[go: up one dir, main page]

EP0780629B1 - Burner for a heat generator - Google Patents

Burner for a heat generator Download PDF

Info

Publication number
EP0780629B1
EP0780629B1 EP96810804A EP96810804A EP0780629B1 EP 0780629 B1 EP0780629 B1 EP 0780629B1 EP 96810804 A EP96810804 A EP 96810804A EP 96810804 A EP96810804 A EP 96810804A EP 0780629 B1 EP0780629 B1 EP 0780629B1
Authority
EP
European Patent Office
Prior art keywords
burner according
tube
flow
swirl generator
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96810804A
Other languages
German (de)
French (fr)
Other versions
EP0780629A3 (en
EP0780629A2 (en
Inventor
Hans Peter Knöpfel
Thomas Ruck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Publication of EP0780629A2 publication Critical patent/EP0780629A2/en
Publication of EP0780629A3 publication Critical patent/EP0780629A3/en
Application granted granted Critical
Publication of EP0780629B1 publication Critical patent/EP0780629B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners

Definitions

  • the present invention relates to a burner according to the preamble of claim 1.
  • EP-B1-0 321 809 describes a shell made of several shells conical burner, so-called double cone burner, for Generation of a closed swirl flow in the cone head has become known, which due to the increasing swirl along the cone tip becomes unstable and into an annular swirl flow with reverse flow in the core.
  • Fuels such as gaseous fuels are produced along the the individual adjacent shells formed channels, too Called air inlet slots, injected and homogeneous with the Air mixes before combustion by ignition at the stagnation point the backflow zone or backflow bubble, which acts as a flame holder is used.
  • Liquid fuels will be preferably injected via a central nozzle on the burner head and then evaporate in the cone cavity.
  • JP 07190308 A discloses one Burner with a swirl generator for application of a combustion air-fuel mixture with one Swirl. Following this swirl generator closes a tubular mixing section, which opens into a combustion chamber. Because of the geometric Design of the swirl generator is a conical Vortex formed at a point on the burner axis collapsed in the combustion chamber and there one circular flow to form a stable backflow zone evokes the stabilization of the flame serves.
  • the invention seeks to remedy this.
  • the invention how it is characterized in the claims, the task lies based on precautions for a burner of the type mentioned propose by which a perfect premix of fuels of various types and achieved which are reliable and optimal flame positioning is achieved.
  • the proposed burner has one on the head side and upstream Mixing section on a swirl generator, which is preferred can be interpreted in such a way that the aerodynamic Basic principles of the so-called double-cone burner according to EP-A1-0 321 809 can be used. Basically, however, is that Use of an axial or radial swirl generator possible.
  • the mixing section itself preferably consists of a tubular one Mixing element, hereinafter called mixing tube, which a perfect premixing of different fuelskind allowed.
  • the flow from the swirl generator is seamless into the mixing tube initiated: This happens through a transition geometry, which consists of transition channels, which in the initial phase this mixing tube are excluded, and which the flow in the subsequent effective flow cross-section transfer the mixing tube.
  • This low loss Flow initiation between swirl generator and mixing tube prevented first the immediate formation of a backflow zone at the exit of the swirl generator.
  • the swirl strength in the swirl generator is above its Geometry chosen so that the vertebra does not burst in the mixing tube, but further downstream at the combustion chamber inlet takes place, the length of this mixing tube dimensioned so is that there is sufficient mix quality for everyone Fuel types results.
  • the twist strength results from the design the corresponding cone angle, the air inlet slots and their number.
  • the axial speed profile has a pronounced profile in the mixing tube Maximum on the axis and thereby prevents backfire in this area.
  • the axial speed drops down to the wall.
  • various measures are provided: For example, on the one hand, the entire speed level by using a mixing tube with a sufficient Lift small diameter.
  • Another possibility consists of only the outside speed of the Increase mixing tube by a small part of the combustion air over an annular gap or through filming holes flows into the mixing tube downstream of the transition channels.
  • transition channels to initiate the flow affects from the swirl generator in the mixing tube, so to say that the course of these transition channels is spiral can be constricting or expanding accordingly the effective subsequent flow cross-section of the mixing tube.
  • Part of the pressure loss that may be generated can be caused by Attachment of a diffuser at the end of the mixing tube compensated become. In this area or upstream one can also Venturi range can be provided.
  • the combustion chamber closes at the end of the mixing tube a cross-sectional leap.
  • a central one is formed here Backflow zone, the properties of which are those of a flame holder are.
  • the creation of a stable backflow zone requires one sufficiently high swirl number in the mixing tube. But it is one Initially undesirable, stable backflow zones can occur the supply of small, strongly swirled air volumes, 5-20% of the Total air volume generated at the end of the pipe.
  • Fig. 1 shows the overall structure of a burner.
  • a swirl generator 100 effective, the design of which in the following Fig. 2-5 shown and described in more detail becomes.
  • This swirl generator 100 is a conical one Formations that are tangential multiple times from a tangential inflowing combustion air flow 115 is applied becomes.
  • the flow that forms here is based on a transition geometry provided downstream of the swirl generator 100 transitioned seamlessly into a transition piece 200, in such a way that no separation areas can occur there.
  • the configuration of this transition geometry is under Fig. 6 described in more detail.
  • This transition piece 200 is on the outflow side the transition geometry through a tube 20 extended, both parts of the actual mixing tube 220, also called mixing section, form the burner.
  • the mixing tube 220 may consist of a single piece, i.e. then that the transition piece 200 and pipe 20 merged into a single coherent structure with the characteristics of each part preserved stay. Become transition piece 200 and tube 20 from two parts created, they are connected by a socket ring 10, the same bushing ring 10 on the head side as the anchoring surface serves for the swirl generator 100. Such a Socket ring 10 also has the advantage that different Mixing tubes can be used. Outflow side of the tube 20 is the actual combustion chamber 30, which only symbolizes here through the flame tube is.
  • the mixing tube 220 meets the condition that downstream of the swirl generator 100 provides a defined mixing section in which a perfect premix of fuels of different types is achieved.
  • This mixing section so the mixing tube 220, furthermore enables a loss-free Flow guidance, so that also in operative connection do not initially form a backflow zone with the transition geometry can, which over the length of the mixing tube 220 to the Mix quality for all types of fuel influence can be exercised can.
  • This mixing tube 220 has yet another Property, which is that in the mixing tube 220 even the axial speed profile is a pronounced maximum owns on the axis, so that the Flame from the combustion chamber is not possible. However it is correct that with such a configuration this axial speed drops to the wall.
  • the mixing tube 220 in Flow and circumferential direction with a number regularly or irregularly distributed holes 21 of the most varied Provide cross sections and directions through which an amount of air flows into the interior of the mixing tube 220, and along the wall in the sense of a filming an increase in speed induce.
  • Another way the same To achieve effect is that the flow cross section of the mixing tube 220 on the outflow side of the transition channels 201, which has the transition geometry already mentioned form, narrowing, causing the whole Speed level increased within the mixing tube 220 becomes.
  • these bores 21 run under one acute angle with respect to the burner axis 60.
  • the outlet of the transition channels 201 corresponds to the narrowest Flow cross section of the mixing tube 220.
  • the above Transition channels 201 therefore bridge the respective cross-sectional difference, without making the flow negative to influence. If the precaution chosen by the Guiding the pipe flow 40 along the mixing pipe 220 triggers intolerable pressure loss, can counter this Remedial action can be taken by placing one at the end of the mixing tube Diffuser not shown in the figure is provided. At the A combustion chamber 30 closes at the end of the mixing tube 220 , with a between the two flow cross-sections Cross-sectional jump is present. Only here does one form central backflow zone 50, which has the properties of a Has flame holder.
  • FIG. 2 In order to better understand the structure of the swirl generator 100 it is advantageous if, at the same time as FIG. 2, at least FIG. 3 is used. Furthermore, this Fig. 2 is not unnecessary to be confusing, they are those according to the Figure 3 schematically shown guide plates 121a, 121b only hinted been recorded. In the following, the Description of Fig. 2 as required on the figures mentioned pointed out.
  • the first part of the burner according to FIG. 1 forms the one according to FIG. 2 shown swirl generator 100.
  • This consists of two hollow conical partial bodies 101, 102 which are offset from one another are nested.
  • the number of conical Partial body can of course be larger than two, such as Figures 4 and 5 show; this depends on how each further will be explained in more detail below, depending on the type of debt collection of the whole burner. It is with certain operating constellations not excluded one from one single spiral existing swirl generator.
  • the Offset of the respective central axis or longitudinal symmetry axes 201b, 202b of the tapered partial bodies 101, 102 to one another creates a mirror image of the neighboring wall Arrangement, each a tangential channel, i.e.
  • the cone shape of the one shown Partial body 101, 102 has a flow direction certain fixed angle. Of course, depending on the operational use, can the partial body 101, 102 in the direction of flow have an increasing or decreasing taper similar to a trumpet or Tulip. The latter two Shapes are not included in the drawing as they are for the expert can be easily understood.
  • the two tapered partial bodies 101, 102 each have a cylindrical Initial part 101a, 102a, which also, analogous to the tapered Partial bodies 101, 102, offset from one another, so that the tangential air inlet slots 119, 120 via the entire length of the swirl generator 100 are present.
  • a nozzle 103 is preferred for a liquid fuel 112, the injection of which 104 with the narrowest cross section of the through conical partial body 101, 102 formed conical cavity 114 coincides.
  • the injection capacity and the type of this Nozzle 103 depends on the specified parameters of the respective burner.
  • the swirl generator can 100 purely conical, i.e. without cylindrical starting parts 101a, 102a.
  • the tapered body 101, 102 also each have a fuel line 108, 109 on which along the tangential air inlet slots 119, 120 arranged and provided with injection openings 117 are, by which preferably a gaseous fuel 113 injected into the combustion air 115 flowing through there is how the arrows 116 symbolize this.
  • This Fuel lines 108, 109 are preferably at the latest End of tangential inflow, before entering the cone cavity 114, placed, this for an optimal Obtain air / fuel mixture.
  • fuel introduced 112 normally a liquid fuel, whereby a mixture formation with another medium without any problems is possible. This fuel 112 will tip under one Angle injected into the cone cavity 114.
  • the construction of the swirl generator 100 is also excellent, the size to change the tangential air inlet slots 119, 120, with which without changing the overall length of the swirl generator 100 a relatively wide range of operations can be covered can.
  • the partial bodies 101, 102 are also in another level slidable to each other, which even an overlap of the same can be provided. It is further possible, the partial body 101, 102 by an opposite to interleave rotating movement in a spiral. So it is possible to change the shape, size and the configuration of the tangential air inlet slots 119, 120 to vary arbitrarily, with which the swirl generator 100 without Changing its overall length is universally applicable.
  • FIG Baffles 121a, 121b The geometric configuration of FIG Baffles 121a, 121b. They have a flow initiation function these, according to their length, the respective End of the tapered partial body 101, 102 in the direction of flow extend towards the combustion air 115.
  • the Channeling the combustion air 115 into the cone cavity 114 can by opening or closing the guide plates 121a, 121b by one in the area of the entry of this channel into the Cone cavity 114 placed pivot point 123 can be optimized, this is particularly necessary if the original gap size of the tangential air inlet slots 119, 120 dynamic should be changed.
  • you can dynamic arrangements can also be provided statically by required guide plates with a fixed component form the tapered partial bodies 101, 102.
  • the can also Swirl generator 100 can also be operated without baffles, or other aids can be provided for this.
  • FIG. 4 shows that the swirl generator 100 now made up of four partial bodies 130, 131, 132, 133 is.
  • the associated longitudinal symmetry axes for each partial body are marked with the letter a.
  • This configuration can be said that because of the generated lower twist strength and in cooperation with one suitably suitably enlarged slot width, the bursting of the vortex flow on the downstream side of the To prevent swirl in the mixing tube, making the mixing tube can best fulfill the role intended for him.
  • Fig. 5 differs from Fig. 4 in so far as here the partial bodies 140, 141, 142, 143 have a blade profile shape, which is intended to provide a certain flow becomes. Otherwise, the mode of operation of the swirl generator stayed the same.
  • the admixture of fuel 116 in the combustion air flow 115 happens from the inside the blade profiles out, i.e. the fuel line 108 is now integrated in the individual blades. Also here are the longitudinal axes of symmetry to the individual partial bodies marked with the letter a.
  • the transition geometry is for a swirl generator 100 with four partial bodies, corresponding to FIG. 4 or 5, built up. Accordingly, the transition geometry points as natural extension of the upstream parts four transition channels 201 on, making up the cone quarter area the partial body mentioned is extended until it hits the wall of the tube 20 respectively. of the mixing tube 220 cuts.
  • the same Considerations also apply when the swirl generator is off another principle than that described under Fig. 2, is constructed.
  • the one running downward in the direction of flow The area of the individual transition channels 201 has an in Flow direction on a spiral shape, which describes a crescent shape, corresponding to the The fact that the flow cross section of the Transition piece 200 flared in the direction of flow.
  • the swirl angle of the transition channels 201 in the flow direction is selected so that the pipe flow then up to A cross-sectional jump at the combustion chamber inlet is still sufficient large distance remains to make a perfect premix with to manage the injected fuel. Further increases the axial speed is also affected by the above-mentioned measures on the mixing tube wall downstream of the swirl generator.
  • the transition geometry and the measures in the area of the mixing tube cause a significant increase in the axial speed profile towards the center of the mixing tube, so that the danger of early ignition is decisively counteracted becomes.
  • Fig. 7 shows the tear-off edge already mentioned, which on Burner outlet is formed.
  • the flow cross section of the Tube 20 is given a transition radius R in this area, whose size basically depends on the flow within the Tube 20 depends.
  • This radius R is chosen so that the flow applies to the wall and so the swirl number strong can rise.
  • the size of the radius can be quantified Define R so that it is> 10% of the inner diameter d of the tube is 20. Opposite a flow without a radius Now the backflow bladder 50 increases enormously.
  • This Radius R extends to the exit plane of the tube 20, wherein the angle ⁇ between the beginning and end of the curvature is ⁇ 90 °.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spray-Type Burners (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Gas Burners (AREA)

