EP0701030B1 - Unterdruck-Entwässerungssystem - Google Patents
Unterdruck-Entwässerungssystem Download PDFInfo
- Publication number
- EP0701030B1 EP0701030B1 EP95113805A EP95113805A EP0701030B1 EP 0701030 B1 EP0701030 B1 EP 0701030B1 EP 95113805 A EP95113805 A EP 95113805A EP 95113805 A EP95113805 A EP 95113805A EP 0701030 B1 EP0701030 B1 EP 0701030B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- vacuum
- points
- low
- section
- height profile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 92
- 239000002351 wastewater Substances 0.000 claims abstract description 35
- 238000009825 accumulation Methods 0.000 claims description 39
- 230000035508 accumulation Effects 0.000 claims description 39
- 238000011144 upstream manufacturing Methods 0.000 claims description 27
- 230000007423 decrease Effects 0.000 claims 1
- 230000016507 interphase Effects 0.000 claims 1
- 238000009434 installation Methods 0.000 abstract 1
- 230000002706 hydrostatic effect Effects 0.000 description 25
- 210000002414 leg Anatomy 0.000 description 11
- 239000010802 sludge Substances 0.000 description 7
- 238000009423 ventilation Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 230000036540 impulse transmission Effects 0.000 description 3
- 238000005273 aeration Methods 0.000 description 2
- 230000009194 climbing Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 210000000689 upper leg Anatomy 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E03—WATER SUPPLY; SEWERAGE
- E03F—SEWERS; CESSPOOLS
- E03F1/00—Methods, systems, or installations for draining-off sewage or storm water
- E03F1/006—Pneumatic sewage disposal systems; accessories specially adapted therefore
- E03F1/007—Pneumatic sewage disposal systems; accessories specially adapted therefore for public or main systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/2931—Diverse fluid containing pressure systems
- Y10T137/3109—Liquid filling by evacuating container
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/402—Distribution systems involving geographic features
Definitions
- the invention relates to a vacuum drainage system after the preamble of claim 1.
- Corresponding plants or systems are e.g. used in areas where a low settlement density prevails, none for conventional free-level drainage there is sufficient natural gradient where only temporary Dirty water accumulates, e.g. in holiday settlements, or where water protection areas too are traversing.
- an application has proven itself where the subsurface conditions are unfavorable, e.g. in areas with high groundwater levels.
- Vacuum drainage systems are mainly used as pure sewage systems used, i.e. Rainwater is usually not discharged into it. As a result, the daily amount of dirty water is approximately the same as the daily Water consumption.
- the dirty water usually flows freely from connected buildings in wastewater collection rooms.
- the volume of these collecting rooms is sufficient large to serve as an emergency storage space in case the operation of the vacuum drainage system is interrupted.
- the collection rooms are with the vacuum duct connected via normally closed suction valves.
- activated Level transmitter a control that opens the valve for a certain period.
- the Charge of waste water and an air volume that is normally several times larger than the waste water batch becomes a vacuum channel through the opened shut-off valve sucked in.
- the air can be either with or after the dirty water be sucked in.
- Dirty water and air flow through the vacuum duct along to a vacuum tank of a vacuum station.
- In the vacuum tank is at least one vacuum source, e.g. a vacuum pump, a certain one Maintain negative pressure. Controlled by the level of the dirty water in the The dirty water is removed from the container, e.g. to a wastewater treatment plant. Dirty water pumps are usually used for this.
- Vacuum channels are laid according to a certain height profile, being systematic Highs and lows are arranged. If no air flows, i.e. if that System is at rest, dirty water collects at the low points. If upstream If a suction valve is opened, air flows in the direction of the vacuum channel Vacuum station and overdrive accumulations of dirty water from the low points the next high points.
- the height profile should be designed so that a good Impulse transmission from the air flow to the dirty water is achieved. That impulse serves the dirty water with sufficient speed in the vacuum channel to promote so that solid deposits are whirled up by turbulent flow will. A minimum speed of 0.7 m / s must be reached from time to time will. The air overtakes the dirty water in downward sloping sections of the Vacuum channel and drives the dirty water, which is at the next lowest point has accumulated over the next high point.
