EP0757370A1 - Electric discharge tube or discharge lamp and scandate dispenser cathode - Google Patents
Electric discharge tube or discharge lamp and scandate dispenser cathode Download PDFInfo
- Publication number
- EP0757370A1 EP0757370A1 EP96202114A EP96202114A EP0757370A1 EP 0757370 A1 EP0757370 A1 EP 0757370A1 EP 96202114 A EP96202114 A EP 96202114A EP 96202114 A EP96202114 A EP 96202114A EP 0757370 A1 EP0757370 A1 EP 0757370A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- cathode
- scandium
- alloy
- tungsten
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/13—Solid thermionic cathodes
- H01J1/20—Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
- H01J1/28—Dispenser-type cathodes, e.g. L-cathode
Definitions
- the invention relates to an electric discharge tube, in particular a vacuum electron tube, or a discharge lamp, in particular a low-pressure gas discharge lamp, with at least one scan data storage cathode, which consists of a cathode body and a cover layer with an emitting surface, the cathode body being a matrix of at least one high-melting metal and / or a refractory alloy and a barium compound in contact with the matrix material to supply barium to the emitting surface by chemical reaction with the matrix material. It also relates to such a Scandat supply cathode.
- Electron tubes in particular vacuum electron tubes, are primarily used as picture tubes in televisions, as monitor tubes, as X-ray tubes, as high-frequency and microwave tubes for various applications in the construction of equipment and systems in every sector, in medical technology, in diagnostic and measuring equipment in workshops and also in gaming equipment .
- TV and monitor tubes are subject to ever increasing demands in terms of greater brightness, increased resolution, constant image quality and better long-term operation.
- higher electron emission current densities in the tubes are necessary, which can only be achieved with improved electron sources, ie cathodes.
- standard oxide cathodes with an emission current density of 2 A / cm 2 met long-term operation, currently 10 A / cm 2 are required and far higher emission current densities are required for the new high-performance tubes.
- a cathode with a lower work function ⁇ can deliver a higher emission current density at the same operating temperature T.
- a cathode with a lower work function ⁇ allows operation at lower temperatures with the same current density.
- a lower operating temperature has a positive effect on the service life of the cathode and the discharge tube.
- Scandat supply cathodes are currently the cathodes with the highest electron emission.
- the two most important types of Scandat supply cathodes are the “Mixed Matrix Scandat Cathode” and the “Top Layer Scandat Cathode”.
- the "Mixed Matrix Scandat Cathode” consists of a porous cathode body made of tungsten and scandium oxide, which is impregnated with 4 BaO.CaO.Al 2 O 3 .
- Top Layer Scandat Cathodes consist of a porous tungsten body, which is impregnated with 4 BaO.CaO.Al 2 O 3 and is covered with a thin cover layer made of tungsten and scandium oxide or Sc 2 W 3 O 12 .
- EP 0 317 002 proposed to use scandium-containing metal compounds or alloys which are a compound of scandium with one or more of the metals rhenium, ruthenium, hafnium, nickel, cobalt, palladium, zirconium or tungsten Use scandium segregation in the surface of the cathode.
- the long-term behavior of the cathodes according to EP 0 317 002 is improved, but the reproducibility of the results leaves something to be desired.
- EP 0 549 034 discloses a cathode with a matrix body impregnated with an alkaline earth metal compound, on the surface of which a cover layer is applied, which contains high-melting metal such as, in particular, tungsten and scandium.
- a cover layer contains at least two layers of different composition, with a purely metallic layer being applied to the impregnated matrix body, which contains scandium and a high-melting metal such as contains in particular tungsten and / or rhenium, and that a metallic layer made of a high-melting metal such as in particular tungsten is applied as the final layer.
- cathodes are preferably produced by a process in which initially purely metallic layers of scandium and / or rhenium are produced by means of a plasma-activated CVD process in particular, preferably by means of a plasma generated by direct current glow discharge, and then by means of a metallic tungsten layer as the last layer CVD process is applied.
- a plasma-activated CVD process in particular, preferably by means of a plasma generated by direct current glow discharge, and then by means of a metallic tungsten layer as the last layer CVD process is applied.
- the emission current density of this type of cathode is low.
- the object of the invention is therefore to create an electrical discharge tube or discharge lamp which delivers reproducibly high emission current densities over a long period of time.
- an electrical discharge tube or discharge lamp with at least one scandate supply cathode which consists of a cathode body and a cover layer with an emitting surface, the cathode body comprising a matrix of at least one high-melting metal and / or a high-melting alloy and a barium compound in contact with the matrix material for supplying barium to the emitting surface by chemical reaction with the matrix material and the top layer one or more times a layer composite of optionally a lower layer of tungsten and / or a tungsten alloy, an intermediate layer of rhenium and / or a rhenium alloy and a top layer of scandium oxide, a mixture of scandium oxide with rare earth oxides, a scandate and / or a scandium alloy.
- Such a discharge tube or discharge lamp has a long service life because it shows good resistance to ion bombardment with doses up to a few 10 19 ions / cm 2 .
- it can be used as a high-resolution computer monitor (CMT), in high-definition television sets with a screen aspect ratio of 16: 9 and as a high-performance X-ray tube, because at 965 ° C, measured as the radiation temperature of the molybdenum cap of the cathode holder, it has a saturation emission current density i 0 of ⁇ 25 A / cm 2 reached.
- CMT computer monitor
- a scandate supply cathode which consists of a cathode body and a cover layer with an emitting surface, the cathode body comprising a matrix of at least one high-melting metal and / or a high-melting alloy and a barium compound in contact with the matrix material for delivery from barium to the emitting surface by chemical reaction with the matrix material and the top layer one or more times a layer composite of optionally a lower layer of tungsten and / or a tungsten alloy, an intermediate layer of rhenium and / or a rhenium alloy and an upper layer of scandium oxide, a mixture of scandium oxide Contains rare earth metal oxides, a scandate and / or a scandium alloy.
- the scandate supply cathode according to the invention has little tungsten loss and the scandium supply into the emitting surface is not passivated during operation.
- the layer structure prevents oxygen diffusion to the tungsten.
- a scandate supply cathode according to the invention in which the cathode body has a scandium compound or a scandium alloy for subsequent delivery of scandium to the emitting surface, has a particularly long service life.
- the layer composite consist of ultrafine particles.
- Scandate supply cathodes with a cover layer made of ultrafine particles have a surface structure and surface modulation from particles in the diameter range from 1 to 100 nm, i.e. they have relatively small radii of curvature in dense particle and tip distribution on the macroscopic surface.
- the layer composite in the top layer of the scandate supply cathode according to the invention is produced by a laser ablation deposition process.
- the laser ablation deposition process has short reaction times.
- the grain size distribution of the ultrafine particles is easy to control, in contrast to known evaporation processes.
- the lower layer, intermediate layer and upper layer each have a layer thickness of 5 to 150 nm. Scandat supply cathodes with such layers have excellent emitter properties.
- the cover layer of the scandate supply cathodes according to the invention has a layer thickness of 50 to 1000 nm, preferably 400 to 600 nm. This achieves a cathode life of 10,000 hours.
- An electrical discharge tube or discharge lamp consists of four functional groups: electron beam generation, beam focusing, beam deflection and the fluorescent screen.
- the electron beam generation system of the discharge tubes or discharge lamps according to the invention contains an arrangement of one or more supply cathodes.
- the electron gun can be one or more point cathodes or a system of one or more wire cathodes, flat ribbon cathodes or surface cathodes. Wire cathodes, surface cathodes and ribbon cathodes do not have to emit over their entire surface. They can also contain the emitting supply cathode arrangement only in individual surface segments.
- a supply cathode according to the invention consists of a cathode body and a cover layer.
- the cathode body comprises a matrix of at least one high-melting metal and / or a high-melting alloy and a barium compound in contact with the matrix material for supplying barium to the emitting surface by chemical reaction with the matrix material.
- Storage cathodes of a known type such as L-cathodes, M-cathodes and I-cathodes and mixed-matrix cathodes, are suitable as cathode bodies for the invention.
- I-cathodes and mixed-matrix cathodes are particularly suitable as cathode bodies.
- the cover layer of the cathodes according to the invention contains one or more layers of a composite of optionally a lower layer of tungsten and / or a tungsten alloy, an intermediate layer of rhenium and / or rhenium alloy and an upper layer of scandium oxide, a mixture of scandium oxide with rare earth metal oxides, a scandate and / or a scandium alloy.
- the total thickness of the cover layer is dimensioned so that the cathode has an adequate service life.
- the service life of supply cathodes is limited by erosion due to sputtering reactions on the cathode surface. Ions are involved in the sputtering reaction, which are formed by the electron beam from the residual gases in the vacuum of the discharge tube or discharge lamp.