Abstract

The burner has a mixer section and a swirl generator. The mixer section (220) is positioned downstream from the swirl generator (100) and has, within a first part of the section (200) transfer ducts (201) running in the direction of flow for transmitting a current (40) formed in the swirl generator into a pipe situated downstream from the transfer ducts. The outlet plane of the pipe to the combustion chamber (30) has a break edge (A) for stabilising and enlarging a reverse current zone (50) formed downstream. The number of transfer ducts in the mixed section matches the number of art currents formed by the swirl generator. The pipe situated after the transfer ducts has openings (21) for injecting an air current into the pipe.

Description

Technisches GebietTechnical field

Die vorliegende Erfindung betrifft einen Brenner gemäss Oberbegriff des Anspruchs 1.The present invention relates to a burner according to the preamble of claim 1.

Stand der TechnikState of the art

Aus EP-B1-0 321 809 ist ein aus mehreren Schalen bestehender kegelförmiger Brenner, sogenannter Doppelkegelbrenner, zur Erzeugung einer geschlossenen Drallströmung im Kegelkopf bekanntgeworden, welche aufgrund des zunehmenden Dralls entlang der Kegelspitze instabil wird und in eine annulare Drallströmung mit Rückströmung im Kern übergeht. Brennstoffe, wie beispielsweise gasförmige Brennstoffe, werden entlang der durch die einzelnen benachbarten Schalen gebildeten Kanäle, auch Lufteintrittsschlitze genannt, eingedüst und homogen mit der Luft vermischt, bevor die Verbrennung durch Zündung am Staupunkt der Rückströmzone oder Rückströmblase, welche als Flammenhalter benutzt wird, einsetzt. Flüssige Brennstoffe werden vorzugsweise über eine zentrale Düse am Brennerkopf eingedüst und verdampfen dann im Kegelhohlraum. Unter gasturbinentypischen Bedingungen findet die Zündung dieser flüssigen Brennstoffe schon früh in der Nähe der Brennstoffdüse statt, womit nicht zu umgehen ist, dass die NOx-Werte gerade aufgrund dieser mangelnden Vormischung kräftig ansteigen, was beispielsweise das Einspritzen von Wasser notwendig macht. Darüber hinaus musste festgestellt werden, dass der Versuch, wasserstoffhaltige Gase ähnlich wie Erdgas zu verbrennen, zu Frühzündproblemen an den Gasbohrungen mit anschliessender Ueberhitzung des Brenners geführt haben. Hiergegen hat man Abhilfe gesucht, indem am Brenneraustritt eine spezielle Injektionsmethode für solche gasförmige Brennstoffe eingeführt worden ist, deren Resultate aber nicht ganz zu befriedigen vermochten.EP-B1-0 321 809 describes a shell made of several shells conical burner, so-called double cone burner, for Generation of a closed swirl flow in the cone head has become known, which due to the increasing swirl along the cone tip becomes unstable and into an annular swirl flow with reverse flow in the core. Fuels such as gaseous fuels are produced along the the individual adjacent shells formed channels, too Called air inlet slots, injected and homogeneous with the Air mixes before combustion by ignition at the stagnation point the backflow zone or backflow bubble, which acts as a flame holder is used. Liquid fuels will be preferably injected via a central nozzle on the burner head and then evaporate in the cone cavity. Among those typical of gas turbines The ignition of these liquid fuels takes place under conditions early in the vicinity of the fuel nozzle, with what What cannot be avoided is that the NOx values are precisely due to this lack of premix increase sharply, for example it is necessary to inject water. About that It also had to be found that the attempt to contain hydrogen Burning gases similar to natural gas leads to pre-ignition problems at the gas wells with subsequent overheating of the burner. There is a remedy for this sought by using a special injection method at the burner outlet for such gaseous fuels is, the results of which have not been entirely satisfactory.

Die Druckschrift JP 07190308 A offenbart einen Brenner mit einem Drallerzeuger zur Beaufschlagung eines Verbrennungsluft-Brennstoff-Gemisches mit einem Drall. Im Anschluss an diesen Drallerzeuger schließt sich eine rohrförmig ausgebildete Mischstrecke an, die in eine Brennkammer mündet. Aufgrund der geometrischen Ausgestaltung des Drallerzeugers wird ein kegelförmiger Wirbel gebildet, der in einem Punkt auf der Brennerachse in der Brennkammer kollabiert und dort eine zirkuläre Strömung zur Bildung einer stabilen Rückströmzone hervorruft, die der Stabilisierung der Flamme dient.JP 07190308 A discloses one Burner with a swirl generator for application of a combustion air-fuel mixture with one Swirl. Following this swirl generator closes a tubular mixing section, which opens into a combustion chamber. Because of the geometric Design of the swirl generator is a conical Vortex formed at a point on the burner axis collapsed in the combustion chamber and there one circular flow to form a stable backflow zone evokes the stabilization of the flame serves.

Darstellung der ErfindungPresentation of the invention

Hier will die Erfindung Abhilfe schaffen. Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde, bei einem Brenner der eingangs genannten Art Vorkehrungen vorzuschlagen, durch welche eine perfekte Vormischung von Brennstoffen verschiedener Art erzielt und durch welche eine betriebssichere und optimale Flammenpositionierung erreicht wird.The invention seeks to remedy this. The invention how it is characterized in the claims, the task lies based on precautions for a burner of the type mentioned propose by which a perfect premix of fuels of various types and achieved which are reliable and optimal flame positioning is achieved.

Der vorgeschlagene Brenner weist kopfseitig und stromauf einer Mischstrecke einen Drallerzeuger auf, der vorzugsweise dahingehend ausgelegt werden kann, dass die aerodynamischen Grundprinzipien des sogenannten Doppelkegelbrenners nach EP-A1-0 321 809 benutzt werden. Grundsätzlich ist aber auch der Einsatz eines axialen oder radialen Drallerzeugers möglich. Die Mischstrecke selbst besteht vorzugsweise aus einem rohrförmigen Mischelement, im folgenden Mischrohr genannt, welches ein perfektes Vormischen von Brennstoffen verschiedener Art gestattet.The proposed burner has one on the head side and upstream Mixing section on a swirl generator, which is preferred can be interpreted in such a way that the aerodynamic Basic principles of the so-called double-cone burner according to EP-A1-0 321 809 can be used. Basically, however, is that Use of an axial or radial swirl generator possible. The mixing section itself preferably consists of a tubular one Mixing element, hereinafter called mixing tube, which a perfect premixing of different fuels Kind allowed.

Die Strömung aus dem Drallerzeuger wird nahtlos in das Mischrohr eingeleitet: Dies geschieht durch eine Uebergangsgeometrie, die aus Uebergangskanälen besteht, welche in der Anfangsphase dieses Mischrohres ausgenommen sind, und welche die Strömung in den anschliessenden effektiven Durchflussquerschnitt des Mischrohres überführen. Diese verlustarme Strömungseinleitung zwischen Drallerzeuger und Mischrohr verhindert zunächst die unmittelbare Bildung einer Rückströmzone am Ausgang des Drallerzeugers.The flow from the swirl generator is seamless into the mixing tube initiated: This happens through a transition geometry, which consists of transition channels, which in the initial phase this mixing tube are excluded, and which the flow in the subsequent effective flow cross-section transfer the mixing tube. This low loss Flow initiation between swirl generator and mixing tube prevented first the immediate formation of a backflow zone at the exit of the swirl generator.

