[go: up one dir, main page]

EP0783807A1 - Optical data-link between adjacent component assemblies - Google Patents

Optical data-link between adjacent component assemblies

Info

Publication number
EP0783807A1
EP0783807A1 EP95930393A EP95930393A EP0783807A1 EP 0783807 A1 EP0783807 A1 EP 0783807A1 EP 95930393 A EP95930393 A EP 95930393A EP 95930393 A EP95930393 A EP 95930393A EP 0783807 A1 EP0783807 A1 EP 0783807A1
Authority
EP
European Patent Office
Prior art keywords
module
optical data
laser diode
bgl
photodiode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP95930393A
Other languages
German (de)
French (fr)
Inventor
Hans-Günther SCHRECK
Ulrich Gruhler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Siemens Corp
Original Assignee
Siemens AG
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Siemens Corp filed Critical Siemens AG
Publication of EP0783807A1 publication Critical patent/EP0783807A1/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/801Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections
    • H04B10/803Free space interconnects, e.g. between circuit boards or chips
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Definitions

  • the invention relates to an optical data connection between adjacent modules, which are arranged parallel to one another within a module frame, in which at least one correspondingly modulated light beam is emitted from one module to the neighboring module through the interspace between neighboring modules.
  • at least one transmitter module with a laser diode arrangement which emits a slightly divergent light beam, is arranged on one module, and at least one receiver module with a photodiode arrangement is arranged on the opposite module.
  • Such an optical data connection is e.g. B. from DE 37 39 629 AI known.
  • transmission can only take place in one direction, since each module has only one transmitter module on one side and one receiver module on the other side.
  • optical data connections between adjacent modules are already known (see, for example, “Optoelectronic interconnection based on a light-guiding plate with holographic coupling elements", Optical engineering 30 (10), 1620-1623 (Oct. 1991), which one In this case, the optical connection is made via a light-conducting glass plate in the backplane, which results in considerable problems with the coupling and uncoupling of the light beams from the light-conducting glass plate.
  • This object is achieved in an optical data connection of the type mentioned in that a one-piece transmission and reception module with a laser diode arrangement and a photodiode arrangement (PD) is provided on one side of each assembly, the laser diode arrangement and the photodiode arrangement being located within the transmission and Receiving module lying parallel to the module circuit board and offset by a certain amount opposite each other, surface plan mirrors for deflecting the light beams by 90 degrees are provided between these two arrangements in the respective beam paths, and that one of the light beams through an opening in the module circuit board passes through.
  • a one-piece transmission and reception module with a laser diode arrangement and a photodiode arrangement (PD) is provided on one side of each assembly, the laser diode arrangement and the photodiode arrangement being located within the transmission and Receiving module lying parallel to the
  • the optical data connection according to the invention is characterized by a simple structure. Because a single module is necessary for sending and receiving and openings are provided in the assembly at the assembly location of the module, a single module can transmit and receive in both directions.
  • An advantageous embodiment of the optical data connection according to the invention can be characterized in that the transmitting and receiving module contains several laser diode and photo diode arrangements next to one another.
  • 1 shows the basic structure of an optical data connection according to the present invention
  • 2 shows the basic structure of transmit and receive modules for establishing an optical data connection, the modules being able to transmit and receive in both directions.
  • FIG. 1 shows the basic structure of an optical data connection according to the present invention between two component circuit boards BGL, which are arranged in parallel next to one another.
  • Sending locations SO and receiving locations EO are arranged on each printed circuit board, the corresponding receiving locations
  • the beam expansion can be seen in FIG. 1, as a result of which the optical connection is position-tolerant and does not have to be adjusted.
  • the expansion is optimized for maximum reception power with given tolerances and connection lengths.
  • the sending location essentially consists of a laser diode and the receiving location essentially consists of a photodiode.
  • the sending location SO and receiving locations EO can be accommodated within one sending and receiving module SEM.
  • Lenses L are combined with the laser diodes LD and with the photodiodes PD to form the light beam. These lenses are each integrated with a laser diode LD or a photodiode PD in a submodule. This integration can also include the electronics required for electro-optical conversion.
  • the submodules are arranged horizontally to reduce the module height. The deflection in the direction of radiation takes place via surface plan mirror SP.
  • all the necessary components are arranged in a single module.
  • the module SEM can be attached to both sides of an assembly in order to establish connections on two sides. If, as shown in FIG. 2, openings are provided in the module circuit board and in the corresponding housing wall of the module, a single module can send and receive in both directions.
  • a module can contain several transmit and receive channels next to one another, the minimum channel spacing being in the range from 5 to 10 mm.
  • optical connections to neighboring assemblies no longer have to be routed over the rear wall, the rear wall is relieved, the routing on the assembly is simplified.
  • the optical connection can transmit almost any data rate, the only limitation being the electro-optical converters.
  • Transmitting and receiving modules can be arranged as desired on the module circuit board, even in the immediate vicinity of high-frequency sources and sinks.
  • the optical data connection is a contactless connection, which eliminates the use of connectors.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)