- a pressure gradient forms along the vacuum channel, on the one hand hydrostatically due to water closures at the low points and secondly hydrodynamic due to acceleration and friction forces.
- the total length and the geodetic height difference of vacuum channels is due to that between the upstream End of pressure and the vacuum station available pressure difference limited. This is usually on the order of 40 kPa.
- a high air / water ratio is required a correspondingly high performance of the vacuum generator in the Vacuum station and large diameter of the vacuum channels and requires one high energy consumption. Vacuum drainage systems should therefore be planned this way be that the pressure drops remain low.
- a vacuum drainage system of the type mentioned is from AU-B-412 297 known. 12 and 13 is a height profile with a large and a small Volume for wastewater accumulation can be found in the low points.
- a line in flat terrain with an inner diameter D of 100 mm are considered, with the distance between high points and subsequent ones Low points about 15 m and the distance between the low points and subsequent ones High points about 10 m and the height difference H is 15 cm.
- the maximum volume of dirty water accumulations at the lowest points is approximately 90 l, which corresponds to a full line length of just under 12 m.
- the energy that is required to deal with this waste water accumulation Accelerate volume of 90 l to a speed of 1 m / s and increase it by 15 cm is about 180 J.
- This energy corresponds to the isothermal expansion energy, which is released when 360 l of air from a pressure of 70 kPa to 69.5 kPa is relaxed, which corresponds to a standard volume of 250 Nl.
- the vacuum systems mainly used in Germany are usually operated with air / water ratios below 15: 1. With a waste water batch of 10 l of air sucked in is less than 150 Nl. Usually it is even in the range between 30 and 100 Nl. If a system is flooded, consequently The speeds that can be reached are too low to prevent sludge deposits whirl up. In addition, these slow speeds prevent rapid Recovery from flooded systems. In particular, the recovery is lengthy if suction valves are used where the air / water ratio is very high becomes low or even zero when the collection rooms are filled with water.
- ATV worksheet A 116 specifies a maximum string length of 2 km, a maximum nominal diameter of 150 mm and a maximum number of 500 inhabitants per main line.
- the other height profile is mainly used in the USA and is in the manual No. 625 / 1-91 / 024 of the EPA (Environmental Protection Agency).
- it is a sawtooth-shaped height profile. Between the high points and the lowest point is at least 0.2%. Between the lows and at the high points, the slope is usually 100% and the climb height H between 30 and 60 cm.
- the maximum volume of wastewater accumulations in one Vacuum channel with an inner diameter D of 100 mm is 200 l, which corresponds approximately to a fully filled cable length of 25 m.
- Batch volumes of approx. 40 l of dirty water are carried out with every suction process Suction valves with a diameter of approx. 75 mm are sucked in.
- the energy that is needed to accelerate 200 l to 1 m / s and 30 cm above the following Lifting the high point is approx. 700 J.
- the problem underlying the present invention is a vacuum drainage system of the type mentioned above so that they with respect improved operational safety, economy and energy requirements will. Flooded systems should be able to recover quickly.
- the maximum length of vacuum channels and the maximum number of connectable per main line Inhabitants are said to be well over 2 km or 500. Permanent sludge accumulation in the vacuum channels should also be prevented if the waste water batch volume, the suction valves and / or the air / water ratio are small is.
- the maximum volume of wastewater accumulation is in the first section at least about 3 times, preferably at least 6 times smaller than that in second section.
- the height profile I is formed in the first section in such a way that the wastewater accumulation at the lowest points is a maximum of 1 to 3 m extend upstream from the low point, whereas the wastewater portions in the second section can extend more than 5 m upstream from the low points.
- the height profile II corresponds to the known and previously described sawtooth profile.
- the basic idea of the invention is that there is a fundamental difference makes whether in vacuum channels a batchwise or a continuous Funding takes place. Batch-wise funding takes place even in the case of peak dirty water at the upstream ends of the vacuum channels where upstream only a few residents are connected. There are breaks between opening times of the suction valves. A continuous flow occurs at least when there is a build-up of dirty water where a sufficient number of residents are connected upstream or where air is sucked in periodically over longer periods, e.g. if a Aeration valve is connected upstream and is periodically opened.
