[go: up one dir, main page]

EP0790335B1 - Schnittresistente Aramidfasern, Garne enthaltend diese Aramidfasern und dieser Verwendung - Google Patents

Schnittresistente Aramidfasern, Garne enthaltend diese Aramidfasern und dieser Verwendung Download PDF

Info

Publication number
EP0790335B1
EP0790335B1 EP97101675A EP97101675A EP0790335B1 EP 0790335 B1 EP0790335 B1 EP 0790335B1 EP 97101675 A EP97101675 A EP 97101675A EP 97101675 A EP97101675 A EP 97101675A EP 0790335 B1 EP0790335 B1 EP 0790335B1
Authority
EP
European Patent Office
Prior art keywords
phenylene
mol
structural repeat
formula
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97101675A
Other languages
English (en)
French (fr)
Other versions
EP0790335A1 (de
Inventor
Richard Dr. Neuert
Jürgen Dr. Idzko
E. O. Oakley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clemson University
Original Assignee
Clemson University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clemson University filed Critical Clemson University
Publication of EP0790335A1 publication Critical patent/EP0790335A1/de
Application granted granted Critical
Publication of EP0790335B1 publication Critical patent/EP0790335B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/442Cut or abrasion resistant yarns or threads
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/80Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyamides
    • D01F6/805Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyamides from aromatic copolyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2927Rod, strand, filament or fiber including structurally defined particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • Y10T428/2969Polyamide, polyimide or polyester

Definitions

  • the present invention relates to aramid fibers having an improved Have cut resistance.
  • fiber-forming polymers are commonly used Solids, such as titanium dioxide or colloidal quartz, added as a matting agent. Also, the addition of other solids, for example, to generate magnetic Properties are known per se. Examples thereof are disclosed in JP-A-55-098,909 or in JP-A-3-130,413. The use of such matting agents in solution-spun aramid fibers is not common practice.
  • EP-A-599,231 discloses fibers containing liquid crystalline polymers, which are equipped with Mohs hardness fillers of at least 3. In This document also includes liquid-crystalline aromatic polyamides described as a fiber-forming material.
  • Aromatic polyamides are known to be raw materials of high thermal and chemical stability and low flammability. For example, show Fibers and films of such raw materials very good mechanical properties, such as high strength and high initial modulus (Young's modulus) and are for technical applications well suited - for example, to reinforce Plastics or as filter materials.
  • filaments or fibers of polyaramids with high strength and high initial modulus can be produced when the amide bonds to the aromatic cores are oriented coaxially or nearly parallel to each other, whereby rigid, rod-shaped polymer molecules are formed.
  • a typical one Polyamide of this type is, for example, poly (p-phenylene terephthalamide).
  • the present invention relates to cut-resistant fibers comprising a filler having a Mohs hardness of greater than or equal to 3 and as fiber-forming material an aromatic polyamide soluble in polar aprotic organic solvents comprising the recurring structural units of the formulas I, II and optionally IIa -OC-Ar 1 -CO-NH-Ar 2 -NH- -OC-Ar 1 -CO-NH-Ar 3 -NH -OC-Ar 1 -CO-NH-Ar 3a -NH wherein Ar 1 , Ar 2 , Ar 3 and Ar 3a independently represent a divalent mono- or polynuclear aromatic radical whose free valencies are in the para position or in the meta position or in a parallel, coaxial or angled position comparable to these positions to each other, and Accept, Ar 2, Ar 3 and optionally Ar 3a are in each case different meanings within the scope of the given definitions, and the respective underlying the polymer monomer units are selected so that an organic solvent-soluble and preferably iso
  • the polymers to be used in the fibers according to the invention are Aramid, which is a significant proportion of para-aromatic monomers and soluble in polar aprotic organic solvents are.
  • soluble aromatic polyamide is in the context of this invention to understand aromatic polyamide that at 25 ° C, a solubility in N-methylpyrrolidone of at least 50 g / l.
  • the polar aprotic organic solvent contains at least an amide-type solvent, e.g. N-methyl-2-pyrrolidone, N, N-dimethylacetamide, tetramethylurea, N-methyl-2-piperidone, N, N'-dimethylethyleneurea, N, N, N ', N'-tetramethylmaleic acid amide, N-methylcaprolactam, N-acetylpyrrolidine, N, N-diethylacetamide, N-ethyl-2-pyrrolidone, N, N'-dimethylpropionamide, N, N-dimethylisobutylamide, N-methylformamide, N, N'-dimethyl propylene.
  • an amide-type solvent e.g. N-methyl-2-pyrrolidone, N, N-dimethylacetamide, tetramethylurea, N-methyl-2-piperidone, N, N'-dimethylethyleneurea, N, N, N '
  • aromatic polyamides are compounds which are known in polar aprotic organic solvents preferably under the Training isotropic solutions are soluble and the least two, in particular three different recurring ones differing in the diamine units Having structural units according to the above definition.
  • Any radicals are bivalent aromatic radicals whose Valence bonds are in para- or comparable coaxial or parallel Position to each other, so it is one or more nuclear aromatic hydrocarbon radicals or heterocyclic-aromatic radicals which can be mononuclear or polynuclear.
  • heterocyclic-aromatic radicals in particular, these have one or two oxygen, nitrogen or Sulfur atoms in the aromatic nucleus.
  • Polynuclear aromatic radicals may be fused together or via C-C bonds or via -CO-NH- groups be linearly interconnected.
  • valence bonds in coaxial or parallel position stand, are directed opposite.
  • An example of coaxial, opposite directed bonds are the biphenyl-4,4'-ene bonds.
  • An example of parallel, oppositely directed bonds are the naphthalene-1,5 or -2,6-bonds, while the naphthalene-1,8 bonds are rectified in parallel.
  • Examples of preferred divalent aromatic radicals their valence bonds in para- or in a comparable coaxial or parallel position to each other are mononuclear aromatic radicals with each other para-free Valencies, in particular 1,4-phenylene or dinuclear fused aromatic Residues with parallel, oppositely directed bonds, in particular 1,4-, 1,5- and 2,6-naphthylene, or binuclear linked via a C-C bond aromatic residues with coaxial, oppositely directed bonds, in particular 4,4'-biphenylene.
  • Any radicals are bivalent aromatic radicals whose Valence bonds in meta or in a comparable angled position to each other, so it is one or more polynuclear aromatic hydrocarbon radicals or heterocyclic-aromatic radicals which can be mononuclear or polynuclear.
  • heterocyclic-aromatic radicals in particular, these have one or two oxygen, nitrogen or Sulfur atoms in the aromatic nucleus.
  • Polynuclear aromatic radicals may be condensed with one another or linked to one another via C-C bonds or via bridging groups, such as, for example, -O-, -CH 2 -, -S-, -CO- or -SO 2 .
  • Examples of preferred divalent aromatic radicals, their valence bonds are in meta or in a comparable angled position to each other are mononuclear aromatic radicals with mutually meta-free valences, in particular 1,3-phenylene or binuclear condensed aromatic radicals with mutually angled bonds, in particular 1,6- and 2,7-naphthylene, or binuclear aromatic residues linked via a C-C bond with mutually angled bonds, in particular 3,4'-biphenylene.
