[go: up one dir, main page]

EP0656737B1 - Hearing aid with cancellation of acoustic feedback - Google Patents

Hearing aid with cancellation of acoustic feedback Download PDF

Info

Publication number
EP0656737B1
EP0656737B1 EP94117510A EP94117510A EP0656737B1 EP 0656737 B1 EP0656737 B1 EP 0656737B1 EP 94117510 A EP94117510 A EP 94117510A EP 94117510 A EP94117510 A EP 94117510A EP 0656737 B1 EP0656737 B1 EP 0656737B1
Authority
EP
European Patent Office
Prior art keywords
unit
input
filter
output
aid according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94117510A
Other languages
German (de)
French (fr)
Other versions
EP0656737A1 (en
Inventor
August Nazar Kälin
Pius Gerold Estermann
Bohumir Uvacek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sonova Holding AG
Original Assignee
Phonak AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8213409&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0656737(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Phonak AG filed Critical Phonak AG
Priority to EP94117510A priority Critical patent/EP0656737B1/en
Publication of EP0656737A1 publication Critical patent/EP0656737A1/en
Application granted granted Critical
Publication of EP0656737B1 publication Critical patent/EP0656737B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/45Prevention of acoustic reaction, i.e. acoustic oscillatory feedback
    • H04R25/453Prevention of acoustic reaction, i.e. acoustic oscillatory feedback electronically
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing

Definitions

  • the present invention relates to a hearing aid according to the Preamble of claim 1.
  • ak / el converter 1 shows an acoustic-electrical (ak / el) converter 1 with downstream analog / digital (A / D) converter 3, one digital gain filter section 5, which on the output side to a digital / analog (D / A) converter 7, the latter to the electrical-acoustic (el / ak) converter 9 acts.
  • the feedback signal y (t) is the Useful signal v (t) superimposed and the input of the ak / el converter 1 supplied, the output side, at the times nT, for the digital processing required time-discrete samples d (nT) returns.
  • the stride length ⁇ of the LMS algorithm for the preservation of the speech signal transmission is chosen as small as possible, with which the adaptation of the compensator filter 15 to the interference feedback path 11 accordingly slowly becomes what the possible increase in gain on route 5, limited for reasons of stability.
  • time domain / frequency domain transformation is not carried out in front of the differential unit 13 f , as shown in FIG. 2, but rather that the difference is formed in the time domain, can surprisingly be obtained the required time invariance of the system.
  • suitably overlapping block division it is possible to implement the time domain / frequency domain transformations that are still used with significantly smaller block lengths, which in turn increases the compensation efficiency and therefore enables the gain on the gain filter section 5 f according to FIG. 2 to be increased drastically.
  • FIG. 3 is based on a signal flow / functional block diagram a basic principle of the present invention or that of the invention Hearing aid shown. It is in it the reference numerals already used with reference to FIGS. 1 and 2 for the function blocks and signals already described there used.
  • the difference signal r (nT) is converted at a LOT transformation unit 20 into the adaptation control signal E [k], which is fed to the adaptation input A f of the compensator filter 15 f . Because the time domain / frequency domain transformation takes place in the LOT transformation unit 20 in blocks of a predetermined number of samples from the difference signal r (nT), [k] denotes the number of the signal block appearing on the output side of the transformation unit 20.
  • the difference signal r (nT) is supplied to the amplification filter section 5 in the time domain and fed to the el / ak converter 9 via the D / A converter 7.
  • the D / A converter 7 is acted upon by the time-discrete output signal u (nT) of the amplification filter section 5.
  • This output signal u (nT) is fed to a further orthogonal transformation unit 22, where it is converted from the time domain to the frequency domain.
  • the output signal of the transformation unit 22 is fed as an input signal to the input E f of the compensator filter 15 f .
  • the output signal Y and [k + 1] of said filter 15 f is transformed back into the time domain at a reverse transformation unit ILOT 24 and its output signal y and (nT) is fed to the difference forming unit 13 as a discrete-time signal.
  • the amplification filter section 5 f is preceded by a transformation unit LOT 28 and the D / A converter 7 is a reverse transformation unit ILOT 26; the transformation unit 22 according to FIG. 3 is omitted.
  • FIG. 3 shows, as mentioned, a first form of implementation which corresponds to the definition according to claim 2, namely in which a respective transformation unit LOT 20 or 22 is arranged upstream of the signal input E f and the adaptation input A f of the compensator filter 15 f .
  • a preferred embodiment variant is that according to FIG. 4, which corresponds to the definition according to claim 3, according to which the adaptation input A f of the compensating filter 15 f and the input of the amplification filter section 5 f are preceded by a LOT transformation unit 20 or 28 and the input of the D / A converter 7 a corresponding ILOT reverse transformation unit 26.
  • the gain filter 5 f is also preceded by a LOT transformation unit 28, the input of the D / A converter 7 is an ILOT reverse transformation unit 26, and further the output of the compensator filter 15 f is followed by an ILOT reverse transformation unit 24.
  • These transformation or reverse transformation units 28, 24 and 26 operate in the mentioned preferred embodiment according to the "overlap-save” technique.
  • the LOT transformation unit 20 upstream of the adaptation input A f in particular according to FIG. 4, preferably works according to the "overlap-add" principle.
  • the time discrete differential signal r (nT) of a single LOT transform unit 30 is fed to here, from whose output signal both the adaption input A f supplied adaptation signal E [k] as well as that of the enhancement filter path 5 f supplied input signal R [k ] is formed.
  • the overlapping orthogonal transformations are based preferably at the DFT.
  • FIG. 6 shows a form of realization of the data transmission path between the time-discrete difference signal r (nT) on the output side of the difference forming unit 13 for the adaptation signal E [k] or the input signal R [k] to the amplification filter section 5 f according to FIG. 5.
  • an overlapping orthogonal transformation unit 30a based on the DFT follows the output of the difference formation unit 13 with the time-discrete difference signal r (nT).
  • the actual gain filter 40 follows first, which is followed by a delay unit 42 with corresponding intermediate storage.
  • the block signal U [k + 1] available on the output side is now supplied on the one hand to the input E f of the compensator 15 f and on the other hand is subjected to an inverse DFT of the "overlap-save" type in the ILOT unit 26. Since the corresponding time signal u (nT) is delayed by a partial block length N, the numbering of U [k + 1] with the block number k + 1 is justified in retrospect.
  • FIG. 8 shows a preferred expansion variant of the compensator filter 15 f on the hearing aid according to the invention according to FIG. 5.
  • the block signals U [k + 1] to are thereby buffered with delay units of the type, as shown at 56 U [k + 1-L] provided and, based on this, with the aid of partial compensators, the first of which is referred to in FIG. 8 as unit 50, which generates the partial estimates Y and 1 [k + 1] to Y and L [k + 1], which in turn are provided in unit 52 for Overall estimate Y and [k + 1] can be added.
  • the ILOT unit 24 in the preferred variant via an inverse DFT of the "overlap-save" type, then transforms back into the time domain.
  • the partial estimate Y and 1 [k + 1] arises at the output of the multiplication unit 64, on which the block signals U [k + 1] and the block weight H and 1 [k + 1] act at the input.
  • the block weight H i [k + 1] represents the current estimate in the frequency range for the i-th subrange of length N of the discrete-time impulse response h of the acoustic-mechanical interference feedback 11.
  • the estimate H i [k + 1] is preceded by the formation of Y and i, j [k + 1] updated using the old estimate H i [k].
  • the block signal acts for this purpose, again with reference to the partial compensator 1 U [k + 1-1] and the step size ⁇ [k + 1-1] to the multiplication unit 54, which on the output side is led to the multiplication unit 58 together with the block signal E [k].
  • the output of unit 58 is then in summation unit 60 according to the formula used to update H 1 [k + 1].
  • j denotes the block location and i the partial compensator number.
  • the index (*) stands for conjugate complex.
  • any known method for guiding the Step size ⁇ [k] can be used.
  • FIG. 9 shows a preferred variant today for generating the normalized step size ⁇ [k] according to FIG. 8, which is also used to stop the adaptation process.
  • this block signal is used before the supply to the multiplication unit 54 to calculate the current block signal ⁇ [k] by feeding the block signal U [k] to a power acquisition unit 70 is, which in turn on two interpolation filters 72, respectively. 74 acts.
  • these interpolation filters control the scaling unit 78, which ultimately supplies the scaling variable S [k] required for the normalization of the reference step size ⁇ 0 at the input of the multiplication unit 80.
  • the interpolation filters work according to the formula and are parameterized with ⁇ and c.
  • the index j denotes the block location.
  • the scaling variable S [k] is now used on the one hand via the output of the filter 72, in FIG. 9 as a block signal P U [k], to normalize the reference step size ⁇ 0 , but on the other hand also via the output of the filter 74 in FIG 9 referred to as block signal P U min [k], for freezing the adaptation process of individual frequency components when the power is insufficient.
  • the scaling variable S [k] is according to the formula formed, the j denoting the block location as usual.
  • FIG. 10 shows a further preferred variant which, with the use of partial compensators according to FIG. 8, significantly improves the speech quality, with otherwise the same parameters.
  • the estimate H and i [k + 1] of the partial compensator i previously the multiplication with U [k + 2-i] in unit 64 of FIG. 8, via a projection unit 62.
  • the block weight H and i [k + 1] is subjected to an inverse DFT (unit 82), then cleaned by zeroing the block locations with index N to 2N-1 (unit 84) and finally transformed back into the frequency range (unit 86) .
  • the electrical-acoustic converter 9 is not linear in the sense that it no longer converts the input signal into the output signal linearly from certain input signal amplitudes.
  • the signal path via compensation filter 15 f should be modeled as exactly as possible over the signal path via function blocks 7, 9, 11, 1 and 3 and, according to the previous explanations, the nonlinearities mentioned on converter 9 should not can reproduce.
  • the maximum output level should also be adjustable in the hearing aid according to the individual needs of the user. The problem arises that the converter 9 is driven into its non-linear range, of course only if the individually set maximum output level can drive the converter in the mentioned range at all.
  • Hearing aid the gain filter 5 one in Time range working, preferably adjustable limiter unit 90 downstream, which is the output signal of the gain filter 5 limited in amplitude so that the Converter 9 is never driven into its non-linear range and which also allows the maximum output sound level at Converter 9, according to individual needs, in particular also set deeper, like this with the double arrows is indicated.
  • this is achieved in that the amplification filter 5 f operating in the frequency range is followed by a unit 90 f , which limits the frequency components of the signal spectrum, taking into account their mutual phase position, in the frequency range in such a way that the output of the conversion unit 26 and the Digital / analog converter 7 produces a time-variable signal u (t) which never drives the converter 9 into the non-linear transmission range and which also allows the maximum individual modulation to be set.
  • FIG. 11 shows a further embodiment variant of the hearing aid according to the invention, which largely corresponds to that shown in FIG. 4, with the difference that the reverse transformation unit 26 according to FIG. 4, now 26a, is provided directly on the output side of the amplification filter unit 5 f and on the input side of the Compensation filter 15 f a LOT transformation unit 22a of the type already discussed is arranged.
  • FIG. 4 which, as explained above, as well as FIG. 5, represents a preferred embodiment variant of the inventive hearing aid, the provision of a limiter unit is only possible in the frequency range because such a unit is also in the signal path with the compensation filter 15 f must be effective.
  • this enables here functional block structure shown the provision of a Time domain working limiter unit 90, which is essential is easier to implement than one operating in the frequency domain.
  • FIG. 12 shows a preferred embodiment variant of the signal processing on the device according to FIG. 11 upstream of the compensation filter 15 f or downstream of the amplification filter 5 f .
  • the non-linearity of the electrical-acoustic transducer 9 is basically simulated, ie modeled, in the signal path with the compensation filter 15 f . This is implemented by a modeling unit 92, upstream of the transformation unit 22a according to FIG. 11 and thus operating in the time domain, and / or by a modeling unit 92 f , downstream of the transformation unit 22a and therefore operating in the frequency domain.
  • the modeling unit 92 can, for example, as in R. Isermann, "Identification of dynamic systems", Springer-Verlag, 2: 238, 1988, proposed as a simplified Wiener model will be realized.
  • the transformation into the time domain between the gain filter 5 f and the compensator filter 15 f also allows the addition of a nonlinear correction filter in the signal path with the gain filter 5 f in the same manner described above.
  • this is implemented by a modeling unit 94, connected downstream of the transformation unit 26a and thus operating in the time domain, and / or by a modeling unit 94 f , connected upstream of the transformation unit 26a and therefore operating in the frequency domain.
  • FIG. 13 shows the implementation of a method according to the invention Speaker model shown in the time domain.
  • inventive Hearing aid is used, according to Fig. 3 and 11 at the location of block 90 and according to FIG. 12 instead of blocks 92 or 90 and 94.
  • a pre-filter 100 with the transfer function F 1 ( ⁇ ), essentially with a low-pass characteristic.
  • the cutoff frequency ⁇ 1 in the Bode diagram of the filter characteristic, which is shown qualitatively in block 100, is approximately 0.8 kHz, the gain
  • the asymptote slope S 1 is approximately 0dB / DK.
  • the identification variables namely corner frequency ⁇ 1 and the asymptotic slopes S 1 and S 2 , as well as the amplification, for example at the corner frequency ⁇ 1 , are identified by identifying the loudspeaker or transducer 9 to be modeled.
  • a linear amplifier unit 102 is provided downstream of the prefilter 100, and the gain factor K is set to this.
  • a non-linear amplification unit 104 is provided downstream of the linear amplification unit 102.
  • the gain is nonlinear Gain unit 104 one, with which the gain characteristic has slope one around the origin.
  • Input signal deviation x shows the nonlinear gain characteristic, as known from the loudspeaker or converter 9, saturation behavior on.
  • the coefficients a, b, c, d and the gain K are again based on the actual speaker to be modeled or converter 9 identified.
  • a linear amplification unit 106 Downstream of the non-linear amplification unit 104, a linear amplification unit 106 is again provided, by means of which the amplification K of the linear amplification element 102 is compensated for - K -1 -.
  • a filter unit 108 is provided downstream of it, essentially with a high-pass characteristic, which, as can be seen, essentially compensates for the frequency response of the pre-filter 100.
  • Signs of saturation or limitation can besides the Two causes already mentioned, namely deliberate limitation the maximum output signal level of the converter 9 according to individual needs or modulation of the converter 9 in its transducer-specific, non-linear saturation range, based on another cause, namely waste the battery voltage, which the device according to the invention feeds.
  • the aging of the battery that powers the device causes a decrease in signal amplification in particular at the D / A converter 7 and a reduction in the headline limit, i.e. the maximum analog modulation range decreases with decreasing Battery voltage lower.
  • the battery's output impedance usually appears in series with the impedance of the electrical-acoustic converter 9. This changes the towards the end of the battery life Battery output impedance and thus the latter, the substitute image downstream of the D / A converter 7, m.W., change it the one to be modeled, as explained, on the output side of the converter 7 appearing non-linearities.
  • the limiter unit 90 in the time domain or 90 f in the frequency domain by means of the instantaneous battery voltage and / or the instantaneous one To control battery impedance with regard to its limiting effect.
  • FIG. 14 This procedure is shown schematically in FIG. 14.
  • the current battery voltage U B and / or the current impedance is measured on a measuring unit 122 Z. B measured, resulting in corresponding measurement signals e (U B ) or e ( Z. B ).
  • These measurement signals control the limiter unit 90, analogously in the frequency range the limiter unit 90 f according to FIGS. 4, 5, 11 or 12, 14 and / or the model units 92, 92 f or 94, 94 f from FIGS. 12, 13, 14.
  • the measurement signals e are preferably used after digitization, for which purpose the measurement unit 122 is provided on the output side with an A / D converter (not shown).
  • model parameters on the model units 92 and 92 f , 94 and 94 f are modified in the function of the above-mentioned measured variables on the battery 120 or by means of values stored in tables that can be called up and activated by the current measured variables.
  • a gain loss on the D / A converter 7 is compensated for due to a decrease in the battery voltage: If the battery voltage decreases and thus the gain on the converter 7, the measurement signal e at block 7 the gain, compensatory, increased accordingly.
  • the battery voltage drop acts simultaneously as a signal limitation by a limiter and is best and preferably simulated by a battery output voltage-controlled limiter block 90 b in front of the loudspeaker model 92 or 92 f according to FIG. 14.
  • the blocks 90 can be omitted, as may 92 or 92 f blocks 94 and 94 f omitted when provision of the blocks, and there is a relatively low cost a battery voltage-independent, in this realization, stable Feedback suppression achieved according to the invention.
  • the function of the mentioned block 90 b can be taken over completely by providing the battery output voltage-controlled block 90 or 90 f according to FIGS. 4 and 5.
  • a non-linear model of the acoustic-electrical converter 1 possibly also taking into account the behavior of the A / D converter 3, switched between the output of the compensator filter 15 (FIG. 1) or 15 f (for example FIG. 11) and the subtraction input of the differential unit 13, depending on Arrangement operating in the frequency or time domain, as entered at 91 or 91 f in FIG. 11.
  • the explanations apply analogously to those which were made with regard to the model 92, 92 f of the electrical-acoustic transducer.
  • a further improvement in the effect of the compensation filter section 15 f can be achieved by superimposing, if necessary, noise r in the time domain, as shown schematically in FIG. 15, on the output side of the gain filter 5 f .
  • the instantaneous signal spectrum on the output side of the amplification filter 5 f is examined on a spectrum detector 125, for example on how very individual spectral lines are superior in terms of performance, i.e. how much the spectrum profile is peaked, maW, generally, for example, the energy density distribution of the spectrum .
  • a spectrum detector 125 for example on how very individual spectral lines are superior in terms of performance, i.e. how much the spectrum profile is peaked, maW, generally, for example, the energy density distribution of the spectrum .
  • a predetermined limit profile such as a predetermined energy distribution from dominant spectral lines to other spectral lines
  • digital noise r is preferably coupled into the superimposition unit 129 via a noise generator 127.
  • a filter unit as shown at 133 in FIG. 16, can preferably be connected downstream of the noise generator 127, which filter controls the noise in such a way that it is sufficiently weak compared to the instantaneous signal transmitted at the converter 9
  • Useful signal for example by 40
  • the noise can also be coupled in the frequency domain if necessary will. If the noise is injected in the time domain, for example, the noise generator 127 consists of a BPRN, in the frequency range according to 127a in FIG. 17, for example from a table with noise spectra or a Noise algorithm.
  • the noise generator 127 consists of a BPRN, in the frequency range according to 127a in FIG. 17, for example from a table with noise spectra or a Noise algorithm.
  • the output signal of the amplification filter 5 f is examined on a spectrum shape detector unit 125a, and when the spectrum shape leaves a predetermined limit characteristic, the output signal of the noise generator 127, which is passed through the linear filter 133, is represented by the signal u ( 15, preferably superimposed on the input side of the limiter unit 90.
  • the transmission behavior of the filter 133 is preferably controlled by the current spectrum.
  • FIG. 17 shows a preferred embodiment variant of the noise lock in the frequency range according to the dashed embodiment variant with block 131 of FIG. 15.
  • the spectrum on the output side of the amplification filter 5 f is examined on a spectrum shape detector unit 125 b , analogously to the unit 125 a of FIG. 16.
  • the output signal of a noise generator 127a which, for example, noise spectra stored in tables and are available is, the output side of the amplifying filter 5 f then layered over a shaping filter 137 of the spectrum, as shown schematically by the switch 135a, when the spectrum shape detecting unit 125 b detects a current spectrum shape , which necessitates the noise switching mentioned.
  • the noise in the frequency range is superimposed on an addition unit 129a.
  • the shaping filter 137 is in turn controlled by the current spectrum, for example on the output side of the gain filter 5 f .