- the first sections of the vacuum channels extend at their upstream Ends, whereas the second sections connect to the vacuum source.
- the dirty water is released in batches from the low points over the Promoted high points, whereas dirty water and air in the second sections flow more or less continuously, at least when there is a build-up of dirty water.
- the first height profile I is used in the first sections, in the proximity of the upstream strand ends of the vacuum channels; in those first Sections in which air and wastewater are normally pumped suddenly are, the height profile is designed such that there are only small maximum volumes Can collect dirty water at the low points when the system is at rest (i.e. state without flow);
- the second height profile II is in second sections used, downstream of the first sections towards the vacuum station, where Dirty water and air more or less, at least in the case of peak dirty water flow continuously; this height profile II is designed such that it is at rest can form large accumulations of dirty water at the lowest points.
- the wastewater accumulation at the low points of the second section can be very be long and extend far upstream from the lows.
- a Pipe with an inner diameter D of 100 mm a gradient of 0.2% between High point and subsequent low point and a rise H of over 100 mm the wastewater portions can be up to 50 m long and a volume of approx. 200 Reach 1. This entire volume is boosted with small air thrusts not possible. Small bursts of air can only generate small waves and thus Do not prevent sludge deposits. Therefore, the height profile II is only then suitable where there is a continuous flow of air or where there is a large flow Air bursts are generated, e.g. via ventilation valves.
- the total length of a vacuum drainage system according to the invention is not limited to 2 km as required in the aforementioned ATV worksheet A 116.
- the hydrostatic losses are relative high and usually larger than that to achieve a sufficient flow rate required hydrodynamic losses
- the maximum volume of dirty water accumulations at the Section I troughs between 5 and 50 l.
- an energy of 17.5 to 175 J is required.
- an air volume of 8.5 Nl to 85 Nl must be relaxed from 70 kPa to 68 kPa will.
- the dirty water batch volume is 10 1 an air / water ratio of 0.9: 1 to 9: 1 is required.
- height profile I is formed such that the Low point in a U-shaped pipe section with two legs of different lengths lies, with the longer leg the low point with the subsequent high point and the shorter leg the lowest point with the upstream vacuum channel connects.
- Both legs preferably have an incline or inclination of at least 3% and has the vacuum channel between the upstream high point and the connection to the shorter leg has a gradient of at least 0.2%, the sole at the transition to the shorter leg approximately level with the Is at its apex. If the climbing height H between the low point and high point Is 30 cm and the inner diameter D of the line is 100 mm, the length of the 0.2% inclined vacuum channel section 100 m.
- the upstream short leg falls by approx. 10 cm.
- the height profile II is also proposed in the second section form such that the vacuum channel in flat terrain between the High points and the respective downstream low points a gradient of at least 0.2% and between the low points and the subsequent high points has a gradient of at least 3%.
- the rise heights H are preferably in the range between one and three times the inner diameter D.
- the gradient is preferably only 0.2% and the climbing height is 10 to 30 cm.
- the length of the inclined section is 100 m. If the low and high points by bending straight tubes with a ratio of Bending radius to be produced with a diameter of 50: 1, the distance between the Rise between low point and subsequent high point about 3 m and the middle Gradient approx. 6.7%.
- the climbs in Section II are S-shaped with only one turning point between the low and high point. Of course, the climbs can also be made angled instead of bent pipe pieces.
- Peak flow rate (which is approximately an empty tube velocity of air of 1 m / s corresponds) should exceed the available pressure difference.
- the hydrostatic Pressure loss is the hydrodynamic pressure loss at peak flow not exceed, the rise heights H in height profile II can be greater than that Inner diameter D of the pipeline.
- the height profile I is preferably used where the probability that at least one of the upstream suction valves in the event of peak dirty water is open, is less than 90%. If this probability were greater, it would be Flow almost continuously and preferably height profile II was used because whose hydrostatic pressure drops are lower. Height profile II is preferred used where this probability is over 50%. With a probability between 50 and 90% both height profiles can be used.
