ignition current measuring resistor can advantageously serve as a measurement signal for the amount of the ignition current during the burning time of the spark plug. This ignition current measurement signal can be used to control the ignition sequence in the event of a secondary ignition.
Vorzugsweise kann der zweite Ableitschaltungszweig über einen vom Ausgang des invertierenden Verstärkers steuerbaren Halbleiterschalter, insbesondere eines Transistors mit dem Massepotential der Schaltungsanordnung verbunden werden. Damit läßt sich in vorteilhafter Weise die Strombelastbarkeit des Differenzverstärkers erhöhen.The second diverting circuit branch can preferably be connected to the ground potential of the circuit arrangement via a semiconductor switch which can be controlled by the output of the inverting amplifier, in particular a transistor. This can advantageously increase the current carrying capacity of the differential amplifier.
Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist ein als invertierender Verstärker geschalteter Differenzverstärker vorgesehen.According to a further advantageous embodiment of the invention, a differential amplifier connected as an inverting amplifier is provided.
Vorzugsweise ist dabei der eine Eingang eines solchen Differenzverstärkers mit der Niedrigpotentialseite der Sekundärwicklung der Zündspule verbunden, während am anderen Eingang eine Referenzspannung zugeführt wird, deren Wert der Meßspannung entspricht und bei dem der Ausgang über einen Meßwiderstand mit dem einen Eingang verbunden ist.Preferably, one input of such a differential amplifier is connected to the low potential side of the secondary winding of the ignition coil, while a reference voltage is supplied to the other input, the value of which corresponds to the measuring voltage and in which the output is connected to the one input via a measuring resistor.
Damit wird der Ionenstrom mit einfachsten Schaltungsmitteln in eine als Meßsignal dienende Spannung umgewandelt, die anschließend einer Auswertung zugeführt wird.With the simplest circuit means, the ion current is converted into a voltage serving as a measurement signal, which voltage is then fed to an evaluation.
Die einem solchen Differenzverstärker zugeführte Referenzspannung wird in einfachster Weise mit einer Konstantspannungsquelle erzeugt.The reference voltage supplied to such a differential amplifier is generated in the simplest way with a constant voltage source.
Weiterhin können bei Einsatz einer Mehrzylinderbrennkraftmaschine die Meßstrecken der als Ionenstromsonde dienenden Zündkerzen parallel geschaltet werden, so daß der Vorteil eines geringen Schaltungsaufwandes erhalten bleibt. Sollen dagegen die Meßstrecken der als Ionenstromsonde dienenden Zündkerzen völlig unabhängig voneinander gemessen werden, können aber auch die Schaltungen mehrfach vorhanden sein, deren Ausgangssignale dann in geeigneter Form zeitlich gemultiplext werden.Furthermore, when using a multi-cylinder internal combustion engine, the measuring sections of the spark plugs serving as ion current probes can be connected in parallel, so that the advantage of a low circuit complexity is retained. If, on the other hand, the measuring sections of the spark plugs serving as ion current probes are to be measured completely independently of one another, there may also be multiple circuits whose output signals are then time-multiplexed in a suitable form.
Schließlich kann bei einer besonders bevorzugten Ausführungsform der Erfindung eine Parallelschaltung aus einem Dissipationswiderstand und wenigstens einer Zenerdiode in Reihe zur Sekundärwicklung geschaltet werden, um die Energie, die sich nach dem Abreißen des Zündfunkens noch in der Zündspule oder den Sekundärkapazitäten befindet, schnell zu dissipieren, damit ohne große Zeitverzögerung anschließend die Ionenstrommessung durchführbar ist. In vorteilhafter Weise können vorzugsweise zwei antiseriell verbundene Zenerdioden anstelle nur einer einzigen Zenerdiode verwendet werden, um damit gegenüber der Verwendung nur einer einzigen Zenerdiode ein Ausschwingverhalten zu erzielen, dessen Dauer kürzer und außerdem symmetrisch ist.Finally, in a particularly preferred embodiment of the invention, a parallel circuit comprising a dissipation resistor and at least one zener diode can be connected in series with the secondary winding in order to rapidly dissipate the energy which is still in the ignition coil or the secondary capacitances after the ignition spark has broken off, so that the ion current measurement can then be carried out without great time delay. Advantageously, two antiserially connected zener diodes can preferably be used instead of only a single zener diode in order to achieve a decay behavior compared to the use of only a single zener diode, the duration of which is shorter and also symmetrical.
Im folgenden soll die Erfindung anhand eines Ausführungsbeispieles im Zusammenhang mit der Figur dargestellt und erläutert werden. Es zeigen:
Figur 1- ein Schaltbild eines elektronischen Zündsystems gemäß der Erfindung und
Figur 2- einen Schaltungsausschnitt des Schaltbildes nach
Figur 1 mit einem alternativen zweiten Ableitschaltungszweig A2.
- Figure 1
- a circuit diagram of an electronic ignition system according to the invention and
- Figure 2
- a circuit section of the circuit diagram of Figure 1 with an alternative second diverting branch A2.