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Adornments (AREA)
  • Finger-Pressure Massage (AREA)
  • Stereophonic System (AREA)
  • Complex Calculations (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Abstract

The acoustomechanical disturbing feedback in a hearing aid having an amplifying filter section is compensated by means of a compensator (15). In this case, the signals are joined in the frequency range at the compensator (15) and preferably also in the amplifying filter section (5). For this purpose, time range/frequency range transformation units (20, 28), or corresponding back-transformation units (26, 24) are connected downstream of a subtraction unit (13) to which the compensator signal is coupled. <IMAGE>

Description

Die vorliegende Erfindung betrifft ein Hörhilfegerät nach dem Oberbegriff von Anspruch 1.The present invention relates to a hearing aid according to the Preamble of claim 1.

Die Probleme, die sich insbesondere aufgrund der akustischen Rückkopplung zwischen dem elektrisch-akustischen Wandler und dem akustisch-elektrischen Wandler derartiger Hörhilfegerate ergeben, sind bekannt und beispielsweise in der EP-A-0 415 677 ausführlich erörtert.The problems that arise particularly due to the acoustic Feedback between the electrical-acoustic transducer and the acoustic-electrical converter of such hearing aids are known and are known, for example, in EP-A-0 415 677 discussed in detail.

Es wurde versucht, diese Probleme prinzipiell, wie in Fig. 1 dargestellt, zu lösen.An attempt was made to address these problems in principle, as in FIG. 1 shown to solve.

Fig. 1 zeigt einen akustisch--elektrischen (ak/el) Wandler 1 mit nachgeschaltetem Analog/Digital(A/D)-Wandler 3, einer digitalen Verstärkungsfilterstrecke 5, welche ausgangsseitig auf einen Digital/Analog(D/A)-Wandler 7, letzterer auf den elektrisch-akustischen (el/ak) Wandler 9 wirkt.1 shows an acoustic-electrical (ak / el) converter 1 with downstream analog / digital (A / D) converter 3, one digital gain filter section 5, which on the output side to a digital / analog (D / A) converter 7, the latter to the electrical-acoustic (el / ak) converter 9 acts.

Mit dem Block 11 ist die akustisch-mechanische Störrückkopplung mit dem im allgemeinen zeitvarianten Uebertragungsverhalten h dargestellt. Das rückgekoppelte Signal y(t) wird dem Nutzsignal v(t) überlagert und dem Eingang des ak/el-Wandlers 1 zugeführt, der ausgangsseitig, zu den Zeiten nT, die für die digitale Verarbeitung benötigten zeitdiskreten Abtastwerte d(nT) liefert.With block 11 is the acoustic-mechanical interference feedback with the generally time-variant transmission behavior h shown. The feedback signal y (t) is the Useful signal v (t) superimposed and the input of the ak / el converter 1 supplied, the output side, at the times nT, for the digital processing required time-discrete samples d (nT) returns.