- height profile I is preferably used where the maximum hourly Dirty water flow is less than 1 l / s, and height profile is preferred used where this flow is greater than 0.5 l / s. This corresponds to the above Probabilities e.g. when 10 l dirty water and 100 Nl air per opening cycle of a 50 mm suction valve with a duration of 10 s.
- height profile I is preferably used where less than 125 inhabitants are connected upstream, and height profile II is preferably used there, where more than 60 residents are connected upstream. Under the Assuming a peak dirty water volume of 0.008 l / (E * s) this is equivalent to a flow rate of 1 Vs or 0.5 l / s.
- the first sections of the vacuum channels with height profile I preferably have an inner diameter D of maximum 125 mm. Assuming a batch volume of 10 l of dirty water and 100 Nl of air, a suction time of 10 s and one Pressure in the vacuum channel of 70 kPa is the speed in the vacuum channel approx.1.25 m / s.
- the minimum diameter of section II is preferably 70 mm. Assuming a peak flow of 0.5 l / s, an air / water ratio of 4: 1 and a pressure of 60 kPa, this corresponds to a speed of over 1 m / s.
- ventilation valves are preferably on the Transition points from height profile I to height profile II or with extensions of the Arranged inside diameter of the vacuum channels. These ventilation valves can timed to open the downstream vacuum channel with high Flush flow rate of over 0.7 m / s. This allows the use of the Elevation profile II even if the peak flow is insufficient Flow rate is ensured, e.g. if the dirty water accumulation is seasonal fluctuates strongly, e.g. in holiday areas, or where only long vacuum channels few residents are to be connected. In other words, aeration valves allow the use of height profile II even where the dirty water throughput can be small.
- Sections of the vacuum channel each having a low point and include the following high point, made from thermoformed plastic pipes. Since the bending radius of plastic lines is limited at the bottom, this requires Making short climbs usually connecting pipe bends or -angles. By using thermoformed pipes, such connections can be made can be avoided, reducing the cost and risk of leakage will.
- the hot deformation is usually carried out in a hot liquid immersed pipes. To avoid buckling during hot forming, the pipes are filled with sand or an internal overpressure is applied.
- Fig. 1 shows one first section (10) with height profile I, which is arranged in the vicinity of the strand ends.
- Fig. 2 shows a second section (100) with height profile II, the downstream of the first section is arranged in the direction of the vacuum station.
- Both sections (10) and (100) contain a low point (12) or (112) and a high point (14) or, (114).
- the maximum hydrostatic Pressure loss with height profile I (10) corresponds to the maximum height difference the water surfaces (20) and (22), which is equal to the height difference h between the tube sole (24) at the high point (14) and the apex (26) at the low point (12).
- the maximum height of the water surface (20) can only are slightly higher than the pipe crown (26) at the low point (12). Another Rise in the water level (20) would be between the low point (12) and the previous high point enclosed air volume (18) are compressed.
- the Pressure difference of the air before and after the low point (12) is limited to the height difference of the water levels (22) and (20), which maximally reach the value h can.
- the vacuum channel (28) immediately exhibits a steep gradient the low point (12).
- the water accumulation (16) can be up to a maximum Extend point (30) upstream of low point (12).
- the point (30) is approximately level with the apex (26) at the low point (12).
- the distance between the Points (30) and (12) are shorter, the steeper the vacuum channel to the lowest point (12) drops.
- the length of the first sections of vacuum channels with height profile I (10) must therefore be significantly shorter than 2 km if the total length of the vacuum channels 2 km should exceed.
- second sections with height profile II (100) are arranged between the first sections with height profile I (10) and the Vacuum station.
- elevation profile II (100) are the increases between the low points (112) and the High points (114) preferably short and steep.
- the gap between the high points (114) and the low points (112) is gentle and their distance is large.
- the length of the slope sections (132) is 500 * H.
- the waste water accumulation (116) in the height profile II (100) extends to a maximum to point (130), which is the same height as the apex of the low point (112).
- the first section with height profile (10) 1 km and its second section with height profile II (100) is 3 km long, is Sum of the maximum hydrostatic pressure losses in the first section 20 kPa and 15 kPa in the second section. So that the total maximum hydrostatic Pressure losses of 35 kPa less than the available pressure difference from usual 40 kPa.