Zunächst wird die Drallstärke im Drallerzeuger über seine Geometrie so gewählt, dass das Aufplatzen des Wirbels nicht im Mischrohr, sondern weiter stromab am Brennkammereintritt erfolgt, wobei die Länge dieses Mischrohres so dimensioniert ist, dass sich eine ausreichende Mischungsgüte für alle Brennstoffarten ergibt. Ist beispielsweise der eingesetzte Drallerzeuger nach den Grundzügen des Doppelkegelbrenners aufgebaut, so ergibt sich die Drallstärke aus der Auslegung des entsprechenden Kegelwinkels, der Lufteintrittsschlitze und deren Anzahl.First, the swirl strength in the swirl generator is above its Geometry chosen so that the vertebra does not burst in the mixing tube, but further downstream at the combustion chamber inlet takes place, the length of this mixing tube dimensioned so is that there is sufficient mix quality for everyone Fuel types results. For example, is the one used Swirl generator according to the basic principles of the double-cone burner built up, the twist strength results from the design the corresponding cone angle, the air inlet slots and their number.

Im Mischrohr besitzt das Axialgeschindigkeits-Profil ein ausgeprägtes Maximum auf der Achse und verhindert dadurch Rückzündungen in diesem Bereich. Die Axialgeschwindigkeit fällt zur Wand hin ab. Um Rückzündungen auch in diesem Bereich zu unterbinden, werden verschiedene Vorkehrungen vorgesehen: Beispielsweise zum einen lässt sich das gesamte Geschwindigkeitsniveau durch Verwendung eines Mischrohres mit einem ausreichend kleinen Durchmesser anheben. Eine andere Möglichkeit besteht darin, nur die Geschwindigkeit im Aussenbereich des Mischrohres zu erhöhen, indem ein kleiner Teil der Verbrennungsluft über einen Ringspalt oder durch Filmlegungsbohrungen stromab der Uebergangskanäle in das Mischrohr einströmt.The axial speed profile has a pronounced profile in the mixing tube Maximum on the axis and thereby prevents backfire in this area. The axial speed drops down to the wall. To reignite this area too prevent various measures are provided: For example, on the one hand, the entire speed level by using a mixing tube with a sufficient Lift small diameter. Another possibility consists of only the outside speed of the Increase mixing tube by a small part of the combustion air over an annular gap or through filming holes flows into the mixing tube downstream of the transition channels.

Was die erwähnten Uebergangskanäle zur Einleitung der Strömung aus dem Drallerzeuger in das Mischrohr betrifft, so ist zu sagen, dass der Verlauf dieser Uebergangskanäle spiralförmig verengend oder erweiternd ausgebildet sein kann, entsprechend dem effektiven anschliessenden Durchflussquerschnitt des Mischrohres. As for the mentioned transition channels to initiate the flow affects from the swirl generator in the mixing tube, so to say that the course of these transition channels is spiral can be constricting or expanding accordingly the effective subsequent flow cross-section of the mixing tube.

Ein Teil des allenfalls erzeugten Druckverlustes kann durch Anbringung eines Diffusors am Ende des Mischrohres wettgemacht werden. In diesem Bereich oder stromauf kann auch eine Venturistrecke vorgesehen werden.Part of the pressure loss that may be generated can be caused by Attachment of a diffuser at the end of the mixing tube compensated become. In this area or upstream one can also Venturi range can be provided.

Am Ende des Mischrohres schliesst sich die Brennkammer mit einem Querschnittssprung an. Hier bildet sich eine zentrale Rückströmzone, deren Eigenschaften die eines Flammenhalters sind. Die Erzeugung einer stabilen Rückströmzone erfordert eine ausreichend hohe Drallzahl im Mischrohr. Ist aber eine solche zunächst unerwünscht, so können stabile Rückströmzonen durch die Zufuhr kleiner, stark verdrallter Luftmengen, 5-20% der Gesamtluftmenge, am Rohrende erzeugt werden.The combustion chamber closes at the end of the mixing tube a cross-sectional leap. A central one is formed here Backflow zone, the properties of which are those of a flame holder are. The creation of a stable backflow zone requires one sufficiently high swirl number in the mixing tube. But it is one Initially undesirable, stable backflow zones can occur the supply of small, strongly swirled air volumes, 5-20% of the Total air volume generated at the end of the pipe.

In Verbindung mit dem erwähnten Querschnittssprung wird das Ende des Mischrohres mit einer Abrisskante ausgebildet, welche der Rückströmzone eine hohe räumliche Stabilität verleiht. Allgemein lassen sich durch die erwähnten Massnahmen folgende Vorteile erzielen:

  • a) Stabile Flammenposition;
  • b) Tiefere Schadstoff-Emissionen (Co, UHC, NOx);
  • c) Minimierung der Pulsationen;
  • d) Vollständiger Ausbrand;
  • e) Grosse Betriebsbereich-Abdeckung;
  • f) Gute Querzündung zwischen den verschiedenen Brennern, insbesondere bei gestufter Lasterstellung, bei welcher die Brenner untereinander interdependent betrieben werden;
  • g) Die Flamme kann der entsprechenden Brennkammergeometrie angepasst werden;
  • h) Kompakte Bauweise;
  • i) Verbesserte Mischung der Strömungsmedien;
  • j) Verbesserter "Patternfaktor" der Temperaturverteilung in der Brennkammer (= ausgeglichener Temperaturprofil der Brennkammerströmung).
  • In connection with the mentioned cross-sectional jump, the end of the mixing tube is formed with a tear-off edge, which gives the backflow zone a high spatial stability. In general, the measures mentioned can achieve the following advantages:
  • a) Stable flame position;
  • b) Lower pollutant emissions (Co, UHC, NOx);
  • c) minimization of pulsations;
  • d) complete burnout;
  • e) Large operating area coverage;
  • f) Good cross-ignition between the different burners, especially with stepped load position, in which the burners are operated interdependently with one another;
  • g) The flame can be adapted to the corresponding combustion chamber geometry;
  • h) compact design;
  • i) Improved mixing of the flow media;
  • j) Improved "pattern factor" of the temperature distribution in the combustion chamber (= balanced temperature profile of the combustion chamber flow).
  • Vorteilhafte und zweckmässige Weiterbildungen der erfindungsgemässen Aufgabenlösung sind in den weiteren Ansprüchen gekennzeichnet.Advantageous and expedient developments of the inventive Task solutions are characterized in the other claims.

    Im folgenden werden anhand der Zeichnungen Ausführungsbeispiele der Erfindung näher erläutert. Alle für das unmittelbare Verständnis der Erfindung unwesentlichen Merkmale sind fortgelassen worden. Gleiche Elemente sind in den verschiedenen Figuren mit den gleichen Bezugszeichen versehen. Die Strömungsrichtung der Medien ist mit Pfeilen angegeben.In the following, exemplary embodiments are described with reference to the drawings the invention explained in more detail. All for the immediate Understand the invention are non-essential features been left out. The same elements are in the different Figures with the same reference numerals. The The direction of flow of the media is indicated by arrows.

    Kurze Bezeichnung der ZeichnungenBrief description of the drawings

    Es zeigt:

    Fig. 1
    einen Brenner mit anschliessender Brennkammer,
    Fig. 2
    einen Drallerzeuger in perspektivischer Darstellung, entsprechend aufgeschnitten,
    Fig. 3
    einen Schnitt durch den 2-Schalen-Drallerzeuger, nach Fig. 2,
    Fig. 4
    einen Schnitt durch einen 4-Schalen-Drallerzeuger,
    Fig. 5
    einen Schitt durch einen Drallerzeuger, dessen Schalen schaufelförmig profiliert sind,
    Fig. 6
    eine Darstellung der Form der Uebergangsgeometrie zwischen Drallerzeuger und Mischrohr und
    Fig. 7
    eine Abrisskante zur räumlichen Stabilisierung der Rückströmzone.
    It shows:
    Fig. 1
    a burner with subsequent combustion chamber,
    Fig. 2
    a swirl generator in a perspective view, cut open accordingly,
    Fig. 3
    3 shows a section through the 2-shell swirl generator, according to FIG. 2,
    Fig. 4
    a section through a 4-shell swirl generator,
    Fig. 5
    a step through a swirl generator, the shells of which are profiled in a shovel shape,
    Fig. 6
    a representation of the shape of the transition geometry between swirl generator and mixing tube and
    Fig. 7
    a tear-off edge for spatial stabilization of the backflow zone.

    Wege zur Ausführung der Erfindung, gewerbliche VerwertbarkeitWays of carrying out the invention, commercial usability