- the total layer thickness of the cover layer is estimated from this erosion rate. In general, the total thickness of the top layer will be 600 to 1000 nm.
- the individual layers of the layer composite ie the lower layer with tungsten, the intermediate layer made of rhenium and the upper layer with scandium oxide or a scandium alloy should preferably be very thin.
- the mass-equivalent layer thickness of the scandium layer should preferably be in the nanometer range between 5 and 20 nm, that of the tungsten- and rhenium-containing layer between 20 and 200 nm.
- the mass-equivalent layer thicknesses are determined from the theoretical densities and applied basis weights of the cover layer substances.
- the cover layer has a slightly dissolved, radially and laterally structured surface. If the particles of the lower layer, the intermediate layer and the upper layer are deposited one after the other, their nanostructures interlock and a material combination is created in the cover layer which has excellent emitter properties.
- the lowermost tungsten-containing layer can also be formed by the tungsten-containing matrix of the cathode body.
- Scandium oxide Sc 2 O 3 or scandium oxide which is mixed with the oxides of other rare earth metals such as europium, samarium and cerium, and scandates, for example alkaline earth metal scandates, can be used as material for the scandium-containing upper layer.
- alloys containing scandium and / or intermetallic compounds such as Re 24 Sc 5 , Re 2 Sc, Ru 2 Sc, Co 2 Sc, Pd 2 Sc and Ni 2 Sc can be used.
- these compounds, compound mixtures or alloys should not contain tungsten.
- Metallic rhenium is used as the material for the rhenium-containing intermediate layer.
- Tungsten or a tungsten alloy containing osmium, iridium, ruthenium, tantalum and / or molybdenum is selected as the material for the underlayer.
- the production process for the supply cathode according to the invention is a two-step process. It begins with the production of the cathode body, to which the emitting cover layer is then applied in a second step.
- cathode bodies Conventional I-cathodes or mixed-matrix cathodes are preferred as cathode bodies.
- I cathodes are impregnated supply cathodes. They consist of a porous tungsten matrix produced by powder metallurgy from tungsten powder. This porous matrix is impregnated with a mixture of BaO, CaO and Al 2 O 3 . For this purpose, a mixture of BaCO 3 , CaCO 3 and Al 2 O 3 is melted and the porous matrix is filled with the mixture by melt infiltration. The surface of the body is then cleaned by ultrasound and water from externally adhering oxide mixture.
- Mixed matrix cathodes contain scandium in a common matrix of tungsten and scandium oxide.
- the matrix is produced by sintering a powder mixture of tungsten and scandium oxide, the sintering process being carried out in such a way that a porous body is formed.
- This porous sintered body is then impregnated with the same method as for the I cathodes with a mixture of BaO, CaO and Al 2 O 3 .
- the cleaning and activation procedures are also the same.
- the top layer can be produced using conventional coating processes. These methods include CVD, PCVD, and sputtering. However, it is preferred in the context of the present invention that the individual layers of the cover layer are produced from ultrafine particles in a laser ablation deposition process.
- the cathode body is brought into the deposition chamber of a laser ablation deposition system. It is favorable to use an excimer laser as the laser, which unlike CO 2 lasers also ablates tungsten without any problems. If necessary, the tungsten-containing layer is deposited first, the rhenium-containing layer second, and the scandium-containing layer third. It's cheap multi-targets to use, which contain all three components on a target arrangement.
- the emission properties of the finished scandate supply cathode are favorably influenced if the gas atmosphere in the ablation process consists of high-purity argon or argon / hydrogen.
- the substrates (cathode bodies) for the cover layer are heated during the ablation deposition process.
- the conditions for the laser ablation deposition process are set so that the grain size of the ultrafine particles is in a medium to high range.
- the emitting surface of the cathode is activated in a further process step.
- An I-cathode body is produced in the form of a porous pill by sintering tungsten powder at 1500 ° C. in a hydrogen atmosphere to a cylindrical body 1.8 mm in diameter and 0.5 mm in height and with 7% by weight barium calcium aluminate powder having the composition 4 BaO- CaO-Al 2 O 3 is impregnated.
- the pill is inserted into a molybdenum bowl and placed in the ablation chamber of a laser ablation deposition apparatus.
- a cylindrical multitarget is used as the target, which contains Sc 2 O 3 , rhenium and tungsten side by side.
- the laser is a UV excimer laser with a wavelength of 248 nm and an average power of 100 W, which produces a cold ablation on the rotating target.
- a mixture of high-purity argon and hydrogen is used as the carrier gas.
- the total pressure in the ablation chamber was 1 mbar.
- the multitarget is translated and the three partial areas of the target are scanned continuously in the order of tungsten, rhenium, and scandium oxide. To fix the coating, the tungsten pills are heated to 800 ° C. during the coating process.
- the ablation deposition process is continued until a mass-equivalent total layer thickness of 600 nm is reached.
- the pill with the cover layer according to the invention is welded onto a cathode shaft which contains a heating coil.
- This indirectly heated cathode is assembled with other components, such as radiation cylinders and ceramic insulation, to form a cathode unit. Three of these units are then installed in a color television tube.
- the measured emission current density of the cathode was 120 A / cm 2 at a cathode temperature of 950 ° C.
- An I-cathode body is produced in the form of a porous pill by sintering tungsten powder at 1500 ° C. in a hydrogen atmosphere to a cylindrical body 1.8 mm in diameter and 0.5 mm in height and with 7% by weight barium calcium aluminate powder having the composition 4 BaO- CaO-Al 2 O 3 is impregnated.
- the pill is inserted into a molybdenum bowl and placed in the ablation chamber of a laser ablation deposition apparatus.
- a cylindrical multitarget containing Sc 2 O 3 and rhenium side by side is used as the target.
- the laser is a UV excimer laser with a wavelength of 248 nm and an average power of 100 W, which produces a cold ablation on the rotating target.
- a mixture of high-purity argon and hydrogen is used as the carrier gas.
- the total pressure in the ablation chamber was 1 mbar.
- a Re layer with a mass-equivalent layer thickness of 120 nm and a scandium oxide layer with a mass-equivalent layer thickness of 20 nm are deposited in each case. This sequence of layers is repeated five times.
- the tungsten pills are heated to 800 ° C. during the coating process.
- the pill with the cover layer according to the invention is welded onto a cathode shaft which contains a heating coil.
- This indirectly heated cathode is assembled with other components, such as radiation cylinders and ceramic insulation, to form a cathode unit. Three of these units are then installed in a color television tube.
- the measured emission current density of the cathode was 25 A / cm 2 at a cathode temperature of 980 ° C.
Landscapes
- Solid Thermionic Cathode (AREA)
- Discharge Lamp (AREA)
Abstract
Description
Die Erfindung betrifft eine elektrische Entladungsröhre, insbesondere eine Vakuumelektronenröhre, oder Entladungslampe, insbesondere Niederdruckgasentladungslampe, mit mindestens einer Scandat-Vorratskathode, die aus einem Kathodenkörper und einer Deckschicht mit einer emittierenden Oberfläche besteht, wobei der Kathodenkörper eine Matrix aus wenigstens einem hochschmelzendem Metall und /oder einer hochschmelzenden Legierung und eine Bariumverbindung in Kontakt mit dem Matrixmaterial zur Lieferung von Barium an die emittierende Oberfläche durch chemische Reaktion mit dem Matrixmaterial umfaßt. Sie betrifft weiterhin eine derartige Scandat-Vorratskathode.The invention relates to an electric discharge tube, in particular a vacuum electron tube, or a discharge lamp, in particular a low-pressure gas discharge lamp, with at least one scan data storage cathode, which consists of a cathode body and a cover layer with an emitting surface, the cathode body being a matrix of at least one high-melting metal and / or a refractory alloy and a barium compound in contact with the matrix material to supply barium to the emitting surface by chemical reaction with the matrix material. It also relates to such a Scandat supply cathode.
Elektronenröhren, insbesondere Vakuumelektronenröhren, werden vornehmlich als Bildröhren in Fernsehern, als Monitorröhren, als Röntgenröhre, als Hochfrequenz- und Mikrowellenröhre für verschiedene Anwendungen im Geräte- und Anlagenbau jeder Sparte, in der Medizintechnik, in Diagnose- und Meßeinrichtungen in Werkstätten und auch in Spielgeräten eingesetzt.Electron tubes, in particular vacuum electron tubes, are primarily used as picture tubes in televisions, as monitor tubes, as X-ray tubes, as high-frequency and microwave tubes for various applications in the construction of equipment and systems in every sector, in medical technology, in diagnostic and measuring equipment in workshops and also in gaming equipment .