Zur Unterdrückung des störrückgekoppelten Signals y(t) wurde beispielsweise in D.K. Bustamante et al., "Measurement and adaptive suppression of acoustic feedback in hearing aids", Proc. 1989 IEEE ICASSP, 3:2017-2020, 1989, vorgeschlagen, einer Differenzeinheit 13, über einen Kompensator 15, die aus dem Ausgangssignal der Verstärkungsfilterstrecke 5 durch Filterung mit einem m-stufigen FIR(finite impulse response)-Filter gebildete Schätzung y and(nT) zuzuführen. Dabei werden mit Hilfe des bekannten LMS(least mean square)-Algorithmus die Filterkoeffizienten iterative verändert, bis das ausgangsseitige Differenzsignal e(nT) nicht mehr mit der Schätzung y and(nT) korreliert. Das für die Adaption benötigte Signal e(nT) wird dem Kompensator 15 über den Adaptionseingang A zugeführt.To suppress the interference feedback signal y (t) was for example in D.K. Bustamante et al., "Measurement and adaptive suppression of acoustic feedback in hearing aids ", Proc. 1989 IEEE ICASSP, 3: 2017-2020, 1989, proposed a differential unit 13, via a compensator 15, which the output signal of the gain filter section 5 by filtering with an m-stage FIR (finite impulse response) filter estimate y and (nT). Doing so with Using the well-known LMS (least mean square) algorithm Filter coefficients changed iteratively until the output side Difference signal e (nT) no longer with the estimate y and (nT) correlated. The signal e (nT) required for the adaptation is fed to the compensator 15 via the adaptation input A.

Unter der Annahme von Unkorreliertheit von Nutzsignal v(t) bzw. v(nT) und verstärktem Signal u(t) bzw. u(nT), was durch geeignete Wahl der Zeitverzögerung DT im digitalen Verstärkungsfilter der Strecke 5 erreicht werden kann, wird es hierdurch möglich, die Verstärkung des Verstärkungsfilters 5, gegenüber Hörhilfegeraten ohne Kompensator 15, um 6 bis 10dB zu erhöhen.Assuming that the useful signal v (t) is uncorrelated or v (nT) and amplified signal u (t) or u (nT), which by suitable choice of the time delay DT in the digital gain filter the route 5 can be reached, it will possible to compare the gain of the gain filter 5 Hearing aids without compensator 15 to 6 to 10dB too increase.

Nachteilig an diesem Vorgehen ist, dass, bei einer angenommenen Filterlänge des Kompensators 15 von m-Stufen, 2 m-Multiplikationen pro Abtastwert des A/D-Wandlers 3 notwendig sind, was zu einem ausserordentlich aufwendigen System führt. Dies insbesondere mit Blick auf die geforderte Miniaturisierung bei Hörhilfegeräten.The disadvantage of this procedure is that, if one is adopted Compensator 15 filter length of m steps, 2 m multiplications 3 are required per sample value of the A / D converter, which leads to an extraordinarily complex system. This especially with regard to the required miniaturization Hearing aids.

Im weiteren ist es erforderlich, dass die Schrittlänge µ des LMS-Algorithmus für die Erhaltung der Sprachsignal-Uebertragung möglichst klein gewählt wird, womit die Adaption des Kompensatorfilters 15 an die Störrückkopplungsstrecke 11 entsprechend langsam wird, was die mögliche Erhöhung der Verstärkung an der Strecke 5, aus Stabilitätsgründen, beschränkt.Furthermore, it is necessary that the stride length µ of the LMS algorithm for the preservation of the speech signal transmission is chosen as small as possible, with which the adaptation of the compensator filter 15 to the interference feedback path 11 accordingly slowly becomes what the possible increase in gain on route 5, limited for reasons of stability.

In Weiterentwicklung des in Fig. 1 dargestellten Vorgehens wurde dann versucht, dem System ein stationäres Messsignal einzukoppeln, wie beispielsweise aus "Feedback Cancellation in Hearing Aids: Results from a Computer Simulation", J.M. Kates, IEEE Trans. on Signal Processing, Vol. 39, Nr. 3, March 1991, oder der EP-A-0 415 677 beschrieben. Es wurde dabei als stationäres Messsignal ein Rauschsignal dem System zugeführt.In further development of the procedure shown in Fig. 1 an attempt was then made to give the system a stationary measurement signal , such as from "Feedback Cancellation in Hearing Aids: Results from a Computer Simulation ", J.M. Kates, IEEE Trans. On Signal Processing, Vol. 39, No. 3, March 1991, or EP-A-0 415 677. It was considered stationary Measurement signal a noise signal fed to the system.

Nachteilig an diesem Vorgehen ist der zusätzliche Generator für das Messsignal sowie dessen notwendige Amplitudensteuerung zur Sicherstellung eines genügenden Signal- zu Rauschverhältnisses.The disadvantage of this procedure is the additional generator for the measurement signal and its necessary amplitude control to ensure a sufficient signal to noise ratio.

Mit einem Kompensatorfilter 32. Ordnung wurde durch dieses Vorgehen eine Erhöhung der Verstärkung an der Verstärkerfilterstrecke um ca. 17dB möglich.With a compensator filter 32nd order was through this Procedure to increase the gain on the amplifier filter section around 17dB possible.

Aufgrund der bei letzterwähnter Technik mit Messsignaleinkopplung sich ergebenden Nachteile wurde schliesslich ein Vorgehen gemäss Fig. 2 vorgeschlagen, gemäss "Integrated Frequency-Domain Digital Hearing Aid With the Lapped Transform", S.M. Kuo and S. Voepel, Electronics Letters, Vol. 28, Nr. 23, November 1992.Because of the technology mentioned above with measurement signal coupling The resulting disadvantages finally became a course of action 2 proposed, according to "Integrated Frequency Domain Digital Hearing Aid With the Lapped Transform ", S.M. Kuo and S. Voepel, Electronics Letters, Vol. 28, No. 23, November 1992.

Demnach wurde die Signalverarbeitung sowohl an der Verstärkungsfilterstrecke wie auch am Kompensator im Frequenzbereich vorgenommen, wozu das Ausgangssignal des A/D-Wandlers 3 mittels einer überlappenden orthogonalen Transformation (LOT) an der Einheit 17 in den Frequenzbereich transformiert wurde. Eine entsprechende Rücktransformation (ILOT) an der Einheit 19 liefert dann eingangs des el/ak-Wandlers 7 wieder das benötigte Signal u(nT).Accordingly, signal processing was performed on both the gain filter section as well as on the compensator in the frequency range the output signal of the A / D converter 3 by means of an overlapping orthogonal transformation (LOT) was transformed into the frequency domain at the unit 17. A corresponding inverse transformation (ILOT) on the unit 19 then supplies the input of the el / ak converter 7 again the required Signal u (nT).

Weil bei geeigneter Zeitbereich/Frequenzbereich-Transformation, insbesondere bei der diskreten Fourier-Transformation (DFT) und der diskreten Hartley-Transformation (DHT), die Faltung an den Kompensator- und Verstärkungsfiltern 15f bzw. 5f beim Uebergang in den Frequenzbereich in eine Multiplikation übergeht, ergibt sich durch dieses Vorgehen grundsätzlich eine Verringerung des Rechen- bzw. Hardware-Aufwandes. Um eine realisierbare endliche Transformationslänge zu erhalten, ist dabei aber eine Unterteilung des diskreten Signals d(nT) eingangsseitig der Transformationseinheit 17 in Blöcke gegebener Länge notwendig. Leider können die damit verbundenen Fehler, verglichen mit der konventionellen Faltung, bei der Anordnung gemäss Fig. 2 auch mit einer überlappenden Blockaufteilung nicht beseitigt werden. Sie führen zu einem zeitvarianten System, auch dann, wenn zusammen mit der Störrückkopplung h das Kompensationsfilter 15f zeitinvariant bzw. eingefroren wird.Because with a suitable time domain / frequency domain transformation, in particular with the discrete Fourier transform (DFT) and the discrete Hartley transform (DHT), the folding at the compensator and gain filters 15 f and 5 f during the transition into the frequency domain into one Multiplication passes over, this procedure basically results in a reduction in the computing or hardware effort. In order to obtain a finite transformation length that can be realized, a subdivision of the discrete signal d (nT) on the input side of the transformation unit 17 into blocks of a given length is necessary. Unfortunately, the errors associated with this, compared with conventional folding, cannot be eliminated in the arrangement according to FIG. 2 even with an overlapping block division. They lead to a time-variant system, even if, together with the interference feedback h, the compensation filter 15 f is time-invariant or frozen.

Deshalb musste ein Kompromiss eingegangen werden, durch Wahl langer Blocklängen von z.B. 512 Abtastwerten, was wiederum zu einer ineffizienten Kompensation über das Kompensatorfilter 15f führt. Entsprechend blieb die erreichbare Verstärkungserhöhung an der Verstärkerfilterstrecke 5f auf unter 10dB beschränkt.Therefore, a compromise had to be made by choosing long block lengths of, for example, 512 samples, which in turn leads to inefficient compensation via the compensating filter 15 f . Accordingly, the achievable gain increase on amplifier filter section 5 f was limited to less than 10 dB.

Es ist Aufgabe der vorliegenden Erfindung, ein Hörhilfegerät eingangs genannter Art zu schaffen, bei welchem, unter Erhalt der Vorteile der Signalverarbeitung im Frequenzbereich, Zeitinvarianz des Systems, bei zeitinvarianter Störrückkopplung, gewährleistet ist, bei dem weiter der Rechen- bzw. Hardware-Aufwand minimalisiert ist, zu einem solchen Mass, dass die Signalverarbeitung ohne weiteres unter den bei Hörhilfegeräten äusserst eingeschränkten Platzverhältnissen realisierbar ist.It is an object of the present invention to provide a hearing aid to create the type mentioned, in which, with preservation the advantages of signal processing in the frequency domain, time invariance of the system, with time invariant feedback, is guaranteed, in which the computing or hardware effort is minimized to such a degree that the Signal processing easily among those in hearing aids extremely limited space is feasible.

Dies wird, ausgehend vom letztgenannten Hörhilfegerät, dadurch erreicht, dass es nach dem kennzeichnenden Teil von Anspruch 1 ausgebildet ist. Based on the latter hearing aid device, this becomes achieved that it according to the characterizing part of claim 1 is trained.

Dadurch, dass die Zeitbereich/Frequenzbereich-Transformation nicht, wie in Fig. 2 dargestellt, vor der Differenzeinheit 13f durchgeführt wird, sondern die Differenzbildung daran noch im Zeitbereich durchgeführt wird, kann erstaunlicherweise die geforderte Zeitinvarianz des Systems erhalten werden. Insbesondere bei Wahl geeignet überlappender Blockaufteilung wird dabei ermöglicht, die weiterhin eingesetzten Zeitbereich/Frequenzbereich-Transfornationen mit wesentlich kleineren Blocklängen zu realisieren, was wiederum die Kompensationseffizienz erhöht und mithin ermöglicht, die Verstärkung an der Verstärkungsfilterstrecke 5f gemäss Fig. 2 drastisch zu erhöhen.The fact that the time domain / frequency domain transformation is not carried out in front of the differential unit 13 f , as shown in FIG. 2, but rather that the difference is formed in the time domain, can surprisingly be obtained the required time invariance of the system. In particular, when suitably overlapping block division is selected, it is possible to implement the time domain / frequency domain transformations that are still used with significantly smaller block lengths, which in turn increases the compensation efficiency and therefore enables the gain on the gain filter section 5 f according to FIG. 2 to be increased drastically.

