EP0776707B1 - Method of cleaning aggregates from a power plant - Google Patents
Method of cleaning aggregates from a power plant Download PDFInfo
- Publication number
- EP0776707B1 EP0776707B1 EP96810785A EP96810785A EP0776707B1 EP 0776707 B1 EP0776707 B1 EP 0776707B1 EP 96810785 A EP96810785 A EP 96810785A EP 96810785 A EP96810785 A EP 96810785A EP 0776707 B1 EP0776707 B1 EP 0776707B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steam
- injection
- cleaning
- units
- thermal shock
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28G—CLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
- F28G5/00—Cleaning by distortion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B7/00—Cleaning by methods not provided for in a single other subclass or a single group in this subclass
- B08B7/0064—Cleaning by methods not provided for in a single other subclass or a single group in this subclass by temperature changes
Definitions
- the present invention relates to a method according to the preamble of claim 1.
- the invention seeks to remedy this.
- the invention how it is characterized in the claims, the task lies the basis for a procedure of the type mentioned at the beginning Maximize cleaning effect and minimize blow-out time.
- the main advantage of the invention is that that only activated the advantages of the above methods without including their disadvantages have to.
- high back pressures are used blown out for several hours.
- the blow-out time depends here from the Demi water supply resp. whose production starts from is used for steam production. After that, for example blowout set overnight so that System cool down during this time and the water treatment system new demi water for the next blowout Can provide.
- the subsequent blow-out causes then a thermal shock that, as described above, causes a triggers great cleaning effect.
- the subsequent repetition of continuous blowing out with high back pressures after the respective cooling sometimes the larger ones Cleaning effect of the previous thermal shock, whereby for effective cleaning only a few cycles are required.
- FIG. 1a and 1b show one of the prior art Process for cleaning units of a power plant in the installed state by means of short cyclical blow-out blows, which in themselves trigger a large thermal shock.
- the individual blowouts A, B using a suitable Medium take place approximately every 12 hours, like this Abscissa expresses t. While the temperature T of medium used is about 500-550 ° C, the back pressure ratio p moved to> 1.
- T of medium used is about 500-550 ° C
- 3a and 3b show the method according to the invention for Cleaning aggregates of a power plant in the built-in Status.
- This procedure uses medium temperature T, above 400 ° C, with a high dynamic pressure ratio p of worked about 4 and higher. This is done by using several Hours as the division on the abscissa t symbolize wants to be blown out, as is the case with curves E, F emerges.
- the blow-out time essentially depends from the Demi water supply or whose production from that for Steam production is needed. After that, for example blowout set overnight so that the system during cool down this time and the water treatment system new demi-water is available for subsequent blowing out can put before the procedure resumed becomes. The thermal shock triggered with each blowout causes a great cleaning effect.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cleaning By Liquid Or Steam (AREA)
- Cleaning In General (AREA)
- Detergent Compositions (AREA)
Description
Die vorliegende Erfindung betrifft ein Verfahren gemäss Oberbegriff
des Anspruchs 1.The present invention relates to a method according to the preamble
of
Bei Kraftwerksanlagen, insbesondere bei Kombianlagen (Gas/Dampf-Kraftwerksanlagen), muss eine Reinigung, insbesondere der Dampfleitung, des Verdampfers, Ueberhitzers, etc., vorgesehen werden. Der finale Zweck solcher normalerweise vor der ersten Inbetriebsetzung stattfindender Reinigungen ist an sich der Schutz der Aggregate, insbesondere der Strömungsmaschinen, beispielsweise der Dampfturbine, vor dem Schmutz, der unweigerlich während der Montage oder bei Revisionen der genannten Systeme anfällt. Die hier gebräuchliche Terminologie für diesen Prozess wird "Ausblasen" genannt.In power plants, especially in combination plants (Gas / steam power plants) needs cleaning, especially the steam line, the evaporator, superheater, etc., be provided. The final purpose of such usually precedes The first commissioning of cleaning operations is on the protection of the units, especially the turbomachines, for example the steam turbine, before the dirt, which inevitably during assembly or revisions of the mentioned systems. The terminology used here for this process is called "blowing out".