    Fig. 1 zeigt den Gesamtaufbau eines Brenners. Anfänglich ist ein Drallerzeuger 100 wirksam, dessen Ausgestaltung in den nachfolgenden Fig. 2-5 noch näher gezeigt und beschrieben wird. Es handelt sich bei diesem Drallerzeuger 100 um ein kegelförmiges Gebilde, das tangential mehrfach von einem tangential einströmenden Verbrennungsluftstromes 115 beaufschlagt wird. Die sich hierein bildende Strömung wird anhand einer stromab des Drallerzeugers 100 vorgesehenen Uebergangsgeometrie nahtlos in ein Uebergangsstück 200 übergeleitet, dergestalt, dass dort keine Ablösungsgebiete auftreten können. Die Konfiguration dieser Uebergangsgeometrie wird unter Fig. 6 näher beschrieben. Dieses Uebergangsstück 200 ist abströmungsseitig der Uebergangsgeometrie durch ein Rohr 20 verlängert, wobei beide Teile das eigentliche Mischrohr 220, auch Mischstrecke genannt, des Brenners bilden. Selbstverständlich kann das Mischrohr 220 aus einem einzigen Stück bestehen, d.h. dann, dass das Uebergangsstück 200 und Rohr 20 zu einem einzigen zusammenhängenden Gebilde verschmolzen sind, wobei die Charakteristiken eines jeden Teils erhalten bleiben. Werden Uebergangsstück 200 und Rohr 20 aus zwei Teilen erstellt, so sind diese durch einen Buchsenring 10 verbunden, wobei der gleiche Buchsenring 10 kopfseitig als Verankerungsfläche für den Drallerzeuger 100 dient. Ein solcher Buchsenring 10 hat darüber hinaus den Vorteil, dass verschiedene Mischrohre eingesetzt werden können. Abströmungsseitig des Rohres 20 befindet sich die eigentliche Brennkammer 30, welche hier lediglich durch das Flammrohr versinnbildlicht ist. Das Mischrohr 220 erfüllt die Bedingung, dass stromab des Drallerzeugers 100 eine definierte Mischstrecke bereitgestellt wird, in welcher eine perfekte Vormischung von Brennstoffen verschiedener Art erzielt wird. Diese Mischstrecke, also das Mischrohr 220, ermöglicht des weiteren eine verlust-freie Strömungsführung, so dass sich auch in Wirkverbindung mit der Uebergangsgeometrie zunächst keine Rückströmzone bilden kann, womit über die Länge des Mischrohres 220 auf die Mischungsgüte für alle Brennstoffarten Einfluss ausgeübt werden kann. Dieses Mischrohres 220 hat aber noch eine andere Eigenschaft, welche darin besteht, dass im Mischrohr 220 selbst das Axialgeschwindigkeits-Profil ein ausgeprägtes Maximum auf der Achse besitzt, so dass eine Rückzündung der Flamme aus der Brennkammer nicht möglich ist. Allerdings ist es richtig, dass bei einer solchen Konfiguration diese Axial-geschwindigkeit zur Wand hin abfällt. Um Rückzündung auch in diesem Bereich zu unterbinden, wird das Mischrohr 220 in Strömungs- und Umfangsrichtung mit einer Anzahl regelmässig oder unregelmässig verteilten Bohrungen 21 verschiedenster Querschnitte und Richtungen versehen, durch welche eine Luftmenge in das Innere des Mischrohres 220 strömt, und entlang der Wand im Sinne einer Filmlegung eine Erhöhung der Geschwindigkeit induzieren. Eine andere Möglichkeit die gleiche Wirkung zu erzielen, besteht darin, dass der Durchflussquerschnitt des Mischrohres 220 abströmungsseitig der Uebergangskanäle 201, welche die bereits genannten Uebergangsgeometrie bilden, eine Verengung erfährt, wodurch das gesamte Geschwindigkeitsniveau innerhalb des Mischrohres 220 angehoben wird. In der Figur verlaufen diese Bohrungen 21 unter einem spitzen Winkel gegenüber der Brennerachse 60. Des weiteren entspricht der Auslauf der Uebergangskanäle 201 dem engsten Durchflussquerschnitt des Mischrohres 220. Die genannten Uebergangskanäle 201 überbrücken demnach den jeweiligen Querschnittsunterschied, ohne dabei die gebildete Strömung negativ zu beeinflussen. Wenn die gewählte Vorkehrung bei der Führung der Rohrströmung 40 entlang des Mischrohres 220 einen nicht tolerierbaren Druckverlust auslöst, so kann hiergegen Abhilfe geschaffen werden, indem am Ende des Mischrohres ein in der Figur nicht gezeigter Diffusor vorgesehen wird. Am Ende des Mischrohres 220 schliesst sich eine Brennkammer 30 an, wobei zwischen den beiden Durchflussquerschnitten ein Querschnittssprung vorhanden ist. Erst hier bildet sich eine zentrale Rückströmzone 50, welche die Eigenschaften eines Flammenhalters aufweist. Bildet sich innerhalb dieses Querschnittssprunges während des Betriebes eine strömungsmässige Randzone, in welcher durch den dort vorherrschenden Unterdruck Wirbelablösungen entstehen, so führt dies zu einer verstärkten Ringstabilisation der Rückströmzone 50. Stirnseitig weist die Brennkammer 30 eine Anzahl Oeffnungen 31 auf, durch welche eine Luftmenge direkt in den Querschnittssprung strömt, und dort unteren anderen dazu beiträgt, dass die Ringstabilisation der Rückströmzone 50 gestärkt wird. Danebst darf nicht unerwähnt bleiben, dass die Erzeugung einer stabilen Rückströmzone 50 auch eine ausreichend hohe Drallzahl in einem Rohr erfordert. Ist eine solche zunächst unerwünscht, so können stabile Rückströmzonen durch die Zufuhr kleiner stark verdrallter Luftströmungen am Rohrende, beispielsweise durch tangentiale Oeffnungen, erzeugt werden. Dabei geht man hier davon aus, dass die hierzu benötigte Luftmenge in etwa 5-20% der Gesamtluftmenge beträgt. Was die Ausgestaltung der Abrisskante am Ende des Mischrohres 220 betrifft, wird auf die Beschreibung unter Fig. 7 verwiesen.Fig. 1 shows the overall structure of a burner. Is initially a swirl generator 100 effective, the design of which in the following Fig. 2-5 shown and described in more detail becomes. This swirl generator 100 is a conical one Formations that are tangential multiple times from a tangential inflowing combustion air flow 115 is applied becomes. The flow that forms here is based on a transition geometry provided downstream of the swirl generator 100 transitioned seamlessly into a transition piece 200, in such a way that no separation areas can occur there. The configuration of this transition geometry is under Fig. 6 described in more detail. This transition piece 200 is on the outflow side the transition geometry through a tube 20 extended, both parts of the actual mixing tube 220, also called mixing section, form the burner. Of course the mixing tube 220 may consist of a single piece, i.e. then that the transition piece 200 and pipe 20 merged into a single coherent structure with the characteristics of each part preserved stay. Become transition piece 200 and tube 20 from two parts created, they are connected by a socket ring 10, the same bushing ring 10 on the head side as the anchoring surface serves for the swirl generator 100. Such a Socket ring 10 also has the advantage that different Mixing tubes can be used. Outflow side of the tube 20 is the actual combustion chamber 30, which only symbolizes here through the flame tube is. The mixing tube 220 meets the condition that downstream of the swirl generator 100 provides a defined mixing section in which a perfect premix of fuels of different types is achieved. This mixing section, so the mixing tube 220, furthermore enables a loss-free Flow guidance, so that also in operative connection do not initially form a backflow zone with the transition geometry can, which over the length of the mixing tube 220 to the Mix quality for all types of fuel influence can be exercised can. This mixing tube 220 has yet another Property, which is that in the mixing tube 220 even the axial speed profile is a pronounced maximum owns on the axis, so that the Flame from the combustion chamber is not possible. However it is correct that with such a configuration this axial speed drops to the wall. To reignite also in To prevent this area, the mixing tube 220 in Flow and circumferential direction with a number regularly or irregularly distributed holes 21 of the most varied Provide cross sections and directions through which an amount of air flows into the interior of the mixing tube 220, and along the wall in the sense of a filming an increase in speed induce. Another way the same To achieve effect is that the flow cross section of the mixing tube 220 on the outflow side of the transition channels 201, which has the transition geometry already mentioned form, narrowing, causing the whole Speed level increased within the mixing tube 220 becomes. In the figure, these bores 21 run under one acute angle with respect to the burner axis 60. Furthermore the outlet of the transition channels 201 corresponds to the narrowest Flow cross section of the mixing tube 220. The above Transition channels 201 therefore bridge the respective cross-sectional difference, without making the flow negative to influence. If the precaution chosen by the Guiding the pipe flow 40 along the mixing pipe 220 triggers intolerable pressure loss, can counter this Remedial action can be taken by placing one at the end of the mixing tube Diffuser not shown in the figure is provided. At the A combustion chamber 30 closes at the end of the mixing tube 220 , with a between the two flow cross-sections Cross-sectional jump is present. Only here does one form central backflow zone 50, which has the properties of a Has flame holder. Forms within this cross-sectional jump a flow during operation Edge zone, in which by the prevailing negative pressure Vertebral detachments occur, so this leads to an increased Ring stabilization of the backflow zone 50 the combustion chamber 30 has a number of openings 31 through it which an amount of air directly into the cross-sectional jump streams, and there lower others help that Ring stabilization of the backflow zone 50 is strengthened. Besides It should not go unmentioned that the generation of a stable Backflow zone 50 also has a sufficiently high swirl number in a pipe requires. If this is initially undesirable, so stable return flow zones can be made smaller by the supply strongly swirled air flows at the pipe end, for example through tangential openings. Here you go here assume that the amount of air required for this is approximately 5-20% of the total air volume. As for the design of the Tear edge at the end of the mixing tube 220 is concerned the description referenced in FIG. 7.

    Um den Aufbau des Drallerzeugers 100 besser zu verstehen, ist es von Vorteil, wenn gleichzeitig zu Fig. 2 mindestens Fig. 3 herangezogen wird. Des weiteren, um diese Fig. 2 nicht unnötig unübersichtlich zu gestalten, sind in ihr die nach den Figur 3 schematisch gezeigten Leitbleche 121a, 121b nur andeutungsweise aufgenommen worden. Im folgenden wird bei der Beschreibung von Fig. 2 nach Bedarf auf die genannten Figuren hingewiesen.In order to better understand the structure of the swirl generator 100 it is advantageous if, at the same time as FIG. 2, at least FIG. 3 is used. Furthermore, this Fig. 2 is not unnecessary to be confusing, they are those according to the Figure 3 schematically shown guide plates 121a, 121b only hinted been recorded. In the following, the Description of Fig. 2 as required on the figures mentioned pointed out.