  • Lower proportions, for example up to 5 mol% of the monomer units, based to the polymer, may be aliphatic or cycloaliphatic nature, For example, represent alkylene or cycloalkylene units.
  • alkylene radicals is branched and in particular straight-chain alkylene to for example, alkylene having two to four carbon atoms, especially ethylene.
  • cycloalkylene radicals are radicals having from five to eight To understand carbon atoms, in particular cyclohexylene.
  • substituents are alkyl, alkoxy or halogen.
  • Alkyl radicals include branched and in particular straight-chain alkyl For example, alkyl having one to six carbon atoms, in particular Methyl.
  • Alkoxy radicals include branched and in particular straight-chain alkoxy for example, alkoxy of one to six carbon atoms, especially methoxy.
  • radicals halogen it is, for example, to Fluorine, bromine or especially chlorine.
  • dicarboxylic acid unit in the aromatic polyamides containing the recurring structural units of the formulas I, II and optionally III sets preferably terephthalic acid units.
  • the preferred cut-resistant fibers employ particularly aromatic copolyamides containing the recurring structural units of formulas III and IV or of formulas III and VI or of formulas III, IV and V or of formulas III, IV and VI or of formulas IV, V and VI contain -OC-Ar 1 -CO-NH-Ar 4 -NH- -OC-Ar 1 -CO-NH-Ar 5 -Q-Ar 6 -NH- -OC-Ar 1 -CO-NH-Ar 7 -Y-Ar 8 -NH- in which Ar 1 and Ar 4, independently of one another, represent a divalent mononuclear or polynuclear aromatic radical whose free valences are in the para position or in a parallel or coaxial position comparable to this position, in particular mononuclear or binuclear aromatic radicals, Ar 5 and Ar 6 independently represent a divalent mononuclear or polynuclear aromatic radical whose free valences are in the para position or in a position comparable to this position
  • Examples of preferred diamine combinations that have these preferred repeating structural units of the formulas III and IV or of the formulas III and VI or Formulas III, IV and V or Formulas III, IV and VI, are 1,4-phenylenediamine and 3,4'-diaminodiphenyl ether; 1,4-phenylenediamine, 4,4'-diaminodiphenylmethane and 3,3'-dichloro, 3,3'-dimethyl or 3,3'-dimethoxybenzidine; and 1,4-phenylenediamine, 1,4-bis (aminophenoxy) benzene and 3,3'-dichloro, 3,3'-dimethyl or 3,3'-dimethoxybenzidine; and 1,4-phenylenediamine, 3,4'-diaminodiphenyl ether and 3,3'-dichloro, 3,3'-dimethyl or 3,3'-dimethoxybenzidine; and 1,4-phenylenediamine, 3,4'-d
  • Aramids derived from such combinations of diamines and preferred according to the present invention are disclosed in part in EP-A-199,090, EP-A-364,891, EP-A-364,892, EP-A-364,893 and EP-A-424,860 described.
  • aromatic polyamides to be used according to the invention are per se known.
  • the polycondensation and the production of fibers from the invention coaramides to be used is carried out according to methods known per se, such as these e.g. have been described in the above-mentioned writings.
  • the meddling of the filler and the production of filler-containing fibers, for example take place according to the method described in EP-A-662,534.
  • the aromatic copolyaramides to be used according to the invention must be suitable for the fiber production have sufficient molecular weight.
  • a sufficient molecular chain length of the invention to be used Copolyaramide is present, for example, when the viscosity of the at Polycondensation obtained polymer solution of an inherent viscosity of the Polymer of more than 2.5 dl / g, preferably 2.5 to 7.0 dl / g corresponds.
  • ⁇ rel means the relative viscosity, c the applied concentration in g / 100 ml.
  • the filler used in the fibers of the present invention has all generally a Mohs hardness of greater than or equal to 3, preferably greater than or equal to 5 on.
  • fillers can be used any materials, ie semi-metals or preferably metals or non-metals and alloys of these materials, if they have the above-defined hardness.
  • Preferably used metals are, for example, aluminum, iron, nickel, stainless steel, copper, zinc, tantalum, titanium, tungsten or mixtures thereof.
  • metal alloys with tungsten as Alloy component having a Mohs hardness of 6.5 to 7.5.
  • non-metals are, for example, metal oxides, such as alumina; Metal carbides, such as tungsten carbide; Metal nitrides, metal silicates, Metal sulfates, metal phosphates, metal borides or mixtures thereof. Furthermore it is also possible to use ceramic materials.
  • the proportion of the filler in the fiber according to the invention is in any case so Choose the cut resistance in comparison with the unmodified fiber is increased, for example by at least more than 8% (measured after the CPP) test. Surprisingly, the remaining mechanical properties the fibers, such as tensile strength or modulus, through the use of the filler only insignificantly impaired. For example, the tensile strength of a filled decreases Fiber with increased cut resistance to about 205 cN / tex, compared to the Tensile strength of about 215 cN / tex of unfilled fiber.
  • Typical amounts of filler are in the range of less than 25% by weight. based on the weight of the fiber, preferably in the range of 0.05 to 20 Wt.%.
  • the particle shape of the filler used can be arbitrary; for example, spherical or elliptical or irregular.
  • the filler will for example, mixed in the form of a powder.
  • the filler has an average particle diameter of smaller equal to 20 microns, in particular from 0.05 to 5 microns.
  • fibers is in its broadest meaning in the context of this invention to understand; This includes, for example, staple fibers or in particular Filaments of any denier, including monofilaments.
  • the fibers according to the invention are distinguished by excellent mechanical properties Properties such as high tensile strength and initial moduli and low Elongation at break, as well as by the above-mentioned increased cut resistance.
  • the fibers of the invention preferably have single filament titres of greater equal to 0.6 dtex, in particular from 1 to 20 dtex, on.
  • the tensile strength of the fibers of the invention is preferably 150 to 300 cN / tex.
  • the initial modulus, based on 100% elongation, of the fibers according to the invention is preferably 20 to 120 N / tex.
  • the cross-sectional shape of the fibers according to the invention can be arbitrary, for example triangular, tri- or multilobal or in particular elliptical or round.
  • the fibers according to the invention can be used for the production of protective clothing, Use anti-vandal textiles and composites.
  • the use of Fibers for these purposes is also an object of the present invention.
  • the fibers of the invention are generally in the form of yarns used. These may be secondary spun yarns or preferably to act multifilament yarns. Typical yarn titers are in the range of 50 up to 9000 dtex.
  • Yarns containing the fibers of the invention are also an article of the present invention.
  • a preferred embodiment relates to blended yarns containing the Fibers and fibers of inorganic materials, such as glass, according to the invention, Boron, carbon, metals or ceramic materials. Such blended yarns are characterized by a further increased cutting resistance.
  • a fiber consisting of an aromatic copolyamide derived from terephthaloyl chloride, 50 mole% 3,3'-dimethylbenzidine, 25 mole% p-phenylenediamine and 25 mole% 1,4-bis (4-aminophenoxy) benzene and 0.5 wt% alumina was compared in terms of tensile strength and cut resistance with an unfilled fiber of the same aromatic copolyamide. The following values were determined: Cut resistance (CPP test) Grams per cm 2 [Ounce per squ. yard] tensile strenght CN / tex unfilled fiber 0.33 (96) 212 filled fiber 0.37 (110) 203