- the average air / water ratio must be at least 3: 1 in the second section amount, so that there the hydrodynamic pressure losses at one to whirl up Sludge deposits sufficient conveying speed of approx. 1 m / s lower remain as the maximum hydrostatic pressure drops.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Hydrology & Water Resources (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- Sewage (AREA)
- Jet Pumps And Other Pumps (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Description
- Fig. 1
- eine prinzipielle Darstellung eines Ausschnittes eines ersten Abschnittes eines Unterdruckkanals nach Höhenprofil I im Bereich eines Tief- und Hochpunktes und
- Fig. 2
- einen Ausschnitt eines zweiten Abschnittes eines Unterdruckkanales mit Höhenprofil II im Bereich eines Tief- und Hochpunktes.
Claims (9)
- Unterdruck-Entwässerungssystem, insbesondere für die Entwässerung von Siedlungen, umfassend einen Unterdruckkanal, an den einerseits zumindest eine Unterdruckquelle und andererseits über Absaugventile Schmutzwasseranfallstellen zum schubweisen Einsaugen von Abwasser und Luft anschließbar sind, wobei der Unterdruckkanal (28) erste und zweite Abschnitte (10, 100) mit voneinander unterschiedlichen ersten und zweiten Höhenprofilen mit Hochpunkten (14, 114) und Ansammlungen (16, 116) von Schmutzwasser ermöglichenden Tiefpunkten (12, 112) aufweist, die derart ausgebildet sind, dass das Maximalvolumen der Wasseransammlungen (16) im Bereich der Tiefpunkte (12) des ersten Abschnittes (10) kleiner ist als das Maximalvolumen der Wasseransammlungen (116) im Bereich der Tiefpunkte (112) des zweiten Abschnittes (100),
dadurch gekennzeichnet,
dass zumindest ein erster Abschnitt (10) des Unterdruckkanals (28) sich von einem stromaufwärtigen Ende des Unterdruckkanals stromabwärts in Richtung zur Unterdruckquelle erstreckt, dass an den ersten Abschnitt nur eine so geringe Zahl von Einwohnern angeschlossen ist, dass Schmutzwasser im Bereich des ersten Abschnittes (10) auch bei Spitzenschmutzwasserdurchsatz schubweise von Tiefpunkten (12) über Hochpunkte (14) gefördert wird, dass ein zweiter Abschnitt (100) des Unterdruckkanals (18) sich stromabwärts an den ersten Abschnitt (10) anschließend in Richtung zur Unterdruckquelle erstreckt, dass an den zweiten Abschnitt (100) eine so große Zahl von Einwohnern angeschlossen ist, dass Schmutzwasser im Bereich des zweiten Abschnittes (100) zumindest bei Spitzenschmutzwasserdurchsatz oder dann, wenn ein stromaufwärtige angeordnetes Belüftungsventil geöffnet ist, in etwa kontinuierlich von den Tiefpunkten (112) über Hochpunkte (114) gefördert wird. - Unterdruck-Entwässerungssystem nach Anspruch 1,
dadurch gekennzeichnet,
daß das maximale Volumen der Schmutzwasseransammlung (116) im Bereich der Tiefpunkte (112) des zweiten Abschnittes (100) des Unterdruckkanals (28) zumindest 2-fach und vorzugsweise mehr als 10-fach größer ist als das maximale Volumen der Schmutzwasseransammlung (16) im Bereich der Tiefpunkte (12) des ersten Abschnittes (10) des Unterdruckkanals. - Unterdruck-Entwässerungssystem nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß der erste Abschnitt (10) des Unterdruckkanals (28) ein im Bereich der Tiefpunkte (12) und Hochpunkte (14) derart ausgebildetes Höhenprofil I aufweist, daß sich die maximale Schmutzwasseransammlung (16) im Ruhezustand maximal 5 m, vorzugsweise weniger als 3 m stromaufwärts vom Tiefpunkt (12) erstreckt, und/oder daß der zweite Abschnitt (100) des Unterdruckkanals (28) ein im Bereich der Tiefpunkte (112) und Hochpunkte (114) derart ausgebildetes Höhenprofil II aufweist, daß sich die maximale Schmutzwasseransammlung (116) zumindest 5 