    Der erste Teil des Brenners nach Fig. 1 bildet den nach Fig. 2 gezeigten Drallerzeuger 100. Dieser besteht aus zwei hohlen kegelförmigen Teilkörpern 101, 102, die versetzt zueinander ineinandergeschachtelt sind. Die Anzahl der kegelförmigen Teilkörper kann selbstverständlich grösser als zwei sein, wie die Figuren 4 und 5 zeigen; dies hängt jeweils, wie weiter unten noch näher zur Erläuterung kommen wird, von der Betreibungsart des ganzen Brenners ab. Es ist bei bestimmten Betriebskonstellationen nicht ausgeschlossen, einen aus einer einzigen Spirale bestehenden Drallerzeuger vorzusehen. Die Versetzung der jeweiligen Mittelachse oder Längssymmetrieachsen 201b, 202b der kegeligen Teilkörper 101, 102 zueinander schafft bei der benachbarten Wandung, in spiegelbildlicher Anordnung, jeweils einen tangentialen Kanal, d.h. einen Lufteintrittsschlitz 119, 120 (Fig. 3), durch welche die Verbrennungsluft 115 in Innenraum des Drallerzeugers 100, d.h. in den Kegelhohlraum 114 desselben strömt. Die Kegelform der gezeigten Teilkörper 101, 102 in Strömungsrichtung weist einen bestimmten festen Winkel auf. Selbstverständlich, je nach Betriebseinsatz, können die Teilkörper 101, 102 in Strömungsrichtung eine zunehmende oder abnehmende Kegelneigung aufweisen, ähnlich einer Trompete resp. Tulpe. Die beiden letztgenannten Formen sind zeichnerisch nicht erfasst, da sie für den Fachmann ohne weiteres nachempfindbar sind. Die beiden kegeligen Teilkörper 101, 102 weisen je einen zylindrischen Anfangsteil 101a, 102a, die ebenfalls, analog den kegeligen Teilkörpern 101, 102, versetzt zueinander verlaufen, so dass die tangentialen Lufteintrittsschlitze 119, 120 über die ganze Länge des Drallerzeugers 100 vorhanden sind. Im Bereich des zylindrischen Anfangsteils ist eine Düse 103 vorzugsweise für einen flüssigen Brennstoff 112 untergebracht, deren Eindüsung 104 in etwa mit dem engsten Querschnitt des durch die kegeligen Teilkörper 101, 102 gebildeten Kegelhohlraumes 114 zusammenfällt. Die Eindüsungskapazität und die Art dieser Düse 103 richtet sich nach den vorgegebenen Parametern des jeweiligen Brenners. Selbstverständlich kann der Drallerzeuger 100 rein kegelig, also ohne zylindrische Anfangsteile 101a, 102a, ausgeführt sein. Die kegeligen Teilkörper 101, 102 weisen des weiteren je eine Brennstoffleitung 108, 109 auf, welche entlang der tangentialen Lufteintrittsschlitze 119, 120 angeordnet und mit Eindüsungsöffnungen 117 versehen sind, durch welche vorzugsweise ein gasförmiger Brennstoff 113 in die dort durchströmende Verbrennungsluft 115 eingedüst wird, wie dies die Pfeile 116 versinnbildlichen wollen. Diese Brennstoffleitungen 108, 109 sind vorzugsweise spätestens am Ende der tangentialen Einströmung, vor Eintritt in den Kegelhohlraum 114, plaziert, dies um eine optimale Luft/Brennstoff-Mischung zu erhalten. Bei dem durch die Düse 103 herangeführten Brennstoff 112 handelt es sich, wie erwähnt, im Normalfall um einen flüssigen Brennstoff, wobei eine Gemischbildung mit einem anderen Medium ohne weiteres möglich ist. Dieser Brennstoff 112 wird unter einem spitzen Winkel in den Kegelhohlraum 114 eingedüst. Aus der Düse 103 bildet sich sonach ein kegeliges Brennstoffspray 105, das von der tangential einströmenden rotierenden Verbrennungsluft 115 umschlossen wird. In axialer Richtung wird die Konzentration des eingedüsten Brennstoffes 112 fortlaufend durch die einströmenden Verbrennungsluft 115 zu einer Vermischung Richtung Verdampfung abgebaut. Wird ein gasförmiger Brennstoff 113 über die Oeffnungsdüsen 117 eingebracht, geschieht die Bildung des Brennstoff/Luft-Gemisches direkt am Ende der Lufteintrittsschlitze 119, 120. Ist die Verbrennungsluft 115 zusätzlich vorgeheizt, oder beispielsweise mit einem rückgeführten Rauchgas oder Abgas angereichert, so unterstützt dies nachhaltig die Verdampfung des flüssigen Brennstoffes 112, bevor dieses Gemisch in die nachgeschaltete Stufe strömt. Die gleichen Ueberlegungen gelten auch, wenn über die Leitungen 108, 109 flüssige Brennstoffe zugeführt werden sollten. Bei der Gestaltung der kegeligen Teilkörper 101, 102 hinsichtlich des Kegelwinkels und der Breite der tangentialen Lufteintrittsschlitze 119, 120 sind an sich enge Grenzen einzuhalten, damit sich das gewünschte Strömungsfeld der Verbrennungsluft 115 am Ausgang des Drallerzeugers 100 einstellen kann. Allgemein ist zu sagen, dass eine Verkleinerung der tangentialen Lufteintrittsschlitze 119, 120 die schnellere Bildung einer Rückströmzone bereits im Bereich des Drallerzeugers begünstigt. Die Axialgeschwindigkeit innerhalb des Drallerzeugers 100 lässt sich durch eine entsprechende nicht gezeigte Zuführung eines axialen Verbrennungsluftstromes verändern. Eine entsprechende Drallerzeugung verhindert die Bildung von Strömungsablösungen innerhalb des dem Drallerzeuger 100 nachgeschalteten Mischrohr. Die Konstruktion des Drallerzeugers 100 eignet sich des weiteren vorzüglich, die Grösse der tangentialen Lufteintrittsschlitze 119, 120 zu verändern, womit ohne Veränderung der Baulänge des Drallerzeugers 100 eine relativ grosse betriebliche Bandbreite erfasst werden kann. Selbstverständlich sind die Teilkörper 101, 102 auch in einer anderen Ebene zueinander verschiebbar, wodurch sogar eine Ueberlappung derselben vorgesehen werden kann. Es ist des weiteren möglich, die Teilkörper 101, 102 durch eine gegenläufig drehende Bewegung spiralartig ineinander zu verschachteln. Somit ist es möglich, die Form, die Grösse und die Konfiguration der tangentialen Lufteintrittsschlitze 119, 120 beliebig zu variieren, womit der Drallerzeuger 100 ohne Veränderung seiner Baulänge universell einsetzbar ist.The first part of the burner according to FIG. 1 forms the one according to FIG. 2 shown swirl generator 100. This consists of two hollow conical partial bodies 101, 102 which are offset from one another are nested. The number of conical Partial body can of course be larger than two, such as Figures 4 and 5 show; this depends on how each further will be explained in more detail below, depending on the type of debt collection of the whole burner. It is with certain operating constellations not excluded one from one single spiral existing swirl generator. The Offset of the respective central axis or longitudinal symmetry axes 201b, 202b of the tapered partial bodies 101, 102 to one another creates a mirror image of the neighboring wall Arrangement, each a tangential channel, i.e. an air inlet slot 119, 120 (Fig. 3) through which the combustion air 115 inside the swirl generator 100, i.e. in flows through the cone cavity 114 thereof. The cone shape of the one shown Partial body 101, 102 has a flow direction certain fixed angle. Of course, depending on the operational use, can the partial body 101, 102 in the direction of flow have an increasing or decreasing taper similar to a trumpet or Tulip. The latter two Shapes are not included in the drawing as they are for the expert can be easily understood. The two tapered partial bodies 101, 102 each have a cylindrical Initial part 101a, 102a, which also, analogous to the tapered Partial bodies 101, 102, offset from one another, so that the tangential air inlet slots 119, 120 via the entire length of the swirl generator 100 are present. In the area of the cylindrical initial part, a nozzle 103 is preferred for a liquid fuel 112, the injection of which 104 with the narrowest cross section of the through conical partial body 101, 102 formed conical cavity 114 coincides. The injection capacity and the type of this Nozzle 103 depends on the specified parameters of the respective burner. Of course, the swirl generator can 100 purely conical, i.e. without cylindrical starting parts 101a, 102a. The tapered body 101, 102 also each have a fuel line 108, 109 on which along the tangential air inlet slots 119, 120 arranged and provided with injection openings 117 are, by which preferably a gaseous fuel 113 injected into the combustion air 115 flowing through there is how the arrows 116 symbolize this. This Fuel lines 108, 109 are preferably at the latest End of tangential inflow, before entering the cone cavity 114, placed, this for an optimal Obtain air / fuel mixture. At that through the nozzle 103 fuel introduced 112, as mentioned, normally a liquid fuel, whereby a mixture formation with another medium without any problems is possible. This fuel 112 will tip under one Angle injected into the cone cavity 114. From the nozzle 103 A conical fuel spray 105 is thus formed, which by the rotating combustion air 115 flowing in tangentially is enclosed. In the axial direction, the concentration of the injected fuel 112 continuously through the inflowing Combustion air 115 to mix direction Evaporation reduced. If a gaseous fuel 113 Formed through the opening nozzles 117, the formation occurs of the fuel / air mixture directly at the end of the air inlet slots 119, 120. Is the combustion air 115 additional preheated, or for example with a recirculated This enriches flue gas or exhaust gas sustained evaporation of the liquid fuel 112, before this mixture flows into the downstream stage. The The same considerations also apply when using the lines 108, 109 liquid fuels should be supplied. At the design of the tapered partial body 101, 102 with respect the cone angle and the width of the tangential air inlet slots 119, 120 are strict limits to be observed, so that the desired flow field of the combustion air Set 115 at the output of swirl generator 100 can. Generally speaking, a downsizing of the tangential air inlet slots 119, 120 the faster Formation of a backflow zone already in the area of the swirl generator favored. The axial speed within the Swirl generator 100 cannot be replaced by a corresponding one change the supply of an axial combustion air flow shown. Appropriate swirl generation prevents formation of flow separation within the swirl generator 100 downstream mixing tube. The construction of the swirl generator 100 is also excellent, the size to change the tangential air inlet slots 119, 120, with which without changing the overall length of the swirl generator 100 a relatively wide range of operations can be covered can. Of course, the partial bodies 101, 102 are also in another level slidable to each other, which even an overlap of the same can be provided. It is further possible, the partial body 101, 102 by an opposite to interleave rotating movement in a spiral. So it is possible to change the shape, size and the configuration of the tangential air inlet slots 119, 120 to vary arbitrarily, with which the swirl generator 100 without Changing its overall length is universally applicable.

    Aus Fig. 3 geht nunmehr die geometrische Konfiguration der Leitbleche 121a, 121b hervor. Sie haben Strömungseinleitungsfunktion, wobei diese, entsprechend ihrer Länge, das jeweilige Ende der kegeligen Teilkörper 101, 102 in Anströmungsrichtung gegenüber der Verbrennungsluft 115 verlängern. Die Kanalisierung der Verbrennungsluft 115 in den Kegelhohlraum 114 kann durch Oeffnen bzw. Schliessen der Leitbleche 121a, 121b um einen im Bereich des Eintritts dieses Kanals in den Kegelhohlraum 114 plazierten Drehpunkt 123 optimiert werden, insbesondere ist dies vonnöten, wenn die ursprüngliche Spaltgrösse der tangentialen Lufteintrittsschlitze 119, 120 dynamisch verändert werden soll. Selbstverständlich können diese dynamische Vorkehrungen auch statisch vorgesehen werden, indem bedarfsmässige Leitbleche einen festen Bestandteil mit den kegeligen Teilkörpern 101, 102 bilden. Ebenfalls kann der Drallerzeuger 100 auch ohne Leitbleche betrieben werden, oder es können andere Hilfsmittel hierfür vogesehen werden. The geometric configuration of FIG Baffles 121a, 121b. They have a flow initiation function these, according to their length, the respective End of the tapered partial body 101, 102 in the direction of flow extend towards the combustion air 115. The Channeling the combustion air 115 into the cone cavity 114 can by opening or closing the guide plates 121a, 121b by one in the area of the entry of this channel into the Cone cavity 114 placed pivot point 123 can be optimized, this is particularly necessary if the original gap size of the tangential air inlet slots 119, 120 dynamic should be changed. Of course you can dynamic arrangements can also be provided statically by required guide plates with a fixed component form the tapered partial bodies 101, 102. The can also Swirl generator 100 can also be operated without baffles, or other aids can be provided for this.