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Artificial Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

Die vorliegende Erfindung betrifft Aramidfasern, die eine verbesserte Schnittresistenz aufweisen.
Beim Schmelzspinnen werden faserbildendenden Polymeren üblicherweise Feststoffe, wie Titandioxid oder kolloider Quarz, als Mattierungsmittel beigemischt. Auch der Zusatz anderer Feststoffe, beispielsweise zum Erzeugen magnetischer Eigenschaften ist an sich bekannt. Beispiele dafür sind in der JP-A-55-098,909 oder in der JP-A-3-130,413 zu finden. Der Einsatz derartiger Mattierungsmittel in lösungsgesponnenen Aramidfasern ist bislang nicht üblich.
Der Zusatz von Metallen bei der Herstellung von Schutzbekleidung ist ebenfalls bereits beschrieben worden. Derartige Produkte werden z.B. in den US-A-2,328,105 oder US-A-5,020,161 offenbart.
Schnittresistente Handschuhe wurden ebenfalls bereits beschrieben. Aus den US-A-4,004,295, -4,384,449, -4,470,251 und aus der EP-A-458,343 sind Handschuhe bekannt, die aus hochfesten Fasern bestehen oder die aus Garnen enthaltend Metalldrähte hergestellt worden sind.
Aus der EP-A-599,231 sind Fasern enthaltend flüssigkristalline Polymere bekannt, die mit Füllstoffen einer Härte nach Mohs von wenigstens 3 ausgerüstet sind. In dieser Schrift werden unter anderem auch flüssigkristalline aromatische Polyamide als faserbildendes Material beschrieben.
Aromatische Polyamide (Aramide) sind bekanntlich Rohstoffe von hoher thermischer und chemischer Stabilität sowie geringer Brennbarkeit. So zeigen beispielsweise Fasern und Folien aus solchen Rohstoffen sehr gute mechanische Eigenschaften, wie hohe Festigkeit und hohen Anfangsmodul (Elastizitätsmodul) und sind für technische Einsatzgebiete gut geeignet - beispielsweise zur Verstärkung von Kunststoffen oder als Filtermaterialien.
Es ist bekannt, daß Fäden oder Fasern aus Polyaramiden mit hoher Festigkeit und hohem Anfangsmodul hergestellt werden können, wenn die Amidbindungen an den aromatischen Kernen koaxial oder nahezu parallel zueinander orientiert sind, wodurch starre, stäbchenförmige Polymermoleküle entstehen. Ein typisches Polyamid dieser Art ist beispielsweise Poly-(p-phenylenterephthalamid).
Neben derartigen aromatischen Polyamiden, die infolge ihrer Unlöslichkeit in polaren organischen Lösungsmitteln schwierig herzustellen und zu verarbeiten sind, wurden Copolyamide entwickelt, welche eine gute Löslichkeit in den bekannten Amid-Lösungsmitteln haben, die sich auch gut verspinnen lassen und deren Filamente sich nach Verstreckung durch hohe Festigkeitswerte und Anfangsmoduli auszeichnen. Beispiele für derartige aromatische Copolyamide finden sich in der DE-PS-2,556,883, in der DE-A-3,007,063, und in den EP-A-199,090, EP-A-364,891, EP-A-364,892, EP-A-364,893 und EP-A-424,860 beschrieben.
Es wurde jetzt gefunden, daß die schon von Haus aus gute Schnittresistenz von Fasern aus derartigen Copolyamiden noch erheblich und über das erwartete Maß hinausgehend verbessert werden kann. Die Schnittresistenz derartiger Fasern, ermittelt nach der sogenannten Cut Protection Performance Test (CCP-Test), liegt üblicherweise mehr als ca. 8 % über derjenigen von Fasern aus unlöslichen Amiden.
Die vorliegende Erfindung betrifft schnittresistente Fasern enthaltend einen Füllstoff mit einer Härte nach Mohs von größer gleich 3 und als faserbildendes Material ein in polaren aprotischen organischen Lösungsmitteln lösliches aromatisches Polyamid enthaltend die wiederkehrenden Struktureinheiten der Formeln I, II und gegebenenfalls IIa -OC-Ar1-CO-NH-Ar2-NH- -OC-Ar1-CO-NH-Ar3-NH -OC-Ar1-CO-NH-Ar3a-NH worin Ar1, Ar2, Ar3 und Ar3a unabhängig voneinander einen zweiwertigen ein- oder mehrkernigen aromatischen Rest darstellen, dessen freie Valenzen sich in para-Stellung oder in meta-Stellung oder in einer zu diesen Stellungen vergleichbaren parallelen, koaxialen oder gewinkelten Stellung zueinander befinden, und
Ar2, Ar3 und gegebenenfalls Ar3a im Einzelfall jeweils unterschiedliche im Rahmen der gegebenen Definitionen liegende Bedeutungen annehmen, und wobei die jeweiligen dem Polymeren zugrundeliegenden Monomerbausteine so ausgewählt werden, daß sich ein in organischen Lösungsmitteln lösliches und vorzugsweise isotrope Lösungen bildendes aromatisches Polyamid ergibt.
Bei den in den erfindungsgemäßen Fasern einzusetzenden Polymeren handelt es sich um Aramide, die zu einem wesentlichen Anteil para-aromatischen Monomeren aufgebaut sind, und die in polaren aprotischen organischen Lösungsmitteln löslich sind.
Unter löslichem aromatischen Polyamid ist im Rahmen dieser Erfindung ein aromatisches Polyamid zu verstehen, daß bei 25°C eine Löslichkeit in N-Methylpyrrolidon von mindestens 50 g/l aufweist.
Vorzugsweise enthält das polare aprotische organische Lösungsmittel zumindest ein Lösungsmittel vom Amidtyp, wie z.B. N-Methyl-2-pyrrolidon, N,N-Dimethylacetamid, Tetramethylharnstoff, N-Methyl-2-piperidon, N,N'-Dimethylethylenharnstoff, N,N,N',N'-Tetramethylmaleinsäureamid, N-Methylcaprolactam, N-Acetylpyrrolidin, N,N-Diethylacetamid, N-Ethyl-2-pyrrolidon, N,N'-Dimethylpropionsäureamid, N,N-Dimethylisobutylamid, N-Methylformamid, N,N'-Dimethylpropylenharnstoff. Für das erfindungsgemäße Verfahren sind die bevorzugten organischen Lösungsmittel N-Methyl-2-pyrrolidon, N,N-Dimethylacetamid und eine Mischung dieser Verbindungen.
Bei den erfindungsgemäß einzusetzenden aromatischen Polyamiden (im folgenden auch aromatische Copolyamide genannt) handelt es sich um Verbindungen, die in polaren aprotischen organischen Lösungsmitteln vorzugsweise unter der Ausbildung isotroper Lösungen löslich sind und die mindestens zwei, insbesondere drei verschiedene sich in den Diamineinheiten unterscheidende wiederkehrende Struktureinheiten gemäß der obigen Definition aufweisen.
Bedeuten irgendwelche Reste zweiwertige aromatische Reste, deren Valenzbindungen sich in para- oder in vergleichbarer koaxialer oder paralleler Position zueinander befinden, so handelt es sich dabei um ein- oder mehrkernige aromatische Kohlenwasserstoffreste oder um heterocyclisch-aromatische Reste, die ein- oder mehrkernig sein können. Im Falle von heterocyclisch-aromatischen Resten weisen diese insbesondere ein oder zwei Sauerstoff-, Stickstoff- oder Schwefelatome im aromatischen Kern auf.
Mehrkernige aromatische Reste können miteinander kondensiert sein oder über C-C-Bindungen oder über -CO-NH- Gruppen linear miteinander verbunden sein.
Die Valenzbindungen, die in koaxialer oder parallel zueinander befindlicher Stellung stehen, sind entgegengesetzt gerichtet. Ein Beispiel für koaxiale, entgegengesetzt gerichtete Bindungen sind die Biphenyl-4,4'-en-Bindungen. Ein Beispiel für parallel, entgegegesetzt gerichtete Bindungen sind die Naphthalin-1,5- oder -2,6-Bindungen, während die Naphthalin-1,8-Bindungen parallel gleichgerichtet sind.
Beispiele für bevorzugte zweiwertige aromatische Reste, deren Valenzbindungen sich in para- oder in vergleichbarer koaxialer oder paralleler Position zueinander befinden, sind einkernige aromatische Reste mit zueinander para-ständigen freien Valenzen, insbesondere 1,4-Phenylen oder zweikernige kondensierte aromatische Reste mit parallelen, entgegengesetzt gerichteten Bindungen, insbesondere 1,4-, 1,5- und 2,6-Naphthylen, oder zweikernige über eine C-C Bindung verknüpfte aromatische Reste mit koaxialen, entgegengesetzt gerichteten Bindungen, insbesondere 4,4'-Biphenylen.
Bedeuten irgendwelche Reste zweiwertige aromatische Reste, deren Valenzbindungen sich in meta- oder in vergleichbarer gewinkelter Position zueinander befinden, so handelt es sich dabei um ein- oder mehrkernige aromatische Kohlenwasserstoffreste oder um heterocyclisch-aromatische Reste, die ein- oder mehrkernig sein können. Im Falle von heterocyclisch-aromatischen Resten weisen diese insbesondere ein oder zwei Sauerstoff-, Stickstoff- oder Schwefelatome im aromatischen Kern auf.
Mehrkernige aromatische Reste können miteinander kondensiert sein oder über C-C-Bindungen oder über Brückengruppen, wie z.B. -O-, -CH2-, -S-, -CO- oder -SO2miteinander verbunden sein.