An Fernseh- und Monitorröhren werden ständig steigende Anforderungen in Bezug aus größere Helligkeit, gesteigerte Auflösung, konstante Bildqualität und besseren Langzeitbetrieb gestellt. Um eine größere Bildhelligkeit und eine bessere Auflösung des Elektronenstrahls zu erreichen, sind höhere Elektronen-Emissionsstromdichten in den Röhren notwendig, die nur mit verbesserten Elektronenquellen, d.h. Kathoden, erreichbar sind. Mitte der achtziger Jahre genügten Standardoxidkathoden mit einer Emissionsstromdichte von 2 A/cm2 im Langzeitbetrieb den Anforderungen, gegenwärtig werden 10 A/cm2 gefordert und für die neuen Hochleistungsröhren sind weit höhere Emissionsstromdichten erforderlich.TV and monitor tubes are subject to ever increasing demands in terms of greater brightness, increased resolution, constant image quality and better long-term operation. In order to achieve a higher image brightness and a better resolution of the electron beam, higher electron emission current densities in the tubes are necessary, which can only be achieved with improved electron sources, ie cathodes. In the mid-1980s, standard oxide cathodes with an emission current density of 2 A / cm 2 met long-term operation, currently 10 A / cm 2 are required and far higher emission current densities are required for the new high-performance tubes.
Ähnliches gilt bezüglich der Emissionsstromdichte und der Langzeitstabilität auch für Röntgen-, Hochfrequenz- und Mikrowellenröhren.The same applies to the emission current density and long-term stability for X-ray, high-frequency and microwave tubes.
Die Emissionsstromdichte an einer Kathode ist gemäß der Richardson-Gleichung
Eine Kathode mit einer niedrigeren Austrittsarbeit φ kann eine höhere Emissionsstromdichte bei gleicher Betriebstemperatur T liefern. Alternativ erlaubt eine Kathode mit einer niedereren Austrittsarbeit φ einen Betrieb bei niedrigeren Temperaturen bei gleicher Stromdichte. Eine niedrigere Betriebstemperatur wirkt sich dabei positiv auf die Lebensdauer der Kathode und der Entladungsröhre aus.A cathode with a lower work function φ can deliver a higher emission current density at the same operating temperature T. Alternatively, a cathode with a lower work function φ allows operation at lower temperatures with the same current density. A lower operating temperature has a positive effect on the service life of the cathode and the discharge tube.
Scandat-Vorratskathoden sind derzeit die Kathoden mit der höchsten Elektronenemission. Die beiden wichtigsten Typen der Scandat-Vorratskathoden sind die "Mixed Matrix Scandat Kathode" und die "Top Layer Scandat Kathode". Die "Mixed Matrix Scandat Kathode" besteht aus einem porösen Kathodenkörper aus Wolfram und Scandiumoxid, der mit 4 BaO.CaO.Al2O3 imprägniert ist. "Top Layer Scandat Kathoden" bestehen aus einem porösen Wolframkörper, der mit 4 BaO.CaO.Al2O3 imprägniert ist und mit einer dünnen Deckschicht aus Wolfram und Scandiumoxid oder Sc2 W3O12 bedeckt ist.Scandat supply cathodes are currently the cathodes with the highest electron emission. The two most important types of Scandat supply cathodes are the "Mixed Matrix Scandat Cathode" and the "Top Layer Scandat Cathode". The "Mixed Matrix Scandat Cathode" consists of a porous cathode body made of tungsten and scandium oxide, which is impregnated with 4 BaO.CaO.Al 2 O 3 . "Top Layer Scandat Cathodes" consist of a porous tungsten body, which is impregnated with 4 BaO.CaO.Al 2 O 3 and is covered with a thin cover layer made of tungsten and scandium oxide or Sc 2 W 3 O 12 .
Während des Betriebes der Kathode bildet sich durch chemische Reaktion zwischen Wolfram, Scandiumoxid und dem Barium-Calcium-Aluminat ein Oberflächenkomplex, der die hohe Elektronenemission bewirkt und aufrechterhält. Da dieser Oberflächenkomplex durch das Ionenbombardment in der Röhre zerstört wird, muß er ständig nachgebildet werden. Scandiumoxid ist aber nicht sehr mobil, sodaß die Nachlieferung (Segregation) von Scandium zur Bildung des Oberflächenkomplexes gestört ist und die Kathodenemission sich während des Betriebes der Entladungsröhre oder Entladungslampe schnell verringert. Um diesen Nachteil zu beheben, wurde in der EP 0 317 002 vorgeschlagen, scandiumhaltige Metallverbindungen oder Legierungen, die eine Verbindung von Scandium mit einem oder mehreren der Metalle Rhenium, Ruthenium, Hafnium, Nickel, Kobalt, Palladium, Zirkon, oder Wolfram sind, zur Scandium-Segregation in die Oberfläche der Kathode zu verwenden. Das Langzeitverhalten der Kathoden gemäß der EP 0 317 002 ist verbessert, jedoch läßt die Reproduzierbarkeit der Ergebnisse zu wünschen übrig.During the operation of the cathode, a chemical reaction between tungsten, scandium oxide and the barium calcium aluminate forms a surface complex which causes and maintains the high electron emission. Since this surface complex is destroyed by ion bombardment in the tube, he is constantly being replicated. However, scandium oxide is not very mobile, so that the subsequent delivery (segregation) of scandium to form the surface complex is disturbed and the cathode emission is rapidly reduced during the operation of the discharge tube or discharge lamp. In order to overcome this disadvantage, EP 0 317 002 proposed to use scandium-containing metal compounds or alloys which are a compound of scandium with one or more of the metals rhenium, ruthenium, hafnium, nickel, cobalt, palladium, zirconium or tungsten Use scandium segregation in the surface of the cathode. The long-term behavior of the cathodes according to EP 0 317 002 is improved, but the reproducibility of the results leaves something to be desired.
Weiterhin ist aus der EP 0 549 034 eine Kathode mit einem mit einer Erdalkali-Verbindung imprägnierten Matrixkörper, auf dessen Oberfläche eine Deckschicht aufgebracht ist, welche hochschmelzendes Metall wie insbesondere Wolfram und Scandium enthält, bekannt. Eine hohe Emission bei niedriger Bertriebstemperatur und gleichzeitig eine schnelle Erholung nach Ionenbombardement sowie eine lange Lebensdauer werden dadurch erreicht, daß die Deckschicht wenigstens zwei Schichten unterschiedlicher Zusammensetzung enthält, wobei eine rein metallische Schicht auf den imprägnierten Matrixkörper aufgebracht ist, welche Scandium sowie ein hochschmelzendes Metall wie insbesondere Wolfram und/oder Rhenium enthält, und daß als abschließende Schicht eine metallische Schicht aus einem hochschmelzenden Metall wie insbesondere Wolfram aufgebracht ist. Diese Kathoden werden bevorzugt durch ein Verfahren hergestellt, bei dem zunächst rein metallische Schichten aus Scandium und/oder Rhenium mittels eines insbesondere plasmaaktivierten CVD-Verfahrens, vorzugsweise mittels eines durch Gleichstromglimmentladung erzeugten Plasmas, hergestellt werden, und daß anschließend als letzte Schicht eine metallische Wolframschicht mittels CVD-Verfahren aufgebracht wird. Die Emissionsstromdichte dieser Art von Kathoden ist jedoch niedrig.Furthermore, EP 0 549 034 discloses a cathode with a matrix body impregnated with an alkaline earth metal compound, on the surface of which a cover layer is applied, which contains high-melting metal such as, in particular, tungsten and scandium. A high emission at a low operating temperature and at the same time a rapid recovery after ion bombardment and a long service life are achieved in that the cover layer contains at least two layers of different composition, with a purely metallic layer being applied to the impregnated matrix body, which contains scandium and a high-melting metal such as contains in particular tungsten and / or rhenium, and that a metallic layer made of a high-melting metal such as in particular tungsten is applied as the final layer. These cathodes are preferably produced by a process in which initially purely metallic layers of scandium and / or rhenium are produced by means of a plasma-activated CVD process in particular, preferably by means of a plasma generated by direct current glow discharge, and then by means of a metallic tungsten layer as the last layer CVD process is applied. However, the emission current density of this type of cathode is low.
Die Erfindung hat daher die Aufgabe, eine elektrische Entladungsröhre oder Entladungslampe zu schaffen, die reproduzierbar hohe Emissionsstromdichten über einen langen Zeitraum liefert.The object of the invention is therefore to create an electrical discharge tube or discharge lamp which delivers reproducibly high emission current densities over a long period of time.