Grundsätzlich sind zwei Verfahren bekanntgeworden: Entweder wird kontinuierlich mit einem hohen Staudruckverhältnis gereinigt, oder es werden durch zyklische Ausblasestösse grosse Thermoschocks ausgelöst.Basically, two methods have become known: either is continuously with a high back pressure ratio cleaned, or there are cyclical blowouts large thermal shocks triggered.
Beim kontinuierlichen Ausblasen mit hohen Staudrücken wird schnell ein guter Reinigungseffekt erzielt. Wenn aber das beispielsweise zu reinigende Dampfsystem abkühlt und anschliessend wieder zur weiteren Reinigung mit Dampf beaufschlagt wird, wird durch Thermoschock ein effektvoller, zusätzlicher Reinigungseffekt festgestellt. Dies kann als Zeichen taxiert werden, dass noch Schmutz im System vorhanden war. Das Verfahren mit hohem Staudruckverhältnis versucht einen Thermoschock mittels Wassereinspritzung vor oder im Ueberhitzer selbst zu bewerkstelligen. Die Auslösung dieses Effekts eines Thermoschocks stromab des Ueberhitzers in der Dampfleitung ist als gering einzustufen. Was überdies gewichtig gegen ein solches Vorgehen spricht, ist die Tatsache, dass sich viele Abhitzekesselhersteller in den Spezifikationen gegen eine Wassereinspritzung vor oder zwischen dem Ueberhitzer wenden. Beim Ausblasen mit Thermozyklen darf darüber hinaus nicht verkannt werden, dass der entscheidende Nachteil hierzu der grosse Zeitaufwand für die Durchführung des Verfahrens darstellt.When blowing continuously with high dynamic pressures quickly achieved a good cleaning effect. But if that For example, the steam system to be cleaned cools down and then steamed again for further cleaning thermal shock becomes an effective, additional one Cleaning effect found. This can be a sign be assessed that there is still dirt in the system was. Tried the high back pressure ratio method a thermal shock by means of water injection before or in the superheater to do it yourself. The triggering of this effect a thermal shock downstream of the superheater in the Steam pipe is classified as low. Which is also important against such an approach is the fact that many waste heat boiler manufacturers are in the specifications against water injection before or between the superheater turn. When blowing out with thermal cycles it is allowed to Beyond that, don't be misjudged that crucial The disadvantage of this is the large amount of time required for the implementation of the procedure.
Bei einer Kombianlage mittlerer Leistung und herkömmlicher Art mit zwei Abhitzekesseln müsste beim Ausblasen mit Thermozyklen eine Reinigungszeit von ca. 20 Tagen vorgesehen werden. Beim kontinuierlichen Ausblasen mit hohen Staudruckverhältnissen benötigt man demgegenüber bloss ca. 3 bis 5 Tage, wobei hier der Reinigungseffekt nicht mehr so gross ist.With a combination system of medium performance and more conventional Kind with two waste heat boilers would have to be blown out with thermal cycles a cleaning time of approx. 20 days can be provided. When blowing continuously with high dynamic pressure ratios you only need about 3 to 5 days, whereby the cleaning effect is no longer so great.
Hier will die Erfindung Abhilfe schaffen. Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde, bei einem Verfahren der eingangs genannten Art die Reinigungswirkung zu maximieren und die Ausblasezeit zu minimieren.The invention seeks to remedy this. The invention how it is characterized in the claims, the task lies the basis for a procedure of the type mentioned at the beginning Maximize cleaning effect and minimize blow-out time.
Der wesentliche Vorteil der Erfindung ist darin zu sehen, dass lediglich die Vorteile der obengenannten Verfahren aktiviert werden, ohne dass ihre Nachteile miteinbezogen werden müssen.The main advantage of the invention is that that only activated the advantages of the above methods without including their disadvantages have to.