Abstract

In order to reduce the number of multiple plug-in connectors in an optical data-link between adjacent component assemblies, the invention calls for at least one suitably modulated beam of light (SK) to be radiated by one assembly (BGL) to the adjacent assembly (BGL) through the space between the assemblies (BGL).

Description

Beschreibungdescription

Optische Datenverbindung zwischen benachbarten BaugruppenOptical data connection between neighboring modules

Die Erfindung betrifft eine optische Datenverbindung zwischen benachbarten Baugruppen, die innerhalb eines Baugruppenrah¬ mens parallel nebeneinander angeordnet sind, bei der minde¬ stens ein entsprechend modulierter Lichtstrahl durch den Zwi¬ schenraum zwischen benachbarten Baugruppen von einer Bau- gruppe zu der benachbarten Baugruppe abgestrahlt wird, wobei auf einer Baugruppe mindestens ein Sendemodul mit einer La¬ serdiodenanordnung, welche einen leicht divergenten Licht¬ strahl abstrahlt, und auf der gegenüberliegenden Baugruppe mindestens ein Empfangsmodul mit einer Photodiodenanordnung angeordnet ist.The invention relates to an optical data connection between adjacent modules, which are arranged parallel to one another within a module frame, in which at least one correspondingly modulated light beam is emitted from one module to the neighboring module through the interspace between neighboring modules. wherein at least one transmitter module with a laser diode arrangement, which emits a slightly divergent light beam, is arranged on one module, and at least one receiver module with a photodiode arrangement is arranged on the opposite module.

Eine derartige optische Datenverbindung ist z. B. aus der DE 37 39 629 AI bekannt. Jedoch kann bei dieser bekannten opti¬ sche Datenverbindung nur in einer Richtung gesendet werden, da jede Baugruppe lediglich auf einer Seite ein Sendemodul und auf der anderen Seite ein Empfangsmodul aufweist.Such an optical data connection is e.g. B. from DE 37 39 629 AI known. However, with this known optical data connection, transmission can only take place in one direction, since each module has only one transmitter module on one side and one receiver module on the other side.

Es sind aber bereits auch optische Datenverbindungen zwischen benachbarten Baugruppen bekannt (siehe z.B. "Optoelectronic interconnection based on a light-guiding plate with hologra- phic coupling elements", Optical engineering 30 (10), 1620 - 1623 (Okt. 1991), welche einen Duplexbetrieb zulassen. Hier¬ bei erfolgt die optische Verbindung über eine lichtleitende Glasplatte in der Rückwandleiterplatte. Hierbei ergeben sich erhebliche Probleme bei dem Einkoppeln und Auskoppeln der Lichstrahlen aus der lichtleitenden Glasplatte.However, optical data connections between adjacent modules are already known (see, for example, "Optoelectronic interconnection based on a light-guiding plate with holographic coupling elements", Optical engineering 30 (10), 1620-1623 (Oct. 1991), which one In this case, the optical connection is made via a light-conducting glass plate in the backplane, which results in considerable problems with the coupling and uncoupling of the light beams from the light-conducting glass plate.