    Fig. 4 zeigt gegenüber Fig. 3, dass der Drallerzeuger 100 nunmehr aus vier Teilkörpern 130, 131, 132, 133 aufgebaut ist. Die dazugehörigen Längssymmetrieachsen zu jedem Teilkörper sind mit der Buchstabe a gekennzeichnet. Zu dieser Konfiguration ist zu sagen, dass sie sich aufgrund der damit erzeugten, geringeren Drallstärke und im Zusammenwirken mit einer entsprechend vergrösserten Schlitzbreite bestens eignet, das Aufplatzen der Wirbelströmung abströmungsseitig des Drallerzeugers im Mischrohr zu verhindern, womit das Mischrohr die ihm zugedachte Rolle bestens erfüllen kann.4 shows that the swirl generator 100 now made up of four partial bodies 130, 131, 132, 133 is. The associated longitudinal symmetry axes for each partial body are marked with the letter a. About this configuration can be said that because of the generated lower twist strength and in cooperation with one suitably suitably enlarged slot width, the bursting of the vortex flow on the downstream side of the To prevent swirl in the mixing tube, making the mixing tube can best fulfill the role intended for him.

    Fig. 5 unterscheidet sich gegenüber Fig. 4 insoweit, als hier die Teilkörper 140, 141, 142, 143 eine Schaufelprofilform haben, welche zur Bereitstellung einer gewissen Strömung vorgesehen wird. Ansonsten ist die Betreibungsart des Drallerzeugers die gleiche geblieben. Die Zumischung des Brennstoffes 116 in den Verbrennungsluftstromes 115 geschieht aus dem Innern der Schaufelprofile heraus, d.h. die Brennstoffleitung 108 ist nunmehr in die einzelnen Schaufeln integriert. Auch hier sind die Längssymmetrieachsen zu den einzelnen Teilkörpern mit der Buchstabe a gekennzeichnet.Fig. 5 differs from Fig. 4 in so far as here the partial bodies 140, 141, 142, 143 have a blade profile shape, which is intended to provide a certain flow becomes. Otherwise, the mode of operation of the swirl generator stayed the same. The admixture of fuel 116 in the combustion air flow 115 happens from the inside the blade profiles out, i.e. the fuel line 108 is now integrated in the individual blades. Also here are the longitudinal axes of symmetry to the individual partial bodies marked with the letter a.

    Fig. 6 zeigt das Uebergangsstück 200 in dreidimensionaler Ansicht. Die Uebergangsgeometrie ist für einen Drallerzeuger 100 mit vier Teilkörpern, entsprechend der Fig. 4 oder 5, aufgebaut. Dementsprechend weist die Uebergangsgeometrie als natürliche Verlängerung der stromauf wirkenden Teilkörper vier Uebergangskanäle 201 auf, wodurch die Kegelviertelfläche der genannten Teilkörper verlängert wird, bis sie die Wand des Rohres 20 resp. des Mischrohres 220 schneidet. Die gleichen Ueberlegungen gelten auch, wenn der Drallerzeuger aus einem anderen Prinzip, als den unter Fig. 2 beschriebenen, aufgebaut ist. Die nach unten in Strömungsrichtung verlaufende Fläche der einzelnen Uebergangskanäle 201 weist eine in Strömungsrichtung spiralförmig verlaufende Form auf, welche einen sichelförmigen Verlauf beschreibt, entsprechend der Tatsache, dass sich vorliegend der Durchflussquerschnitt des Uebergangsstückes 200 in Strömungsrichtung konisch erweitert. Der Drallwinkel der Uebergangskanäle 201 in Strömungsrichtung ist so gewählt, dass der Rohrströmung anschliessend bis zum Querschnittssprung am Brennkammereintritt noch eine genügend grosse Strecke verbleibt, um eine perfekte Vormischung mit dem eingedüsten Brennstoff zu bewerkstelligen. Ferner erhöht sich durch die oben genannten Massnahmen auch die Axialgeschwindigkeit an der Mischrohrwand stromab des Drallerzeugers. Die Uebergangsgeometrie und die Massnahmen im Bereich des Mischrohres bewirken eine deutliche Steigerung des Axialgeschwindigkeitsprofils zum Mittelpunkt des Mischrohres hin, so dass der Gefahr einer Frühzündung entscheidend entgegengewirkt wird.6 shows the transition piece 200 in a three-dimensional view. The transition geometry is for a swirl generator 100 with four partial bodies, corresponding to FIG. 4 or 5, built up. Accordingly, the transition geometry points as natural extension of the upstream parts four transition channels 201 on, making up the cone quarter area the partial body mentioned is extended until it hits the wall of the tube 20 respectively. of the mixing tube 220 cuts. The same Considerations also apply when the swirl generator is off another principle than that described under Fig. 2, is constructed. The one running downward in the direction of flow The area of the individual transition channels 201 has an in Flow direction on a spiral shape, which describes a crescent shape, corresponding to the The fact that the flow cross section of the Transition piece 200 flared in the direction of flow. The swirl angle of the transition channels 201 in the flow direction is selected so that the pipe flow then up to A cross-sectional jump at the combustion chamber inlet is still sufficient large distance remains to make a perfect premix with to manage the injected fuel. Further increases the axial speed is also affected by the above-mentioned measures on the mixing tube wall downstream of the swirl generator. The transition geometry and the measures in the area of the mixing tube cause a significant increase in the axial speed profile towards the center of the mixing tube, so that the danger of early ignition is decisively counteracted becomes.

    Fig. 7 zeigt die bereits angesprochene Abrisskante, welche am Brenneraustritt gebildet ist. Der Durchflussquerschnitt des Rohres 20 erhält in diesem Bereich einen Uebergangsradius R, dessen Grösse grundsätzlich von der Strömung innerhalb des Rohres 20 abhängt. Dieser Radius R wird so gewählt, dass sich die Strömung an die Wand anlegt und so die Drallzahl stark ansteigen lässt. Quantitativ lässt sich die Grösse des Radius R so definieren, dass dieser > 10% des Innendurchmessers d des Rohres 20 beträgt. Gegenüber einer Strömung ohne Radius vergrössert sich nun die Rückströmblase 50 gewaltig. Dieser Radius R verläuft bis zur Austrittsebene des Rohres 20, wobei der Winkel β zwischen Anfang und Ende der Krümmung < 90° beträgt. Entlang des einen Schenkels des Winkels β verläuft die Abrisskante A ins Innere des Rohres 20 und bildet somit eine Abrissstufe S gegenüber dem vorderen Punkt der Abrisskante A, deren Tiefe > 3 mm beträgt. Selbstverständlich kann die hier parall zur Austrittsebene des Rohres 20 verlaufende Kante anhand eines gekrümmten Verlaufs wieder auf Stufe Austrittsebene gebracht werden. Der Winkel β', der sich zwischen Tangente der Abrisskante A und Senkrechte zur Austrittsebene des Rohres 20 ausbreitet, ist gleich gross wie Winkel β. Auf die Vorteile dieser Ausbildung ist bereits oben unter dem Kapitel "Darstellung der Erfindung" näher eingegangen.Fig. 7 shows the tear-off edge already mentioned, which on Burner outlet is formed. The flow cross section of the Tube 20 is given a transition radius R in this area, whose size basically depends on the flow within the Tube 20 depends. This radius R is chosen so that the flow applies to the wall and so the swirl number strong can rise. The size of the radius can be quantified Define R so that it is> 10% of the inner diameter d of the tube is 20. Opposite a flow without a radius Now the backflow bladder 50 increases enormously. This Radius R extends to the exit plane of the tube 20, wherein the angle β between the beginning and end of the curvature is <90 °. The runs along one leg of the angle β Tear-off edge A into the interior of the tube 20 and thus forms one Tear-off step S opposite the front point of the tear-off edge A, whose depth is> 3 mm. Of course, here edge running parallel to the exit plane of the tube 20 a curved course again at the exit level to be brought. The angle β 'that is between tangent the trailing edge A and perpendicular to the exit plane of the Tube 20 spreads is the same size as angle β. On the Advantages of this training is already under the chapter "Presentation of the invention" discussed in more detail.

    BezugszeichenlisteReference list

    1010th
    BuchenringBeech ring
    2020th
    Rohrpipe
    2121
    Bohrungen, OeffnungenHoles, openings
    3030th
    BrennkammerCombustion chamber
    3131
    OeffnungenOpenings
    4040
    Strömung, Rohrströmung im MischrohrFlow, pipe flow in the mixing pipe
    5050
    Rückströmzone, RückströmblaseBackflow zone, backflow bubble
    6060
    BrennerachseBurner axis
    100100
    DrallerzeugerSwirl generator
    101, 102101, 102
    TeilkörperPartial body
    101a, 102b101a, 102b
    Zylindrische AnfangsteileCylindrical starting parts
    101b, 102b101b, 102b
    LängssymmetrieachsenLongitudinal symmetry axes
    103103
    BrennstoffdüseFuel nozzle
    104104
    BrennstoffeindüsungFuel injection
    105105
    Brennstoffspray (Brennstoffeindüsungsprofil)Fuel spray (fuel injection profile)
    108, 109108, 109
    BrennstoffleitungenFuel lines
    112112
    Flüssiger BrennstoffLiquid fuel
    113113
    Gasförmiger BrennstoffGaseous fuel
    114114
    KegelhohlraumCone cavity
    115115
    Verbrennungsluft (Verbrennungsluftstrom)Combustion air (combustion air flow)
    116116
    Brennstoff-Eindüsung aus den Leitungen 108, 109Fuel injection from lines 108, 109
    117117
    BrennstoffdüsenFuel nozzles
    119, 120119, 120
    Tangentiale LufteintrittsschlitzeTangential air inlet slots
    121a, 121b121a, 121b
    LeitblecheBaffles
    123123
    Drehpunkt der LeitblechePivot point of the guide plates
    130, 131, 132, 133130, 131, 132, 133
    TeilkörperPartial body
    131a, 131a, 132a, 133a131a, 131a, 132a, 133a
    LängssymmetrieachsenLongitudinal symmetry axes
    140, 141, 142, 143140, 141, 142, 143
    Schaufelprofilförmige TeilkörperVane-shaped partial body
    140a, 141a, 142a, 143a140a, 141a, 142a, 143a
    LängssymmetrieachsenLongitudinal symmetry axes
    200200
    Uebergangsstück Transition piece
    201201
    UebergangskanäleTransition channels
    220220
    MischrohrMixing tube
    dd
    Innendurchmesser des Rohres 20Inner diameter of the tube 20
    RR
    UebergangsradiusTransition radius
    TT
    Tangentiale der AbrisskanteTangent line of the tear-off edge
    AA
    AbrisskanteTear-off edge
    SS
    AbrissstufeDemolition level
    ββ
    Uebergangswinkel von RTransition angle from R
    β'β '
    Winkel zwischen T und AAngle between T and A