Beim Verfahren gemäss Erfindung wird mit hohen Staudrücken während mehrerer Stunden ausgeblasen. Die Ausblasezeit hängt hier vom Demi-Wasservorrat resp. dessen Produktion ab, der für die Dampfproduktion gebraucht wird. Danach wird beispielsweise über Nacht das Ausblasen eingestellt, damit das System während dieser Zeit abkühlen und die Wasseraufbereitungsanlage neues Demi-Wasser für das nächste Ausblasen zur Verfügung stellen kann. Die darauffolgende Ausblasung bewirkt dann einen Thermoschock, der, wie oben beschrieben, einen grossen Reinigungseffekt auslöst. Das anschliessende Wiederholen des kontinuierlichen Ausblasens mit hohen Staudrücken nach der jeweiligen Abkühlung verstärkt mitunter den grossen Reinungseffekt des vorangehenden Thermoschocks, wobei für eine effektvolle Reinigung wenige Zyklen vonnöten sind.In the method according to the invention, high back pressures are used blown out for several hours. The blow-out time depends here from the Demi water supply resp. whose production starts from is used for steam production. After that, for example blowout set overnight so that System cool down during this time and the water treatment system new demi water for the next blowout Can provide. The subsequent blow-out causes then a thermal shock that, as described above, causes a triggers great cleaning effect. The subsequent repetition of continuous blowing out with high back pressures after the respective cooling, sometimes the larger ones Cleaning effect of the previous thermal shock, whereby for effective cleaning only a few cycles are required.
Vorteilhafte und zweckmässige Weiterbildungen der erfindungsgemässen Aufgabenlösung sind in den weiteren Ansprüchen gekennzeichnet.Advantageous and expedient developments of the inventive Task solutions are characterized in the other claims.
Im folgenden wird anhand der Zeichnungen ein Ausführungsbeispiel der Erfindung dargestellt und näher erläutert, wobei zur Abgrenzung sowie zum besseren Verständnis gegenüber dem Stand der Technik zwei Verfahren miteinbezogen werden. Alle für das unmittelbare Verständnis der Erfindung nicht erforderlichen Angaben sind fortgelassen worden. Gleiche Verfahrensschritte sind in den verschiedenen Figuren mit den gleichen Bezugszeichen versehen.In the following, an embodiment will be made with reference to the drawings illustrated and explained in more detail, wherein for delimitation and for better understanding compared to the State of the art two methods are included. All not necessary for the immediate understanding of the invention Information has been omitted. Same process steps are the same in the different figures Provide reference numerals.
Es zeigt:
- Fig. 1a, 1b
- eine graphische Darstellung eines zum Stand der Technik gehörenden Ausblaseverfahrens,
- Fig. 2a, 2b
- eine graphische Darstellung eines weiteren zum Stand der Technik gehörenden Ausblaseverfahrens,
- Fig. 3a, 3b
- eine graphische Darstellung des erfindungsgemässen Ausblaseverfahrens.
- 1a, 1b
- a graphical representation of a blow-out method belonging to the prior art,
- 2a, 2b
- a graphical representation of another blow-out method belonging to the prior art,
- 3a, 3b
- a graphic representation of the blow-out method according to the invention.
Fig. 1a und 1b zeigen ein zum Stand der Technik gehörendes Verfahren zum Reinigen von Aggregaten einer Kraftwerkanlage im eingebauten Zustand mittels kurzer zyklischer Ausblasestösse, welche an sich einen grossen Thermoschock auslösen. Die einzelnen Ausblasestösse A, B mittels eines geeigneten Mediums finden ca. alle 12 Stunden statt, wie dies die Abszisse t zum Ausdruck bringt. Während die Temperatur T des eingesetzten Mediums ca. 500-550°C beträgt, wird das Staudruckverhältnis p auf > 1 gefahren. Hinsichtlich der verschiedenen Vor- und Nachteile eines solchen Ausblaseverfahrens wird auf die Beschreibungseinleitung verwiesen. Kurz rekapituliert kann festgehalten werden, dass das Ausblasen mit Thermoschockzyklen einen guten Reinigungseffekt auslöst, die dazu benötigte Zeitspanne erscheint aber nach modernen Kriterien im Hinblich auf eine Maximierung der Verfügbarkeit der Kraftwerksanlage als prohibitiv zu sein.1a and 1b show one of the prior art Process for cleaning units of a power plant in the installed state by means of short cyclical blow-out blows, which in themselves trigger a large thermal shock. The individual blowouts A, B using a suitable Medium take place approximately every 12 hours, like this Abscissa expresses t. While the temperature T of medium used is about 500-550 ° C, the back pressure ratio p moved to> 1. Regarding the different Advantages and disadvantages of such a blow-out process reference is made to the introduction to the description. Briefly recapitulated can be said that the blow out with Thermal shock cycles triggers a good cleaning effect that the time required for this appears according to modern criteria with a view to maximizing the availability of the Power plant to be prohibitive.