Die Figur 1 zeigt eine Transistorzündanlage einer 4-Zylinder-Brennkaftmaschine mit jeweils einem Zylinder zugeordneten Zündendstufe, wobei jede Zündendstufe aus einer Zündspule Tr1, ..., Tr4, die eine Primärwicklung P1, ..., P4 und eine Sekundärwicklung S1, ... S4 umfaßt, und einem mit der Primärwicklung P1, ..., P4 verbundenen Zündtransistor 1a, ..., 1d mit zugehöriger Zündkerze Zk1, ..., Zk4 aufgebaut ist. Die Primärwicklungen P1, ..., P4 sind mit ihrem einen Anschluß an eine von einer Bordbatterie gelieferten Bordnetzspannung UB von beispielsweise 12 V angeschlossen, während der andere Anschluß mit dem zugehörigen Zündtransistor 1a, ..., 1d verbunden ist.FIG. 1 shows a transistor ignition system of a 4-cylinder internal combustion engine, each with an ignition output stage assigned to a cylinder, each ignition output stage comprising an ignition coil Tr 1 ,..., Tr 4 , a primary winding P 1 ,..., P 4 and a secondary winding S 1 , ... S 4 , and an ignition transistor 1a, ..., 1d connected to the primary winding P 1 , ..., P 4 with associated spark plug Zk 1 , ..., Zk 4 is constructed. The primary windings P 1 , ..., P 4 are connected by their one connection to an on-board battery voltage U B of 12 V, for example, while the other connection is connected to the associated ignition transistor 1a, ..., 1d.
Die Zündtransistoren 1a, ..., 1d werden über deren Steuerelektroden von einer Schaltung 2a zur Zylinderselektion angesteuert, die ihrerseits mit einer Regelschaltung 2 verbunden ist, die die entsprechenden Zündauslöseimpulse für die einzelnen Zylinder dieser Schaltung 2a zuführt.The ignition transistors 1a, ..., 1d are controlled via their control electrodes by a circuit 2a for cylinder selection, which in turn is connected to a
Die Figur zeigt ferner ein Steuergerät 4, das die Funktion eines Motormanagements übernimmt und seinerseits die Regelschaltung 2 ansteuert. Hierzu werden dieser Steuereinheit 4 über einen Eingang E Motorparameter, wie Last, Drehzahl und Temperatur zugeführt. Entsprechende Aktuatoren werden über Ausgänge A gesteuert.The figure also shows a control unit 4, which takes over the function of an engine management and in turn controls the
Die Sekundärwicklungen S1, ..., S4 sind jeweils mit ihrer Hochspannungsseite mit der zugehörigen Zündkerze Zk1, ..., Zk4 verbunden, während deren Niedrigpotentialseite über jeweils einen Dissipationswiderstand R3 in einem Schaltungsknoten S zusammengeführt sind.The secondary windings S 1 , ..., S 4 are each connected with their high-voltage side to the associated spark plug Zk 1 , ..., Zk 4 , while their low potential side are brought together in a circuit node S via a dissipation resistor R 3 .
Dieser Schaltungsknoten S ist auf den Eingang eines als nicht invertierenden Verstärkers geschalteten Differenzverstärkers 3 geführt, indem dieser Schaltungsknoten S an den invertierenden Eingang dieses Differenzverstärkers 3 angeschlossen ist. An den nichtinvertierenden Eingang dieses Differenzverstärkers 3 wird dagegen eine konstante Referenzspannung Uref, vorzugsweise 20 V angelegt, wobei diese konstante Referenzspannung von einer Konstantspannungsquelle 6 erzeugt wird. Diese konstante Referenzspannung Uref wird über diesen Differenzverstärker 3 mittels eines auf den invertierenden Eingang rückgekoppelten Meßwiderstandes R1 den Sekundärwicklungen S1, ..., S4 zugeführt und gelangt somit als Meßspannung Utest an die als Ionenmeßstromstrecken arbeitenden Zündkerzen Zk1, ..., Zk4.This circuit node S is connected to the input of a
Um den während der Brenndauer aufgrund des Zündvorganges entstehenden Zündstrom abzuleiten, weist die Schaltung gemäß der Figur einen ersten und zweiten Ableitschaltungszweig A1 und A2 auf. Der erste Ableitschaltungszweig A1 verbindet den Schaltungsknoten S über eine Halbleiterdiode D2 mit dem Massepotential der Schaltung, während der zweite Ableitschaltungszweig A2 aus einer Serienschaltung eines Zündstromableitwiderstandes R2, einer weiteren Halbleiterdiode D1 und eines pnp-Transistors T besteht, wobei der Zündstrommeßwiderstand R2 mit dem Schaltungsknoten S verbunden ist und die Kollektorelektrode des Transistors T auf dem Massepotential der Schaltung liegt. Die Basiselektrode dieses Transistors T wird vom Ausgang des Differenzverstärkers 3 angesteuert.In order to derive the ignition current which arises during the burning time due to the ignition process, the circuit according to the figure has a first and second diverting circuit branches A1 and A2. The first discharge circuit branch A1 connects the circuit node S to the ground potential of the circuit via a semiconductor diode D 2 , while the second discharge circuit branch A2 consists of a series connection of an ignition current discharge resistor R 2 , a further semiconductor diode D 1 and a pnp transistor T, the ignition current measurement resistor R 2 is connected to the circuit node S and the collector electrode of the transistor T is at the ground potential of the circuit. The base electrode of this transistor T is driven by the output of the
Der erste Ableitschaltungszweig A1 dient dazu, im Augenblick eines Hochspannungsdurchbruches in einer der Zündkerzen Zk1,..., Zk4 entstehende negative Spannungsspitzen abzuleiten.The first diverting circuit branch A1 serves to derive negative voltage peaks occurring in one of the spark plugs Zk 1 ,... Zk 4 at the moment of a high voltage breakdown.