Aufgabe der vorliegenden Erfindung ist es daher, eine opti¬ sche Datenverbindung zwischen benachbarten Baugruppen der eingangs genannten Art anzugeben, welche sich durch einen einfachen Aufbau auszeichnet und einen Sende- und Empfangs¬ betrieb in beiden Richtungen erlaubt. Diese Aufgabe wird bei einer optischen Datenverbindung der eingangs genannten Art dadurch gelöst,daß auf einer Seite von jeder Baugruppe ein einteiliges Sende- und Empfangsmodul mit einer Laserdiodenanordnung und einer Photodiodenanordnung (PD) vorgesehen ist, wobei die Laserdiodenanordnung und die Photodiodenanordnung innerhalb des Sende- und Empfangsmoduls parallel zur Baugruppenleiterplatte liegend und um einen be¬ stimmten Betrag versetzt gegenüberliegend angeordnet sind, wobei zwischen diesen beiden Anordnungen in den jeweiligen Strahlengängen Oberflächenplanspiegel zur Umlenkung der Lichtstrahlen um 90 Grad vorgesehen sind, und daß einer der Lichtstrahlen durch einen Durchbruch in der Baugruppenleiter¬ platte hindurchtritt.It is therefore an object of the present invention to provide an optical data connection between adjacent assemblies of the type mentioned at the outset, which is distinguished by a simple structure and allows transmitting and receiving operation in both directions. This object is achieved in an optical data connection of the type mentioned in that a one-piece transmission and reception module with a laser diode arrangement and a photodiode arrangement (PD) is provided on one side of each assembly, the laser diode arrangement and the photodiode arrangement being located within the transmission and Receiving module lying parallel to the module circuit board and offset by a certain amount opposite each other, surface plan mirrors for deflecting the light beams by 90 degrees are provided between these two arrangements in the respective beam paths, and that one of the light beams through an opening in the module circuit board passes through.

Die erfindungsgemäße optische Datenverbindung zeichnet sich durch einen einfachen Aufbau aus. Dadurch, daß zum Senden und Empfangen ein einziges Modul notwendig ist und am Montage¬ platz des Moduls Durchbrüche in der Baugruppe vorgesehen sind, kann ein einziges Modul in beide Richtungen senden und empfangen.The optical data connection according to the invention is characterized by a simple structure. Because a single module is necessary for sending and receiving and openings are provided in the assembly at the assembly location of the module, a single module can transmit and receive in both directions.

Eine vorteilhafte Ausgestaltung der erfindungsgemäßen opti¬ schen Datenverbindung kann dadurch gekennzeichnet sein, daß das Sende- und Empfangsmodul mehrere Laserdioden- und Photo- diodenanordnungen nebeneinander beinhaltet.An advantageous embodiment of the optical data connection according to the invention can be characterized in that the transmitting and receiving module contains several laser diode and photo diode arrangements next to one another.

Nachfolgend wird die Erfindung anhand eines in der Figur dar¬ gestellten Ausführungsbeispiels näher beschrieben.The invention is described in more detail below with reference to an exemplary embodiment shown in the figure.

In der Figur zeigtIn the figure shows

FIG 1 den prinzipiellen Aufbau einer optischen Datenverbin¬ dung gemäß der vorliegenden Erfindung, und FIG 2 den prinzipiellen Aufbau von Sende- und Empfangsmodulen zum Aufbau einer optischen Datenverbindung, wobei die Module in beide Richtungen senden und empfangen können.1 shows the basic structure of an optical data connection according to the present invention, and 2 shows the basic structure of transmit and receive modules for establishing an optical data connection, the modules being able to transmit and receive in both directions.