Die Erfindung mit ihren in den weiteren Ansprüchen spezifizierten bevorzugten Ausführungsvarianten wird anschliessend vorerst Schritt für Schritt anhand von Figuren beispielsweise erläutert und schliesslich anhand eines Realisationsbeispiels präsentiert.The invention with its specified in the further claims preferred design variants is then for the time being step by step using figures, for example explained and finally using an implementation example presents.

Hierzu zeigen:

Fig. 1
anhand eines Funktionsblockdiagrammes, vereinfacht, ein bekanntes Hörhilfegerät, bei welchem die Signalverarbeitung zeitdiskret erfolgt;
Fig. 2
in Darstellung analog zu Fig. 1, ein weiteres bekanntes Hörhilfegerät, bei welchem die Signalverarbeitung an Rückkopplungskompensator und Verstärkungsfilterstrecke gemäss Fig. 1 im Frequenzbereich durchgeführt wird;
Fig. 3
in Darstellung analog derjenigen der Fig. 1 und 2, eine erste Ausführungsvariante eines erfindungsgemässen Hörhilfegerätes;
Fig. 4
eine weitere bevorzugte Ausführungsvariante des Hörhilfegerätes nach Fig. 3, dargestellt analog zu den Fig. 1 bis 3;
Fig. 5
ausgehend von dem in Fig. 4 dargestellten Hörhilfegerät, eine weitere bevorzugte Ausführungsvariante des erfindungsgemässen Gerätes in Darstellung analog derjenigen der Fig. 1 bis 4;
Fig. 6
anhand eines vereinfachten Signalfluss-Funktionsblockdiagrammes eine bevorzugte Realisationsform der dem Adaptionseingang und der Verstärkungsfilterstrecke vorgelagerten Transformationseinheit gemäss Fig. 5;
Fig. 7
anhand eines vereinfachten Signalfluss-Funktionsblockdiagrammes eine bevorzugte Ausführungsvariante der Verstärkungsfilterstrecke am erfindungsgemässen Gerät gemäss Fig. 5;
Fig. 8
anhand eines vereinfachten Signalfluss-Funktionsblockdiagrammes eine bevorzugte Realisation des Kompensatorfilters am erfindungsgemässen Gerät gemäss Fig. 5;
Fig. 9
anhand eines vereinfachten Signalfluss-Funktionsblockdiagrammes die Bildung des Schrittgrössensignals in Funktion der erfassten Signalleistung, welches Schrittgrössensignal, wie in Fig. 9 bevorzugterweise gebildet, bei der Realisation des Kompensatorfilters nach Fig. 8 eingesetzt ist;
Fig. 10
eine bei der Realisation des Kompensatorfilters gemäss Fig. 8 bevorzugterweise eingesetzte Einheit in vereinfachter Signalfluss-Funktionsblockdarstellung;
Fig. 11
ausgehend von der Darstellung gemäss Fig. 4 eines erfindungsgemässen Hörhilfegerätes, eine heute besonders bevorzugte Ausführungsvariante anhand des bereits vorgestellten Funktionsblockdiagrammes;
Fig. 12
ausgehend von der besonders bevorzugten Ausführungsvariante gemäss Fig. 11, einen Teil einer Weiterentwicklung mit Modellierung des elektrisch-akustischen Wandlers im Zeit- und/oder Frequenzbereich;
Fig. 13
ein Funktionsblock/Signalflussdiagramm eines elektrischen, im Zeitbereich arbeitenden Lautsprechermodells, wie es vorzugsweise zur Berücksichtigung des Lautsprecher-Uebertragungsverhaltens am erfindungsgemässen Hörhilfegerät gemäss den Fig. 3, 11 oder 12 eingesetzt wird;
Fig. 14
ausgehend von der Darstellung nach Fig. 12, eine Weiterentwicklung des erfindungsgemässen Gerätes, bei welcher die Modellierung und/oder die Amplitudenlimitierung und/oder die Verstärkung in Funktion des IST-Zustandes einer Batterie geführt wird;
Fig. 15
ausgehend von einem Gerät nach Fig. 11, eine weitere Verbesserung durch gegebenenfalls selektiv gesteuerte Rauschsignalaufschaltung im Frequenz- oder Zeitbereich;
Fig. 16
eine bevorzugte Realisation der Rauschaufschaltung gemäss Fig. 15 im Zeitbereich;
Fig. 17
eine bevorzugte Realisationsform der Rauschaufschaltung nach Fig. 15 im Frequenzbereich.
Show:
Fig. 1
based on a functional block diagram, simplified, a known hearing aid in which the signal processing is time-discrete;
Fig. 2
in representation analogous to FIG. 1, another known hearing aid device in which the signal processing on the feedback compensator and amplification filter section according to FIG. 1 is carried out in the frequency range;
Fig. 3
in representation analogous to that of Figures 1 and 2, a first embodiment of a hearing aid according to the invention;
Fig. 4
a further preferred embodiment of the hearing aid device according to FIG. 3, shown analogously to FIGS. 1 to 3;
Fig. 5
starting from the hearing aid device shown in FIG. 4, a further preferred embodiment variant of the device according to the invention in a representation analogous to that of FIGS. 1 to 4;
Fig. 6
on the basis of a simplified signal flow function block diagram, a preferred form of realization of the transformation unit upstream of the adaptation input and the amplification filter section according to FIG. 5;
Fig. 7
based on a simplified signal flow function block diagram, a preferred embodiment variant of the amplification filter section on the device according to the invention according to FIG. 5;
Fig. 8
based on a simplified signal flow function block diagram, a preferred implementation of the compensator filter on the device according to the invention according to FIG. 5;
Fig. 9
on the basis of a simplified signal flow function block diagram, the formation of the step size signal as a function of the detected signal power, which step size signal, as preferably formed in FIG. 9, is used in the implementation of the compensator filter according to FIG. 8;
Fig. 10
a unit preferably used in the implementation of the compensator filter according to FIG. 8 in a simplified signal flow function block representation;
Fig. 11
starting from the representation according to FIG. 4 of a hearing aid according to the invention, a particularly preferred embodiment variant based on the functional block diagram already presented;
Fig. 12
starting from the particularly preferred embodiment variant according to FIG. 11, part of a further development with modeling of the electrical-acoustic transducer in the time and / or frequency range;
Fig. 13
3 shows a functional block / signal flow diagram of an electrical loudspeaker model operating in the time domain, as is preferably used to take into account the loudspeaker transmission behavior on the hearing aid according to the invention according to FIGS. 3, 11 or 12;
Fig. 14
starting from the illustration according to FIG. 12, a further development of the device according to the invention, in which the modeling and / or the amplitude limitation and / or the amplification is carried out as a function of the current state of a battery;
Fig. 15
starting from a device according to FIG. 11, a further improvement by optionally selectively controlled noise signal application in the frequency or time domain;
Fig. 16
a preferred implementation of the noise lock according to FIG. 15 in the time domain;
Fig. 17
a preferred implementation of the noise lock according to FIG. 15 in the frequency domain.

In Fig. 3 ist anhand eines Signalfluss/Funktionsblockdiagrammes ein Grundprinzip der vorliegenden Erfindung bzw. des erfindungsgemässen Hörhilfegerätes dargestellt. Es sind darin die bereits anhand der Fig. 1 und 2 verwendeten Bezugszeichen für die bereits dort beschriebenen Funktionsblöcke und Signale verwendet.3 is based on a signal flow / functional block diagram a basic principle of the present invention or that of the invention Hearing aid shown. It is in it the reference numerals already used with reference to FIGS. 1 and 2 for the function blocks and signals already described there used.

In beiden in den Fig. 3 und 4 dargestellten Ausführungsvarianten wird erfindungsgemäss an der Differenzbildungseinheit 13 das zeitdiskrete Differenzsignal r(nT) aus dem A/D-gewandelten Ausgangssignal d(t) des ak/el-Wandlers 1 und dem Ausgangssignal des Kompensatorfilters 15f gebildet. Erst das Differenzsignal r(nT) ausgangsseitig der Differenzbildungseinheit 13 wird einer überlappenden orthogonalen Transformation LOT unterworfen.3 and 4, the discrete-time difference signal r (nT) from the A / D-converted output signal d (t) of the ak / el converter 1 and the output signal of the compensator filter 15 f educated. Only the difference signal r (nT) on the output side of the difference formation unit 13 is subjected to an overlapping orthogonal transformation LOT.

Gemäss Fig. 3 wird das Differenzsignal r(nT) an einer LOT-Transformationseinheit 20 in das Adaptionssteuersignal E[k] gewandelt, welches dem Adaptionseingang Af des Kompensatorfilters 15f zugeführt wird. Weil an der LOT-Transformationseinheit 20 die Zeitbereich/Frequenzbereich-Transformation in Blöcken vorgegebener Anzahl Abtastwerte aus dem Differenzsignal r(nT) erfolgt, bezeichnet [k] die Nummer des ausgangsseitig der Transformationseinheit 20 erscheinenden Signalblocks.3, the difference signal r (nT) is converted at a LOT transformation unit 20 into the adaptation control signal E [k], which is fed to the adaptation input A f of the compensator filter 15 f . Because the time domain / frequency domain transformation takes place in the LOT transformation unit 20 in blocks of a predetermined number of samples from the difference signal r (nT), [k] denotes the number of the signal block appearing on the output side of the transformation unit 20.

Das Differenzsignal r(nT) wird gemäss Fig. 3 im Zeitbereich der Verstärkungsfilterstrecke 5 zugeführt und über den D/A-Wandler 7 dem el/ak-Wandler 9 zugespiesen. Eingangsseitig ist der D/A-Wandler 7 beaufschlagt mit dem zeitdiskreten Ausgangssignal u(nT) der Verstärkungsfilterstrecke 5. Dieses Ausgangssignal u(nT) wird einer weiteren orthogonalen Transformationseinheit 22 zugeführt und dort vom Zeitbereich in den Frequenzbereich gewandelt. Das Ausgangssignal der Transformationseinheit 22 wird als Eingangssignal dem Eingang Ef des Kompensatorfilters 15f zugeführt. Das Ausgangssignal Y and[k+1] besagten Filters 15f wird an einer Rücktransformationseinheit ILOT 24 in den Zeitbereich rücktransformiert und ihr Ausgangssignal y and(nT) als zeitdiskretes Signal der Differenzbildungseinheit 13 zugeführt.3, the difference signal r (nT) is supplied to the amplification filter section 5 in the time domain and fed to the el / ak converter 9 via the D / A converter 7. On the input side, the D / A converter 7 is acted upon by the time-discrete output signal u (nT) of the amplification filter section 5. This output signal u (nT) is fed to a further orthogonal transformation unit 22, where it is converted from the time domain to the frequency domain. The output signal of the transformation unit 22 is fed as an input signal to the input E f of the compensator filter 15 f . The output signal Y and [k + 1] of said filter 15 f is transformed back into the time domain at a reverse transformation unit ILOT 24 and its output signal y and (nT) is fed to the difference forming unit 13 as a discrete-time signal.

Zu der Ausführungsvariante in Fig. 3 hinzukommend, wird nun gemäss Fig. 4 nicht nur die Signalverarbeitung am Kompensationsfilter 15f im Frequenzbereich vorgenommen, sondern auch an der Verstärkungsfilterstrecke 5f. Hierzu ist der Verstärkungsfilterstrecke 5f eine Transformationseinheit LOT 28 vorgeschaltet und dem D/A-Wandler 7 eine Rücktransformationseinheit ILOT 26; die Transformationseinheit 22 gemäss Fig. 3 entfällt.In addition to the embodiment variant in FIG. 3, according to FIG. 4 not only the signal processing is carried out on the compensation filter 15 f in the frequency range but also on the amplification filter section 5 f . For this purpose, the amplification filter section 5 f is preceded by a transformation unit LOT 28 and the D / A converter 7 is a reverse transformation unit ILOT 26; the transformation unit 22 according to FIG. 3 is omitted.