Der eigentliche Zündstrom wird über den zweiten Ableitungsschaltzweig A2 abgeleitet, der auch ohne den Transistor T aufgebaut werden kann, der lediglich zur Erhöhung der Strombelastbarkeit des Differenzverstärkers 3 dient. Wird auf einen solchen Transistor T verzichtet, ist die Kathode der Halbleiterdiode D1 direkt mit dem Ausgang des Differenzverstärkers 3 Verbunden, so daß der Ableitschaltungszweig A2 parallel zum Ionenmeßwiderstand R1 geschaltet ist.The actual ignition current is derived via the second derivation switching branch A 2 , which can also be constructed without the transistor T, which only serves to increase the current carrying capacity of the
Im folgenden soll die Funktion der Schaltung gemäß der Figur 1 erläutert werden:The function of the circuit according to FIG. 1 is to be explained below:
Die Generierung eines Zündimpulses durch die Regelschaltung 2 führt zur Ansteuerung des entsprechenden Zündtransistors 1a, ..., 1d. Der hierdurch erzeugte Zündfunken an der zugehörigen Zündkerze Zk1, ..., Zk4 führt zu einer bestimmten Brenndauer, die von einem Zündstrom begleitet wird. Dieser Zündstrom fließt über den niederohmigen Ableitschaltungszweig A2 zu einem Teil über den Differenzverstärker 3 und zu einem anderen Teil entsprechend dem eingestellten Arbeitspunkt des Transistors T auf Massepotential ab. Dieser Arbeitspunkt des Transistors T wird durch das Ausgangssignal Uion des Differenzverstärkers 3 bestimmt, das durch die Rückkopplung über den Ionenmeßwiderstand R1 auf den invertierenden Eingang dessen Potential auf das Uref-Potential einregelt, das die Meßspannung für die nachfolgende Ionenstrommessung darstellt. Damit wird durch den Einsatz eines solchen Transistors T eine Überbelastung des Differenzverstärkers 3 durch den Zündstrom vermieden.The generation of an ignition pulse by the
Während der Brenndauer zeigt das Ausgangssignal Uion des Differenzverstärkers 3 die Höhe des durch den Zündstrommeßwiderstand R2 fließenden Zündstromes an und kann daher als Meßsignal des Zündstromes nach Auswertung zur Lade- und Brenndauerregelung der Brennkraftmaschine herangezogen werden. Der Wert des Zündstrommeßwiderstandes R2 wird so gewählt, daß dessen Spannungsabfall UR2 mit dem Wert R2 · Izünd im Bereich einiger Volt liegt. Ein solcher Wert für den Widerstand R2 wäre beispielweise 15 Ω. Am Ausgang des Differenzverstärkers 3 liegt dann eine Spannung Uion mit einem Wert von
Die Meßspannung für die Höhe des Zündstromes könnte auch am Emitter des Transistors T oder hochohmig an der Anode der Diode D1 abgegriffen werden. Die Toleranzen der Basis-Emitterspannung des Transistors T bzw. die Diodenflußspannung der Diode D1 würden dann nicht in die Messung eingehen. Eine weitere Möglichkeit zur Erzeugung einer Meßspannung für den Zündstrom ist mit der weiter unten erläuterten Figur 2 gegeben.The measuring voltage for the level of the ignition current could also be tapped at the emitter of the transistor T or with high resistance at the anode of the diode D 1 . The tolerances of the base-emitter voltage of the transistor T or the diode forward voltage of the diode D 1 would then not be included in the measurement come in. Another possibility for generating a measuring voltage for the ignition current is given in FIG. 2 explained below.
Nach dem Abreißen des Zündfunkes, also am Ende der Brenndauer, muß die noch in der entsprechenden Sekundärwicklung S1, ..., S4 oder in den Sekundärkapazitäten verbleibende Restenergie schnell abgebaut werden. Hierzu dient der schon erwähnte Dissipationswiderstand R3, dem zwei antiseriell verbundene Zenerdioden Z1 und Z2 parallel geschaltet sind.After the ignition radio has been torn off, that is to say at the end of the burning time, the residual energy still remaining in the corresponding secondary winding S 1 ,... S 4 or in the secondary capacitances must be rapidly dissipated. For this purpose, the already mentioned dissipation resistor R 3 , to which two antiserially connected Zener diodes Z 1 and Z 2 are connected in parallel.
Durch eine solche Parallelschaltung wird die Dauer des Ausschwingens nach dem Abreißen des Zündfunkens wesentlich verkürzt, so daß unmittelbar danach eine durch das Ausschwingverhalten nicht beeinträchtigte Ionenstrommessung durchführbar ist.Such a parallel connection substantially shortens the duration of the decay after the ignition spark has broken off, so that an ion current measurement which is not impaired by the decay behavior can be carried out immediately thereafter.