m; vorzugsweise 10 bis 100 m stromaufwärts vom Tiefpunkt (112) erstrecken kann. - Unterdruck-Entwässerungssystem nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß das Volumen der Schmutzwasseransammlungen (16) im Bereich der Tiefpunkte (12) beim Höhenprofil I (10) im Ruhezustand maximal 100 l, vorzugsweise 10 bis 50 l beträgt und/oder daß das Volumen der Schmutzwasseransammlungen (116) im Bereich der Tiefpunkte (112) beim Höhenprofil II (100) im Ruhezustand mindestens 50 l, vorzugsweise mehr als 100 l betragen kann. - Unterdruck-Entwässerungssystem nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß erste Abschnitte mit Höhenprofil I (10) dort angeordnet werden, wo die Wahrscheinlichkeit dafür, daß bei Schmutzwasserspitzenanfall zumindest ein Absaugventil stromaufwärts offen ist, maximal 90% beträgt, und daß zweite Abschnitte mit Höhenprofil II (100) dort angeordnet werden, wo die Wahrscheinlichkeit dafür, daß bei Schmutzwasserspitzenanfall zumindest ein Absaugventil stromaufwärts offen ist, mindestens 50% beträgt. - Unterdruck-Entwässerungssystem nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß das Höhenprofil I (10) der ersten Abschnitte der Unterdruckkanäle U-förmig ausgebildete Rohrabschnitte mit Tiefpunkten (12) und mit jeweils zwei Schenkeln unterschiedlicher Länge aufweist, wobei die längeren Schenkel die Tiefpunkte (12) mit den nachfolgenden Hochpunkten (14) verbinden und die kürzeren Schenkel sich von den Tiefpunkten (12) ausgehend stromaufwärts erstrecken und/oder daß das Höhenprofil II(100) der zweiten Abschnitte der Unterdruckkanäle S-förmig ausgebildete Rohrabschnitte aufweist, die jeweils einen Tiefpunkt (112) und einen nachfolgenden Hochpunkt (114) umfassen, und daß die Rohrabschnitte, die jeweils einen Tiefpunkt (12, 112) und einen nachfolgenden Hochpunkt (14, 114) umfassen, vorzugsweise aus warmverformten Kunststoffrohr hergestellt sind. - Unterdruck-Entwässerungssystem nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß beim Höhenprofil I (10) Steighöhen H zwischen Tiefpunkten (12) und nachfolgenden Hochpunken (14) den 1- bis 5-fachen Innendurchmesser des Unterdruckkanals (28) in diesem Bereich haben und/oder daß beim Höhenprofil II (100) Steighöhen H zwischen Tiefpunkten (112) und nachfolgenden Hochpunkten (114) den 0,6- bis 3-fachen Innendurchmesser des Unterdruckkanals (28) in diesem Bereich haben, wobei bei beiden Höhenprofilen (10,100) die Steighöhen H vorzugsweise 10 bis 60 cm betragen. - Unterdruck-Entwässerungssystem nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß der Unterdruckkanal (28) in ebenem Gelände stromabwärts der Hochpunkte (14, 114) Abschnitte (32, 132) mit geringem Gefälle von zumindest 0,2% aufweist und zwischen den Tiefpunkten (12, 112) und den nachfolgenden Hochpunkten (14,114) mit einer mittleren Steigung von mindestens 3% ansteigt, daß beim Höhenprofil (10) der Abschnitt (32) an einem Punkt (30) endet, an dem die Rohsohle ungefähr höhengleich mit dem Scheitel (26) des Tiefpunktes (12) ist, daß der Unterdruckkanal zwischen dem Punkt (30) und dem Tiefpunkt (12) ein durchschnittliches Gefälle von mindestens 3% aufweist und um etwa einen Innendurchmesser des Unterdruckkanals in diesem Bereich abfällt und daß beim Höhenprofil II(100) der Abschnitt (132) bis zum Tiefpunkt (112) reicht. - Unterdruck-Entwässerungssystem nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß Belüftungsventile zum periodischen Erzeugen von hohen stromabwärtigen Strömungsgeschwindigkeiten in der Nähe von Übergängen von den ersten Abschnitten (10) auf die zweiten Abschnitte (100) der Unterdruckkanäle (28) oder in der Nähe von Rohrerweiterungen angeordnet sind.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4431486A DE4431486A1 (de) | 1994-09-03 | 1994-09-03 | Unterdruck-Abwasseranlage |