Grundsätzlich wird demnach, und gemäss Wortlaut von Anspruch 1, wie anhand von Fig. 3 und 4 erläutert wurde, im Unterschied zu bekannten Vorgehen gemäss Fig. 2, die Differenzbildung an der Differenzbildungseinheit 13 im Zeitbereich vorgenommen, wodurch die obgenannten Nachteile bezuglich Zeitvarianz des Vorgehens gemäss Fig. 2 behoben sind.Basically, therefore, and according to the wording of claim 1, as explained with reference to FIGS. 3 and 4, in difference to known procedures according to FIG. 2, the difference formation the difference formation unit 13 in the time domain, whereby the above-mentioned disadvantages regarding time variance of the 2 are resolved.

Es ergibt sich damit die Möglichkeit, an den LOT-Transformationseinheiten 20, 22, 28 und, entsprechend, an den ILOT-Rücktransformationseinheiten 24, 26 mit wesentlich kleineren Blocklängen zu arbeiten, als dies beim Vorgehen gemäss Fig. 2 möglich ist, beispielsweise gemäss einem bevorzugten Ausführungsbeispiel der vorliegenden Erfindung mit Blocklängen der Blöcke k von 128 Abtastwerten.This results in the possibility of using the LOT transformation units 20, 22, 28 and, accordingly, on the ILOT reverse transformation units 24, 26 with much smaller ones To work block lengths than this in the procedure according to FIG. 2 is possible, for example according to a preferred embodiment the present invention with block lengths of blocks k of 128 samples.

Fig. 3 zeigt dabei, wie erwähnt, eine erste Realisationsform, welche der Definition gemäss Anspruch 2 entspricht, nämlich bei der je eine Transformationseinheit LOT 20 bzw. 22 dem Signaleingang Ef und dem Adaptionseingang Af des Kompensatorfilters 15f vorgelagert ist.3 shows, as mentioned, a first form of implementation which corresponds to the definition according to claim 2, namely in which a respective transformation unit LOT 20 or 22 is arranged upstream of the signal input E f and the adaptation input A f of the compensator filter 15 f .

Eine bevorzugte Ausführungsvariante ist diejenige gemäss Fig. 4, welche der Definition gemäss Anspruch 3 entspricht, gemäss welcher dem Adaptionseingang Af des Kompensatorfilters 15f sowie dem Eingang der Verstärkungsfilterstrecke 5f je eine LOT-Transformationseinheit 20 bzw. 28 vorgelagert ist und dem Eingang des D/A-Wandlers 7 eine entsprechende ILOT-Rücktransformationseinheit 26.A preferred embodiment variant is that according to FIG. 4, which corresponds to the definition according to claim 3, according to which the adaptation input A f of the compensating filter 15 f and the input of the amplification filter section 5 f are preceded by a LOT transformation unit 20 or 28 and the input of the D / A converter 7 a corresponding ILOT reverse transformation unit 26.

Für die Blockbildung und -verarbeitung in überlappenden orthogonalen Transformationen stehen zwei einfache Techniken, nämlich die "overlap-save"- und "overlap-add"-Technik zur Verfügung. Es kann hierzu vollumfänglich auf das einschlägige Schrifttum verwiesen werden, wie beispielsweise auf "Signal Processing with Lapped Transforms", Henrique S. Malvar, Artech House, Boston, 1992.For block formation and processing in overlapping orthogonal Transformations are two simple techniques namely the "overlap-save" and "overlap-add" technology for Available. To this end, it can be fully based on the relevant Literature, such as "Signal Processing with Lapped Transforms ", Henrique S. Malvar, Artech House, Boston, 1992.

In bevorzugter Realisationsform der vorliegenden Erfindung gemäss dem Wortlaut von Anspruch 5 ist, wie in Fig. 4 dargestellt, auch dem Verstärkungsfilter 5f eine LOT-Transformationseinheit 28 vorgelagert, dem Eingang des D/A-Wandlers 7 eine ILOT-Rücktransformationseinheit 26, und weiter dem Ausgang des Kompensatorfilters 15f eine ILOT-Rücktransformationseinheit 24 nachgelagert. Diese Transformations- bzw. Rücktransformationseinheiten 28, 24 und 26 arbeiten in der erwähnten bevorzugten Ausführungsvariante nach der "overlap-save"-Technik. Hingegen arbeitet die dem Adaptionseingang Af, insbesondere gemäss Fig. 4, vorgelagerte LOT-Transformationseinheit 20 bevorzugterweise nach dem "overlap-add"-Prinzip.In a preferred embodiment of the present invention according to the wording of claim 5, as shown in FIG. 4, the gain filter 5 f is also preceded by a LOT transformation unit 28, the input of the D / A converter 7 is an ILOT reverse transformation unit 26, and further the output of the compensator filter 15 f is followed by an ILOT reverse transformation unit 24. These transformation or reverse transformation units 28, 24 and 26 operate in the mentioned preferred embodiment according to the "overlap-save" technique. In contrast, the LOT transformation unit 20 upstream of the adaptation input A f , in particular according to FIG. 4, preferably works according to the "overlap-add" principle.

Insbesondere diese bevorzugten Ausführungsvarianten des Einsatzes der Blockverarbeitungstechniken führen zu einer weiteren bevorzugten Realisationsform des erfindungsgemässen Hörgerätes, wie es in Fig. 5 dargestellt ist.In particular, these preferred embodiment variants of the insert block processing techniques lead to another preferred form of realization of the hearing aid according to the invention, as shown in Fig. 5.

Im Unterschied zu Fig. 4 wird hier das zeitdiskrete Differenzsignal r(nT) einer einzigen LOT-Transformationseinheit 30 zugeführt, aus deren Ausgangssignal sowohl das dem Adaptionseingang Af zugeführte Adaptionssignal E[k] wie auch das der Verstärkungsfilterstrecke 5f zugeführte Eingangssignal R[k] gebildet wird.In contrast to FIG. 4, the time discrete differential signal r (nT) of a single LOT transform unit 30 is fed to here, from whose output signal both the adaption input A f supplied adaptation signal E [k] as well as that of the enhancement filter path 5 f supplied input signal R [k ] is formed.

Wie erwähnt, basieren die überlappenden orthogonalen Transformationen vorzugsweise auf der DFT.As mentioned, the overlapping orthogonal transformations are based preferably at the DFT.

In Fig. 6 ist eine Realisationsform des Datenübertragungspfades zwischen zeitdiskretem Differenzsignal r(nT) ausgangsseitig der Differenzbildungseinheit 13 zum Adaptionssignal E[k] bzw. dem Eingangssignal R[k] zu der Verstärkungsfilterstrecke 5f gemäss Fig. 5 dargestellt.FIG. 6 shows a form of realization of the data transmission path between the time-discrete difference signal r (nT) on the output side of the difference forming unit 13 for the adaptation signal E [k] or the input signal R [k] to the amplification filter section 5 f according to FIG. 5.

Demnach ist dem Ausgang der Differenzbildungseinheit 13 mit dem zeitdiskreten Differenzsignal r(nT) eine überlappende orthogonale Transformationseinheit 30a, basierend auf der DFT, nachgelagert. Sie arbeitet, wie mit der Indexierung OA dargestellt, nach dem "overlap-add"-Prinzip. Dazu wird eingangs der Fehlerblock e[k] durch Aufteilung von r(nT) in Teilblöcke der Länge N gebildet, die jeweils, in der hier bevorzugten Variante mit N = 64, durch Hinzufügen von Nullen auf eine Gesamtblocklänge, hier von 2N = 128 Werten, verlängert werden, d.h. e[k] = (0...0,r((k+1)NT), r((k+1)NT+T)...r((k+2)NT-T))T. Accordingly, an overlapping orthogonal transformation unit 30a based on the DFT follows the output of the difference formation unit 13 with the time-discrete difference signal r (nT). As shown with the indexing OA, it works according to the "overlap-add" principle. To this end, the error block e [k] is formed by dividing r (nT) into sub-blocks of length N, each of which, in the variant preferred here with N = 64, by adding zeros to a total block length, here from 2N = 128 values , be extended, ie e [k] = (0 ... 0, r ((k + 1) NT), r ((k + 1) NT + T) ... r ((k + 2) NT-T)) T .

Seine DFT, nämlich E[k], wird, in der bevorzugten Variante gemäss Fig. 5, direkt dem Adaptionseingang Af des Kompensationsfilters 15f zugeführt. Ueber eine Verzögerungseinheit 32 mit entsprechender Zwischenspeicherung werden sich folgende Blöcke, also der Nummern k und k+1, zur Verfügung gestellt. Eine stellenweise Ueberlagerung in der Einheit 34 liefert dann direkt den Block R[k], aber nun der "overlap-save"-Art, welcher in der vorgängig als bevorzugte Variante bezeichneten Realisierung, gemäss Fig. 5, direkt der Verstärkungsfilterstrecke 5f zugeführt wird. Die Ueberlagerung in Einheit 34 ist dabei durch die Formel Rj[k] = Ej[k] + (-1)jEj[k-1], gegeben, wobei j (von 0 bis 2N-1) die Nummer der Blockstelle bezeichnet.In the preferred variant according to FIG. 5, its DFT, namely E [k], is fed directly to the adaptation input A f of the compensation filter 15 f . The following blocks, that is to say the numbers k and k + 1, are made available via a delay unit 32 with corresponding intermediate storage. A partial overlay in the unit 34 then provides the block R [k] directly, but now the "overlap-save" type, which in the implementation previously described as the preferred variant, according to FIG. 5, is fed directly to the amplification filter section 5 f . The overlay in unit 34 is given by the formula R j [k] = E j [k] + (-1) j E j [k-1], given, where j (from 0 to 2N-1) denotes the number of the block location.

Durch dieses Vorgehen wird eine wesentliche Reduktion der notwendigen Hardware- und Rechenleistung realisiert.This procedure significantly reduces the necessary hardware and computing power realized.

Gemäss Fig. 7 folgt innerhalb der von R[k] beaufschlagten Verstärkungsfilterstrecke 5f, als erstes, das eigentliche Verstärkungsfilter 40, dem eine Verzögerungseinheit 42 mit entsprechender Zwischenspeicherung nachgelagert ist. Hierbei bezeichnet der Parameter d die Gesamtverzögerung des Systems (vom Ausgang des A/D-Wandlers 3 zum Eingang des D/A-Wandlers 7), normalisiert mit dem Ueberlappungsparameter der Teilblocklänge N. Bedingt durch die Blockverarbeitung ergibt sich eine minimale Verzögerungszeit von N Abtastwerten, entsprechend einem minimalen d-Wert von 1. In der hier bevorzugten Variante mit einer Teilblocklänge von N = 64 und einer Gesamtblocklänge von 2N = 128 wurde unter Verwendung eines einzigen Teilkompensators (wie im folgenden mit Bezugnahme auf Fig. 8 genauer erläutert wird) d auf den Wert 2 gesetzt.According to FIG. 7, within the gain filter section 5 f acted upon by R [k], the actual gain filter 40 follows first, which is followed by a delay unit 42 with corresponding intermediate storage. Here, the parameter d denotes the total delay of the system (from the output of the A / D converter 3 to the input of the D / A converter 7), normalized with the overlap parameter of the partial block length N. Due to the block processing, there is a minimum delay time of N samples , corresponding to a minimum d-value of 1. In the variant preferred here with a partial block length of N = 64 and a total block length of 2N = 128, using a single partial compensator (as will be explained in more detail below with reference to FIG. 8), d set to the value 2.