Eine solche beschleunigte Energiedissipation ist besonders bei hohen Motordrehzahlen wichtig. Der Wert des Dissipationswiderstandes R3 wird vorzugsweise so gewählt, daß er dem Wert (Lsek/Csek)1/2 entspricht, wobei die Größen Lsek und Csek, die sekundärseitig wirksame Spuleninduktivität bzw. Spulen- und Streukapazitäten darstellen. Der Wert dieses DissipationswiderStandes R2 wird üblicherweise im Bereich zwischen 10 kΩ und 100 kΩ liegen und bewirkt damit ein schnelles Dissipieren der Energie.Such accelerated energy dissipation is particularly important at high engine speeds. The value of the dissipation resistance R 3 is preferably chosen so that it corresponds to the value (L sek / C sek ) 1/2 , the quantities L sek and C sek representing the coil inductance or coil and stray capacitances effective on the secondary side. The value of this dissipation resistance R 2 will usually be in the range between 10 kΩ and 100 kΩ and thus causes the energy to dissipate rapidly.
Die beiden Zenerdioden Z1 und Z2 sind zur Begrenzung des über dem Dissipationswiderstand R3 entstehenden Spannungsabfalles notwendig, was ansonsten eine erhebliche Verminderung der Zündenergie zur Folge hätte. So würde ein Zündstrom von beispielsweise 100 mA an einem Widerstand von beispielsweise 50 kΩ einen Spannungsabfall von 5000 V bewirken. Die Zenerspannungen der Zenerdioden Z1 und Z2 werden daher so gewählt, daß nur eine geringe Verminderung der Zündenergie eintritt, beispielsweise in Höhe von 50 V.The two Zener diodes Z 1 and Z 2 are necessary to limit the voltage drop occurring across the dissipation resistor R 3 , which would otherwise result in a considerable reduction in the ignition energy. For example, an ignition current of 100 mA at a resistor of 50 kΩ, for example, would cause a voltage drop of 5000 V. The Zener voltages of the Zener diodes Z 1 and Z 2 are therefore chosen so that there is only a slight reduction in the ignition energy, for example in the amount of 50 V.
Anstelle der Verwendung von zwei Zenerdioden Z1 und Z2 ist es auch möglich, lediglich die Zenerdiode Z2 vorzusehen und auf die Zenerdiode Z1 zu verzichten. Damit würde allerdings das Ausschwingverhalten unsymmetrisch und die Ausschwingdauer etwas verlängert werden. Vorteilhaft wäre dagegen, daß der Spannungsverlust im Zündbetrieb kleiner als 1 V wäre.Instead of using two Zener diodes Z 1 and Z 2 , it is also possible to provide only the Zener diode Z 2 and to dispense with the Zener diode Z 1 . However, this would make the swing-out behavior asymmetrical and the swing-out period can be extended somewhat. On the other hand, it would be advantageous that the voltage loss in ignition mode would be less than 1 V.
Da in beidgenannten Fällen die Zenerdioden in Reihe zur Sekundärwicklung der Zündspulen Tr1,...Tr4 und zum Ionenstrommeßwiderstand R1 liegen, haben deren Leckströme bei der nachfolgenden Ionenstrommessung keine negative Auswirkung.Since in both cases the Zener diodes are in series with the secondary winding of the ignition coils Tr 1 ,... Tr 4 and the ion current measuring resistor R 1 , their leakage currents have no negative effect in the subsequent ion current measurement.
Nach dem Abklingen des Zündstromes wird die als Meßspannung Utest dienende Referenzspannung Uref von dem invertierenden Differenzverstärker 3 an die Sekundärwicklungen S1, ..., S4 angelegt, die dann an der entsprechenden Zündkerze einen Ionenstrom erzeugt.After the ignition current has decayed, the reference voltage U ref serving as measurement voltage U test is applied by the inverting
Der invertierende Differenzverstärker 3 wandelt diesen Ionenstrom in ein Spannungssignal Uion um, das nun als Meßsignal des Ionenstroms der Auswerteeinheit 5 zugeführt wird, deren Auswerteergebnis anschließend an das Steuergerät 4 weitergeleitet wird. Die den Sekundärwicklungen S1, ..., S4 der Zündspulen Tr1, ..., Tr4 zugeführte Meßspannung Utest, die zwischen 5 und 30 V, vorzugsweise 20 V liegen kann, ist während der gesamten Ionenstrommeßdauer konstant. Da der Ionenstrom im µA-Bereich liegt, wird ein Differenzverstärker 3 mit einem niedrigen Eingangsstrom verwendet, der heutzutage kostengünstig verfügbar ist. Durch die niederohmige Bereitstellung dieser Meßspannung Utest entfallen Umladungen von Streukapazitäten, wie sie in anderen bekannten Systemen bei Wechselstrombelastung, wie zum Beispiel bei klopfender Verbrennung, auftreten können. Dieser Vorteil macht sich besonders dann bemerkbar, wenn mehrere Ionenmeßstrecken parallel betrieben werden, wie dies in der Figur dargestellt ist, da sich dann wirksame Streukapazitäten vervielfachen können.The inverting
Um den in den Differenzverstärker 3 fließenden Strom zu begrenzen, kann in der Zuleitung zu dessen invertierenden Eingang ein weiterer Widerstand (in der Figur nicht dargestellt) vorgesehen werden.In order to limit the current flowing into the
Die Figur 2 zeigt einen Ausschnitt des Schaltbildes nach Figur 1 mit dem als invertierenden Verstärker geschalteten Differenzverstärker 3 und den zugehörigen beiden Ableitschaltungszweigen A1 und A2.2 shows a detail of the circuit diagram of Figure 1 with the inverting amplifier connected as a
Der Unterschied zu Figur 1 liegt in der Beschaltung des Zündstrommeßwiderstandes R2, der nun masseseitig, nämlich zwischen dem Kollektor des Transistors T und Massepotential angeordnet ist. Die zum Zündstrom proportionale Meßspannung UZünd liegt daher massebezogen vor, was für die Weiterverwendung dieses Meßsignals vorteilhaft ist.The difference from FIG. 1 lies in the wiring of the ignition current measuring resistor R 2 , which is now arranged on the ground side, namely between the collector of the transistor T and the ground potential. The measurement voltage U Zünd , which is proportional to the ignition current, is therefore ground-related, which is advantageous for the further use of this measurement signal.