    Claims (14)

    1. Burner for a heat generator, substantially consisting of a swirl generator (100) for a combustion air flow and of means for injecting a fuel through nozzles into said combustion air flow, wherein a mixing length (220) is disposed downstream of said swirl generator (100),
      characterized in
      that said mixing length (220) comprises transfer ducts (201) extending in the flow direction within a first length section (200) for transferring a flow (40) created in said swirl generator (100) into a tube (20) connected downstream of said transfer ducts (201), and that the discharge plane of this tube (20) towards the combustion chamber (30) is configured to present a breakaway edge (A) for stabilising and enlarging a backflow zone (50) forming in the downstream region.
    2. Burner according to Claim 1, characterised in that the number of said transfer ducts (201) in said mixing length (220) corresponds to the number of partial flows formed by said swirl generator (100).
    3. Burner according to Claim 1, characterised in that said tube (20) joined downstream of said transfer ducts (201) is provided with openings (21) in the flow direction and peripheral direction for injecting an air flow through nozzles into the interior of said tube (20).
    4. Burner according to Claim 3, characterised in that said openings (21) extend at an acute angle relative to the burner axis (60) of said tube (20).
    5. Burner according to Claim 1, characterised in that said breakaway edge (A) consists of a transition radius (R) in the region of the discharge plane of said tube (20) and of a breakaway step (S) offset from the discharge plane of said tube (20).
    6. Burner according to Claim 5, characterised in that said transition radius (R) amounts to > 10 % of the inside diameter of said tube (20), and that said breakaway step (S) has a depth of > 3 mm.
    7. Burner according to Claim 1, characterised in that the flow cross-section of said tube (20) downstream of said transfer ducts (201) is smaller than, equal to or larger than the cross-section of the flow (40) created in said swirl generator (100).
    8. Burner according to Claim 1, characterised in that downstream of said mixing length (220) a combustion chamber (30) is disposed, that a cross-section discontinuity is provided between said mixing length (220) and said combustion chamber (30), that induces the initial flow cross-section of said combustion chamber (30), and that a backflow zone (50) is provided for becoming operative in the region of this cross-section discontinuity.
    9. Burner according to Claim 1, characterised in that a diffuser and/or a Venturi section is provided upstream of said breakaway edge (A).
    10. Burner according to Claim 1, characterised in that said swirl generator (100) consists of at least two hollow conical body segments (101, 102; 130, 131, 132, 133; 140, 141, 142, 143) nested into each other, that the respective axes of longitudinal symmetry (101b, 102b; 130a, 131a, 132a, 133a; 140a, 141a, 142a, 143a) of these body segments extend in a mutually offset position such that the adjacent walls of said body segments form tangential ducts (119, 120) for a combustion air flow (115) along their longitudinal extension, and that at least one fuel nozzle (103) is disposed in the conical hollow space (114) formed by said body segments.
    11. Burner according to Claim 10, characterised in that further fuel nozzles (117) are disposed in the region of said tangential ducts (119, 120) along the longitudinal extension thereof.
    12. Burner according to Claim 10, characterised in that said body segments (140, 141, 142, 143) present a blade-shaped profiling in their cross-section.
    13. Burner according to Claim 10, characterised in that said body segments present a fixed cone angle, or an increasing cone inclination, or a decreasing cone inclination along the flow direction.
    14. Burner according to Claim 10, characterised in that said body segments are spirally nested into each other.
    EP96810804A 1995-12-21 1996-11-18 Burner for a heat generator Expired - Lifetime EP0780629B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19547913A DE19547913A1 (en) 1995-12-21 1995-12-21 Burners for a heat generator
    DE19547913 1995-12-21

    Publications (3)

    Publication Number Publication Date
    EP0780629A2 EP0780629A2 (en) 1997-06-25
    EP0780629A3 EP0780629A3 (en) 1998-08-19
    EP0780629B1 true EP0780629B1 (en) 2001-07-11

    Family

    ID=7780868

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96810804A Expired - Lifetime EP0780629B1 (en) 1995-12-21 1996-11-18 Burner for a heat generator

    Country Status (7)

    Country Link
    US (1) US5735687A (en)
    EP (1) EP0780629B1 (en)
    JP (1) JPH09184606A (en)
    KR (1) KR970046984A (en)
    AT (1) ATE203101T1 (en)
    CA (1) CA2190805A1 (en)
    DE (2) DE19547913A1 (en)

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6834504B2 (en) 2001-07-26 2004-12-28 Alstom Technology Ltd Premix burner with high flame stability having a net-like structure within the mixing section
    US7424804B2 (en) 2003-03-07 2008-09-16 Alstom Technology Ltd Premix burner
    US7584616B2 (en) 2004-12-23 2009-09-08 Alstom Technology Ltd Method for the operation of a gas turbo group

    Families Citing this family (68)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5954496A (en) * 1996-09-25 1999-09-21 Abb Research Ltd. Burner for operating a combustion chamber
    DE19736902A1 (en) * 1997-08-25 1999-03-04 Abb Research Ltd Burners for a heat generator
    DE19737998A1 (en) * 1997-08-30 1999-03-04 Abb Research Ltd Burner device
    DE59709791D1 (en) 1997-09-19 2003-05-15 Alstom Switzerland Ltd Burner for operating a heat generator
    EP0908671B1 (en) 1997-10-08 2003-05-14 ALSTOM (Switzerland) Ltd Combustion process for gaseous, liquid fuels and fuels having medium or low calorific value in a burner
    EP0909921B1 (en) 1997-10-14 2003-01-02 Alstom Burner for operating a heat generator
    EP0913630B1 (en) 1997-10-31 2003-03-05 ALSTOM (Switzerland) Ltd Burner for the operation of a heat generator
    DE59710788D1 (en) * 1997-11-13 2003-10-30 Alstom Switzerland Ltd Burner for operating a heat generator
    EP0918190A1 (en) * 1997-11-21 1999-05-26 Abb Research Ltd. Burner for the operation of a heat generator
    EP0918191B1 (en) * 1997-11-21 2003-07-02 Alstom Burner for the operation of a heat generator
    ATE232282T1 (en) * 1997-11-25 2003-02-15 Alstom BURNER FOR OPERATING A HEAT GENERATOR
    DE19757189B4 (en) * 1997-12-22 2008-05-08 Alstom Method for operating a burner of a heat generator
    ATE237101T1 (en) 1998-01-23 2003-04-15 Alstom Switzerland Ltd BURNER FOR OPERATION OF A HEAT GENERATOR
    EP0987493B1 (en) 1998-09-16 2003-08-06 Abb Research Ltd. Burner for a heat generator
    DE59810284D1 (en) * 1998-10-14 2004-01-08 Alstom Switzerland Ltd Burner for operating a heat generator
    DE19859829A1 (en) 1998-12-23 2000-06-29 Abb Alstom Power Ch Ag Burner for operating a heat generator
    DE19914666B4 (en) * 1999-03-31 2009-08-20 Alstom Burner for a heat generator
    EP1065346A1 (en) 1999-07-02 2001-01-03 Asea Brown Boveri AG Gas-turbine engine combustor
    DE59907942D1 (en) 1999-07-22 2004-01-15 Alstom Switzerland Ltd premix
    DE59909531D1 (en) 1999-07-22 2004-06-24 Alstom Technology Ltd Baden premix
    DE10026122A1 (en) * 2000-05-26 2001-11-29 Abb Alstom Power Nv Burner for heat generator has shaping element with inner surface curving away from or towards burner axis; flow from mixing tube contacts inner surface and its spin rate increases
    US6769903B2 (en) * 2000-06-15 2004-08-03 Alstom Technology Ltd Method for operating a burner and burner with stepped premix gas injection
    DE10040869A1 (en) * 2000-08-21 2002-03-07 Alstom Power Nv Method and device for suppressing flow vortices within a fluid power machine
    DE10050248A1 (en) 2000-10-11 2002-04-18 Alstom Switzerland Ltd Pre-mixing burner comprises swirl burner with inner chamber, with widening passage, injector with adjustable elements.
    DE10051221A1 (en) 2000-10-16 2002-07-11 Alstom Switzerland Ltd Burner with staged fuel injection
    DE10056124A1 (en) 2000-11-13 2002-05-23 Alstom Switzerland Ltd Burner system with staged fuel injection and method of operation
    DE50112904D1 (en) 2000-12-16 2007-10-04 Alstom Technology Ltd Method for operating a premix burner
    DE10064259B4 (en) * 2000-12-22 2012-02-02 Alstom Technology Ltd. Burner with high flame stability
    DE10121768B4 (en) * 2001-05-04 2007-03-01 Robert Bosch Gmbh Mixing device for gases in fuel cells
    EP1262714A1 (en) 2001-06-01 2002-12-04 ALSTOM (Switzerland) Ltd Burner with exhausts recirculation
    EP1436546B1 (en) 2001-10-19 2016-09-14 General Electric Technology GmbH Burner for synthesis gas
    DE10164099A1 (en) 2001-12-24 2003-07-03 Alstom Switzerland Ltd Burner with staged fuel injection
    DE10210034B4 (en) * 2002-03-07 2009-10-01 Webasto Ag Mobile heater with a fuel supply
    AU2003238524A1 (en) 2002-05-16 2003-12-02 Alstom Technology Ltd Premix burner
    EP1389713A1 (en) 2002-08-12 2004-02-18 ALSTOM (Switzerland) Ltd Premixed exit ring pilot burner
    DE10247955A1 (en) 2002-10-12 2004-05-13 Alstom (Switzerland) Ltd. Burner for gas turbine has at least one resonance tube with one end open and other closed
    WO2006058843A1 (en) 2004-11-30 2006-06-08 Alstom Technology Ltd Method and device for burning hydrogen in a premix burner
    WO2006100176A1 (en) 2005-03-23 2006-09-28 Alstom Technology Ltd Method and device for combusting hydrogen in a premix burner
    EP1999410B1 (en) 2006-03-27 2015-12-02 Alstom Technology Ltd Burner for the operation of a heat generator
    WO2009019113A2 (en) 2007-08-07 2009-02-12 Alstom Technology Ltd Burner for a combustion chamber of a turbo group
    EP2058590B1 (en) * 2007-11-09 2016-03-23 Alstom Technology Ltd Method for operating a burner
    CN101910723B (en) 2007-11-27 2013-07-24 阿尔斯通技术有限公司 Device for burning hydrogen in a premix burner
    WO2009109452A1 (en) 2008-03-07 2009-09-11 Alstom Technology Ltd Burner arrangement, and use of such a burner arrangement
    US8561602B2 (en) * 2008-12-24 2013-10-22 Agio International Company, Ltd. Gas feature and method
    US8256226B2 (en) * 2009-04-23 2012-09-04 General Electric Company Radial lean direct injection burner
    CH701905A1 (en) 2009-09-17 2011-03-31 Alstom Technology Ltd Method of burning hydrogen-rich, gaseous fuels in a burner and burner for carrying out the method.
    RU2561956C2 (en) * 2012-07-09 2015-09-10 Альстом Текнолоджи Лтд Gas-turbine combustion system
    EP2685163B1 (en) * 2012-07-10 2020-03-25 Ansaldo Energia Switzerland AG Premix burner of the multi-cone type for a gas turbine
    EP2685160B1 (en) * 2012-07-10 2018-02-21 Ansaldo Energia Switzerland AG Premix burner of the multi-cone type for a gas turbine
    EP2685161B1 (en) * 2012-07-10 2018-01-17 Ansaldo Energia Switzerland AG Combustor arrangement, especially for a gas turbine
    EP2888531B1 (en) 2012-08-24 2020-06-17 Ansaldo Energia Switzerland AG Sequential combustion with dilution gas mixer
    EP2703721B1 (en) 2012-08-31 2019-05-22 Ansaldo Energia IP UK Limited Premix burner
    EP2796789B1 (en) 2013-04-26 2017-03-01 General Electric Technology GmbH Can combustor for a can-annular combustor arrangement in a gas turbine
    EP2837888A1 (en) 2013-08-15 2015-02-18 Alstom Technology Ltd Sequential combustion with dilution gas mixer
    EP2857658A1 (en) 2013-10-01 2015-04-08 Alstom Technology Ltd Gas turbine with sequential combustion arrangement
    EP2894405B1 (en) 2014-01-10 2016-11-23 General Electric Technology GmbH Sequential combustion arrangement with dilution gas
    EP2921779B1 (en) 2014-03-18 2017-12-06 Ansaldo Energia Switzerland AG Combustion chamber with cooling sleeve
    JP6602004B2 (en) * 2014-09-29 2019-11-06 川崎重工業株式会社 Fuel injector and gas turbine
    EP3015771B1 (en) 2014-10-31 2020-01-01 Ansaldo Energia Switzerland AG Combustor arrangement for a gas turbine
    EP3015772B1 (en) 2014-10-31 2020-01-08 Ansaldo Energia Switzerland AG Combustor arrangement for a gas turbine
    EP3067622B1 (en) 2015-03-12 2018-12-26 Ansaldo Energia Switzerland AG Combustion chamber with double wall and method of cooling the combustion chamber
    EP3130848B1 (en) 2015-08-12 2019-01-16 Ansaldo Energia Switzerland AG Sequential combustion arrangement with cooling gas for dilution
    EP3133343A1 (en) 2015-08-18 2017-02-22 General Electric Technology GmbH Gas turbine with diluted liquid fuel
    EP3135880B1 (en) 2015-08-25 2020-07-08 Ansaldo Energia IP UK Limited Gas turbine with a sequential combustion arrangement and fuel composition control
    EP3228939B1 (en) 2016-04-08 2020-08-05 Ansaldo Energia Switzerland AG Method for combusting a fuel, and combustion appliance
    EP3228937B1 (en) 2016-04-08 2018-11-07 Ansaldo Energia Switzerland AG Method for combusting a fuel, and combustion device
    EP3306194B1 (en) 2016-10-06 2019-04-24 Ansaldo Energia IP UK Limited Combustor wall element and method for manufacturing the same
    US10782017B2 (en) 2018-04-24 2020-09-22 Trane International Inc. Wing vaned flame shaper