FIG 1 zeigt den prinzipiellen Aufbau einer optischen Daten¬ verbindung gemäß der vorliegenden Erfindung zwischen zwei Baugruppenleiterplatten BGL, welche parallel nebeneinander angeordnet sind. Auf jeder Leiterplatte sind Sendeorte SO und Empfangsorte EO angeordnet, denen entsprechende Empfangsorte 1 shows the basic structure of an optical data connection according to the present invention between two component circuit boards BGL, which are arranged in parallel next to one another. Sending locations SO and receiving locations EO are arranged on each printed circuit board, the corresponding receiving locations

EO und Sendeorte SO auf der anderen Baugruppenleiterplatte gegenüberliegen. In FIG 1 ist die StrahlaufWeitung zu erken¬ nen, wodurch die optische Verbindung lagetolerant ist und nicht einjustiert werden muß. Die Aufweitung wird auf maxima- le Empfangsleistung bei gegebenen Toleranzen und Verbindungs- längen optimiert.EO and send locations SO are on the other board. The beam expansion can be seen in FIG. 1, as a result of which the optical connection is position-tolerant and does not have to be adjusted. The expansion is optimized for maximum reception power with given tolerances and connection lengths.

Der Sendeort besteht im wesentlichen aus einer Laserdiode und der Empfangsort besteht im wesentlichen aus einer Photodiode. Es können mehrere Sendeorte SO und Empfangsorte EO innerhalb eines Sende- und Empfangsmoduls SEM untergebracht sein.The sending location essentially consists of a laser diode and the receiving location essentially consists of a photodiode. Several sending locations SO and receiving locations EO can be accommodated within one sending and receiving module SEM.

FIG 2 zeigt prinzipiell einen besonders zweckmäßigen Aufbau derartiger Sende- und Empfangsmodule. Zur Formung des Licht- Strahls sind sowohl mit den Laserdioden LD als auch mit den Photodioden PD Linsen L kombiniert. Diese Linsen sind jeweils mit einer Laserdiode LD bzw. einer Photodiode PD in einem Submodul integriert. Diese Integration kann auch die zur elektro-optischen Wandlung nötige Elektronik umfassen. Bei der in FIG 2 gezeigten Auführungsform von Sende- und Emp¬ fangsmodulen SEM sind zur Verminderung der Modulbauhöhe die Submodule liegend angeordnet. Die Umlenkung in die Abstrahl- richtungen erfolgt über Oberflächenplanspiegel SP. Hier sind alle notwendigen Komponenten in einem einzigen Modul angeord- net. Das Modul SEM kann auf beiden Seiten einer Baugruppe an¬ gebracht werden, um Verbindungen nach zwei Seiten hin herzu¬ stellen. Werden, wie in FIG 2 gezeigt ist, Durchbrüche in der Baugruppenleiterplatte und in der entsprechenden Gehäusewand des Moduls vorgesehen, kann ein einziges Modul in beide Rich- tungen senden und empfangen.2 shows in principle a particularly expedient structure of such transmission and reception modules. Lenses L are combined with the laser diodes LD and with the photodiodes PD to form the light beam. These lenses are each integrated with a laser diode LD or a photodiode PD in a submodule. This integration can also include the electronics required for electro-optical conversion. In the embodiment of transmission and reception modules SEM shown in FIG. 2, the submodules are arranged horizontally to reduce the module height. The deflection in the direction of radiation takes place via surface plan mirror SP. Here all the necessary components are arranged in a single module. The module SEM can be attached to both sides of an assembly in order to establish connections on two sides. If, as shown in FIG. 2, openings are provided in the module circuit board and in the corresponding housing wall of the module, a single module can send and receive in both directions.

Dabei kann ein Modul mehrere Sende- und Empfangskanäle neben¬ einander beinhalten, wobei der minimale Kanalabstand im Be¬ reich von 5 bis 10mm liegen kann.A module can contain several transmit and receive channels next to one another, the minimum channel spacing being in the range from 5 to 10 mm.