DE4431486 | 1994-09-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0701030A1 EP0701030A1 (de) | 1996-03-13 |
EP0701030B1 true EP0701030B1 (de) | 1998-05-20 |
Family
ID=6527392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95113805A Expired - Lifetime EP0701030B1 (de) | 1994-09-03 | 1995-09-02 | Unterdruck-Entwässerungssystem |
Country Status (5)
Country | Link |
---|---|
US (1) | US5673723A (de) |
EP (1) | EP0701030B1 (de) |
JP (1) | JPH0874311A (de) |
AT (1) | ATE166413T1 (de) |
DE (2) | DE4431486A1 (de) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6467497B1 (en) * | 1999-04-21 | 2002-10-22 | Evac International Oy | Buffer box for use in a vacuum drainage system |
US6305403B1 (en) * | 1999-09-16 | 2001-10-23 | Evac International Oy | Aeration apparatus for a vertical riser in a vacuum drainage system |
US6318395B1 (en) * | 1999-11-10 | 2001-11-20 | Aquaflow Technologies, Llc | Method and apparatus for sewer system flow control to reduce wastewater treatment electrical costs |
US6655402B1 (en) * | 2002-06-13 | 2003-12-02 | U.S. Environmental Protection Agency | System and method for vacuum flushing sewer solids |
SE525913C2 (sv) * | 2002-12-20 | 2005-05-24 | Seco Tools Ab | Skär, verktyg samt metod för montering av skär där skäret kan orienteras i önskad position |
US6990993B2 (en) * | 2003-10-06 | 2006-01-31 | Acorn Engineering Company | Vacuum drainage system |
US7374669B2 (en) * | 2005-04-26 | 2008-05-20 | Acorn Engineering Co. | Vacuum waste removal system |
US10001787B2 (en) | 2014-06-02 | 2018-06-19 | Aqseptence Group, Inc. | Controller for vacuum sewage system |
CN104452944B (zh) * | 2014-12-02 | 2016-03-16 | 山东华腾环保科技有限公司 | 一种真空排水管道的气液两相提升段 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU412297B1 (en) * | 1966-03-03 | 1971-04-07 | Sven Sloot Joel Leljendahl | Improvements, inthe transport of waste |
DE2637962C3 (de) * | 1976-08-24 | 1980-07-10 | Electrolux Gmbh, 2000 Hamburg | Verfahren zum Abführen der Abwässer von einer Vielzahl von Hausanschlüssen mittels Unterdruck |
US4179371A (en) * | 1978-03-20 | 1979-12-18 | Burton Mechanical Contractors, Inc. | Vacuum sewage system |
DE3616747A1 (de) * | 1986-05-17 | 1987-11-19 | Schluff Reinhold | Verlegeform fuer vakuumentwaesserungsleitung |
JPH03250128A (ja) * | 1990-02-28 | 1991-11-07 | Ebara Corp | 真空式汚水収集装置の真空汚水管敷設構造 |
DE4216628A1 (de) * | 1992-05-20 | 1993-11-25 | Harald Michael | Entwässerungsanlage |
-
1994
- 1994-09-03 DE DE4431486A patent/DE4431486A1/de not_active Withdrawn
-
1995
- 1995-08-21 US US08/517,420 patent/US5673723A/en not_active Expired - Fee Related
- 1995-09-02 EP EP95113805A patent/EP0701030B1/de not_active Expired - Lifetime
- 1995-09-02 DE DE59502234T patent/DE59502234D1/de not_active Expired - Fee Related
- 1995-09-02 AT AT95113805T patent/ATE166413T1/de not_active IP Right Cessation
- 1995-09-04 JP JP7248260A patent/JPH0874311A/ja not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
JPH0874311A (ja) | 1996-03-19 |
DE59502234D1 (de) | 1998-06-25 |
EP0701030A1 (de) | 1996-03-13 |
US5673723A (en) | 1997-10-07 |
DE4431486A1 (de) | 1996-03-07 |
ATE166413T1 (de) | 1998-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1946029A1 (de) | Wärmetauscher zur abwasserwärmenutzung | |
EP0701030B1 (de) | Unterdruck-Entwässerungssystem | |
DE202014007392U1 (de) | Wasserablauf mit Mehrfachsiphon-Geruchsverschluss | |
DE69004638T2 (de) | Rohrverbindungsstruktur und eine Rohrverbindungsstruktur aufnehmende Vakuumabwassersammelvorrichtung. | |
EP0011778B1 (de) | Heberbrunnen | |
DE3333883A1 (de) | Behaelter fuer eine abwasser-pumpstation | |