Beispiele für bevorzugte zweiwertige aromatische Reste, deren Valenzbindungen sich in meta- oder in vergleichbarer gewinkelter Position zueinander befinden, sind einkernige aromatische Reste mit zueinander meta-ständigen freien Valenzen, insbesondere 1,3-Phenylen oder zweikernige kondensierte aromatische Reste mit zueinander gewinkelt gerichteten Bindungen, insbesondere 1,6- und 2,7-Naphthylen, oder zweikernige über eine C-C Bindung verknüpfte aromatische Reste mit zueinander gewinkelt gerichteten Bindungen, insbesondere 3,4'-Biphenylen.
Geringere Anteile, beispielsweise bis zu 5 Mol % der Monomereinheiten, bezogen auf das Polymere, können aliphatischer oder cycloaliphatischer Natur sein, beispielsweise Alkylen- oder Cycloalkyleneinheiten darstellen.
Unter Alkylenresten ist verzweigtes und insbesondere geradkettiges Alkylen zu verstehen, beispielsweise Alkylen mit zwei bis vier Kohlenstoffatomen, insbesondere Ethylen.
Unter Cycloalkylenresten sind beispielsweise Reste mit fünf bis acht Kohlenstoffatomen zu verstehen, insbesondere Cyclohexylen.
Alle diese aliphatischen, cycloaliphatischen oder aromatischen Reste können mit inerten Gruppen substituiert sein. Darunter sind Substituenten zu verstehen, die die ins Auge gefaßte Anwendung nicht negativ beeinflussen.
Beispiele für solche Substituenten sind Alkyl, Alkoxy oder Halogen.
Unter Alkylresten ist verzweigtes und insbesondere geradkettiges Alkyl zu verstehen, beispielsweise Alkyl mit ein bis sechs Kohlenstoffatomen, insbesondere Methyl.
Unter Alkoxyresten ist verzweigtes und insbesondere geradkettiges Alkoxy zu verstehen, beispielsweise Alkoxy mit ein bis sechs Kohlenstoffatomen, insbesondere Methoxy.
Bedeuten irgendwelche Reste Halogen, so handelt es sich dabei beispielsweise um Fluor, Brom oder insbesondere um Chlor.
Bevorzugt verwendet aromatische Polyamide auf der Basis von unsubstituierten Resten.
Als Dicarbonsäureeinheit in den aromatischen Polyamiden enthaltend die wiederkehrenden Struktureinheiten der Formeln I, II und gegebenenfalls III setzt man vorzugsweise Terephthalsäureeinheiten ein.
In den bevorzugten schnittresistenten Fasern werden besonders aromatische Copolyamide eingesetzt, die die wiederkehrenden Struktureinheiten der Formeln III und IV oder der Formeln III und VI oder der Formeln III, IV und V oder der Formeln III, IV und VI oder der Formeln IV, V und VI enthalten -OC-Ar1-CO-NH-Ar4-NH- -OC-Ar1-CO-NH-Ar5-Q-Ar6-NH- -OC-Ar1-CO-NH-Ar7-Y-Ar8-NH-
Figure 00070001
worin Ar1 und Ar4 unabhängig voneinander einen zweiwertigen ein- oder mehrkernigen aromatischen Rest darstellen, dessen freie Valenzen sich in para-Stellung oder in einer zu dieser Stellung vergleichbaren parallelen oder koaxialen Stellung zueinander befinden, insbesondere einkernige oder zweikernige aromatische Reste sind,
Ar5 und Ar6 unabhängig voneinander einen zweiwertigen ein- oder mehrkernigen aromatischen Rest darstellen, dessen freie Valenzen sich in para-Stellung oder in einer zu dieser Stellung vergleichbaren parallelen oder koaxialen Stellung zueinander befinden, oder worin Ar6 zusätzlich einen zweiwertigen ein- oder mehrkernigen aromatischen Rest darstellen kann, dessen freie Valenzen sich in meta-Stellung oder in einer zu dieser Stellung vergleichbaren gewinkelten Stellung zueinander befinden,
Q eine direkte C-C-Bindung oder eine Gruppe der Formel -O-, -S-, -SO2-, -O-Phenylen-O- oder Alkylen ist,
Ar7 und Ar8 eine der für Ar5 und Ar6 definierten Bedeutungen annehmen,
Y eine der für Q definierten Bedeutungen annimmt oder zusätzlich eine Gruppe der Formel -HN-CO- bedeuten kann, und
X eine Gruppe der Formel -O-, -S- oder insbesondere -NR1- bedeutet, worin R1 Alkyl, Cycloalkyl, Aryl, Aralkyl oder insbesondere Wasserstoff ist.
Besonders bevorzugt werden schnittresistente Fasern enthaltend aromatische Copolyamide mit den wiederkehrenden Struktureinheiten der Formeln III, IV und V, worin Ar1 1,4-Phenylen ist, Ar4 1,4-Phenylen oder ein zweiwertiger Rest des 4,4'-Diaminobenzanilids ist, Ar5, Ar6 und Ar7 1,4-Phenylen darstellen, Ar8 1,3-Phenylen bedeutet, Q -O-1,4-Phenylen-O- ist und Y -O- ist; dabei werden diejenigen aromatischen Copolyamide besonders bevorzugt eingesetzt, bei denen sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln III, IV und V sich innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
  • wiederkehrende Struktureinheit der Formel III: 40-60 Mol%,
  • wiederkehrende Struktureinheit der Formel IV: 1-20 Mol%, und
  • wiederkehrende Struktureinheit der Formel V: 15-40 Mol%.
  • Ebenfalls besonders bevorzugt werden schnittresistente Fasern enthaltend aromatische Copolyamide mit den wiederkehrenden Struktureinheiten der Formeln III, IV und V, worin Ar1 1,4-Phenylen ist, Ar4 1,4-Phenylen oder ein zweiwertiger Rest des 4,4'-Diaminobenzanilids ist, Ar5 und Ar6 1,4-Phenylen darstellen, Ar7 und Ar8 methyl-, methoxy- oder chlorsubstituiertens 1,4-Phenylen bedeuten, Q -O-1,4-Phenylen-O- ist und Y eine direkte C-C-Bindung ist; dabei werden diejenigen aromatischen Copolyamide besonders bevorzugt eingesetzt, bei denen sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln III, IV und V sich innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
  • wiederkehrende Struktureinheit der Formel III: 10-30 Mol%,
  • wiederkehrende Struktureinheit der Formel IV: 10-30 Mol%, und
  • wiederkehrende Struktureinheit der Formel V: 10-60 Mol%.
  • Ebenfalls besonders bevorzugt werden schnittresistente Fasern enthaltend aromatische Copolyamide mit den wiederkehrenden Struktureinheiten der Formeln III, IV und V, worin Ar1 1,4-Phenylen ist, Ar4 1,4-Phenylen oder ein zweiwertiger Rest des 4,4'-Diaminobenzanilids ist, Ar5 und Ar6 1,4-Phenylen darstellen, Ar7 und Ar8 methyl-, methoxy- oder chlorsubstituiertens 1,4-Phenylen bedeuten, Q -O- ist und Y eine direkte C-C-Bindung ist; dabei werden diejenigen aromatischen Copolyamide besonders bevorzugt eingesetzt, bei denen sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln III, IV und V sich innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
  • wiederkehrende Struktureinheit der Formel III: 10-30 Mol%,
  • wiederkehrende Struktureinheit der Formel IV: 10-30 Mol%, und
  • wiederkehrende Struktureinheit der Formel V: 10-60 Mol%.
  • Ebenfalls besonders bevorzugt werden schnittresistente Fasern enthaltend aromatische Copolyamide mit den wiederkehrenden Struktureinheiten der Formeln III und IV, worin Ar1 1,4-Phenylen ist, Ar4 1,4-Phenylen oder ein zweiwertiger Rest des 4,4'-Diaminobenzanilids ist, Ar5 1,4-Phenylen ist, Ar6 1,3-Phenylen ist und Q - O- ist; dabei werden diejenigen aromatischen Copolyamide besonders bevorzugt eingesetzt, bei denen sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln III und IV sich innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
  • wiederkehrende Struktureinheit der Formel III: 20-50 Mol%, und
  • wiederkehrende Struktureinheit der Formel IV: 40-60 Mol%.
  • Ebenfalls besonders bevorzugt werden schnittresistente Fasern enthaltend aromatische Copolyamide mit den wiederkehrenden Struktureinheiten der Formeln III und VI, worin Ar1 1,4-Phenylen ist, Ar4 1,4-Phenylen oder ein zweiwertiger Rest des 4,4'-Diaminobenzanilids ist und X -NH- bedeutet; dabei werden diejenigen aromatischen Copolyamide besonders bevorzugt eingesetzt, bei denen sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln III und VI sich innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
  • wiederkehrende Struktureinheit der Formel III: 30 - 70 Mol%, und
  • wiederkehrende Struktureinheit der Formel VI: 70 - 30 Mol%.
  • Ebenfalls besonders bevorzugt werden schnittresistente Fasern enthaltend aromatische Copolyamide mit den wiederkehrenden Struktureinheiten der Formeln III, IV und VI, worin Ar1 1,4-Phenylen ist, Ar4 1,4-Phenylen oder ein zweiwertiger Rest des 4,4'-Diaminobenzanilids ist, Ar5 1,4-Phenylen ist, Ar6 1,4- oder 1,3-Phenylen ist, Q -O- oder -O-1,4-Phenylen-O- bedeutet und X -NH- ist; dabei werden diejenigen aromatischen Copolyamide besonders bevorzugt eingesetzt, bei denen sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln III, IV und VI sich innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
  • wiederkehrende Struktureinheit der Formel III: 10 - 30 Mol%,
  • wiederkehrende Struktureinheit der Formel IV: 10 - 40 Mol%, und
  • wiederkehrende Struktureinheit der Formel VI: 50 - 70 Mol%.