Abschließend werden noch einmal die Vorteile der erfindungs¬ gemäßen optischen Datenverbindung zusammengefaßt: Die optischen Verbindungen zu Nachbarbaugruppen müssen nicht mehr über die Rückwand geführt werden, die Rückwand wird ent¬ lastet, das Routing auf der Baugruppe vereinfacht.Finally, the advantages of the optical data connection according to the invention are summarized once again: The optical connections to neighboring assemblies no longer have to be routed over the rear wall, the rear wall is relieved, the routing on the assembly is simplified.

Die optische Verbindung kann fast beliebig hohe Datenraten übertragen, wobei die Beschränkung ausschließlich bei den elektrooptischen Wandlern liegt.The optical connection can transmit almost any data rate, the only limitation being the electro-optical converters.

Sende- und Empfangsmodule können beliebig auf der Baugruppen¬ leiterplatte angeordnet werden, auch in unmittelbarer Nähe von Hochfrequenzquellen und -senken.Transmitting and receiving modules can be arranged as desired on the module circuit board, even in the immediate vicinity of high-frequency sources and sinks.

Bei der optischen Datenverbindung entfallen Impedanzanpas- sungsprobleme.With the optical data connection there are no impedance matching problems.

Die optische Datenverbindung ist eine kontaktlose Verbindung, wodurch der Einsatz von Steckverbindern entfällt.The optical data connection is a contactless connection, which eliminates the use of connectors.

Das Übersprechen auf parallelen Kanälen ist auch bei hohen Frequenzen vernachläßigbar und von der Datenrate unabhängig. Crosstalk on parallel channels is negligible even at high frequencies and is independent of the data rate.