Erfindungsgemäß wird die Aufgabe gelöst durch eine elektrische Entladungsröhre oder Entladungslampe mit mindestens einer Scandat-Vorratskathode, die aus einem Kathodenkörper und einer Deckschicht mit einer emittierenden Oberfläche besteht, wobei der Kathodenkörper eine Matrix aus wenigstens einem hochschmelzendem Metall und /oder einer hochschmelzenden Legierung und eine Bariumverbindung in Kontakt mit dem Matrixmaterial zur Lieferung von Barium an die emittierende Oberfläche durch chemische Reaktion mit dem Matrixmaterial umfaßt und die Deckschicht ein- oder mehrfach einen Schichtverbund aus gegebenenfalls einer Unterschicht aus Wolfram und/oder einer Wolframlegierung, einer Zwischenschicht aus Rhenium und/oder einer Rheniumlegierung und einer Oberschicht aus Scandiumoxid, einem Gemisch von Scandiumoxid mit Seltenerdmetalloxiden, einem Scandat und/oder einer Scandiumlegierung enthält.According to the invention, the object is achieved by an electrical discharge tube or discharge lamp with at least one scandate supply cathode, which consists of a cathode body and a cover layer with an emitting surface, the cathode body comprising a matrix of at least one high-melting metal and / or a high-melting alloy and a barium compound in contact with the matrix material for supplying barium to the emitting surface by chemical reaction with the matrix material and the top layer one or more times a layer composite of optionally a lower layer of tungsten and / or a tungsten alloy, an intermediate layer of rhenium and / or a rhenium alloy and a top layer of scandium oxide, a mixture of scandium oxide with rare earth oxides, a scandate and / or a scandium alloy.
Eine derartige Entladungsröhre oder Entladungslampe hat eine lange Lebensdauer, weil sie eine gute Resistenz gegen Ionenbombardement mit Dosen bis zu einigen 1019 Ionen /cm2 zeigt. Sie kann beispielsweise als hochauflösender Computermonitor (CMT), in hochauflösenden Fernsehgeräten mit einem Bildschirmseitenverhältnis von 16:9 und als Hochleistungs-Röntgenröhre verwendet werden, da sie bei 965°C, gemessen als Strahlungstemperatur der Molybdänkappe der Kathodenhalterung, eine Sättigungsemissionsstromdichte i0 von ≧ 25 A/cm2 erreicht.Such a discharge tube or discharge lamp has a long service life because it shows good resistance to ion bombardment with doses up to a few 10 19 ions / cm 2 . For example, it can be used as a high-resolution computer monitor (CMT), in high-definition television sets with a screen aspect ratio of 16: 9 and as a high-performance X-ray tube, because at 965 ° C, measured as the radiation temperature of the molybdenum cap of the cathode holder, it has a saturation emission current density i 0 of ≧ 25 A / cm 2 reached.
Ein anderer Aspekt der Erfindung betrifft eine Scandat-Vorratskathode, die aus einem Kathodenkörper und einer Deckschicht mit einer emittierenden Oberfläche besteht, wobei der Kathodenkörper eine Matrix aus wenigstens einem hochschmelzendem Metall und /oder einer hochschmelzenden Legierung und eine Bariumverbindung in Kontakt mit dem Matrixmaterial zur Lieferung von Barium an die emittierende Oberfläche durch chemische Reaktion mit dem Matrixmaterial umfaßt und die Deckschicht ein- oder mehrfach einen Schichtverbund aus gegebenenfalls einer Unterschicht aus Wolfram und/oder einer Wolframlegierung, einer Zwischenschicht aus Rhenium und/oder einer Rheniumlegierung und einer Oberschicht aus Scandiumoxid, einem Gemisch von Scandiumoxid mit Seltenerdmetalloxiden, einem Scandat und/oder einer Scandiumlegierung enthält.Another aspect of the invention relates to a scandate supply cathode which consists of a cathode body and a cover layer with an emitting surface, the cathode body comprising a matrix of at least one high-melting metal and / or a high-melting alloy and a barium compound in contact with the matrix material for delivery from barium to the emitting surface by chemical reaction with the matrix material and the top layer one or more times a layer composite of optionally a lower layer of tungsten and / or a tungsten alloy, an intermediate layer of rhenium and / or a rhenium alloy and an upper layer of scandium oxide, a mixture of scandium oxide Contains rare earth metal oxides, a scandate and / or a scandium alloy.
Die erfindungsgemäße Scandat-Vorratskathode hat wenig Wolframverluste und die Scandiumnachlieferung in die emittierende Oberfläche wird während des Betriebes nicht passiviert. Der Schichtaufbau verhindert die Sauerstoffdiffusion zum Wolfram.The scandate supply cathode according to the invention has little tungsten loss and the scandium supply into the emitting surface is not passivated during operation. The layer structure prevents oxygen diffusion to the tungsten.
Eine erfindungsgemäße Scandat-Vorratskathode, bei der der Kathodenkörper eine Scandiumverbindung oder eine Scandiumlegierung zur Scandiumnachlieferung an die emittierende Oberfläche aufweist, hat eine besonders lange Lebensdauer.A scandate supply cathode according to the invention, in which the cathode body has a scandium compound or a scandium alloy for subsequent delivery of scandium to the emitting surface, has a particularly long service life.
Es ist bevorzugt, daß der Schichtverbund aus ultrafeinen Partikeln besteht. Scandatvorratskathoden mit einer Deckschicht aus ultrafeinen Partikeln weisen eine Oberflächenstrukturen und Oberflächenmodulationen aus Partikeln im Durchmesserbereich von 1 bis 100 nm auf, haben also relativ kleine Krümmungsradien in dichter Partikel- und Spitzenverteilung auf der makroskopischen Oberfläche.It is preferred that the layer composite consist of ultrafine particles. Scandate supply cathodes with a cover layer made of ultrafine particles have a surface structure and surface modulation from particles in the diameter range from 1 to 100 nm, i.e. they have relatively small radii of curvature in dense particle and tip distribution on the macroscopic surface.
Es ist bevorzugt, daß der Schichtverbund in der Deckschicht der erfindungsgemäßen Scandat-Vorratskathode durch ein Laserablation-Depositionsverfahren hergestellt wird. Im Gegensatz zu bekannten naßchemischen Verfahren hat das Laserablation-Depositionsverfahren kurze Reaktionszeiten. Außerdem ist die Korngrößenverteilung der ultrafeinen Partikel im Gegensatz zu bekannten Verdampfungsverfahren leicht kontrollierbar.It is preferred that the layer composite in the top layer of the scandate supply cathode according to the invention is produced by a laser ablation deposition process. In contrast to known wet chemical processes, the laser ablation deposition process has short reaction times. In addition, the grain size distribution of the ultrafine particles is easy to control, in contrast to known evaporation processes.
Es ist weiterhin bevorzugt, daß Unterschicht, Zwischenschicht und Oberschicht jeweils eine Schichtdicke von 5 bis 150 nm haben. Scandat-Vorratskathoden mit derartigen Schichten haben hervorragende Emittereigenschaften.It is further preferred that the lower layer, intermediate layer and upper layer each have a layer thickness of 5 to 150 nm. Scandat supply cathodes with such layers have excellent emitter properties.
Es ist besonders bevorzugt, daß die Deckschicht der erfindungsgemäßen Scandat-Vorratskathoden eine Schichtdicke von 50 bis 1000 nm, vorzugsweise 400 bis 600 nm hat. Damit wird eine Lebensdauer der Kathode von 10 000 h erreicht.It is particularly preferred that the cover layer of the scandate supply cathodes according to the invention has a layer thickness of 50 to 1000 nm, preferably 400 to 600 nm. This achieves a cathode life of 10,000 hours.
Nachfolgend wird die Erfindung weiter erläutert und es werden Beispiele angegeben.The invention is explained further below and examples are given.
Eine elektrische Entladungsröhre oder Entladungslampe besteht aus vier Funktionsgruppen: aus der Elektronenstrahlerzeugung, der Strahlfokussierung, der Strahlablenkung und dem Leuchtschirm.An electrical discharge tube or discharge lamp consists of four functional groups: electron beam generation, beam focusing, beam deflection and the fluorescent screen.
Das Elektronenstrahlerzeugungssystem der erfindungsgemäßen Entladungsröhren oder Entladungslampen enthält eine Anordnung aus ein oder mehreren Vorratskathoden. Beispielsweise kann das Elektronenstrahlerzeugungssystem eine oder mehrere Punktkathoden oder ein System aus einem oder mehreren Drahtkathoden, Flachbandkathoden oder Flächenkathoden sein. Drahtkathoden, Flächenkathoden und Flachbandkathoden müssen nicht über ihre ganze Fläche emittieren. Sie können die emittierende Vorratskathodenanordnung auch nur in einzelnen Oberflächensegmenten enthalten.The electron beam generation system of the discharge tubes or discharge lamps according to the invention contains an arrangement of one or more supply cathodes. For example, the electron gun can be one or more point cathodes or a system of one or more wire cathodes, flat ribbon cathodes or surface cathodes. Wire cathodes, surface cathodes and ribbon cathodes do not have to emit over their entire surface. They can also contain the emitting supply cathode arrangement only in individual surface segments.