  • Ebenfalls besonders bevorzugt werden schnittresistente Fasern enthaltend aromatische Copolyamide mit den wiederkehrenden Struktureinheiten der Formeln IV, V und VI, worin Ar1 1,4-Phenylen ist, Ar5 1,4-Phenylen ist, Ar6 1,4- oder 1,3-Phenylen ist, Q -O- oder -O-1,4-Phenylen-O- bedeutet, Ar7 und Ar8 methyl-, methoxy- oder chlorsubstituiertes 1,4-Phenylen ist, Y eine direkte C-C-Bindung bedeutet und X -NH- ist; dabei werden diejenigen aromatischen Copolyamide besonders bevorzugt eingesetzt, bei denen sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln IV, V und VI sich innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
  • wiederkehrende Struktureinheit der Formel IV: 10 - 40 Mol%,
  • wiederkehrende Struktureinheit der Formel V: 30 - 60 Mol%, und
  • wiederkehrende Struktureinheit der Formel VI: 50 - 70 Mol%.
  • Beispiele für bevorzugte Diaminkombinationen, die diesen bevorzugten wiederkehrenden Struktureinheiten der Formeln III und IV oder der Formeln III und VI oder der Formeln III, IV und V oder der Formeln III, IV und VI zugrundeliegen, sind 1,4-Phenylendiamin und 3,4'-Diaminodiphenylether; 1,4-Phenylendiamin, 4,4'-Diaminodiphenylmethan und 3,3'-Dichlor-, 3,3'-Dimethyl- oder 3,3'-Dimethoxybenzidin; sowie 1,4-Phenylendiamin, 1,4-Bis-(aminophenoxy)-benzol und 3,3'-Dichlor-, 3,3'-Dimethyl- oder 3,3'-Dimethoxybenzidin; sowie 1,4-Phenylendiamin, 3,4'-Diaminodiphenylether und 3,3'-Dichlor-, 3,3'-Dimethyl- oder 3,3'-Dimethoxybenzidin; sowie 1,4-Phenylendiamin, 3,4'-Diaminodiphenylether und 4,4'-Diaminobenzanilid; sowie 1,4-Phenylendiamin, 1,4-Bis-(aminophenoxy)-benzol und 3,4'-Diaminodiphenylether; sowie 1,4-Phenylendiamin und 5(6)-Amino-2-(para-aminophenyl)-benzimidazol; sowie 1,4-Phenylendiamin, 5(6)-Amino-2-(para-aminophenyl)-benzimidazol und 3,3'-Dichlor-, 3,3'-Dimethyl- oder 3,3'-Dimethoxybenzidin; sowie 1,4-Phenylendiamin, 5(6)-Amino-2-(para-aminophenyl)-benzimidazol und 3,4'-Diaminodiphenylether; sowie 3,3'-Dichlor-, 3,3'-Dimethyl- oder 3,3'-Dimethoxybenzidin, 5(6)-Amino-2-(para-aminophenyl)-benzimidazol und 1,4-Bis-(aminophenoxy)-benzol; sowie 5(6)-Amino-2-(para-aminophenyl)-benzimidazol, 3,3'-Dichlor-, 3,3'-Dimethyl- oder 3,3'-Dimethoxybenzidin und 3,4'-Diaminodiphenylether; sowie 1,4-Phenylendiamin, 5(6)-Amino-2-(para-aminophenyl)-benzimidazol und 1,4-Bis-(aminophenoxy)-benzol.
    Aramide, die sich von solchen Diaminkombinationen ableiten und die sich bevorzugt gemäß der vorliegenden Erfindung einsetzen lassen, sind zum Teil in den EP-A-199,090, EP-A-364,891, EP-A-364,892, EP-A-364,893 und EP-A-424,860 beschrieben.
    Die erfindungsgemäß einzusetzenden aromatischen Polyamide sind an sich bekannt.
    Die Polykondensation und die Herstellung von Fasern aus den erfindungsgemäß einzusetzenden Coaramiden erfolgt nach an sich bekannten Verfahren, wie diese z.B. in den oben aufgeführten Schriften beschrieben worden sind. Das Einmischen des Füllstoffes und die Herstellung von füllstoffhaltigen Fasern kann beispielsweise nach dem in der EP-A- 662,534 beschriebenen Verfahren erfolgen.
    Die erfindungsgemäß einzusetzenden aromatischen Copolyaramide müssen ein für die Faserherstellung ausreichendes Molekulargewicht aufweisen. Eine ausreichende Molekül-Kettenlänge der erfindungsgemäß einzusetzenden Copolyaramide liegt beispielsweise vor, wenn die Viskosität der bei der Polykondensation erhaltenen Polymerlösung einer inhärenten Viskosität des Polymers von mehr als 2,5 dl/g, vorzugsweise 2,5 bis 7,0 dl/g, entspricht.
    Unter inhärenter Viskosität wird der Ausdruck ηinh = In ηrel c verstanden.
    ηrel bedeutet dabei die relative Viskosität, c die angewandte Konzentration in g/100 ml.
    Sie wird für die Zwecke der vorliegenden Erfindung bestimmt an 0,25 %igen Lösungen von Polymer in N-Methylpyrrolidon bei 25°C.
    Der in den erfindungsgemäßen Fasern zum Einsatz kommende Füllstoff weist ganz allgemein eine Härte nach Mohs von größer gleich 3, vorzugsweise größer gleich 5 auf.
    Als Füllstoffe lassen sich beliebige Materialien einsetzen, also Halbmetalle oder vorzugsweise Metalle oder Nichtmetalle sowie Legierungen dieser Materialien, sofern diese die oben definierte Härte aufweisen.
    Bevorzugt eingesetzte Metalle sind beispielsweise Aluminium, Eisen, Nickel, rostfreier Stahl, Kupfer, Zink, Tantal, Titan, Wolfram oder Mischungen davon.
    Besonders bevorzugt werden Metallegierungen mit Wolfram als Legierungsbestandteil, die eine Härte nach Mohs von 6,5 bis 7,5 aufweisen.
    Bevorzugt eingesetzte Nichtmetalle sind beispielsweise Metalloxide, wie Aluminiumoxid; Metallcarbide, wie Wolframcarbid; Metallnitride, Metallsilikate, Metallsulfate, Metalphosphate, Metallboride oder Mischungen davon. Des weiteren können auch keramische Materialien eingesetzt werden.
    Der Anteil des Füllstoffes in der erfindungsgemäßen Faser ist auf jeden Fall so zu wählen, daß die Schnittresistenz im Vergleich mit der unmodifizierten Faser vergrößert ist, beispielsweise um mindestens mehr als 8 % (gemessen nach dem CPP-Test). Überraschenderweise werden die übrigen mechanischen Eigenschaften der Fasern, wie Zugfestigkeit oder Modul, durch den Einsatz des Füllstoffes nur unwesentlich beeinträchtigt. So sinkt beispielsweise die Zugfestigkeit einer gefüllten Faser mit erhöhter Schnittfestigkeit auf etwa 205 cN/tex, verglichen mit der Zugfestigkeit von etwa 215 cN/tex der ungefüllten Faser.
    Typische Mengen an Füllstoff bewegen sich im Bereich von weniger als 25 Gew.%, bezogen auf das Gewicht der Faser, vorzugsweise im Bereich von 0,05 bis 20 Gew.%.
    Die Partikelform des zum Einsatz kommenden Füllstoffes kann beliebig sein; beispielsweise kugel- oder ellipsenförmig oder auch irregulär. Der Füllstoff wird beispielsweise in Form eines Pulvers eingemischt.
    Vorzugsweise weist der Füllstoff einen mittleren Teilchendurchmesser von kleiner gleich 20 µm, insbesondere von 0,05 bis 5 µm auf.
    Der Begriff "Fasern" ist im Rahmen dieser Erfindung in seiner breitesten Bedeutung zu verstehen; dazu zählen also zum Beispiel Stapelfasern oder insbesondere Filamente beliebiger Titer, einschließlich von Monofilamenten.
    Die erfindungsgemäßen Fasern zeichnen sich durch ausgezeichnete mechanische Eigenschaften, wie hohe Reißfestigkeiten und Anfangsmoduli und niedrige Reißdehnungen, sowie durch die oben erwähnte erhöhte Schnittresistenz aus.
    Die erfindungsgemäßen Fasern weisen vorzugsweise Einzelfilamenttiter von größer gleich 0,6 dtex, insbesondere von 1 bis 20 dtex, auf.
    Die Zugfestigkeit der erfindungsgemäßen Fasern beträgt vorzugsweise 150 bis 300 cN/tex.
    Der Anfangsmodul, bezogen auf 100 % Dehnung, der erfindungsgemäßen Fasern beträgt vorzugsweise 20 bis 120 N/tex.
    Die Querschnittsform der erfindungsgemäßen Fasern kann beliebig sein, beispielsweise dreieckig, tri- oder multilobal oder insbesondere elliptisch oder rund.
    Die erfindungsgemäßen Fasern lassen sich zur Herstellung von Schutzkleidung, Antivandalismus-Textilien und Verbundwerkstoffen einsetzen. Die Verwendung der Fasern zu diesen Zwecken ist ebenfalls Gegenstand der vorliegenden Erfindung.
    Die erfindungsgemäßen Fasern werden im allgemeinen in Form von Garnen eingesetzt. Dabei kann es sich um sekundärgesponnene Garne oder vorzugsweise um Multifilamentgarne handeln. Typische Garntiter bewegen sich im Bereich von 50 bis 9000 dtex.
    Garne enthaltend die erfindungsgemäßen Fasern sind ebenfalls ein Gegenstand der vorliegenden Erfindung.
    Einer bevorzugte Ausführungsform betrifft Mischgarne enthaltend die erfindungsgemäßen Fasern und Fasern aus anorganischen Materialien, wie Glas, Bor, Kohlenstoff, Metallen oder keramischen Materialien. Derartige Mischgarne zeichnen sich durch eine nochmals erhöhte Schnittresistenz aus.
    Das nachfolgende Beispiel verdeutlicht die Erfindung.
    Beispiel 1:
    Eine Faser bestehend aus einem aromatischen Copolyamid abgeleitet von Terephthaloylchlorid, 50 Mol.-% 3,3'-Dimethylbenzidin, 25 Mol.-% p-Phenylendiamin und 25 Mol.-% 1,4-Bis-(4-aminophenoxy)-benzol und aus 0,5 Gew.-% Aluminiumoxid wurde hinsichtlich der Zugfestigkeit und der Schnittfestigkeit mit einer ungefüllten Faser aus demselben aromatischen Copolyamid verglichen. Es wurden folgende Werte ermittelt:
    Schnittfestigkeit (CPP-Test)
    Gramm pro cm2
    [ounze per squ. yard]
    Zugfestigkeit
    cN/tex
    ungefüllte Faser 0,33 (96) 212
    gefüllte Faser 0,37 (110) 203