Die zusätzliche Verwendung eines zwischen dem Ausgang des Differenzverstärkers 3 und der Basis des Transistors T geschalteten Widerstandes R4 begrenzt den durch einen Basisstrom entstehenden Meßfehler auf kleine Werte.The additional use of a resistor R 4 connected between the output of the
Das Ionenstromsignal kann dazu verwendet werden, um das Klopfen der Brennkraftmaschine zu detektieren und über eine Steuerung des Zündzeitpunktes eine entsprechende Klopfregelung aufzubauen.The ion current signal can be used to detect the knocking of the internal combustion engine and to set up a corresponding knock control by controlling the ignition timing.
Eine weitere Anwendung besteht darin, das Ionenstromsignal sowohl zur Erkennung von Entflammungsaussetzern als auch zur Erkennung der Nockenwellenstellung zu verwenden.Another application is to use the ion current signal both to detect misfires and to detect the camshaft position.
Die erfindungsgemäße Schaltungsanordnung zur Ionenstrommessung ist nicht nur bei Transistorzündanlagen, wie in dem Ausführungsbeispiel dargestellt, einsetzbar, sondern gleichfalls bei Wechselstromzündungen oder Hochspannungskondensatorzündungen.The circuit arrangement according to the invention for ion current measurement can be used not only in transistor ignition systems, as shown in the exemplary embodiment, but also in alternating current ignitions or high-voltage capacitor ignitions.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19605803A DE19605803A1 (en) | 1996-02-16 | 1996-02-16 | Circuit arrangement for ion current measurement |
DE19605803 | 1996-02-16 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0790408A2 true EP0790408A2 (en) | 1997-08-20 |
EP0790408A3 EP0790408A3 (en) | 1999-01-20 |
EP0790408B1 EP0790408B1 (en) | 2001-11-14 |
Family
ID=7785611
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97101844A Expired - Lifetime EP0790406B1 (en) | 1996-02-16 | 1997-02-06 | Electronic ignition system for internal combustion engines |
EP97101842A Expired - Lifetime EP0790408B1 (en) | 1996-02-16 | 1997-02-06 | Measuring circuit for an ionic current in ignition devices for internal combustion engines |
EP97101843A Expired - Lifetime EP0790409B1 (en) | 1996-02-16 | 1997-02-06 | Measuring circuit for an ionic current in ignition devices for internal combustion engines |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97101844A Expired - Lifetime EP0790406B1 (en) | 1996-02-16 | 1997-02-06 | Electronic ignition system for internal combustion engines |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97101843A Expired - Lifetime EP0790409B1 (en) | 1996-02-16 | 1997-02-06 | Measuring circuit for an ionic current in ignition devices for internal combustion engines |
Country Status (4)
Country | Link |
---|---|
US (3) | US5914604A (en) |
EP (3) | EP0790406B1 (en) |
DE (4) | DE19605803A1 (en) |
ES (1) | ES2166479T3 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19821722C2 (en) * | 1997-05-15 | 2002-10-31 | Toyota Motor Co Ltd | Ion current detection device for an internal combustion engine |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19605803A1 (en) * | 1996-02-16 | 1997-08-21 | Daug Deutsche Automobilgesells | Circuit arrangement for ion current measurement |
DE19720535C2 (en) * | 1997-05-16 | 2002-11-21 | Conti Temic Microelectronic | Method for detecting knocking combustion in an internal combustion engine with an AC ignition system |
DE19829583C1 (en) * | 1998-07-02 | 1999-10-07 | Daimler Chrysler Ag | Breakthrough voltage determining method for AC ignition system diagnosis in IC engine |
US6357427B1 (en) | 1999-03-15 | 2002-03-19 | Aerosance, Inc. | System and method for ignition spark energy optimization |
DE19917261C5 (en) * | 1999-04-16 | 2010-09-09 | Siemens Flow Instruments A/S | Electromagnetic flowmeter arrangement |
DE19917268B4 (en) | 1999-04-16 | 2005-07-14 | Siemens Flow Instruments A/S | Method for checking an electromagnetic flowmeter and electromagnetic flowmeter arrangement |
US6378513B1 (en) * | 1999-07-22 | 2002-04-30 | Delphi Technologies, Inc. | Multicharge ignition system having secondary current feedback to trigger start of recharge event |
US6186130B1 (en) * | 1999-07-22 | 2001-02-13 | Delphi Technologies, Inc. | Multicharge implementation to maximize rate of energy delivery to a spark plug gap |
DE19956032A1 (en) * | 1999-11-22 | 2001-05-23 | Volkswagen Ag | Misfire detection circuit in an internal combustion engine |
DE10031553A1 (en) * | 2000-06-28 | 2002-01-10 | Bosch Gmbh Robert | Inductive ignition device with ion current measuring device |
US6360587B1 (en) * | 2000-08-10 | 2002-03-26 | Delphi Technologies, Inc. | Pre-ignition detector |