Fig. 2a und 2b zeigen ein weiteres zum Stand der Technik gehörendes Verfahren zum Reinigen von Aggregaten einer Kraftwerksanlage im eingebauten Zustand mittels eines kontinuierlichen Ausblasens, wie dies die Kurven C, D auf Abszisse t, in Stunden aufgetragen, zeigen. Während die Temperatur T des zum Einsatz kommenden Mediums relativ tief bleibt, unterhalb 400°C, wird hier mit einem hohen Staudruckverhältnis p von ca. 3 gearbeitet. Bezüglich der Vor- und Nachteile dieses Ausblaseverfahrens wird auch hier auf die Beschreibungseinleitung verwiesen. Kurz zusammengefasst kann gesagt werden, dass beim kontinuierlichen Ausblaseverfahren mit relativ hohen Staudruckverhältnissen an sich sehr schnell ein guter Reinigungseffekt erzielt wird, die entscheidende Losbrechung von festhaftenden Schmutzteilen wird indessen wegen der fehlenden Auslösung eines Thermoschocks nicht erreicht.2a and 2b show a further part of the prior art Process for cleaning units of a power plant in the installed state by means of a continuous Blowing out, like this the curves C, D on abscissa t, applied in hours, show. While the temperature T of medium used remains relatively deep, below 400 ° C, is here with a high dynamic pressure ratio p of worked about 3. Regarding the pros and cons of this Blow-out procedure is also based on the introduction to the description referred. In short it can be said that in the continuous blow-out process with relatively high Back pressure conditions in themselves very quickly a good one Cleaning effect is achieved, the decisive breakaway of adhering dirt parts is meanwhile because of the missing Thermal shock not reached.
Fig. 3a und 3b zeigen das erfindungsgemässe Verfahren zum Reinigen von Aggregaten einer Kraftwerksanlage im eingebauten Zustand. Bei diesem Verfahren wird bei mittlerer Temperatur T, oberhalb 400°C, mit einem hohen Staudruckverhältnis p von ca. 4 und höher gearbeitet. Dies geschieht, indem über mehrere Stunden, wie die Teilung auf der Abszisse t versinnbildlichen will, ausgeblasen wird, wie dies auch aus den Kurven E, F hervorgeht. Dabei hängt die Ausblasezeit im wesentlichen vom Demi-Wasservorrat resp. dessen Produktion ab, der für die Dampfproduktion benötigt wird. Danach wird beispielsweise über Nacht das Ausblasen eingestellt, damit das System während dieser Zeit abkühlen und die Wasseraufbereitungsanlage neues Demi-Wasser für das nachfolgende Ausblasen zur Verfügung stellen kann, bevor das Verfahren wieder aufgenommen wird. Der jeweils mit jedem Ausblasen ausgelösten Thermoschock bewirkt einen grossen Reinigungseffekt. Das anschliessende Ausblasen über mehrere Stunden (Vgl. Kurven E und F) mit hohen Staudruckverhältnissen p verstärkt den grossen Reinigungseffekt des Thermoschocks. Hohe Staudruckverhältnisse während des Ausblasens werden durch hohe Geschwindigkeiten hervorgerufen. Hohe Geschwindigkeiten ergeben sich, wenn im zu reinigenden System kleine Drücke und daraus folgend grössere spezifische Volumina vorherrschen. Vorzugsweise werden diese Verhältnisse erstellt, indem in den provisorischen Rohrleitungen eins Schalldämpfer mit sehr kleinem Druckverlust und dazu eine Wassereinspritzung vorgesehen wird. Diese Wassereinspritzung direkt am Beginn der provisorischen Leitungen bewirkt einen kleinen Druck im zu reinigenden System, bei einer gleichzeitig grossen Konditionierung