    Claims (21)

    1. Schnittresistente Faser enthaltend einen Füllstoff mit einer Härte nach Mohs von größer/gleich 3 und ein faserbildendes Material aus einem aromatischen Copolyamid, das die wiederkehrenden Struktureinheiten der Formeln I, II und gegebenenfalls IIa -OC-Ar1-CO-NH-Ar2-NH- -OC-Ar1-CO-NH-Ar3-NH- -OC-Ar1-CO-NH-Ar3a-NH- enthält, worin Ar1, Ar2, Ar3 und Ar3a unabhängig voneinander ein zweiwertiger ein- oder mehrkerniger aromatischer Rest ist, dessen freie Valenzen sich in para-Stellung oder in meta-Stellung oder in einer zu diesen Stellungen vergleichbaren parallelen, koaxialen oder gewinkelten Stellung zueinander befinden, und Ar2, Ar3 und gegebenenfalls Ar3a im Einzelfall jeweils unterschiedliche im Rahmen der gegebenen Definitionen liegende Bedeutungen annehmen, wobei die jeweiligen dem Polymeren zugrunde liegenden Monomerbausteine so ausgewählt sind, dass sie das aromatische Copolyamid bilden, das in polaren aprotischen organischen Lösungsmitteln isotrope Lösungen ergibt, in die der Füllstoff eingemischt ist und danach aus den Lösungen die Faser spinnbar ist.
    2. Schnittresiste Faser nach Anspruch 1, dadurch gekennzeichnet, daß das aromatische Copolyamid die wiederkehrenden Struktureinheiten der Formeln III und IV oder der Formeln III und VI oder der Formeln III, IV und V oder der Formeln III, IV und VI oder der Formeln IV, V und VI enthält -OC-Ar1-CO-NH-Ar4-NH- -OC-Ar1-CO-NH-Ar5-Q-Ar6-NH- -OC-Ar1-CO-NH-Ar7-Y-Ar8-NH-
      Figure 00170001
      worin Ar1 und Ar4 unabhängig voneinander einen zweiwertigen ein- oder mehrkernigen aromatischen Rest darstellen, dessen freie Valenzen sich in para-Stellung oder in einer zu dieser Stellung vergleichbaren parallelen oder koaxialen Stellung zueinander befinden, insbesondere einkernige oder zweikernige aromatische Reste sind,
      Ar5 und Ar6 unabhängig voneinander einen zweiwertigen ein- oder mehrkernigen aromatischen Rest darstellen, dessen freie Valenzen sich in para-Stellung oder in einer zu dieser Stellung vergleichbaren parallelen oder koaxialen Stellung zueinander befinden, oder worin Ar6 zusätzlich einen zweiwertigen ein- oder mehrkernigen aromatischen Rest darstellen kann, dessen freie Valenzen sich in meta-Stellung oder in einer zu dieser Stellung vergleichbaren gewinkelten Stellung zueinander befinden,
      Q eine direkte C-C-Bindung oder eine Gruppe der Formel -O-, -S-, -SO2-, -O-Phenylen-O- oder Alkylen ist,
      Ar7 und Ar8 eine der für Ar5 und Ar6 definierten Bedeutungen annehmen,
      Y eine der für Q definierten Bedeutungen annimmt oder zusätzlich eine Gruppe de Formel -HN-CO- bedeuten kann, und
      X eine Gruppe der Formel -O-, -S- oder insbesondere -NR1- bedeutet, worin R1 Alkyl, Cycloalkyl, Aryl, Aralkyl oder insbesondere Wasserstoff ist.
    3. Schnittresiste Faser nach Anspruch 2, dadurch gekennzeichnet, daß aromatischen Copolyamide die wiederkehrenden Struktureinheiten der Formeln III IV und V enthalten, worin Ar1 1,4-Phenylen ist, Ar4 1,4-Phenylen oder ein zweiwertiger Rest des 4,4'-Diaminobenzanilids ist, Ar5, Ar6 und Ar7 1,4-Phenylen darstellen, Ar8 1,3-Phenylen bedeutet, Q -O-1,4-Phenylen-O- ist und Y -O- ist, wobei sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln III, IV und V vorzugsweise innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
      wiederkehrende Struktureinheit der Formel III: 40-60 Mol%,
      wiederkehrende Struktureinheit der Formel IV: 1-20 Mol%, und
      wiederkehrende Struktureinheit der Formel V: 15-40 Mol%
    4. Schnittresiste Fasern nach Anspruch 2, dadurch gekennzeichnet, daß die aromatischen Copolyamide die wiederkehrenden Struktureinheiten der Formeln III, IV und V enthalten, worin Ar1 1,4-Phenylen ist, Ar4 1,4-Phenylen oder ein zweiwertiger Rest des 4,4'-Diaminobenzanilids ist, Ar5 und Ar6 1,4-Phenylen darstellen, Ar7 und Ar8 methyl- methoxy- oder chlorsubstituiertens 1,4-Phenylen bedeuten, Q -O-1,4-Phenylen-O- ist und Y eine direkte C-C-Bindung ist, wobei sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln III, IV und V vorzugsweise innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
      wiederkehrende Struktureinheit der Formel III: 10-30 Mol%,
      wiederkehrende Struktureinheit der Formel IV: 10-30 Mol%, und
      wiederkehrende Struktureinheit der Formel V: 10-60 Mol%.
    5. Schnittresiste Fasern nach Anspruch 2, dadurch gekennzeichnet, daß die aromatischen Copolyamide die wiederkehrenden Struktureinheiten der Formeln III, IV und V enthalten, worin Ar1 1,4-Phenylen ist, Ar4 1,4-Phenylen oder ein zweiwertiger Rest des 4,4'-Diaminobenzanilids ist, Ar5 und Ar6 1,4-Phenylen darstellen Ar7 und Ar8 methyl-, methoxy- oder chlorsubstituiertens 1,4-Phenylen bedeuten, Q -O- ist und Y eine direkte C-C-Bindung ist, wobei sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln III, IV und V vorzugsweise innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
      wiederkehrende Struktureinheit des Formel III: 10-30 Mol%,
      wiederkehrende Struktureinheit der Formel IV: 10-30 Mol%, und
      wiederkehrende Struktureinheit der Formel V: 10-60 Mol%.
    6. Schnittresiste Fasern nach Anspruch 2, dadurch gekennzeichnet, daß die aromatischen Copolyamide die wiederkehrenden Struktureinheiten der Formeln III und IV enthalten, worin Ar1 1,4-Phenylen ist, Ar4 1,4-Phenylen oder ein zweiwertiger Rest des 4,4'-Diaminobenzanilids ist, Ar5 1,4-Phenylen ist, Ar6 1,3-Phenylen ist und Q -O- ist, wobei sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln III und IV vorzugsweise innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
      wiederkehrende Struktureinheit der Formel III: 20-50 Mol%, und
      wiederkehrende Struktureinheit der Formel IV: 40-60 Mol%.
    7. Schnittresiste Fasern nach Anspruch 2, dadurch gekennzeichnet, daß die aromatischen Copolyamide die wiederkehrenden Struktureinheiten der Formeln III und VI enthalten, worin Ar1 1,4-Phenylen ist, Ar4 1,4-Phenylen oder ein zweiwertiger Rest des 4,4'-Diaminobenzanilids ist und X -NH- bedeutet, wobei sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln III und VI vorzugsweise innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
      wiederkehrende Struktureinheit der Formel III: 30-70 Mol%, und
      wiederkehrende Struktureinheit der Formel VI: 70-30 Mol%.
    8. Schnittresiste Fasern nach Anspruch 2, dadurch gekennzeichnet, daß die aromatischen Copolyamide die wiederkehrenden Struktureinheiten der Formeln III, IV und VI enthalten, worin Ar1 1,4-Phenylen ist, Ar4 1,4-Phenylen oder ein zweiwertiger Rest des 4,4'-Diaminobenzanilids ist, Ar5 1,4-Phenylen ist, Ar6 1,4-oder 1,3-Phenylen ist, Q -O- oder -O-1,4-Phenylen-O- bedeutet und X -NH- ist, wobei sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln III, IV und VI vorzugsweise innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
      wiederkehrende Struktureinheit der Formel III: 10-30 Mol%,
      wiederkehrende Struktureinheit der Formel IV: 10-40 Mol%, und
      wiederkehrende Struktureinheit der Formel VI: 50-70 Mol%.
    9. Schnittresiste Fasern nach Anspruch 2, dadurch gekennzeichnet, daß die aromatischen Copolyamide die wiederkehrenden Struktureinheiten der Formeln IV, V und VI enthalten, worin Ar1 1,4-Phenylen ist, Ar5 1,4-Phenylen ist, Ar6 1,4- oder 1,3-Phenylen ist, Q -O- oder -O-1,4-Phenylen-O- bedeutet, Ar7 und Ar8 methyl-, methoxy- oder chlorsubstituiertes 1,4-Phenylen ist, Y eine direkte C-C-Bindung bedeutet und X -NH- ist, wobei sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln IV, V und VI vorzugsweise innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
      wiederkehrende Struktureinheit der Formel IV: 10-40 Mol%,
      wiederkehrende Struktureinheit der Formel V: 30-60 Mol%, und
      wiederkehrende Struktureinheit der Formel VI: 50-70 Mol%.
    10. Schnittresistente Faser nach Anspruch 1, dadurch gekennzeichnet, daß das polare aprotische organische Lösungsmittel zumindest ein Lösungsmittel vom Amidtyp enthält wie N-Methyl-2-pyrrolidon, N,N-Dimethylacetamid, Tetramethylharnstoff, N-Methyl-2-piperidon, N,N'-Dimethylethylenharnstoff, N,N,N',N'-Tetramethylmaleinsäureamid, N-Methylcaprolactam, N-Acetylpyrrolidin, N,N-Diethylacetamid, N-Ethyl-2-pyrrolidon, N,N'-Dimethylpropionsäureamid, N,N-Dimethylisobutylamid, N-Methylformamid, N,N'-Dimethylpropylenharnstoff.
    11. Schnittresistente Faser nach Anspruch 1, dadurch gekennzeichnet, daß der Füllstoff in einer Menge von 0,05 bis 20 Gew.% in der Faser enthalten ist.
    12. Schnittresistente Faser nach Anspruch 1, dadurch gekennzeichnet, daß der Füllstoff eine Härte nach Mohs von größer/gleich 5 aufweist.
    13. Schnittresistente Faser nach Anspruch 1, dadurch gekennzeichnet, daß der Füllstoff einen mittleren Teilchendurchmesser von kleiner/gleich 20 µm, vorzugsweise von 0,05 bis 5 µm aufweist.
    14. Schnittresistente Faser nach Anspruch 1, dadurch gekennzeichnet, daß die Teilchen des Füllstoffes die Form eines Ellipsoids aufweisen, das einen mittleren Teilchendurchmesser von kleiner/gleich 20 µm, vorzugsweise von 0,05 bis 5 µm besitzt.
    15. Schnittresistente Faser nach Anspruch 1, dadurch gekennzeichnet, daß der Füllstoff ein Metall und/oder eine Metallegierung ist, vorzugsweise Aluminium, Eisen, Nickel, rostfreier Stahl, Kupfer, Zink, Tantal, Titan, Wolfram oder Mischungen dieser Metalle.
    16. Schnittresistente Faser nach Anspruch 1, dadurch gekennzeichnet, daß der Füllstoff ein Nichtmetall ist, vorzugsweise ein Metalloxid, Metallcarbid, Metallnitrid, Metallsilikat, Metallsulfat, Metalphosphat, Metallborid oder Mischungen dieser Nichtmetalle.
    17. Schnittresiste Fasern nach Anspruch 1, dadurch gekennzeichnet, daß diese einen Einzelfilamenttiter von 1 bis 20 dtex aufweisen.
    18. Garne enthaltend die Fasern nach Anspruch 1.
    19. Garne nach Anspruch 18, dadurch gekennzeichnet, daß es sich dabei um Mischgarne enthaltend Fasern nach Anspruch 1 und Fasern aus anorganischen Materialien handelt.
    20. Garne nach Anspruch 18, dadurch gekennzeichnet, daß die Fasern aus anorganischen Materialien Fasern aus Glas, Bor, Kohlenstoff, Metallen oder keramischen Materialien sind.
    21. Verwendung der schnittresisten Fasern nach Anspruch 1 zur Herstellung von Schutzbekleidung,Antivandalismus-Textilien und Verbundwerkstoffen.
    EP97101675A 1996-02-15 1997-02-04 Schnittresistente Aramidfasern, Garne enthaltend diese Aramidfasern und dieser Verwendung Expired - Lifetime EP0790335B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19605511 1996-02-15
    DE19605511A DE19605511A1 (de) 1996-02-15 1996-02-15 Schnittresistente Aramidfasern, Garne enthaltend diese Aramidfasern und deren Verwendung