AT409406B (en) * | 2000-10-16 | 2002-08-26 | Jenbacher Ag | IGNITION SYSTEM WITH AN IGNITION COIL |
DE10104753B4 (en) * | 2001-02-02 | 2014-07-03 | Volkswagen Ag | Method and device for detecting the combustion process in a combustion chamber of an internal combustion engine |
DE10125574A1 (en) * | 2001-05-25 | 2002-11-28 | Siemens Building Tech Ag | Flame monitoring device |
US6781384B2 (en) * | 2001-07-24 | 2004-08-24 | Agilent Technologies, Inc. | Enhancing the stability of electrical discharges |
DE10152171B4 (en) * | 2001-10-23 | 2004-05-06 | Robert Bosch Gmbh | Device for igniting an internal combustion engine |
US6954074B2 (en) * | 2002-11-01 | 2005-10-11 | Visteon Global Technologies, Inc. | Circuit for measuring ionization current in a combustion chamber of an internal combustion engine |
US6935323B2 (en) * | 2003-07-01 | 2005-08-30 | Caterpillar Inc | Low current extended duration spark ignition system |
US7886239B2 (en) * | 2005-08-04 | 2011-02-08 | The Regents Of The University Of California | Phase coherent differtial structures |
JP4188367B2 (en) * | 2005-12-16 | 2008-11-26 | 三菱電機株式会社 | Internal combustion engine ignition device |
AT504369B8 (en) * | 2006-05-12 | 2008-09-15 | Ge Jenbacher Gmbh & Co Ohg | IGNITION DEVICE FOR AN INTERNAL COMBUSTION ENGINE |
US7603226B2 (en) * | 2006-08-14 | 2009-10-13 | Henein Naeim A | Using ion current for in-cylinder NOx detection in diesel engines and their control |
DE102007034399B4 (en) * | 2007-07-24 | 2019-06-19 | Daimler Ag | Method for operating an ignition system for a spark-ignitable internal combustion engine of a motor vehicle and ignition system |
DE102007034390B4 (en) * | 2007-07-24 | 2019-05-29 | Daimler Ag | Method for operating an ignition system for a spark-ignitable internal combustion engine of a motor vehicle and ignition system |
DE102008031027A1 (en) * | 2008-06-30 | 2009-12-31 | Texas Instruments Deutschland Gmbh | Automatic testing device |
US20100006066A1 (en) * | 2008-07-14 | 2010-01-14 | Nicholas Danne | Variable primary current for ionization |
WO2011041692A2 (en) * | 2009-10-02 | 2011-04-07 | Woodward Governor Company | Self charging ion sensing coil |
DE102009057925B4 (en) * | 2009-12-11 | 2012-12-27 | Continental Automotive Gmbh | Method for operating an ignition device for an internal combustion engine and ignition device for an internal combustion engine for carrying out the method |
CN102713551B (en) * | 2010-01-20 | 2014-12-10 | Sem股份公司 | Device and method for analysing a performance of an engine |
DE102010061799B4 (en) | 2010-11-23 | 2014-11-27 | Continental Automotive Gmbh | Method for operating an ignition device for an internal combustion engine and ignition device for an internal combustion engine for carrying out the method |
CN102852693B (en) * | 2011-06-28 | 2015-05-27 | 比亚迪股份有限公司 | Ignition coil failure diagnosis system and diagnosis method thereof |
EP2820580A4 (en) * | 2012-02-28 | 2015-07-29 | Univ Wayne State | USE OF IONIC CURRENT SIGNAL FOR MOTOR PERFORMANCE AND EMISSION MEASUREMENT TECHNIQUES AND METHODS FOR REALIZING THE SAME |
DE102013004728A1 (en) | 2013-03-19 | 2014-09-25 | Daimler Ag | Method for operating an internal combustion engine and internal combustion engine |
JP6207223B2 (en) * | 2013-05-01 | 2017-10-04 | キヤノン株式会社 | Motor drive device and control method thereof |
US9249774B2 (en) * | 2013-10-17 | 2016-02-02 | Ford Global Technologies, Llc | Spark plug fouling detection for ignition system |
CN103745816B (en) * | 2013-12-31 | 2018-01-12 | 联合汽车电子有限公司 | A kind of high-energy ignition coil |
AT517272B1 (en) | 2015-06-03 | 2017-03-15 | Ge Jenbacher Gmbh & Co Og | Method for operating an internal combustion engine |
JP6956904B2 (en) * | 2018-12-25 | 2021-11-02 | 三菱電機株式会社 | Ion current detection circuit, ignition control device and ignition system |
CN111835323A (en) * | 2019-04-17 | 2020-10-27 | 联合汽车电子有限公司 | Internal drive ignition IGBT overload protection method and device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4116272A1 (en) * | 1990-05-18 | 1991-11-21 | Mitsubishi Electric Corp | Combustion monitor for vehicle IC engine - detects ion current upon ignition of spark plug |
DE19502402A1 (en) * | 1994-01-28 | 1995-08-10 | Mitsubishi Electric Corp | Ignition misfiring detection circuit for IC engine |
US5444375A (en) * | 1991-11-26 | 1995-08-22 | Mitsubishi Denki Kabushiki Kaisha | Ionization current detector for detecting the ionization current generated in a plurality of ignition coils of an internal combustion engine |
US5493227A (en) * | 1993-12-21 | 1996-02-20 | Honda Giken Kogyo Kabushiki Kaisha | Misfire-detecting system for internal combustion engines |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3945362A (en) * | 1973-09-17 | 1976-03-23 | General Motors Corporation | Internal combustion engine ignition system |