Eine Vorratskathode nach der Erfindung besteht aus einem Kathodenkörper und einer Deckschicht. Der Kathodenkörper umfaßt eine Matrix aus wenigstens einem hochschmelzendem Metall und /oder einer hochschmelzenden Legierung und eine Bariumverbindung in Kontakt mit dem Matrixmaterial zur Lieferung von Barium an die emittierende Oberfläche durch chemische Reaktion mit dem Matrixmaterial.A supply cathode according to the invention consists of a cathode body and a cover layer. The cathode body comprises a matrix of at least one high-melting metal and / or a high-melting alloy and a barium compound in contact with the matrix material for supplying barium to the emitting surface by chemical reaction with the matrix material.
Geeignet als Kathodenkörper für die Erfindung sind Vorratskathoden bekannter Bauart wie L-Kathoden, M-Kathoden und I-Kathoden und Mixed-Matrix-Kathoden.Storage cathodes of a known type, such as L-cathodes, M-cathodes and I-cathodes and mixed-matrix cathodes, are suitable as cathode bodies for the invention.
Besonders geeignet als Kathodenkörper sind I-Kathoden und Mixed -Matrix-Kathoden.I-cathodes and mixed-matrix cathodes are particularly suitable as cathode bodies.
Die Deckschicht der erfindungsgemäßen Kathoden enthält ein- oder mehrfach einen Schichtverbund aus gegebenenfalls einer Unterschicht aus Wolfram und/oder einer Wolframlegierung, einer Zwischenschicht aus Rhenium und/oder Rheniumlegierung und einer Oberschicht aus Scandiumoxid, einem Gemisch von Scandiumoxid mit Seltenerdmetalloxiden, einem Scandat und/oder einer Scandiumlegierung. Die Gesamtdicke der Deckschicht wird so bemessen, daß die Kathode eine angemessene Lebensdauer hat. Die Lebensdauer von Vorratskathoden wird u.a. durch Erosion durch Sputterreaktionen an der Kathodenoberfläche begrenzt. An der Sputterreaktion sind Ionen beteiligt, die durch den Elektronenstrahl aus den Restgasen im Vakuum der Entladungsröhre oder Entladungslampe gebildet werden. Diese Ionen werden durch die anliegende Spannung gegen die Kathode beschleunigt und erodieren deren Oberfläche. Dieser Erosionsvorgang durch Ionenbombardment kann mittels einer Ionenkanone simuliert und die Erosionsrate bestimmt werden. Aus dieser Erosionsrate wird die Gesamtschichtdicke der Deckschicht abgeschätzt. Im allgemeinen wird die Gesamtdicke der Deckschicht bei 600 bis 1000 nm liegen.The cover layer of the cathodes according to the invention contains one or more layers of a composite of optionally a lower layer of tungsten and / or a tungsten alloy, an intermediate layer of rhenium and / or rhenium alloy and an upper layer of scandium oxide, a mixture of scandium oxide with rare earth metal oxides, a scandate and / or a scandium alloy. The total thickness of the cover layer is dimensioned so that the cathode has an adequate service life. The service life of supply cathodes is limited by erosion due to sputtering reactions on the cathode surface. Ions are involved in the sputtering reaction, which are formed by the electron beam from the residual gases in the vacuum of the discharge tube or discharge lamp. These ions are accelerated by the applied voltage against the cathode and erode its surface. This erosion process by ion bombardment can be simulated using an ion gun and the erosion rate can be determined. The total layer thickness of the cover layer is estimated from this erosion rate. In general, the total thickness of the top layer will be 600 to 1000 nm.
Die einzelnen Schichten des Schichtverbundes, d.h. die Unterschicht mit Wolfram, die Zwischenschicht aus Rhenium und die Oberschicht mit Scandiumoxid oder einer Scandiumlegierung sollen bevorzugt sehr dünn sein. Die massenäquivalente Schichtdicke der Scandiumschicht soll bevorzugt im Nanometerbereich zwischen 5 und 20 nm liegen, die der wolfram- und der rheniumhaltigen Schicht zwischen 20 und 200 nm. Die massenäquvalenten Schichtdicken werden aus den theoretischen Dichten und aufgebrachten Flächengewichten der Deckschichtsubstanzen bestimmt. Diese sehr dünnen Einzelschichten bewirken einen besseren Verbund der Einzelphasen und hemmen die Kornvergrößerung durch Sinterwachstum während des Betriebes. Die Schichten sind dann nanostrukturiert, d.h. sie bestehen aus einzelnen Partikelhaufen, die durch große, im wesentlichen offene Poren getrennt sind. Dadurch hat die Deckschicht eine etwas aufgelöste, radial und lateral strukturierte Oberfläche. Wenn nacheinander die Partikel der Unterschicht, der Zwischenschicht und der Oberschicht abgeschieden werden, greifen deren Nanostrukturen ineinander und es entsteht eine Werkstoffkombination in der Deckschicht, die hervorragende Emittereigenschaften hat.The individual layers of the layer composite, ie the lower layer with tungsten, the intermediate layer made of rhenium and the upper layer with scandium oxide or a scandium alloy should preferably be very thin. The mass-equivalent layer thickness of the scandium layer should preferably be in the nanometer range between 5 and 20 nm, that of the tungsten- and rhenium-containing layer between 20 and 200 nm. The mass-equivalent layer thicknesses are determined from the theoretical densities and applied basis weights of the cover layer substances. These very thin individual layers result in a better bond between the individual phases and inhibit grain enlargement through sinter growth during operation. The layers are then nanostructured, ie they consist of individual particle clusters that are separated by large, essentially open pores. As a result, the cover layer has a slightly dissolved, radially and laterally structured surface. If the particles of the lower layer, the intermediate layer and the upper layer are deposited one after the other, their nanostructures interlock and a material combination is created in the cover layer which has excellent emitter properties.
Wenn die erfindungsgemäße Vorratskathode den Schichrverbund nur einfach enthält, kann die unterste wolframhaltige Schicht auch durch die wolframhaltige Matrix des Kathodenkörpers gebildet werden.If the supply cathode according to the invention contains the layer composite only once, the lowermost tungsten-containing layer can also be formed by the tungsten-containing matrix of the cathode body.
Als Material für die scandiumhaltige Oberschicht kann Scandiumoxid Sc2O3 oder Scandiumoxid, das mit den Oxiden anderer Seltenerdmetalle wie Europium, Samarium und Cer gemischt ist, sowie Scandate, z.B. Erdalkaliscandate, verwendet werden. Alternativ können scandiumhaltige Legierungen und/oder intermetallische Verbindungen wie Re24Sc5, Re2Sc, Ru2Sc, Co2Sc, Pd2Sc und Ni2Sc verwendet werden. Diese Verbindungen, Verbindungsgemische oder Legierungen sollen jedoch kein Wolfram enthalten.Scandium oxide Sc 2 O 3 or scandium oxide, which is mixed with the oxides of other rare earth metals such as europium, samarium and cerium, and scandates, for example alkaline earth metal scandates, can be used as material for the scandium-containing upper layer. Alternatively, alloys containing scandium and / or intermetallic compounds such as Re 24 Sc 5 , Re 2 Sc, Ru 2 Sc, Co 2 Sc, Pd 2 Sc and Ni 2 Sc can be used. However, these compounds, compound mixtures or alloys should not contain tungsten.
Als Material für die rheniumhaltige Zwischenschicht wird metallisches Rhenium verwendet.Metallic rhenium is used as the material for the rhenium-containing intermediate layer.
Als Material für die Unterschicht wird Wolfram oder eine Wolframlegierung, die Osmium, Iridium, Ruthenium, Tantal und/oder Molybdän enthält, gewählt.Tungsten or a tungsten alloy containing osmium, iridium, ruthenium, tantalum and / or molybdenum is selected as the material for the underlayer.
Das Herstellungsverfahren für die erfindungsgemäße Vorratskathode ist ein zweistufiges Verfahren. Es beginnt mit der Herstellung des Kathodenkörpers, auf den dann in einem zweiten Schritt die emittierende Deckschicht aufgebracht wird.The production process for the supply cathode according to the invention is a two-step process. It begins with the production of the cathode body, to which the emitting cover layer is then applied in a second step.
Bevorzugt werden als Kathodenkörper konventionelle I-Kathoden oder Mixed-Matrix Kathoden.Conventional I-cathodes or mixed-matrix cathodes are preferred as cathode bodies.