Das ausgangsseitig zur Verfügung stehende Blocksignal U[k+1] wird nun einerseits dem Eingang Ef des Kompensators 15f zugeführt und andererseits in der ILOT-Einheit 26 einer inversen DFT der "overlap-save"-Art unterzogen. Da dabei das entsprechende Zeitsignal u(nT) um eine Teilblocklänge N verzögert entsteht, rechtfertigt sich im nachhinein die Numerierung von U[k+1] mit der Blocknummer k+1.The block signal U [k + 1] available on the output side is now supplied on the one hand to the input E f of the compensator 15 f and on the other hand is subjected to an inverse DFT of the "overlap-save" type in the ILOT unit 26. Since the corresponding time signal u (nT) is delayed by a partial block length N, the numbering of U [k + 1] with the block number k + 1 is justified in retrospect.

In Fig. 8 ist eine bevorzugte Ausbauvariante des Kompensatorfilters 15f am erfindungsgemässen Hörgerät gemäss Fig. 5 dargestellt. Dabei werden durch Zwischenspeicherung mit Verzögerungseinheiten vom Typ, wie bei 56 dargestellt, die Blocksignale U[k+1] bis U[k+1-L] bereitgestellt und, davon ausgehend, mit Hilfe von Teilkompensatoren, deren erster in Fig. 8 als Einheit 50 bezeichnet ist, die Teilschätzungen Y and1[k+1] bis Y andL[k+1] erzeugt, die ihrerseits in Einheit 52 zur Gesamtschätzung Y and[k+1] addiert werden. Wie Fig. 5 zu entnehmen ist, erfolgt dann in der ILOT-Einheit 24, in der bevorzugten Variante über eine inverse DFT der "overlap-save"-Art, die Rücktransformation in den Zeitbereich.FIG. 8 shows a preferred expansion variant of the compensator filter 15 f on the hearing aid according to the invention according to FIG. 5. The block signals U [k + 1] to are thereby buffered with delay units of the type, as shown at 56 U [k + 1-L] provided and, based on this, with the aid of partial compensators, the first of which is referred to in FIG. 8 as unit 50, which generates the partial estimates Y and 1 [k + 1] to Y and L [k + 1], which in turn are provided in unit 52 for Overall estimate Y and [k + 1] can be added. As can be seen in FIG. 5, the ILOT unit 24, in the preferred variant via an inverse DFT of the "overlap-save" type, then transforms back into the time domain.

Unter Bezugnahme auf den ersten Teilkompensator entsteht die Teilschatzung Y and1[k+1] am Ausgang der Multiplikationseinheit 64, auf die am Eingang die Blocksignale U[k+1] und das Blockgewicht H and1[k+1] wirken. Die Multiplikation wird dabei für jede Blockstelle nach der Formel Y i,j[k+1] = Uj[k+2-i]Hi,j[k+1] ausgeführt, wobei j die Blockstelle von 0 bis 2N-1 und i die Teilkompensatornummer von 1 bis L bezeichnen.With reference to the first partial compensator, the partial estimate Y and 1 [k + 1] arises at the output of the multiplication unit 64, on which the block signals U [k + 1] and the block weight H and 1 [k + 1] act at the input. The multiplication is for each block position according to the formula Y i, j [k + 1] = U j [k + 2-i] H i, j [k + 1] executed, where j denotes the block position from 0 to 2N-1 and i the partial compensator number from 1 to L.

Das Blockgewicht Hi[k+1] repräsentiert dabei die aktuelle Schätzung im Frequenzbereich für den i-ten Teilbereich der Länge N der zeitdiskreten Impulsantwort h der akustisch-mechanischen Störrückkopplung 11. Die Schätzung Hi[k+1] wird vorgängig der Bildung von Y andi,j[k+1] unter Zuhilfenahme der alten Schätzung Hi[k] aktualisiert. Dazu wirken, wieder unter Bezugnahme auf den Teilkompensator 1, das Blocksignal U[k+1-1] und die Schrittweite µ[k+1-1] auf die Multiplikationseinheit 54, welche ausgangsseitig zusammen mit dem Blocksignal E[k] auf die Multiplikationseinheit 58 geführt wird. Der Ausgang von Einheit 58 wird dann in der Summationseinheit 60 entsprechend der Formel

Figure 00140001
zur Aktualisierung von H1[k+1] verwendet. Hierbei bezeichnet j wieder die Blockstelle und i die Teilkompensatornummer. Der Index (*) steht für konjugiert komplex.The block weight H i [k + 1] represents the current estimate in the frequency range for the i-th subrange of length N of the discrete-time impulse response h of the acoustic-mechanical interference feedback 11. The estimate H i [k + 1] is preceded by the formation of Y and i, j [k + 1] updated using the old estimate H i [k]. The block signal acts for this purpose, again with reference to the partial compensator 1 U [k + 1-1] and the step size µ [k + 1-1] to the multiplication unit 54, which on the output side is led to the multiplication unit 58 together with the block signal E [k]. The output of unit 58 is then in summation unit 60 according to the formula
Figure 00140001
used to update H 1 [k + 1]. Here again j denotes the block location and i the partial compensator number. The index (*) stands for conjugate complex.

Das Arbeiten mit Hilfe von Teilkompensatoren hat den Vorteil, dass die minimale Verzögerung D = N durch Wahl der Teilblocklänge N unabhängig von der tatsächlichen Impulsantwortlänge der Störrückkopplung 11 eingestellt werden kann. Damit ist ein "trade-off" zwischen Verzögerung D und der die Effizienz der Bearbeitung bestimmenden Teilblocklänge N möglich. Weiter lassen sich einzelne Teilbereiche der Impulsantwort h, beispielsweise entsprechend den akustischen Nah- und Fernbereichen, gezielt durch entsprechende Blockgewichte im Frequenzbereich beeinflussen.Working with partial expansion joints has the advantage of minimal delay D = N can be set by selecting the partial block length N independently of the actual impulse response length of the interference feedback 11. A "trade-off" between delay D and the partial block length N which determines the efficiency of the machining is thus possible. Furthermore, individual sub-areas of the impulse response h can be influenced in a targeted manner by corresponding block weights in the frequency range, for example in accordance with the acoustic near and far ranges.

Grundsätzlich kann jedes bekannte Verfahren zur Führung der Schrittweite µ[k] eingesetzt werden.Basically, any known method for guiding the Step size µ [k] can be used.

In Fig. 9 ist nun eine heute bevorzugte Ausbauvariante zur Erzeugung der normalisierten Schrittweite µ[k] gemäss Fig. 8 dargestellt, die zugleich zur Stoppung des Adaptionsvorganges Verwendung findet. Dazu wird beispielsweise, ausgehend vom Blocksignal U[k], gemäss Fig. 8, dieses Blocksignal vor dem Zuführen an die Multiplikationseinheit 54 dazu verwendet, das aktuelle Blocksignal µ[k] zu berechnen, indem das Blocksignal U[k] einer Leistungserfassungseinheit 70 zugeführt wird, welche ihrerseits auf zwei Interpolationsfilter 72 resp. 74 wirkt. Ausgangsseitig steuern diese Interpolationsfilter die Skalierungseinheit 78, welche schlussendlich die für die Normalisierung der Referenzschrittweite µ0 benötigte Skalierungsgrösse S[k] am Eingang der Multiplikationseinheit 80 liefert.FIG. 9 shows a preferred variant today for generating the normalized step size μ [k] according to FIG. 8, which is also used to stop the adaptation process. For this purpose, starting from the block signal U [k], according to FIG. 8, this block signal is used before the supply to the multiplication unit 54 to calculate the current block signal µ [k] by feeding the block signal U [k] to a power acquisition unit 70 is, which in turn on two interpolation filters 72, respectively. 74 acts. On the output side, these interpolation filters control the scaling unit 78, which ultimately supplies the scaling variable S [k] required for the normalization of the reference step size μ 0 at the input of the multiplication unit 80.

Die Interpolationsfilter arbeiten gemäss der Formel

Figure 00150001
und sind mit γ und c parametrisiert. Der Index j bezeichnet, wie hier üblich, die Blockstelle. In der bevorzugten Realisierung wurde γ = 0.8 und c = 1 für das Filter 72 und γ = 0.995 und c = 0.2 für das Filter 74 gewählt.The interpolation filters work according to the formula
Figure 00150001
and are parameterized with γ and c. As is customary here, the index j denotes the block location. In the preferred implementation, γ = 0.8 and c = 1 were chosen for the filter 72 and γ = 0.995 and c = 0.2 for the filter 74.

Wird für den Interpolator 74 γ = 1 gewählt, so entfällt dieser Interpolator, und es verbleibt ein zeitlich konstantes Blocksignal PU min, welches für verschiedene Anwendungen genügen mag und was den Hardware- und Rechenaufwand weiter verringert.If γ = 1 is selected for the interpolator 74, this interpolator is omitted, and there remains a block signal P U min which is constant over time and which may be sufficient for various applications and which further reduces the hardware and computing outlay.

Die Skalierungsgrösse S[k] wird nun einerseits über den Ausgang des Filters 72, in Fig. 9 als Blocksignal PU[k] bezeichnet, zur Normalisierung der Referenzschrittweite µ0 verwendet, anderseits aber auch, über den Ausgang des Filters 74, in Fig. 9 als Blocksignal PU min[k] bezeichnet, zur Einfrierung des Adaptionsvorganges einzelner Frequenzkomponenten bei ungenügender Leistung. Die Skalierungsgrösse S[k] wird dazu gemäss der Formel

Figure 00150002
gebildet, wobei die j wie üblich die Blockstelle bezeichnen.The scaling variable S [k] is now used on the one hand via the output of the filter 72, in FIG. 9 as a block signal P U [k], to normalize the reference step size μ 0 , but on the other hand also via the output of the filter 74 in FIG 9 referred to as block signal P U min [k], for freezing the adaptation process of individual frequency components when the power is insufficient. The scaling variable S [k] is according to the formula
Figure 00150002
formed, the j denoting the block location as usual.

In Fig. 10 ist eine weitere bevorzugte Ausbauvariante dargestellt, die unter Verwendung von Teilkompensatoren gemäss Fig. 8 die Sprachqualität, bei sonst gleichen Parametern, wesentlich verbessert. Dazu wird die Schatzung H andi[k+1] des Teilkompensators i, vorgängig der Multiplikation mit U[k+2-i] in Einheit 64 von Fig. 8, über eine Projektionseinheit 62 geführt. Hierzu wird beispielsweise das Blockgewicht H andi[k+1] einer inversen DFT unterworfen (Einheit 82), anschliessend durch Nullsetzen der Blockstellen mit Index N bis 2N-1 gereinigt (Einheit 84) und schlussendlich wieder in den Frequenzbereich zurücktransformiert (Einheit 86).FIG. 10 shows a further preferred variant which, with the use of partial compensators according to FIG. 8, significantly improves the speech quality, with otherwise the same parameters. For this purpose, the estimate H and i [k + 1] of the partial compensator i, previously the multiplication with U [k + 2-i] in unit 64 of FIG. 8, via a projection unit 62. For this purpose, for example, the block weight H and i [k + 1] is subjected to an inverse DFT (unit 82), then cleaned by zeroing the block locations with index N to 2N-1 (unit 84) and finally transformed back into the frequency range (unit 86) .