DE2623865A1 (en) * | 1976-05-28 | 1977-12-08 | Bosch Gmbh Robert | IGNITION SYSTEM, IN PARTICULAR FOR COMBUSTION MACHINERY |
US4329576A (en) * | 1979-11-05 | 1982-05-11 | Rapistan, Inc. | Data storage means and reading system therefor |
US4380989A (en) * | 1979-11-27 | 1983-04-26 | Nippondenso Co., Ltd. | Ignition system for internal combustion engine |
DE3006665A1 (en) * | 1980-02-22 | 1981-09-03 | Robert Bosch Gmbh, 7000 Stuttgart | VOLTAGE SOURCE FOR MEASURING ION CURRENT ON THE COMBUSTION ENGINE |
DE3327766A1 (en) * | 1983-08-02 | 1985-02-14 | Atlas Fahrzeugtechnik GmbH, 5980 Werdohl | KNOCK DETECTION CIRCUIT ON AN OTTO ENGINE |
DE3615548A1 (en) * | 1986-05-09 | 1987-11-12 | Bosch Gmbh Robert | IGNITION SYSTEM FOR INTERNAL COMBUSTION ENGINES |
FR2603339B1 (en) * | 1986-08-27 | 1988-12-16 | Renault Sport | DEVICE FOR DETECTING COMBUSTION ABNORMALITY IN A CYLINDER OF AN INTERNAL COMBUSTION ENGINE WITH CONTROLLED IGNITION |
IT1208855B (en) * | 1987-03-02 | 1989-07-10 | Marelli Autronica | VARIABLE SPARK ENERGY IGNITION SYSTEM FOR INTERNAL COMBUSTION ENGINES PARTICULARLY FOR MOTOR VEHICLES |
SE457831B (en) * | 1987-08-27 | 1989-01-30 | Saab Scania Ab | PROCEDURES AND ARRANGEMENTS FOR DETECTING IONIZATION CURRENT IN A COMBUSTION ENGINE IGNITION SYSTEM |
US5056497A (en) * | 1989-04-27 | 1991-10-15 | Aisin Seiki Kabushiki Kaisha | Ignition control system |
DE3924985A1 (en) * | 1989-07-28 | 1991-02-07 | Volkswagen Ag | FULLY ELECTRONIC IGNITION DEVICE FOR AN INTERNAL COMBUSTION ENGINE |
US5293129A (en) * | 1990-11-09 | 1994-03-08 | Mitsubishi Denki Kabushiki Kaisha | Ionic current sensing apparatus for engine spark plug with negative ignition voltage and positive DC voltage application |
US5309888A (en) * | 1991-08-02 | 1994-05-10 | Motorola, Inc. | Ignition system |
JP2536353B2 (en) * | 1991-10-04 | 1996-09-18 | 三菱電機株式会社 | Ion current detection device for internal combustion engine |
US5337716A (en) * | 1992-02-04 | 1994-08-16 | Mitsubishi Denki Kabushiki Kaisha | Control apparatus for internal combustion engine |
US5446385A (en) * | 1992-10-02 | 1995-08-29 | Robert Bosch Gmbh | Ignition system for internal combustion engines |
US5483818A (en) * | 1993-04-05 | 1996-01-16 | Ford Motor Company | Method and apparatus for detecting ionic current in the ignition system of an internal combustion engine |
JPH06299941A (en) * | 1993-04-12 | 1994-10-25 | Nippondenso Co Ltd | Ion current detecting device |
DE4437480C1 (en) * | 1994-10-20 | 1996-03-21 | Bosch Gmbh Robert | Method for monitoring the function of an internal combustion engine for detecting misfires |
JP3194676B2 (en) * | 1994-11-08 | 2001-07-30 | 三菱電機株式会社 | Misfire detection device for internal combustion engine |
GB9515272D0 (en) * | 1994-12-23 | 1995-09-20 | Philips Electronics Uk Ltd | An ignition control circuit, and engine system |
DE19605803A1 (en) * | 1996-02-16 | 1997-08-21 | Daug Deutsche Automobilgesells | Circuit arrangement for ion current measurement |
-
1996
- 1996-02-16 DE DE19605803A patent/DE19605803A1/en not_active Withdrawn
-
1997
- 1997-02-06 DE DE59710359T patent/DE59710359D1/en not_active Expired - Lifetime
- 1997-02-06 EP EP97101844A patent/EP0790406B1/en not_active Expired - Lifetime
- 1997-02-06 ES ES97101842T patent/ES2166479T3/en not_active Expired - Lifetime
- 1997-02-06 EP EP97101842A patent/EP0790408B1/en not_active Expired - Lifetime
- 1997-02-06 DE DE59705316T patent/DE59705316D1/en not_active Expired - Lifetime
- 1997-02-06 DE DE59710592T patent/DE59710592D1/en not_active Expired - Lifetime
- 1997-02-06 EP EP97101843A patent/EP0790409B1/en not_active Expired - Lifetime
- 1997-02-18 US US08/802,898 patent/US5914604A/en not_active Expired - Fee Related
- 1997-02-18 US US08/802,896 patent/US6043660A/en not_active Expired - Fee Related
- 1997-02-18 US US08/802,889 patent/US5758629A/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4116272A1 (en) * | 1990-05-18 | 1991-11-21 | Mitsubishi Electric Corp | Combustion monitor for vehicle IC engine - detects ion current upon ignition of spark plug |
US5444375A (en) * | 1991-11-26 | 1995-08-22 | Mitsubishi Denki Kabushiki Kaisha | Ionization current detector for detecting the ionization current generated in a plurality of ignition coils of an internal combustion engine |
US5493227A (en) * | 1993-12-21 | 1996-02-20 | Honda Giken Kogyo Kabushiki Kaisha | Misfire-detecting system for internal combustion engines |
DE19502402A1 (en) * | 1994-01-28 | 1995-08-10 | Mitsubishi Electric Corp | Ignition misfiring detection circuit for IC engine |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19821722C2 (en) * | 1997-05-15 | 2002-10-31 | Toyota Motor Co Ltd | Ion current detection device for an internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