    Family Cites Families (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2183596A (en) * 1938-01-28 1939-12-19 Eastman Kodak Co Burner construction
    US3656692A (en) * 1971-01-05 1972-04-18 Texaco Inc Oil burner
    US3851466A (en) * 1973-04-12 1974-12-03 Gen Motors Corp Combustion apparatus
    US3905752A (en) * 1974-05-03 1975-09-16 Hy Way Heat Systems Inc Oil burner
    US3905192A (en) * 1974-08-29 1975-09-16 United Aircraft Corp Combustor having staged premixing tubes
    US4271675A (en) * 1977-10-21 1981-06-09 Rolls-Royce Limited Combustion apparatus for gas turbine engines
    US4561841A (en) * 1980-11-21 1985-12-31 Donald Korenyi Combustion apparatus
    CH674561A5 (en) 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
    US5251447A (en) * 1992-10-01 1993-10-12 General Electric Company Air fuel mixer for gas turbine combustor
    JPH07190308A (en) * 1993-12-28 1995-07-28 Hitachi Ltd Swivel burner
    FR2717250B1 (en) * 1994-03-10 1996-04-12 Snecma Premix injection system.
    DE4408136A1 (en) * 1994-03-10 1995-09-14 Bmw Rolls Royce Gmbh Method for fuel preparation for gas turbine combustion chamber
    DE4416650A1 (en) * 1994-05-11 1995-11-16 Abb Management Ag Combustion process for atmospheric combustion plants
    DE4435266A1 (en) * 1994-10-01 1996-04-04 Abb Management Ag burner

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6834504B2 (en) 2001-07-26 2004-12-28 Alstom Technology Ltd Premix burner with high flame stability having a net-like structure within the mixing section
    US7424804B2 (en) 2003-03-07 2008-09-16 Alstom Technology Ltd Premix burner
    US7584616B2 (en) 2004-12-23 2009-09-08 Alstom Technology Ltd Method for the operation of a gas turbo group

    Also Published As

    Publication number Publication date
    ATE203101T1 (en) 2001-07-15
    DE19547913A1 (en) 1997-06-26
    US5735687A (en) 1998-04-07
    DE59607269D1 (en) 2001-08-16
    EP0780629A3 (en) 1998-08-19
    JPH09184606A (en) 1997-07-15
    CA2190805A1 (en) 1997-06-22
    EP0780629A2 (en) 1997-06-25
    KR970046984A (en) 1997-07-26

    Similar Documents

    Publication Publication Date Title
    EP0780629B1 (en) Burner for a heat generator
    EP0704657B1 (en) Burner
    EP0899508B1 (en) Burner for a heat producing device
    EP0797051B1 (en) Burner for a heat generator
    EP0780630B1 (en) Burner for a heat generator
    EP0918191B1 (en) Burner for the operation of a heat generator
    EP0918190A1 (en) Burner for the operation of a heat generator
    EP0833105B1 (en) Premix burner
    EP0718561B1 (en) Combustor
    DE19757189B4 (en) Method for operating a burner of a heat generator
    EP0777081B1 (en) Premix burner
    EP0994300B1 (en) Burner for operating a heat generator
    EP0916894B1 (en) Burner for operating a heat generator
    EP0987493B1 (en) Burner for a heat generator
    EP0931980B1 (en) Burner for operating a heat generator
    EP0909921B1 (en) Burner for operating a heat generator
    EP0751351B1 (en) Combustion chamber
    EP0903540B1 (en) Burner for operating a heat generator
    EP0919768B1 (en) Burner for the operation of a heat generator
    DE19537636B4 (en) Power plant
    EP0833104B1 (en) Burner for operating a combustion chamber
    EP0913630B1 (en) Burner for the operation of a heat generator
    DE19515082B4 (en) premix
    DE19914666B4 (en) Burner for a heat generator
    DE10042315A1 (en) Burner for heat generator comprises three injectors for gaseous or liquid fuel, swirl generator, mixing section , and transfer ducts

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT CH DE FR GB IT LI NL SE

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT CH DE FR GB IT LI NL SE

    17P Request for examination filed

    Effective date: 19990129

    17Q First examination report despatched

    Effective date: 20000403

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: RUCK, THOMAS

    Inventor name: KNOEPFEL, HANS PETER

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT CH DE FR GB IT LI NL SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20010711

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20010711

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20010711

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ABB RESEARCH LTD.

    REF Corresponds to:

    Ref document number: 203101

    Country of ref document: AT

    Date of ref document: 20010715

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59607269

    Country of ref document: DE

    Date of ref document: 20010816

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011011

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20011003

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20011118

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20011130

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20011130

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    EN Fr: translation not filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20120802 AND 20120808

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59607269

    Country of ref document: DE

    Representative=s name: ROESLER PATENTANWALTSKANZLEI, DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59607269

    Country of ref document: DE

    Representative=s name: RUEGER, BARTHELT & ABEL, DE

    Effective date: 20130508

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59607269

    Country of ref document: DE

    Representative=s name: ROESLER PATENTANWALTSKANZLEI, DE

    Effective date: 20130508

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59607269

    Country of ref document: DE

    Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

    Free format text: FORMER OWNER: ALSTOM, PARIS, FR

    Effective date: 20130508

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59607269

    Country of ref document: DE

    Owner name: ALSTOM TECHNOLOGY LTD., CH

    Free format text: FORMER OWNER: ALSTOM, PARIS, FR

    Effective date: 20130508

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20151119

    Year of fee payment: 20

    Ref country code: GB

    Payment date: 20151118

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59607269

    Country of ref document: DE

    Representative=s name: RUEGER ABEL PATENTANWAELTE PARTGMBB, DE

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59607269

    Country of ref document: DE

    Representative=s name: RUEGER, BARTHELT & ABEL, DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59607269

    Country of ref document: DE

    Representative=s name: RUEGER, BARTHELT & ABEL, DE

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59607269

    Country of ref document: DE

    Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

    Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59607269

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20161117

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20161117