des Dampfes. Hieraus ergibt sich beim diesem Verfahren ein zusätzlicher Effekt, der auch im Verfahren nach Fig. 2a, 2b zu finden ist: Die provisorischen Ausblaseleitungen sind nicht wie bei den anderen zum Stand der Technik gehörenden Verfahren grossen Spannungen unterworfen. Ein Vorteil gegenüber dem Verfahren nach Fig. 2a, 2b ist hier der geringere Wasserverbrauch, denn vielfach zeigt es sich, dass das zur Verfügung stehende Wasser beschränkt ist. Ein weiterer Vorteil dieses Verfahrens ist darin zu sehen, dass die Gasturbine wesentlich geschont wird, indem diese hier, im Gegensatz zum Verfahren nach Fig. 1a, 1b, bei welchem die Gasturbine bis zu 50 Mal an- und abgefahren werden muss, bloss noch einer Belastung von etwa 5-mal An- und Abfahren unterworfen ist.3a and 3b show the method according to the invention for Cleaning aggregates of a power plant in the built-in Status. This procedure uses medium temperature T, above 400 ° C, with a high dynamic pressure ratio p of worked about 4 and higher. This is done by using several Hours as the division on the abscissa t symbolize wants to be blown out, as is the case with curves E, F emerges. The blow-out time essentially depends from the Demi water supply or whose production from that for Steam production is needed. After that, for example blowout set overnight so that the system during cool down this time and the water treatment system new demi-water is available for subsequent blowing out can put before the procedure resumed becomes. The thermal shock triggered with each blowout causes a great cleaning effect. The subsequent one Blow out over several hours (see curves E and F) with high dynamic pressure ratios p increases the large cleaning effect of thermal shock. High dynamic pressure ratios during blowing out by high speeds evoked. High speeds arise when in system to be cleaned small pressures and consequently larger ones prevail specific volumes. Preferably be these relationships created by in the provisional Pipelines one silencer with very little pressure loss and for this a water injection is provided. This Water injection directly at the beginning of the provisional pipes causes a small pressure in the system to be cleaned, with a large conditioning of the steam. This results in an additional one with this method Effect that can also be found in the method according to FIGS. 2a, 2b: The provisional blow-out lines are not like those other large processes belonging to the prior art Subject to tension. An advantage over the process 2a, 2b here is the lower water consumption, because it often shows that the available water is limited. Another advantage of this procedure can be seen in the fact that the gas turbine is significantly protected is, in contrast to the method according to Fig. 1a, 1b, in which the gas turbine is started and stopped up to 50 times only a load of about 5 times Start and stop is subject.
- TT
- Temperatur der AnlagePlant temperature
- tt
- Zeit, Dauer in StundenTime, duration in hours
- pp
- StaudruckverhältnisBack pressure ratio
- AA
- Thermoschock, Anzahl, Dauer, in Relation zur Temperatur TThermal shock, number, duration, in relation to temperature T
- BB
- Thermoschock, Anzahl, Dauer, in Relation zum Staudruckverhältnis pThermal shock, number, duration, in relation to the dynamic pressure ratio p
- CC.