Bekanntlich ist der elektrisch-akustische Wandler 9 in dem Sinne nicht linear, als er ab bestimmten Eingangssignalamplituden nicht mehr linear Eingangssignal in Ausgangssignal wandelt. Nebst den dadurch bewirkten akustischen Verzerrungen ist zu berücksichtigen, dass der Signalpfad über Kompensationsfilter 15f möglichst exakt dem Signalpfad über die Funktionsblöcke 7, 9, 11, 1 und 3 nachgebildet sein sollte und, nach den bisherigen Erläuterungen, die erwähnten Nichtlinearitäten am Wandler 9 nicht nachbilden kann. Zudem soll auch im Hörgerät der maximale Ausgangspegel gemäss den individuellen Bedürfnissen des Anwenders eingestellt werden können. Dabei entsteht das Problem, dass der Wandler 9 in seinen nichtlinearen Bereich getrieben wird, selbstverständlich nur, wenn der individuell eingestellte maximale Ausgangspegel den Wandler in den erwähnten Bereich überhaupt aussteuern kann.As is known, the electrical-acoustic converter 9 is not linear in the sense that it no longer converts the input signal into the output signal linearly from certain input signal amplitudes. In addition to the acoustic distortions caused by this, it should be taken into account that the signal path via compensation filter 15 f should be modeled as exactly as possible over the signal path via function blocks 7, 9, 11, 1 and 3 and, according to the previous explanations, the nonlinearities mentioned on converter 9 should not can reproduce. In addition, the maximum output level should also be adjustable in the hearing aid according to the individual needs of the user. The problem arises that the converter 9 is driven into its non-linear range, of course only if the individually set maximum output level can drive the converter in the mentioned range at all.

Aus diesem Grunde wird weiter vorgeschlagen, wie in Fig. 3 gestrichelt dargestellt, bei dieser Ausführungsform des erfindungsgemässen Hörhilfegerätes dem Verstärkungsfilter 5 eine im Zeitbereich arbeitende, vorzugsweise einstellbare Limitereinheit 90 nachzuschalten, welche das Ausgangssignal des Verstärkungsfilters 5 bezüglich Amplitude so beschränkt, dass der Wandler 9 nie in seinen nichtlinearen Bereich getrieben wird und die zudem erlaubt, den maximalen Ausgangsschallpegel am Wandler 9, individuellen Bedürfnissen entsprechend, insbesondere auch tiefer, einzustellen, wie dies mit den Doppelpfeilen angedeutet ist.For this reason, it is further proposed, as dashed lines in FIG. 3 shown, in this embodiment of the invention Hearing aid the gain filter 5 one in Time range working, preferably adjustable limiter unit 90 downstream, which is the output signal of the gain filter 5 limited in amplitude so that the Converter 9 is never driven into its non-linear range and which also allows the maximum output sound level at Converter 9, according to individual needs, in particular also set deeper, like this with the double arrows is indicated.

Bei der Ausführungsvariante gemäss Fig. 4 wird dies dadurch erreicht, dass dem im Frequenzbereich arbeitenden Verstärkungsfilter 5f eine Einheit 90f nachgeschaltet wird, welche im Frequenzbereich die Frequenzanteile des Signalspektrums, ihre gegenseitige Phasenlage berücksichtigend, so limitiert, dass ausgangsseitig der Rückwandlungseinheit 26 und des Digital/Analog-Wandlers 7 ein zeitvariables Signal u(t) entsteht, welches den Wandler 9 nie in den nichtlinearen Uebertragungsbereich treibt, und die zudem die maximale individuelle Aussteuerung einzustellen erlaubt.In the embodiment variant according to FIG. 4, this is achieved in that the amplification filter 5 f operating in the frequency range is followed by a unit 90 f , which limits the frequency components of the signal spectrum, taking into account their mutual phase position, in the frequency range in such a way that the output of the conversion unit 26 and the Digital / analog converter 7 produces a time-variable signal u (t) which never drives the converter 9 into the non-linear transmission range and which also allows the maximum individual modulation to be set.

Dasselbe Vorgehen wird mit der Einheit 90f auch bei der Ausführungsvariante gemäss Fig. 5 realisiert.The same procedure is also implemented with the unit 90 f in the embodiment variant according to FIG. 5.

In Fig. 11 ist eine weitere Ausführungsvariante des erfindungsgemässen Hörhilfegerätes dargestellt, welche der in Fig. 4 dargestellten weitestgehend entspricht, mit dem Unterschied, dass die Rücktransformationseinheit 26 gemäss Fig. 4, nun 26a, unmittelbar ausgangsseitig der Verstärkungsfiltereinheit 5f vorgesehen ist und eingangsseitig des Kompensationsfilters 15f eine LOT-Transformationseinheit 22a bereits besprochener Art angeordnet ist. Obwohl eine solche Ausführungsform auf den ersten Blick, und verglichen mit derjenigen nach Fig. 4, kaum Vorteile zu erbringen scheint, eröffnet sie doch die nachfolgend erläuterte Möglichkeit. FIG. 11 shows a further embodiment variant of the hearing aid according to the invention, which largely corresponds to that shown in FIG. 4, with the difference that the reverse transformation unit 26 according to FIG. 4, now 26a, is provided directly on the output side of the amplification filter unit 5 f and on the input side of the Compensation filter 15 f a LOT transformation unit 22a of the type already discussed is arranged. Although at first glance such an embodiment hardly seems to bring any advantages compared to that according to FIG. 4, it nevertheless opens up the possibility explained below.

Wie aus Fig. 4 ersichtlich, welche, wie vorgängig erläutert, ebenso wie Fig. 5, eine bevorzugte Ausführungsvariante des erfindungsgemässen Höhilfegerätes darstellt, ist dort das Vorsehen einer Limitereinheit nur im Frequenzbereich möglich, weil eine solche Einheit auch im Signalpfad mit dem Kompensationsfilter 15f wirksam sein muss.As can be seen from FIG. 4, which, as explained above, as well as FIG. 5, represents a preferred embodiment variant of the inventive hearing aid, the provision of a limiter unit is only possible in the frequency range because such a unit is also in the signal path with the compensation filter 15 f must be effective.

Wie nun in Fig. 11 bei 90 dargestellt, ermöglicht die hier dargestellte Funktionsblockstruktur das Vorsehen einer im Zeitbereich arbeitenden Limitereinheit 90, welche wesentlich einfacher zu realisieren ist als eine im Frequenzbereich arbeitende.As shown in FIG. 11 at 90, this enables here functional block structure shown the provision of a Time domain working limiter unit 90, which is essential is easier to implement than one operating in the frequency domain.

Dies erlaubt auch eine einfache Erweiterung mit Einheiten zur Kompensation von nichtlinearen Effekten, wie im folgenden beschrieben.This also allows easy expansion with units for Compensation for non-linear effects as described below.

Um eine genügend genaue Identifikation des Wandlers 9 durch das Kompensatorfilter 15f zu gewährleisten, wird vorerst dessen Aussteuerung beschränkt, um zu verhindern, dass er im nichtlinearen Bereich betrieben wird. Dies hat natürlich eine entsprechende Reduktion der maximal möglichen Signalverstärkung des erfindungsgemässen Hörhilfegerätes von Wandler 1 nach Wandler 9 zur Folge.In order to ensure a sufficiently accurate identification of the converter 9 by the compensator filter 15 f , its modulation is initially limited in order to prevent it from being operated in the non-linear range. This naturally results in a corresponding reduction in the maximum possible signal amplification of the hearing aid according to the invention from transducer 1 to transducer 9.

In Fig. 12 ist eine bevorzugte Ausführungsvariante der dem Kompensationsfilter 15f vor- bzw. der dem Verstärkungsfilter 5f nachgelagerten Signalverarbeitung am Gerät nach Fig. 11 dargestellt. Gemäss Fig. 12 wird grundsätzlich im Signalpfad mit dem Kompensationsfilter 15f der elektrisch-akustische Wandler 9 mit seiner Nichtlinearität nachgebildet, d.h. modelliert. Dies wird durch eine Modellierungseinheit 92, der Transformationseinheit 22a gemäss Fig. 11 vorgeschaltet und mithin im Zeitbereich arbeitend, realisiert und/oder durch eine Modellierungseinheit 92f, der Transformationseinheit 22a nachgeschaltet und mithin im Frequenzbereich arbeitend.FIG. 12 shows a preferred embodiment variant of the signal processing on the device according to FIG. 11 upstream of the compensation filter 15 f or downstream of the amplification filter 5 f . According to FIG. 12, the non-linearity of the electrical-acoustic transducer 9 is basically simulated, ie modeled, in the signal path with the compensation filter 15 f . This is implemented by a modeling unit 92, upstream of the transformation unit 22a according to FIG. 11 and thus operating in the time domain, and / or by a modeling unit 92 f , downstream of the transformation unit 22a and therefore operating in the frequency domain.

Durch dieses Vorgehen wird erreicht, dass, je nach Güte der Modelliereinheit 92, die Limite der Einheit 90 höher angesetzt und damit das Ausgangssignal um bis zu 6dB, verglichen mit der Ausführungsvariante in Fig. 11, erhöht werden kann. Gegebenenfalls kann die Limiterfunktion der Einheit 90 auch stillgesetzt werden.This procedure ensures that, depending on the quality of the modeling unit 92, the limits of unit 90 are set higher and thus the output signal by up to 6dB compared to the Design variant in Fig. 11, can be increased. Possibly can also stop the limiter function of the unit 90 will.

Die Modelliereinheit 92 kann beispielsweise, wie in R. Isermann, "Identifikation dynamischer Systeme", Springer-Verlag, 2:238, 1988, vorgeschlagen, als vereinfachtes Wiener-Modell realisiert werden.The modeling unit 92 can, for example, as in R. Isermann, "Identification of dynamic systems", Springer-Verlag, 2: 238, 1988, proposed as a simplified Wiener model will be realized.

Die Transformation in den Zeitbereich zwischen Verstärkungsfilter 5f und Kompensatorfilter 15f erlaubt auf die gleiche vorbeschriebene Art auch das Hinzufügen eines nichtlinearen Korrekturfilters in den Signalpfad mit dem Verstärkungsfilter 5f. Dies wird, wie aus Fig. 12 ersichtlich, durch eine Modellierungseinheit 94 realisiert, der Transformationseinheit 26a nachgeschaltet und mithin im Zeitbereich arbeitend, und/oder durch eine Modellierungseinheit 94f, der Transformationseinheit 26a vorgeschaltet und mithin im Frequenzbereich arbeitend.The transformation into the time domain between the gain filter 5 f and the compensator filter 15 f also allows the addition of a nonlinear correction filter in the signal path with the gain filter 5 f in the same manner described above. As can be seen from FIG. 12, this is implemented by a modeling unit 94, connected downstream of the transformation unit 26a and thus operating in the time domain, and / or by a modeling unit 94 f , connected upstream of the transformation unit 26a and therefore operating in the frequency domain.

Selbstverständlich ist es möglich, in den bevorzugten Realisierungsvarianten gemäss Fig. 11 und 12 die LOT-Einheiten 20 und 28 durch eine einzige LOT-Transformationseinheit 30 zu ersetzen, wie in Fig. 5 und 6 gezeigt.Of course, it is possible in the preferred implementation variants 11 and 12, the LOT units 20 and 28 by a single LOT transformation unit 30 replace as shown in Figs. 5 and 6.