Claims

Patentansprüche claims 1. Optische Datenverbindung zwischen benachbarten Baugruppen, die innerhalb eines Baugruppenrahmens parallel nebeneinander angeordnet sind, bei der mindestens ein entsprechend modu¬ lierter Lichtstrahl durch den Zwischenraum zwischen benach¬ barten Baugruppen von einer Baugruppe zu der benachbarten Baugruppe abgestrahlt wird, wobei auf einer Baugruppe minde¬ stens ein Sendemodul mit einer Laserdiodenanordnung, welche einen leicht divergenten Lichtstrahl abstrahlt, und auf der gegenüberliegenden Baugruppe mindestens ein Empfangsmodul mit einer Photodiodenanordnung angeordnet ist, dadurch gekennzeichnet, daß auf einer Seite von jeder Baugruppe (BGL) ein einteiliges Sende- und Empfangsmodul (SEM) mit einer Laserdiodenanordnung (LD) und einer Photodiodenanordnung (PD) vorgesehen ist, wo¬ bei die Laserdiodenanordnung (LD) und die Photodiodenanord¬ nung (PD) innerhalb des Sende- und Empfangsmoduls (SEM) par¬ allel zur Baugruppenleiterplatte (BGL) liegend und um einen bestimmten Betrag versetzt gegenüberliegend angeordnet sind, wobei zwischen diesen beiden Anordnungen in den jeweiligen Strahlengängen Oberflächenplanspiegel (SP) zur Umlenkung der Lichtstrahlen um 90 Grad vorgesehen sind, und daß einer der Lichtstrahlen (SK) durch einen Durchbruch (D) in der Baugrup- penleiterplatte (BGL) hindurchtritt.1. Optical data connection between adjacent modules, which are arranged in parallel next to one another within a module frame, in which at least one correspondingly modulated light beam is emitted from one module to the adjacent module through the interspace between adjacent modules, with at least one module at least one transmitter module with a laser diode arrangement, which emits a slightly divergent light beam, and at least one receiver module with a photodiode arrangement is arranged on the opposite module, characterized in that on one side of each module (BGL) is a one-piece transmitter and receiver module (SEM) with a laser diode arrangement (LD) and a photodiode arrangement (PD) is provided, with the laser diode arrangement (LD) and the photodiode arrangement (PD) lying within the transmitting and receiving module (SEM) parallel to the module circuit board (BGL) and around a certain betra g are arranged offset opposite one another, surface plan mirrors (SP) for deflecting the light beams by 90 degrees being provided between these two arrangements in the respective beam paths, and that one of the light beams (SK) through an opening (D) in the module circuit board (BGL ) passes through. 2. Optische Datenverbindung nach Anspruch 1, dadurch gekennzeichnet, daß das Sende- und Empfangsmodul (SEM) mehrere Laserdioden- und Photodiodenanordnungen (LD, PD) nebeneinander beinhaltet.2. Optical data connection according to claim 1, characterized in that the transmitting and receiving module (SEM) contains a plurality of laser diode and photodiode arrangements (LD, PD) side by side. 3. Optische Datenverbindung nach Anspruch 1, dadurch gekennzeichnet, daß auf einer Baugruppe (BGL) mindestens ein Sende- und Emp- fangsmodul (SEM) mit einer Laserdiode (LD) zum Abstrahlen ei¬ nes leicht divergenten Lichtstrahls und mit einer Photodiode (PD) zum Empfang eines Lichtstrahls vorgesehen ist. 3. Optical data connection according to claim 1, characterized in that on an assembly (BGL) at least one transmitting and receiving module (SEM) with a laser diode (LD) for emitting ei¬ nes slightly divergent light beam and with a photodiode (PD) is provided for receiving a light beam. 4. Optische Datenverbindung nach Anspruch 3, dadurch gekennzeichnet, daß die Laserdiodenanordnung (LD) und die Photodiodenanord- nung (PD) innerhalb des Sende- und Empfangsmoduls (SEM) pa¬ rallel zur Baugruppenleiterplatte (BGL) liegend und um einen bestimmten Betrag versetzt gegenüberliegend angeordnet sind, wobei zwischen diesen beiden Anordnungen in den jeweiligen Strahlengängen Oberflächenplanspiegel (SP) zur Umlenkung der Lichtstrahlen um 90 Grad vorgesehen sind, und daß einer der Lichtstrahlen (SK) durch einen Durchbruch (D) in der Baugrup¬ penleiterplatte (BGL) hindurchtritt.4. Optical data connection according to claim 3, characterized in that the laser diode arrangement (LD) and the photodiode arrangement (PD) within the transmitting and receiving module (SEM) lying parallel to the assembly circuit board (BGL) and offset by a certain amount opposite are arranged, between these two arrangements in the respective beam paths surface plan mirrors (SP) are provided for deflecting the light beams by 90 degrees, and that one of the light beams (SK) passes through an opening (D) in the assembly circuit board (BGL). 5. Optische Datenverbindung nach Anspruch 3, dadurch gekennzeichnet, daß das Sende- und Empfangsmodul (SEM) mehrere Laserdioden- und Photodiodenanordnungen (LD, PD) nebeneinander beinhaltet. 5. Optical data connection according to claim 3, characterized in that the transmitting and receiving module (SEM) contains a plurality of laser diode and photodiode arrangements (LD, PD) side by side.
EP95930393A 1994-09-26 1995-09-12 Optical data-link between adjacent component assemblies Ceased EP0783807A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19944434358 DE4434358C1 (en) 1994-09-26 1994-09-26 Optical data connection between neighboring modules
DE4434358 1994-09-26
PCT/DE1995/001247 WO1996010302A1 (en) 1994-09-26 1995-09-12 Optical data-link between adjacent component assemblies

Publications (1)

Publication Number Publication Date
EP0783807A1 true EP0783807A1 (en) 1997-07-16

Family

ID=6529214

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95930393A Ceased EP0783807A1 (en) 1994-09-26 1995-09-12 Optical data-link between adjacent component assemblies

Country Status (8)