- Kontinuierliches Ausblasen, Dauer, in Relation zur Temperatur TContinuous blowing, duration, in relation to temperature T
- DD
- Kontinuierliches Ausblasen, Dauer, in Relation zum Staudruckverhältnis pContinuous blowing out, duration, in relation to the Back pressure ratio p
- EE
- Thermoschock/kontinuierliches Ausblasen, Anzahl, Dauer, in Relation zur Temperatur TThermal shock / continuous blowout, number, duration, in relation to the temperature T
- FF
- Thermoschock/kontinuierliches Ausblasen, Anzahl, Dauer, in Relation zum Staudruckverhältnis pThermal shock / continuous blowout, number, duration, in relation to the dynamic pressure ratio p
Claims (6)
- Method of cleaning units of a power plant in the installed state by injecting a medium, characterized in that the thermally processed medium under pressure is injected for several hours, in that a rest phase, during which the units cool down, is included following this step of the method, and in that, after the units have cooled down, at least one further injection is carried out intermittently, which further injection initiates a cleaning effect by thermal shock.
- Method according to Claim 1, characterized in that the injection is carried out over a period of time of at least 6 hours.
- Method according to Claim 1, characterized in that the medium is injected at a temperature of greater than 400°C and a dynamic-pressure ratio greater than 3.
- Method according to Claim 1, characterized in that the medium used for the injection is steam.
- Method according to Claim 4, characterized in that a water quantity is admixed with the steam.
- Method according to Claims 1 and 4, characterized in that, in parallel with the steam injection and/or before or after the steam injection, a water quantity is also introduced into the units to be cleaned.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19545035A DE19545035A1 (en) | 1995-12-02 | 1995-12-02 | Process for cleaning units of a power plant |
DE19545035 | 1995-12-02 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0776707A2 EP0776707A2 (en) | 1997-06-04 |
EP0776707A3 EP0776707A3 (en) | 1998-05-20 |
EP0776707B1 true EP0776707B1 (en) | 2000-12-20 |
Family
ID=7779049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96810785A Expired - Lifetime EP0776707B1 (en) | 1995-12-02 | 1996-11-13 | Method of cleaning aggregates from a power plant |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0776707B1 (en) |
JP (1) | JP3893178B2 (en) |
CN (1) | CN1131738C (en) |
DE (2) | DE19545035A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0122856D0 (en) * | 2001-09-22 | 2001-11-14 | Imi Plc | Liquid heating apparatus |
EP1797969A1 (en) * | 2005-12-16 | 2007-06-20 | Siemens Aktiengesellschaft | Method end device for cleaning parts of a power station by blowing a medium and measuring device for measuring the degree of purity of the medium |
CN101655335B (en) * | 2008-08-19 | 2011-08-03 | 华北电力科学研究院有限责任公司 | Thermal cleaning device and method for direct air cooling system |
CN103574585A (en) * | 2012-07-26 | 2014-02-12 | 中国石油化工股份有限公司 | Method for removing scale of waste heat boiler |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2202465B2 (en) * | 1972-01-17 | 1976-11-04 | Raab Karcher GmbH, 4300 Essen | PROCEDURE FOR GENERAL CLEANING OF THE FIRE-SIDE OF THE REAR HEATING SURFACES OF LARGE BOILERS |
US4141754A (en) * | 1977-05-10 | 1979-02-27 | Svenska Rotor Maskiner Aktiebolag | Apparatus and method for cleaning the heat exchanging surfaces of the heat transfer plates of a rotary regenerative heat exchanger |
US4377420A (en) * | 1980-03-06 | 1983-03-22 | United Technologies Corporation | Removal of carbonaceous material from gas turbine cavities |
US4581074A (en) * | 1983-02-03 | 1986-04-08 | Mankina Nadezhda N | Method for cleaning internal heat transfer surfaces of boiler tubes |
DE3317099A1 (en) * | 1983-05-10 | 1984-11-15 | Kraftwerk Union AG, 4330 Mülheim | POSITIONING DEVICE FOR THE REMOTE CONTROLLED INSPECTION, CLEANING AND REPAIR OF THE PARALLEL TUBES OF A TUBE BUNDLE |
US4853014A (en) * | 1987-07-27 | 1989-08-01 | Naylor Industrial Services, Inc. | Method and apparatus for cleaning conduits |
DE4216383A1 (en) * | 1992-05-18 | 1993-11-25 | Siemens Ag | Process for cleaning a closed container |