I-Kathoden sind imprägnierte Vorratskathoden. Sie bestehen aus einer pulvermetallurgisch aus Wolframpulver hergestellten porösen Wolframmatrix. Diese poröse Matrix wird mit einer Mischung aus BaO, CaO und Al2O3 imprägniert. Dazu wird eine Mischung aus BaCO3, CaCO3 und Al2O3 aufgeschmolzen und die poröse Matrix durch Schmelzinfiltration mit der Mischung gefüllt. Die Oberfläche des Körpers wird dann durch Ultraschall und Wasser von äußerlich anhaftender Oxidmischung gereinigt.I cathodes are impregnated supply cathodes. They consist of a porous tungsten matrix produced by powder metallurgy from tungsten powder. This porous matrix is impregnated with a mixture of BaO, CaO and Al 2 O 3 . For this purpose, a mixture of BaCO 3 , CaCO 3 and Al 2 O 3 is melted and the porous matrix is filled with the mixture by melt infiltration. The surface of the body is then cleaned by ultrasound and water from externally adhering oxide mixture.
Mixed Matrix-Kathoden enthalten Scandium in einer gemeinsamen Matrix aus Wolfram und Scandiumoxid. Die Matrix wird durch Sintern eines Pulvergemisches aus Wolfram und Scandiumoxid hergestellt, wobei der Sintervorgang so geführt wird, daß ein poröser Körper entsteht. Dieser poröse Sinterkörper wird dann mit dem gleichen Verfahren wie bei den I-Kathoden mit einer Mischung aus BaO, CaO und Al2O3 imprägniert. Auch die Verfahren zur Reinigung und Aktivierung sind gleich.Mixed matrix cathodes contain scandium in a common matrix of tungsten and scandium oxide. The matrix is produced by sintering a powder mixture of tungsten and scandium oxide, the sintering process being carried out in such a way that a porous body is formed. This porous sintered body is then impregnated with the same method as for the I cathodes with a mixture of BaO, CaO and Al 2 O 3 . The cleaning and activation procedures are also the same.
Die Deckschicht kann mittels konventioneller Beschichtungsverfahren hergestellt werden. Zu diesen Verfahren gehören CVD, PCVD, und Sputtern. Es ist jedoch im Rahmen der vorliegenden Erfindung bevorzugt, daß die Einzelschichten der Deckschicht aus ultrafeinen Partikeln in einem Laser-Ablations-Depositionsverfahren hergestellt werden.The top layer can be produced using conventional coating processes. These methods include CVD, PCVD, and sputtering. However, it is preferred in the context of the present invention that the individual layers of the cover layer are produced from ultrafine particles in a laser ablation deposition process.
Dazu wird der Kathodenkörper in die Depositionskammer einer Laser-Ablations-Depositionsanlage gebracht. Es ist günstig, als Laser einen Excimer-Laser zu verwenden, der im Gegensatz zu CO2-Lasern auch Wolfram problemlos ablatiert. Als erstes wird gegebenenfalls die wolframhaltige Schicht abgeschieden, als zweites die rheniumhaltige und als drittes die scandiumhaltige. Es ist günstig, Multitargets zu verwenden, die alle drei Komponenten auf einer Targetanordnung enthalten. Die Emissionseigenschaften der fertigen Scandat-Vorratskathode werden günstig beeinflußt, wenn die Gasatmospäre bei dem Ablationsverfahren aus hochreinem Argon oder Argon/Wasserstoff besteht. Weiterhin kann es günstig sein, wenn die Substrate (Kathodenkörper) für die Deckschicht während des Ablation-Depositionsverfahren geheizt werden. Die Bedingungen für das Laserablation-Depositionsverfahren werden so eingestellt, daß die Korngröße der ultrafeinen Partikel in einem mittleren bis hohen Bereich liegt.For this purpose, the cathode body is brought into the deposition chamber of a laser ablation deposition system. It is favorable to use an excimer laser as the laser, which unlike CO 2 lasers also ablates tungsten without any problems. If necessary, the tungsten-containing layer is deposited first, the rhenium-containing layer second, and the scandium-containing layer third. It's cheap multi-targets to use, which contain all three components on a target arrangement. The emission properties of the finished scandate supply cathode are favorably influenced if the gas atmosphere in the ablation process consists of high-purity argon or argon / hydrogen. Furthermore, it can be expedient if the substrates (cathode bodies) for the cover layer are heated during the ablation deposition process. The conditions for the laser ablation deposition process are set so that the grain size of the ultrafine particles is in a medium to high range.
Im allgemeinen wird die emittierende Oberfläche der Kathode in einem weiteren Verfahrensschritt aktiviert.In general, the emitting surface of the cathode is activated in a further process step.
Ein I-Kathodenkörper wird in Form einer porösen Pille hergestellt, indem Wolframpulver bei 1500°C in Wasserstoffatmosphäre zu einem zylindrischen Körper von 1,8 mm Durchmesser und 0,5 mm Höhe gesintert und mit 7 Gew.-% Bariumcalciumaluminatpulver der Zusammensetzung 4 BaO-CaO-Al2O3 imprägniert wird. Die Pille wird in einen Molybdännapf eingefügt und in die Ablationskammer einer Laser-Ablations-Depositions-Apparatur gebracht. Als Target wird ein zylindrisches Multitarget verwendet, das nebeneinander Sc2O3, Rhenium und Wolfram enthält. Der Laser ist ein UV-Excimer-Laser mit einer Wellenlänge von 248 nm und einer mittleren Leistung von 100 W, der auf dem rotierenden Target eine kalte Ablation erzeugt. Als Trägergas wird ein Gemisch aus hochreinem Argon und Wasserstoff verwendet. Der Gesamtdruck in der Ablationskammer betrug 1 mbar. Während der Ablation wird das Multitarget translatiert und die drei Teilbereiche des Targets werden kontinuierlich in der Reihenfolge Wolfram, Rhenium, Scandiumoxid abgerastert. Zur Fixierung der Beschichtung werden die Wolframpillen während des Beschichtungsvorganges auf 800°C erhitzt.An I-cathode body is produced in the form of a porous pill by sintering tungsten powder at 1500 ° C. in a hydrogen atmosphere to a cylindrical body 1.8 mm in diameter and 0.5 mm in height and with 7% by weight barium calcium aluminate powder having the composition 4 BaO- CaO-Al 2 O 3 is impregnated. The pill is inserted into a molybdenum bowl and placed in the ablation chamber of a laser ablation deposition apparatus. A cylindrical multitarget is used as the target, which contains Sc 2 O 3 , rhenium and tungsten side by side. The laser is a UV excimer laser with a wavelength of 248 nm and an average power of 100 W, which produces a cold ablation on the rotating target. A mixture of high-purity argon and hydrogen is used as the carrier gas. The total pressure in the ablation chamber was 1 mbar. During the ablation, the multitarget is translated and the three partial areas of the target are scanned continuously in the order of tungsten, rhenium, and scandium oxide. To fix the coating, the tungsten pills are heated to 800 ° C. during the coating process.
Das Ablations-Depositionsverfahren wird fortgesetzt, bis eine massenäquvalente Gesamtschichtdicke von 600 nm erreicht ist.The ablation deposition process is continued until a mass-equivalent total layer thickness of 600 nm is reached.
Die Pille mit der erfindungsgemäßen Deckschicht wird auf einen Kathodenschaft aufgeschweißt, der eine Heizwendel enthält. Diese indirekt heizbare Kathode wird mit weiteren Bestandteilen, wie Strahlungszylinder und Keramikisolation, zu einer Kathodeneinheit zusammengesetzt. Jeweils drei dieser Einheiten werden dann in eine Farbfernsehröhre eingebaut.The pill with the cover layer according to the invention is welded onto a cathode shaft which contains a heating coil. This indirectly heated cathode is assembled with other components, such as radiation cylinders and ceramic insulation, to form a cathode unit. Three of these units are then installed in a color television tube.
Die gemessene Emissionsstromdichte der Kathode war 120 A/cm2 bei einer Kathodentemperatur von 950°C.The measured emission current density of the cathode was 120 A / cm 2 at a cathode temperature of 950 ° C.