DE59705316D1 (en) | 2001-12-20 |
EP0790406B1 (en) | 2003-07-02 |
EP0790406A3 (en) | 1999-01-27 |
EP0790408B1 (en) | 2001-11-14 |
DE19605803A1 (en) | 1997-08-21 |
EP0790409A2 (en) | 1997-08-20 |
EP0790409A3 (en) | 1999-01-20 |
EP0790408A3 (en) | 1999-01-20 |
DE59710592D1 (en) | 2003-09-25 |
ES2166479T3 (en) | 2002-04-16 |
EP0790406A2 (en) | 1997-08-20 |
US5758629A (en) | 1998-06-02 |
US6043660A (en) | 2000-03-28 |
DE59710359D1 (en) | 2003-08-07 |
EP0790409B1 (en) | 2003-08-20 |
US5914604A (en) | 1999-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0790408B1 (en) | Measuring circuit for an ionic current in ignition devices for internal combustion engines | |
DE19502402C2 (en) | Misfire sampling circuit for an internal combustion engine | |
DE19601353C2 (en) | Combustion state detection device for an internal combustion engine | |
DE10347252B4 (en) | Circuit for measuring the ionization current in a combustion chamber of an internal combustion engine | |
DE19524539C1 (en) | Circuit arrangement for ion current measurement in the combustion chamber of an internal combustion engine | |
DE19514633C2 (en) | Device for detecting misfires in an internal combustion engine | |
EP0752580B1 (en) | Measuring circuit for an ionic current | |
DE10256456A1 (en) | Monitoring method for an actuator and associated driver circuit | |
DE2734164A1 (en) | ELECTRONIC IGNITION CONTROL SYSTEM FOR COMBUSTION ENGINE, IN PARTICULAR FOR MOTOR VEHICLES | |
EP1186102A2 (en) | Method and device for the open-load diagnosis of a switching stage | |
EP0848161B1 (en) | Inductive ignition coils system for motor | |
DE69511664T2 (en) | Device for misfire detection of an internal combustion engine | |
DE19610862A1 (en) | Inductive ignition device | |
DE3706786C1 (en) | Device for monitoring at least two electrical loads in motor vehicles | |
DE4305197C2 (en) | Ignition device for a multi-cylinder engine | |
DE3931947A1 (en) | IGNITION DEVICE FOR INTERNAL COMBUSTION ENGINES | |
DE19926079A1 (en) | Arrangement for detecting internal combustion engine combustion state has discharge current limiter between ignition current path formed by ion discharge at ignition plug, bias device | |
DE10028105B4 (en) | Misfire detection system using ion measurement with a closing bias | |
EP1039304B1 (en) | Measuring process for a high voltage lead-through and related device | |
EP0989784A1 (en) | Circuit with calibration and operating method of a PWM power supply for low voltage lamps | |
DE3147562A1 (en) | "SWITCHING WITH CHANGEABLE IMPEDANCE" | |
EP0502549B1 (en) | Spark survey in spark ignition engine | |
DE2812236C2 (en) | Spark plug tester | |
EP1003967B1 (en) | Measuring and diagnostic device for an ignition system of an internal combustion engine | |
DE69700066T2 (en) | Control device of a low pressure fluorescent lamp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE ES FR GB IT SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE ES FR GB IT SE |
|
17P | Request for examination filed |
Effective date: 19990211 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: VOLKSWAGEN AKTIENGESELLSCHAFT Owner name: DAIMLERCHRYSLER AG |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 20010405 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT SE |
|
REF | Corresponds to: |
Ref document number: 59705316 Country of ref document: DE Date of ref document: 20011220 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20020204 Year of fee payment: 6 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020115 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2166479 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: VOLKSWAGEN AKTIENGESELLSCHAFT |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030207 |
|
EUG | Se: european patent has lapsed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20090223 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090122 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20090212 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090206 Year of fee payment: 13 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100206 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20101029 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100301 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20110308 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100206 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100207 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20150228 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59705316 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160901 |