    Publications (2)

    Publication Number Publication Date
    EP0790335A1 EP0790335A1 (de) 1997-08-20
    EP0790335B1 true EP0790335B1 (de) 2005-06-15

    Family

    ID=7785416

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97101675A Expired - Lifetime EP0790335B1 (de) 1996-02-15 1997-02-04 Schnittresistente Aramidfasern, Garne enthaltend diese Aramidfasern und dieser Verwendung

    Country Status (3)

    Country Link
    US (1) US5738940A (de)
    EP (1) EP0790335B1 (de)
    DE (2) DE19605511A1 (de)

    Families Citing this family (15)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6162538A (en) * 1992-11-24 2000-12-19 Clemson University Research Foundation Filled cut-resistant fibers
    US6080474A (en) * 1997-10-08 2000-06-27 Hoechst Celanese Corporation Polymeric articles having improved cut-resistance
    WO1999036606A1 (en) * 1998-01-20 1999-07-22 Hna Holdings, Inc. Ballistic-resistant textile articles made from cut-resistant fibers
    FR2789094B1 (fr) * 1999-02-03 2001-05-25 Speed France Fil de coupe ou fil de peche en matiere synthetique
    KR20010070004A (ko) * 1999-07-29 2001-07-25 고오사이 아끼오 내열성 촉매 시트 및 이의 제조방법
    JP4831974B2 (ja) * 2005-01-27 2011-12-07 帝人テクノプロダクツ株式会社 防護衣料
    US20060182962A1 (en) * 2005-02-11 2006-08-17 Bucher Richard A Fluoropolymer fiber composite bundle
    US9334587B2 (en) 2005-02-11 2016-05-10 W. L. Gore & Associates, Inc. Fluoropolymer fiber composite bundle
    RU2382125C2 (ru) * 2005-07-06 2010-02-20 Колон Индастриз, Инк. Способ изготовления нити из ароматического полиамида
    US7559653B2 (en) * 2005-12-14 2009-07-14 Eastman Kodak Company Stereoscopic display apparatus using LCD panel
    KR101307655B1 (ko) * 2006-07-26 2013-09-12 데이진 가부시키가이샤 방향족 폴리아미드 섬유 및 그 제조 방법, 그리고 그것으로이루어지는 방호 의료
    RU2452799C2 (ru) * 2006-12-15 2012-06-10 Тейдзин Текно Продактс Лимитед Ароматическое полиамидное волокно на основе гетероциклсодержащего ароматического полиамида, способ его изготовления, ткань, образованная волокном, и армированный волокном композитный материал
    CN110709545B (zh) 2017-04-03 2022-06-24 帝斯曼知识产权资产管理有限公司 耐切割的经填充的伸长体
    US11598027B2 (en) 2019-12-18 2023-03-07 Patrick Yarn Mills, Inc. Methods and systems for forming a composite yarn
    KR102208801B1 (ko) * 2020-12-16 2021-01-28 김용건 고강력사 및 이를 이용한 장갑 제조방법