Ein I-Kathodenkörper wird in Form einer porösen Pille hergestellt, indem Wolframpulver bei 1500°C in Wasserstoffatmosphäre zu einem zylindrischen Körper von 1,8 mm Durchmesser und 0,5 mm Höhe gesintert und mit 7 Gew.-% Bariumcalciumaluminatpulver der Zusammensetzung 4 BaO-CaO-Al2O3 imprägniert wird. Die Pille wird in einen Molybdännapf eingefügt und in die Ablationskammer einer Laser-Ablations-Depositions-Apparatur gebracht. Als Target wird ein zylindrisches Multitarget verwendet, das nebeneinander Sc2O3 und Rhenium enthält. Der Laser ist ein UV-Excimer-Laser mit einer Wellenlänge von 248 nm und einer mittleren Leistung von 100 W, der auf dem rotierenden Target eine kalte Ablation erzeugt. Als Trägergas wird ein Gemisch aus hochreinem Argon und Wasserstoff verwendet. Der Gesamtdruck in der Ablationskammer betrug 1 mbar. Es wird jeweils eine Re-Schicht mit einer massenäquivalenten Schichtdicke von 120 nm und eine Scandiumoxidschicht mit einer massenäquivalenten Schichtdicke von 20 nm abgeschieden. Diese Schichtabfolge wird fünfmal wiederholt. Zur Fixierung der Beschichtung werden die Wolframpillen während des Beschichtungsvorganges auf 800°C erhitzt.An I-cathode body is produced in the form of a porous pill by sintering tungsten powder at 1500 ° C. in a hydrogen atmosphere to a cylindrical body 1.8 mm in diameter and 0.5 mm in height and with 7% by weight barium calcium aluminate powder having the composition 4 BaO- CaO-Al 2 O 3 is impregnated. The pill is inserted into a molybdenum bowl and placed in the ablation chamber of a laser ablation deposition apparatus. A cylindrical multitarget containing Sc 2 O 3 and rhenium side by side is used as the target. The laser is a UV excimer laser with a wavelength of 248 nm and an average power of 100 W, which produces a cold ablation on the rotating target. A mixture of high-purity argon and hydrogen is used as the carrier gas. The total pressure in the ablation chamber was 1 mbar. A Re layer with a mass-equivalent layer thickness of 120 nm and a scandium oxide layer with a mass-equivalent layer thickness of 20 nm are deposited in each case. This sequence of layers is repeated five times. To fix the coating, the tungsten pills are heated to 800 ° C. during the coating process.
Die Pille mit der erfindungsgemäßen Deckschicht wird auf einen Kathodenschaft aufgeschweißt, der eine Heizwendel enthält. Diese indirekt heizbare Kathode wird mit weiteren Bestandteilen, wie Strahlungszylinder und Keramikisolation, zu einer Kathodeneinheit zusammengesetzt. Jeweils drei dieser Einheiten werden dann in eine Farbfernsehröhre eingebaut.The pill with the cover layer according to the invention is welded onto a cathode shaft which contains a heating coil. This indirectly heated cathode is assembled with other components, such as radiation cylinders and ceramic insulation, to form a cathode unit. Three of these units are then installed in a color television tube.
Die gemessene Emissionsstromdichte der Kathode war 25 A/cm2 bei einer Kathodentemperatur von 980°C.The measured emission current density of the cathode was 25 A / cm 2 at a cathode temperature of 980 ° C.
Claims (7)
die Deckschicht ein- oder mehrfach einen Schichtverbund aus gegebenenfalls einer Unterschicht aus Wolfram und/oder einer Wolframlegierung, einer Zwischenschicht aus Rhenium und/oder Rheniumlegierung und einer Oberschicht aus Scandiumoxid, einem Gemisch von Scandiumoxid mit Seltenerdmetalloxiden, einem Scandat und/ oder einer Scandiumlegierung enthält.Electrical discharge tube or discharge lamp with a Scandat supply cathode, which consists of a cathode body and a cover layer with an emitting surface, the cathode body comprising a matrix of at least one high-melting metal and / or a high-melting alloy and a barium compound in contact with the matrix material for supplying Barium to the emitting surface by chemical reaction with the matrix material and
the top layer contains one or more layers of a composite of optionally a lower layer of tungsten and / or a tungsten alloy, an intermediate layer of rhenium and / or rhenium alloy and an upper layer of scandium oxide, a mixture of scandium oxide with rare earth metal oxides, a scandate and / or a scandium alloy.
die Deckschicht ein- oder mehrfach einen Schichtverbund aus gegebenenfalls einer Unterschicht aus Wolfram und/oder einer Wolframlegierung, einer Zwischenschicht aus Rhenium und/oder Rheniumlegierung und einer Oberschicht aus Scandiumoxid, einem Gemisch von Scandiumoxid mit Seltenerdmetalloxiden, einem Scandat und/ oder einer Scandiumlegierung enthält.Scandat supply cathode, which consists of a cathode body and a cover layer with an emitting surface, the cathode body passing through a matrix of at least one high-melting metal and / or a high-melting alloy and a barium compound in contact with the matrix material to supply barium to the emitting surface chemical reaction with the matrix material and
the top layer contains one or more layers of a composite of optionally a lower layer of tungsten and / or a tungsten alloy, an intermediate layer of rhenium and / or rhenium alloy and an upper layer of scandium oxide, a mixture of scandium oxide with rare earth metal oxides, a scandate and / or a scandium alloy.
dadurch gekennzeichnet,
daß der Kathodenkörper eine Scandiumverbindung oder eine Scandiumlegierung zur Scandiumnachlieferung an die emittierende Oberfläche aufweist.Scandate supply cathode according to claim 2,
characterized by
that the cathode body has a scandium compound or a scandium alloy for scandium delivery to the emitting surface.
dadurch gekennzeichnet,
daß der Schichtverbund aus ultrafeinen Partikeln besteht.Scandat supply cathode according to claim 2 and 3,
characterized by
that the layer composite consists of ultrafine particles.
dadurch gekennzeichnet,
daß der Schichtverbund durch ein Laserablation-Depositionsverfahren hergestellt wird.Scandat supply cathode according to claim 3 and 4,
characterized by
that the layer composite is produced by a laser ablation deposition process.
dadurch gekennzeichnet,
daß Unterschicht, Zwischenschicht und Oberschicht jeweils eine Schichtdicke von 5 bis 150 nm haben.Scandat supply cathode according to claim 3 to 5,
characterized by
that the lower layer, intermediate layer and upper layer each have a layer thickness of 5 to 150 nm.
dadurch gekennzeichnet,
daß die Deckschicht eine Schichtdicke von 50 bis 1000 nm, vorzugsweise 400 bis 600 nm hat.Scandat supply cathode according to claim 3 to 6,
characterized by
that the cover layer has a layer thickness of 50 to 1000 nm, preferably 400 to 600 nm.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19527723 | 1995-07-31 | ||
DE19527723A DE19527723A1 (en) | 1995-07-31 | 1995-07-31 | Electric discharge tube or discharge lamp and Scandat supply cathode |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0757370A1 true EP0757370A1 (en) | 1997-02-05 |
EP0757370B1 EP0757370B1 (en) | 2000-07-05 |
Family
ID=7768092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96202114A Expired - Lifetime EP0757370B1 (en) | 1995-07-31 | 1996-07-25 | Electric discharge tube or discharge lamp and scandate dispenser cathode |
Country Status (4)
Country | Link |
---|---|
US (1) | US6348756B1 (en) |
EP (1) | EP0757370B1 (en) |
JP (1) | JP3957344B2 (en) |
DE (2) | DE19527723A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013018027A1 (en) | 2011-08-03 | 2013-02-07 | Koninklijke Philips Electronics N.V. | Target for barium - scandate dispenser cathode |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19828729B4 (en) * | 1998-06-29 | 2010-07-15 | Philips Intellectual Property & Standards Gmbh | Barium-calcium aluminate-layer scandate storage cathode and corresponding electric discharge tube |
DE19961672B4 (en) * | 1999-12-21 | 2009-04-09 | Philips Intellectual Property & Standards Gmbh | Scandate dispenser cathode |
EP1232511B1 (en) * | 2000-09-19 | 2007-08-15 | Koninklijke Philips Electronics N.V. | Oxide cathode |
DE602004014590D1 (en) | 2003-02-14 | 2008-08-07 | Mapper Lithography Ip Bv | SUPPLY DEVICE CATHODE |
EP1825489A1 (en) * | 2004-12-09 | 2007-08-29 | Philips Intellectual Property & Standards GmbH | Cathode for electron emission |
EP1831908A2 (en) * | 2004-12-21 | 2007-09-12 | Philips Intellectual Property & Standards GmbH | Scandate dispenser cathode |
WO2007033247A2 (en) * | 2005-09-14 | 2007-03-22 | Littelfuse, Inc. | Gas-filled surge arrester, activating compound, ignition stripes and method therefore |
JP2008204837A (en) * | 2007-02-21 | 2008-09-04 | Sumitomo Electric Ind Ltd | Cold cathode fluorescent lamp electrode |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0052047A1 (en) * | 1980-11-07 | 1982-05-19 | Thomson-Csf | Thermoelectronic cathode |