EP1226316B1 (de) | Verfahren und vorrichtung zum periodischen durchspülen einer abwasser-rohrleitung | |
DE4220880A1 (de) | Abwasserkanäle im Trennsystem mit Speichermöglichkeit des Regenwassers | |
DE69204402T2 (de) | Umgekehrter heber eines kanalisationstyps vakuum. | |
WO1997021005A1 (de) | Verfahren zum beeinflussen eines abwasserstromes | |
DE102021005970A1 (de) | Mehrstufige Behandlungsanlage für Regenwasser | |
DE202011106449U1 (de) | Einrichtung zur Gewinnung von Wärmeenergie aus sowohl in Abwasserkanälen als auch in Abwasserdruckleitungen fließendem Abwasser | |
DE4228387A1 (de) | Verfahren, Kanalisationssystem und Scheideeinrichtung zur Ableitung von Abwasser | |
DE102009041509A1 (de) | Von Wellenkraft angetriebene Pumpe ohne bewegliche Teile | |
CH658088A5 (de) | Abwasserablauf, bestehend aus einem ablaufbehaelter mit mindestens einem zulauf und einem ablaufrohr sowie verwendung desselben. | |
EP0258525B1 (de) | Vakuum-Entwässerungsanlage | |
DE3546561C2 (en) | Subatmospheric-pressure sewerage system with a multiplicity of domestic service connections | |
DE2809624A1 (de) | Kanalisationssystem | |
DE3005767A1 (de) | Verfahren und vorrichtung zur hydrostatisch-pneumatischen energiegewinnung | |
DE262633C (de) | ||
DE2850202A1 (de) | Verfahren und anlage zum foerdern von abwasser aus einem sammelbehaelter ueber eine erhebung | |
DE2728809A1 (de) | Verfahren und anlage zum ableiten von staedtischen und industriellen abwaessern von abwassererzeugern zu reinigungsanlagen | |
AT407741B (de) | Zulaufeinheit in einer abwasser-kläranlage | |
EP3388590A1 (de) | Abwasserwärmenutzungsvorrichtung, verfahren zum nutzen von abwasserwärme aus abwasserkanälen und verfahren zum austausch oder nachrüsten eines bestehenden kanalschachtes | |
EP0174968B1 (de) | Anlage zur behandlung von strassenabwässern |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE DE ES FR GB GR IE IT PT |
|
RAX | Requested extension states of the european patent have changed |
Free format text: LT;SI |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE DE ES FR GB GR IE IT PT |
|
17P | Request for examination filed |
Effective date: 19960911 |
|
17Q | First examination report despatched |
Effective date: 19961029 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE ES FR GB GR IE IT PT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 19980520 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980520 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19980520 |
|
REF | Corresponds to: |
Ref document number: 166413 Country of ref document: AT Date of ref document: 19980615 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 59502234 Country of ref document: DE Date of ref document: 19980625 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980820 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19980824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980930 |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981211 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
BERE | Be: lapsed |
Owner name: ROEDIGER ANLAGENBAU G.M.B.H. Effective date: 19980930 |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20040924 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050902 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20050927 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20060908 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20060919 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070403 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20070902 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20080531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070902 |