Country Link
EP (1) EP0783807A1 (en)
JP (1) JPH09511885A (en)
CN (1) CN1076549C (en)
BR (1) BR9509207A (en)
CA (1) CA2200866C (en)
DE (1) DE4434358C1 (en)
TW (1) TW300287B (en)
WO (1) WO1996010302A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920664A (en) * 1996-06-03 1999-07-06 Nippon Telegraph And Telephone Corporation Board-to-board and unit-to-unit optical interconnection system
DE19840355A1 (en) * 1998-09-04 2000-03-09 Abb Patent Gmbh Optoelectronic component, esp. for communications between circuit boards, has two main surfaces with optical communications arrangements contg. infrared transmitters/receivers, etc.
CA2431273C (en) * 2002-06-26 2007-08-21 Fidia S.P.A. Optical connection system
CN103135181B (en) * 2011-12-01 2016-01-13 鸿富锦精密工业(深圳)有限公司 Optical transport module
CN115113344A (en) * 2021-03-18 2022-09-27 富士康(昆山)电脑接插件有限公司 Contactless connector and assembly thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3739629A1 (en) * 1987-11-23 1989-06-01 Siemens Ag CIRCUIT ARRANGEMENT FOR INSERTING TRAYS WITHIN A DATA-PROCESSING DEVICE
DE3908786A1 (en) * 1989-03-17 1989-08-03 Cordell Steve Method for data transfer between boards of an electronic circuit
GB9017306D0 (en) * 1990-08-07 1990-09-19 British Aerospace Optical backplane
DE4136893A1 (en) * 1991-11-09 1993-05-13 Ant Nachrichtentech OPTICAL TRANSMITTER AND RECEIVER ARRANGEMENT
JPH06252855A (en) * 1993-03-01 1994-09-09 Sharp Corp Equipment for optical wireless communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9610302A1 *

Also Published As

Publication number Publication date
TW300287B (en) 1997-03-11
JPH09511885A (en) 1997-11-25
CA2200866A1 (en) 1996-04-04
CA2200866C (en) 2007-01-09
CN1163028A (en) 1997-10-22
BR9509207A (en) 1997-10-14
DE4434358C1 (en) 1996-03-28
WO1996010302A1 (en) 1996-04-04
CN1076549C (en) 2001-12-19

Similar Documents

Publication Publication Date Title
DE60102214T2 (en) Energetically connectable and equipped with fiber optic connectors opto-electronic transmitting and receiving module
DE69328049T2 (en) Optical device for parallel transmission
EP0600267B1 (en) Optical bidirectional transmit/receive module
EP1018052B1 (en) Electro-optical arrangement
DE10105943B4 (en) Fiber optic lens system for coupling fibers with surface mounted devices
EP0706069A1 (en) Transmitting and receiving module for bidirectional optical communication and signal transmission
DE102013214921B4 (en) Optical communication systems and methods for high-density mounting of parallel optical communication modules
DE102010029417A1 (en) A center-level mounted optical communication system and method for providing high-density center-level mounting of parallel optical communication modules
WO1996010763A1 (en) Device for interconnecting electronic apparatuses and allowing them to communicate with each other
WO2001004678A1 (en) Device for coupling optoelectronic elements and fiber arrays
DE4434358C1 (en) Optical data connection between neighboring modules
DE10121529B4 (en) Optical fiber arrangement for serial, bidirectional signal transmission and optical circuit board
DE102011004548B4 (en) An optical communication system and method for positioning parallel optical transceiver modules in an optical communication system
EP0440087B1 (en) Optical signal connecting device for plugs of a plug cabinet
DE10319154B4 (en) Maskless lithography system
DE4434727C1 (en) Carrier for retractable electrical assemblies
EP1332395B1 (en) Optical signal transmission system
EP1999869B1 (en) Optical data bus system
DE60208634T2 (en) System for connecting processors
EP1180704A2 (en) Connector and system for electrical connection of rack assembly in the area of telecommunications
DE10156356B4 (en) Method and apparatus for reducing electromagnetic interference
WO1994006225A1 (en) System integrating a plurality of electrical items and connector block for use with such a system
DE19716838A1 (en) Arrangement for sending and receiving optical signals
EP3182183B1 (en) Optical multi-channel transmission and/or receiver module, in particular for high bit rate digital optical signals
DE102007017016B4 (en) Optoelectronic device and method for its construction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970317

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL PT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010531

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20011125