GB2170950A (en) * | 1985-02-08 | 1986-08-13 | Hitachi Ltd | Impregnated cathode |
EP0317002A1 (en) * | 1987-11-16 | 1989-05-24 | Koninklijke Philips Electronics N.V. | Scandate cathode |
US5218263A (en) * | 1990-09-06 | 1993-06-08 | Ceradyne, Inc. | High thermal efficiency dispenser-cathode and method of manufacture therefor |
EP0549034A1 (en) * | 1991-12-21 | 1993-06-30 | Philips Patentverwaltung GmbH | Cathode and method of manufacture |
EP0641007A2 (en) * | 1993-08-31 | 1995-03-01 | Samsung Display Devices Co., Ltd. | Direct-heating-type dispenser cathode structure |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2050045A (en) * | 1979-05-29 | 1980-12-31 | Emi Varian Ltd | Thermionic cathode |
NL8403032A (en) * | 1984-10-05 | 1986-05-01 | Philips Nv | METHOD FOR MANUFACTURING A SCANDAL FOLLOW-UP CATHOD, FOLLOW-UP CATHOD MADE WITH THIS METHOD |
US4904896A (en) * | 1984-11-27 | 1990-02-27 | Rca Licensing Corporation | Vacuum electron tube having an oxide cathode comprising chromium reducing agent |
EP0248417B1 (en) * | 1986-06-06 | 1992-11-11 | Kabushiki Kaisha Toshiba | Impregnated cathode |
JPS63224127A (en) * | 1987-03-11 | 1988-09-19 | Hitachi Ltd | Impregnated cathode |
US4823044A (en) * | 1988-02-10 | 1989-04-18 | Ceradyne, Inc. | Dispenser cathode and method of manufacture therefor |
US5138224A (en) * | 1990-12-04 | 1992-08-11 | North American Philips Corporation | Fluorescent low pressure discharge lamp having sintered electrodes |
-
1995
- 1995-07-31 DE DE19527723A patent/DE19527723A1/en not_active Withdrawn
-
1996
- 1996-07-25 EP EP96202114A patent/EP0757370B1/en not_active Expired - Lifetime
- 1996-07-25 DE DE59605538T patent/DE59605538D1/en not_active Expired - Lifetime
- 1996-07-29 JP JP19899596A patent/JP3957344B2/en not_active Expired - Lifetime
- 1996-07-30 US US08/688,423 patent/US6348756B1/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0052047A1 (en) * | 1980-11-07 | 1982-05-19 | Thomson-Csf | Thermoelectronic cathode |
GB2170950A (en) * | 1985-02-08 | 1986-08-13 | Hitachi Ltd | Impregnated cathode |
EP0317002A1 (en) * | 1987-11-16 | 1989-05-24 | Koninklijke Philips Electronics N.V. | Scandate cathode |
US5218263A (en) * | 1990-09-06 | 1993-06-08 | Ceradyne, Inc. | High thermal efficiency dispenser-cathode and method of manufacture therefor |
EP0549034A1 (en) * | 1991-12-21 | 1993-06-30 | Philips Patentverwaltung GmbH | Cathode and method of manufacture |
EP0641007A2 (en) * | 1993-08-31 | 1995-03-01 | Samsung Display Devices Co., Ltd. | Direct-heating-type dispenser cathode structure |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013018027A1 (en) | 2011-08-03 | 2013-02-07 | Koninklijke Philips Electronics N.V. | Target for barium - scandate dispenser cathode |
Also Published As
Publication number | Publication date |
---|---|
US6348756B1 (en) | 2002-02-19 |
DE59605538D1 (en) | 2000-08-10 |
DE19527723A1 (en) | 1997-02-06 |
JPH09106751A (en) | 1997-04-22 |
EP0757370B1 (en) | 2000-07-05 |
JP3957344B2 (en) | 2007-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69517019T2 (en) | A FLAT FIELD EMISSION DISPLAY DEVICE CONTAINING GETTER AND METHOD FOR THEIR PRODUCTION | |
DE69605459T2 (en) | Manufacturing experience of an electron field emission device | |
DE69510522T2 (en) | Field effect electron source and method of manufacture; Use in cathodoluminescent displays | |
EP0143222B1 (en) | Thermionic cathode capable of high emission for an electron tube, and method of manufacture | |
EP0757370B1 (en) | Electric discharge tube or discharge lamp and scandate dispenser cathode | |
DE69503198T2 (en) | STOCK CATHODE AND METHOD FOR PRODUCING A STOCK CATHODE | |
EP0741402B1 (en) | Electric discharge tubes or discharge lamps, flat panel display, low-temperature cathode and method for their fabrication | |
EP1104933A2 (en) | Gas discharge lamp with an oxide emitter electrode | |
EP1232511B1 (en) | Oxide cathode | |
DE19828729B4 (en) | Barium-calcium aluminate-layer scandate storage cathode and corresponding electric discharge tube | |
EP0549034B1 (en) | Cathode and method of manufacture | |
DE10142396B4 (en) | Cathode and process for its preparation | |
DE3888882T2 (en) | Process for producing a replacement cathode. | |
DE19961672B4 (en) | Scandate dispenser cathode | |
DE69409306T2 (en) | Thermally emitting cathode, manufacturing method of such a thermally emitting cathode and electron beam device | |
EP1189253B1 (en) | Cathode ray tube with doped oxide cathode | |
DE69113290T2 (en) | Method of manufacturing an impregnation cathode and cathode obtained by such a method. | |
DE60102648T2 (en) | OXIDE CATHODE AND ASSOCIATED METHOD OF MANUFACTURE | |
EP0417248A1 (en) | Electrode for pulsed gas laser, and process for its manufacture. | |
DE10121446A1 (en) | Electric discharge tube, for television or monitor, has scandate input cathode coated with 2 base layers, then alternating layers containing rhenium and layers containing scandium oxide | |
EP0559283B1 (en) | Cathode with porous cathode element | |
DE2222845A1 (en) | Emitting electrode and method of making it | |
DE10254697A1 (en) | Vacuum electron tube with oxide cathode | |
DE10227857A1 (en) | Cathode for electron tube, comprises electron-emitting material layer coated on metal base, comprising needle-shaped conductive material | |
JPH0630214B2 (en) | Impregnated cathode and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
17P | Request for examination filed |
Effective date: 19970805 |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V. Owner name: PHILIPS PATENTVERWALTUNG GMBH |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19990830 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V. Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 59605538 Country of ref document: DE Date of ref document: 20000810 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20000728 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: D6 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 746 Effective date: 20021205 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 59605538 Country of ref document: DE Owner name: PHILIPS GMBH, DE Free format text: FORMER OWNERS: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH, 20099 HAMBURG, DE; KONINKLIJKE PHILIPS ELECTRONICS N.V., EINDHOVEN, NL Effective date: 20140327 Ref country code: DE Ref legal event code: R081 Ref document number: 59605538 Country of ref document: DE Owner name: KONINKLIJKE PHILIPS N.V., NL Free format text: FORMER OWNERS: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH, 20099 HAMBURG, DE; KONINKLIJKE PHILIPS ELECTRONICS N.V., EINDHOVEN, NL Effective date: 20140327 Ref country code: DE Ref legal event code: R081 Ref document number: 59605538 Country of ref document: DE Owner name: PHILIPS GMBH, DE Free format text: FORMER OWNER: PHILIPS INTELLECTUAL PROPERTY &, KONINKLIJKE PHILIPS ELECTRONICS, , NL Effective date: 20140327 Ref country code: DE Ref legal event code: R081 Ref document number: 59605538 Country of ref document: DE Owner name: KONINKLIJKE PHILIPS N.V., NL Free format text: FORMER OWNER: PHILIPS INTELLECTUAL PROPERTY &, KONINKLIJKE PHILIPS ELECTRONICS, , NL Effective date: 20140327 Ref country code: DE Ref legal event code: R081 Ref document number: 59605538 Country of ref document: DE Owner name: PHILIPS DEUTSCHLAND GMBH, DE Free format text: FORMER OWNER: PHILIPS INTELLECTUAL PROPERTY &, KONINKLIJKE PHILIPS ELECTRONICS, , NL Effective date: 20140327 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: PHILIPS CORPORATE INTELLECTUAL PR Effective date: 20141126 Ref country code: FR Ref legal event code: CA Effective date: 20141126 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59605538 Country of ref document: DE Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE Ref country code: DE Ref legal event code: R082 Ref document number: 59605538 Country of ref document: DE Representative=s name: MEISSNER, BOLTE & PARTNER GBR, DE Ref country code: DE Ref legal event code: R081 Ref document number: 59605538 Country of ref document: DE Owner name: KONINKLIJKE PHILIPS N.V., NL Free format text: FORMER OWNERS: KONINKLIJKE PHILIPS N.V., EINDHOVEN, NL; PHILIPS DEUTSCHLAND GMBH, 20099 HAMBURG, DE Ref country code: DE Ref legal event code: R081 Ref document number: 59605538 Country of ref document: DE Owner name: PHILIPS GMBH, DE Free format text: FORMER OWNERS: KONINKLIJKE PHILIPS N.V., EINDHOVEN, NL; PHILIPS DEUTSCHLAND GMBH, 20099 HAMBURG, DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20150727 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20150730 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20150930 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59605538 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20160724 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20160724 |