-
1995
- 1995-12-02 DE DE19545035A patent/DE19545035A1/en not_active Withdrawn
-
1996
- 1996-11-13 DE DE59606231T patent/DE59606231D1/en not_active Expired - Lifetime
- 1996-11-13 EP EP96810785A patent/EP0776707B1/en not_active Expired - Lifetime
- 1996-11-28 JP JP31794096A patent/JP3893178B2/en not_active Expired - Fee Related
- 1996-12-02 CN CN96121849A patent/CN1131738C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
EP0776707A2 (en) | 1997-06-04 |
EP0776707A3 (en) | 1998-05-20 |
CN1156241A (en) | 1997-08-06 |
DE59606231D1 (en) | 2001-01-25 |
JP3893178B2 (en) | 2007-03-14 |
DE19545035A1 (en) | 1997-06-05 |
CN1131738C (en) | 2003-12-24 |
JPH09173999A (en) | 1997-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69610059T2 (en) | Heat exchanger with tubes with oval or elongated cross-section and process for its production | |
DE1575639C3 (en) | Roll and method of making the same | |
EP0776707B1 (en) | Method of cleaning aggregates from a power plant | |
DE10230610A1 (en) | Method and device for preventing deposits in steam systems | |
DE19643336C2 (en) | Method for dismantling the front bearing housing or LP compressor shaft part of an aircraft engine | |
WO2011061165A2 (en) | Cooling and cleaning of strip processing lines | |
DE102020114303A1 (en) | Flange, flange connection and method of operating a flange connection | |
DE3004872A1 (en) | PIPE FOR HIGH PRESSURE LIQUID AND METHOD FOR THE PRODUCTION THEREOF | |
DE2919615A1 (en) | Multiwalled tubes mfr. by cold drawing - using die to reduce outside dia., or mandrel to expand bore | |
EP1142611B1 (en) | Method for optimisation of a water spray fire extinguishing system and water spray fire extinguishing system for carrying out the method | |
DE1408274B2 (en) | Cooled oven transport roller | |
EP1566531A1 (en) | Gas turbine with compressor casing protected against cooling and Method to operate a gas turbine | |
DE102016114906A1 (en) | Apparatus and method for storing and recovering energy | |
EP0481573A1 (en) | Device for pressure reduction of a gaseous medium | |
EP1598522B1 (en) | Steam turbine components, method for cooling a steam turbine and their use. | |
DE1170434B (en) | Process for reducing the tensile and compressive stresses caused by operation in heat exchanger pipe registers | |
DE102014212824A1 (en) | Method and device for flushing and / or blocking at least one burner of a gas turbine plant | |
EP1378706A1 (en) | Flange joint and method of assembling the same | |
DE2849990A1 (en) | COOLED VALVE FOR HOT GAS LINES | |
DE8002070U1 (en) | COMPRESSOR COOLING ARRANGEMENT | |
DE468307C (en) | Housing for high pressure machines, especially steam or gas turbines | |
EP0582068B1 (en) | Method of operating a gas turbine | |
DE589465C (en) | Process for the production of hollow bodies with weld seam for high pressures | |
AT15808B (en) | Process for operating multi-stage steam or gas turbines. | |
DE2904372A1 (en) | METHOD FOR PRODUCING BUNCHES OF CONNECTED TUBES |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB NL |
|
RHK1 | Main classification (correction) |
Ipc: B08B 7/00 |
|
RTI1 | Title (correction) | ||
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB NL |
|
17P | Request for examination filed |
Effective date: 19981118 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20000127 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ABB (SCHWEIZ) AG |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20001220 |
|
REF | Corresponds to: |
Ref document number: 59606231 Country of ref document: DE Date of ref document: 20010125 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20010316 |
|
ET | Fr: translation filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20091130 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20091007 Year of fee payment: 14 Ref country code: FR Payment date: 20091120 Year of fee payment: 14 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20101113 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59606231 Country of ref document: DE Effective date: 20110601 Ref country code: DE Ref legal event code: R119 Ref document number: 59606231 Country of ref document: DE Effective date: 20110531 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101113 |