    Family Cites Families (24)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2328105A (en) 1940-12-28 1943-08-31 Louis J Strobino X-ray shield
    AU500143B2 (en) 1974-12-27 1979-05-10 Teijin Ltd Fiber or film-forming copolyamide
    US4004295A (en) 1975-12-30 1977-01-25 Byrnes Sr Robert M Protective glove constructed of flexible strands of metal wire and fiber yarn
    US4384449A (en) 1976-10-05 1983-05-24 Robert M. Byrnes, Sr. Protective gloves and the like and a yarn with flexible core wrapped with aramid fiber
    US4470251A (en) 1978-03-30 1984-09-11 Bettcher Industries, Inc. Knittable yarn and safety apparel made therewith
    JPS5598909A (en) 1979-01-24 1980-07-28 Takeshi Naito Fiber and sewn product
    JPS55115428A (en) 1979-02-26 1980-09-05 Teijin Ltd Aromatic compolyamide and preparation thereof
    EP0199090B1 (de) 1985-03-23 1990-10-03 Hoechst Aktiengesellschaft Geformte Gebilde aus aromatischen Copolyamiden und Verfahren zu ihrer Herstellung
    DE3835405A1 (de) 1988-10-18 1990-05-03 Hoechst Ag Vollaromatische polyamide, verfahren zu ihrer herstellung und daraus geformte gebilde
    DE3835419A1 (de) 1988-10-18 1990-04-19 Hoechst Ag Vollaromatische polyamide, verfahren zu ihrer herstellung und daraus geformte gebilde
    DE3835441A1 (de) 1988-10-18 1990-04-26 Hoechst Ag Vollaromatische polyamide, verfahren zu ihrer herstellung und daraus geformte gebilde
    US5020161A (en) 1989-09-29 1991-06-04 E. I. Dupont De Nemours And Company Waterproof glove for protective coveralls
    JPH03130413A (ja) 1989-10-17 1991-06-04 Teijin Ltd 芯鞘型複合磁性繊維及びそれを用いた磁性繊維集合体
    DE3935472A1 (de) 1989-10-25 1991-05-02 Hoechst Ag Vollaromatische polyamide, verfahren zu ihrer herstellung und daraus geformte gebilde
    CA2043062C (en) 1990-05-25 2001-12-11 Joseph Hummel Knittable yarn and safety apparel
    JP3563752B2 (ja) 1992-11-24 2004-09-08 エイチエヌエイ・ホールディングス・インコーポレーテッド 充填剤入り繊維
    US5276085A (en) * 1993-04-23 1994-01-04 E. I. Du Pont De Nemours And Company Aromatic polyamide compositions and fibers
    DE4400248A1 (de) 1994-01-06 1995-07-13 Hoechst Ag Verfahren zur Herstellung von massegefärbten geformten Gebilden auf der Basis von aromatischen Polyamiden, massegefärbte Fasern, sowie Vermischung zur Herstellung von massegefärbten geformten Gebilden
    DE4401233A1 (de) * 1994-01-18 1995-07-20 Hoechst Ag Bündel aus Stapelfasern aus aromatischen Polyamiden mit verbesserter Dispergierbarkeit in viskosen Matrizes, und Verfahren zur Herstellung von faserverstärkten Verbunden
    DE4411755A1 (de) * 1994-04-06 1995-10-12 Hoechst Ag Verfahren zur Herstellung von Fasern oder Filmen unter Verwendung spezieller Ausformlösungen, sowie die danach erhältlichen Fasern oder Filme
    EP0678539A3 (de) * 1994-04-06 1997-01-15 Hoechst Ag Aromatische Copolyamide, Verfahren zu deren Herstellung, geformte Gebilde und deren Herstellung.
    BR9507649A (pt) * 1994-05-16 1997-09-09 Hoechst Celanese Corp Fibra resistente a corte fio composto processo de fabricaçao de tecido resistente a corte e respectivo tecido fio e luva de segurancça resistente a corte
    TW307802B (de) * 1995-06-07 1997-06-11 Hoechst Celanese Corp
    US5597649A (en) * 1995-11-16 1997-01-28 Hoechst Celanese Corp. Composite yarns having high cut resistance for severe service

    Also Published As

    Publication number Publication date
    EP0790335A1 (de) 1997-08-20
    DE19605511A1 (de) 1997-08-21
    DE59712341D1 (de) 2005-07-21
    US5738940A (en) 1998-04-14

    Similar Documents

    Publication Publication Date Title
    EP0790335B1 (de) Schnittresistente Aramidfasern, Garne enthaltend diese Aramidfasern und dieser Verwendung
    EP0718425B1 (de) Zweikomponenten-Schlingengarne aus Aramidfilamenten, Verfahren zu deren Herstellung und deren Verwendung
    EP0678539A2 (de) Aromatische Copolyamide, Verfahren zu deren Herstellung, geformte Gebilde und deren Herstellung
    EP0695776A2 (de) Verfahren zur Herstellung von Fasern oder Filmen, danach hergestellte Fasern oder Filme
    DE4402193C1 (de) Präparationshaltige Aramidfasern und deren Verwendung
    DE4410708C1 (de) Präparationshaltige Aramidfasern und deren Verwendung
    DE3835441A1 (de) Vollaromatische polyamide, verfahren zu ihrer herstellung und daraus geformte gebilde
    EP0424860A2 (de) Vollaromatische Polyamide, Verfahren zu ihrer Herstellung und daraus geformte Gebilde
    EP0647731A1 (de) Aramidfasern hoher Festigkeit und hohen Titers, Verfahren zu deren Herstellung sowie deren Verwendung
    EP0852246A2 (de) Zusammensetzungen enthaltend aromatische Polyamide und Fullerene, sowie geformte Gebilde daraus
    EP0496317B1 (de) Halbzeug und daraus hergestellte faserverstärkte Verbundwerkstoffe
    EP0445673B1 (de) Aromatische Copolyamide, Verfahren zu ihrer Herstellung und daraus geformte Gebilde
    DE69318789T2 (de) Verfahren zur Herstellung von Polyamiden mit verringerter Entflammbarkeit
    EP0553755B1 (de) Fasern aus aromatischem Copolyamid sowie deren Verwendung
    EP0522418B1 (de) Aromatische Copolyamide, Verfahren zu ihrer Herstellung und daraus geformte Gebilde
    EP0578164A2 (de) Aromatische Copolyamide, Verfahren zu ihrer Herstellung und daraus geformte Gebilde
    EP0442399A2 (de) Vollaromatische Polyamide, Verfahren zu ihrer Herstellung und daraus geformte Gebilde
    EP0553756B1 (de) Aromatische Copolyamide, Verfahren zu ihrer Herstellung und daraus geformte Gebilde
    DE69632558T2 (de) Polyphthalamid-Harzzusammensetzungen
    DE19606959A1 (de) Faserpulp, Verfahren zu dessen Herstellung und dessen Verwendung
    EP0604881A2 (de) Homogene Polymerlegierungen auf der Basis von sulfonierten, aromatischen Polyetherketonen
    EP0499230B1 (de) Aromatische Copolyamide, Verfahren zu ihrer Herstellung und daraus geformte Gebilde
    EP0496318B1 (de) Aromatische Copolyamide, Verfahren zu ihrer Herstellung und daraus geformte Gebilde
    DE4312441A1 (de) Flammfeste Polyamide mit einem Gehalt an Dicyandiamid und Melamin
    DE4433248A1 (de) Feintitrige Filamentzwirne aus Aramidfasern sowie deren Verwendung

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB IE NL

    17P Request for examination filed

    Effective date: 19980220

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: HNA HOLDINGS, INC.

    17Q First examination report despatched

    Effective date: 19991227

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: CNA HOLDINGS, INC.

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: CLEMSON UNIVERSITY RESEARCH FOUNDATION

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    RBV Designated contracting states (corrected)

    Designated state(s): DE FR GB

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050615

    REF Corresponds to:

    Ref document number: 59712341

    Country of ref document: DE

    Date of ref document: 20050721

    Kind code of ref document: P

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20060316

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20100303

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20100224

    Year of fee payment: 14

    Ref country code: DE

    Payment date: 20100226

    Year of fee payment: 14

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20110204

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20111102

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59712341

    Country of ref document: DE

    Effective date: 20110901

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110204

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110901