In Fig. 13 ist die Realisation eines erfindungsgemässen Lautsprechermodells im Zeitbereich dargestellt. Beim erfindungsgemässen Hörhilfegerät wird es eingesetzt, gemäss Fig. 3 und 11 an der Stelle des Blockes 90 und gemäss Fig. 12 anstelle der Blöcke 92 bzw. 90 und 94.13 shows the implementation of a method according to the invention Speaker model shown in the time domain. In the inventive Hearing aid is used, according to Fig. 3 and 11 at the location of block 90 and according to FIG. 12 instead of blocks 92 or 90 and 94.

Es umfasst einen Vorfilter 100 mit der Uebertragungsfunktion F1(ω), im wesentlichen mit Tiefpasscharakteristik. Die Eckfrequenz ω1 in dem im Block 100 qualitativ dargestellten Bode-Diagramm der Filtercharakteristik liegt bei ca. 0,8kHz, die Verstärkung |F1| bei der Eckfrequenz ω1 ist ca. 0dB. Ebenso ist die Asymptotensteigung S1 ungefähr 0dB/DK.It comprises a pre-filter 100 with the transfer function F 1 (ω), essentially with a low-pass characteristic. The cutoff frequency ω 1 in the Bode diagram of the filter characteristic, which is shown qualitatively in block 100, is approximately 0.8 kHz, the gain | F 1 | at the corner frequency ω 1 is approx. 0dB. Likewise, the asymptote slope S 1 is approximately 0dB / DK.

Die Identifikationsgrössen, nämlich Eckfrequenz ω1 sowie die Asymptotensteigungen S1 und S2, wie auch die Verstärkung, beispielsweise bei der Eckfrequenz ω1, werden durch Identifikation des zu modellierenden Lautsprechers bzw. Wandlers 9 identifiziert.The identification variables, namely corner frequency ω 1 and the asymptotic slopes S 1 and S 2 , as well as the amplification, for example at the corner frequency ω 1 , are identified by identifying the loudspeaker or transducer 9 to be modeled.

Dem Vorfilter 100 nachgeschaltet, ist eine lineare Verstärkereinheit 102 vorgesehen, woran der Verstärkungsfaktor K eingestellt wird. Der linearen Verstärkungseinheit 102 nachgeschaltet, ist eine nichtlineare Verstärkungseinheit 104 vorgesehen. Die Kennlinie der nichtlinearen Verstärkungsfunktion Y= Q(x) ergibt sich zu: y = x + ax2 + bx3 + cx4 + dx5. A linear amplifier unit 102 is provided downstream of the prefilter 100, and the gain factor K is set to this. A non-linear amplification unit 104 is provided downstream of the linear amplification unit 102. The characteristic of the non-linear gain function Y = Q (x) results in: y = x + ax 2nd + bx 3rd + cx 4th + dx 5 .

Für kleine Eingangssignale ist die Verstärkung der nichtlinearen Verstärkungseinheit 104 eins, womit die Verstärkungskennlinie um den Ursprung die Steigung eins aufweist. Für höhere Eingangssignalhube x weist die nichtlineare Verstärkungskennlinie, wie vom Lautsprecher bzw. Wandler 9 bekannt, Sättigungsverhalten auf.For small input signals, the gain is nonlinear Gain unit 104 one, with which the gain characteristic has slope one around the origin. For higher ones Input signal deviation x shows the nonlinear gain characteristic, as known from the loudspeaker or converter 9, saturation behavior on.

Die Koeffizienten a, b, c, d und die Verstärkung K werden wiederum anhand des tatsächlich zu modellierenden Lautsprechers bzw. Wandlers 9 identifiziert. The coefficients a, b, c, d and the gain K are again based on the actual speaker to be modeled or converter 9 identified.

Der nichtlinearen Verstärkungseinheit 104 nachgeschaltet, ist wiederum eine lineare Verstärkungseinheit 106 vorgesehen, woran die Verstärkung K des linearen Verstärkungsgliedes 102 kompensiert - K-1 - wird. Ihr nachgeschaltet, ist eine Filtereinheit 108 vorgesehen, im wesentlichen mit Hochpasscharakteristik, welche, wie ersichtlich, im wesentlichen den Frequenzgang des Vorfilters 100 wiederum kompensiert.Downstream of the non-linear amplification unit 104, a linear amplification unit 106 is again provided, by means of which the amplification K of the linear amplification element 102 is compensated for - K -1 -. A filter unit 108 is provided downstream of it, essentially with a high-pass characteristic, which, as can be seen, essentially compensates for the frequency response of the pre-filter 100.

Damit besteht die Lautsprechermodellierungseinheit, wie sie in Fig. 13 dargestellt ist, im wesentlichen aus einem linearen Verstärkerteil 102, 106, 100 und 108 sowie einer nichtlinearen Verstärkungseinheit 104.This is the loudspeaker modeling unit as in Fig. 13 is shown, essentially from a linear Amplifier part 102, 106, 100 and 108 and a non-linear Reinforcement unit 104.

Sättigungs- oder Begrenzungserscheinungen können nebst den bereits erwähnten zwei Ursachen, nämlich willentliche Begrenzung des maximalen Ausgangssignalpegels des Wandlers 9 gemäss individuellen Bedürfnissen oder Aussteuerung des Wandlers 9 in seinen wandlerspezifischen, nichtlinearen Sättigungsbereich, noch auf einer weiteren Ursache basieren, nämlich auf dem Abfall der Batteriespannung, welche das erfindungsgemässe Gerät speist. Die Alterung der Batterie, welche das Gerät speist, bewirkt insbesondere am D/A-Wandler 7 eine Abnahme der Signalverstärkung und eine Verringerung der Aussteuerungsgrenze, d.h. der maximale analoge Aussteuerungsbereich wird mit abnehmender Batteriespannung kleiner.Signs of saturation or limitation can besides the Two causes already mentioned, namely deliberate limitation the maximum output signal level of the converter 9 according to individual needs or modulation of the converter 9 in its transducer-specific, non-linear saturation range, based on another cause, namely waste the battery voltage, which the device according to the invention feeds. The aging of the battery that powers the device causes a decrease in signal amplification in particular at the D / A converter 7 and a reduction in the headline limit, i.e. the maximum analog modulation range decreases with decreasing Battery voltage lower.

Zudem erscheint üblicherweise die Ausgangsimpedanz der Batterie in Serie zur Impedanz des elektrisch-akustischen Wandlers 9. Damit ändert sich gegen Ende der Batterielebensdauer die Batterieausgangsimpedanz und damit das letztere mitumfassende, dem D/A-Wandler 7 nachgeschaltete Ersatzbild, m.a.W., es ändern die, wie erläutert wurde, zu modellierenden, ausgangsseitig des Wandlers 7 erscheinenden Nichtlinearitäten. In addition, the battery's output impedance usually appears in series with the impedance of the electrical-acoustic converter 9. This changes the towards the end of the battery life Battery output impedance and thus the latter, the substitute image downstream of the D / A converter 7, m.W., change it the one to be modeled, as explained, on the output side of the converter 7 appearing non-linearities.

Um nun eine bleibend hohe Rückkopplungsunterdrückung und ihre Stabilität, wie erfindungsgemäss angestrebt, zu erreichen, wird weiter vorgeschlagen, gemäss den Fig. 3, 4 oder 5, die Limitereinheit 90 im Zeitbereich oder 90f im Frequenzbereich mittels der momentanen Batteriespannung und/oder der momentanen Batterieimpedanz bezüglich ihrer Begrenzungswirkung zu steuern.3, 4 or 5, the limiter unit 90 in the time domain or 90 f in the frequency domain by means of the instantaneous battery voltage and / or the instantaneous one To control battery impedance with regard to its limiting effect.

Ausgehend von der Ausführungsvariante gemäss Figs. 11 und 12, ist dieses Vorgehen schematisch in Fig. 14 dargestellt. Am Ausgang der Batterieeinheit 120, welche, wie mit "block powering" schematisch angedeutet, die verschiedenen aktiven Komponenten in den Blöcken des erfindungsgemässen Hörgerätes speist, wird an einer Messeinheit 122 die momentane Batteriespannung UB und/oder die momentane Impedanz Z B gemessen, resultierend in entsprechenden Messsignalen e(UB) bzw. e(Z B). Diese Messsignale steuern die Limitereinheit 90, analog im Frequenzbereich die Limitereinheit 90f gemäss den Fig. 4, 5, 11 bzw. 12, 14 und/oder die Modelleinheiten 92, 92f bzw. 94, 94f von Fig. 12, 13, 14. Selbstverständlich werden dabei bevorzugterweise die Messsignale e nach Digitalisierung eingesetzt, wozu die Messeinheit 122 ausgangsseitig mit einem A/D-Wandler (nicht dargestellt) versehen ist.Starting from the variant according to Figs. 11 and 12, this procedure is shown schematically in FIG. 14. At the output of the battery unit 120, which, as indicated schematically with "block powering", feeds the various active components in the blocks of the hearing aid according to the invention, the current battery voltage U B and / or the current impedance is measured on a measuring unit 122 Z. B measured, resulting in corresponding measurement signals e (U B ) or e ( Z. B ). These measurement signals control the limiter unit 90, analogously in the frequency range the limiter unit 90 f according to FIGS. 4, 5, 11 or 12, 14 and / or the model units 92, 92 f or 94, 94 f from FIGS. 12, 13, 14. Of course, the measurement signals e are preferably used after digitization, for which purpose the measurement unit 122 is provided on the output side with an A / D converter (not shown).

Dadurch werden insbesondere die Limitergrenzen und/oder die Modellparameter durch die momentane Batterieausgangsspannung bzw. deren momentane Impedanz in steuerndem Sinne nachgeführt.As a result, the limiter limits and / or the Model parameters through the current battery output voltage or track their instantaneous impedance in a controlling sense.

Die Modellparameter an den Modelleinheiten 92 bzw. 92f, 94 bzw. 94f werden in Funktion der erwähnten Messgrössen an der Batterie 120 rechnerisch oder über in Tabellen abgespeicherte, durch die momentanen Messgrössen abrufbare und aufschaltbare Werte modifiziert. The model parameters on the model units 92 and 92 f , 94 and 94 f are modified in the function of the above-mentioned measured variables on the battery 120 or by means of values stored in tables that can be called up and activated by the current measured variables.

Wie in Fig. 14 weiter dargestellt, wird, in Funktion der erwähnten Messsignale e, eine Verstärkungseinbusse am D/A-Wandler 7 aufgrund einer Batteriespannungsabnahme kompensiert: Nimmt die Batteriespannung ab und damit die Verstärkung am Wandler 7, so wird mit dem erwähnten Messsignal e am Block 7 die Verstärkung, kompensatorisch, entsprechend erhöht. Der Batteriespannungsabfall wirkt gleichzeitig wie eine Signalbegrenzung durch einen Limiter und wird am besten und bevorzugterweise nachgebildet durch einen Batterieausgangsspannungs-gesteuerten Limiterblock 90b vor dem Lautsprechermodell 92 bzw. 92f gemäss Fig. 14.As further shown in FIG. 14, as a function of the measurement signals e mentioned, a gain loss on the D / A converter 7 is compensated for due to a decrease in the battery voltage: If the battery voltage decreases and thus the gain on the converter 7, the measurement signal e at block 7 the gain, compensatory, increased accordingly. The battery voltage drop acts simultaneously as a signal limitation by a limiter and is best and preferably simulated by a battery output voltage-controlled limiter block 90 b in front of the loudspeaker model 92 or 92 f according to FIG. 14.

Bei Vorsehen des Limiterblockes 90b gemäss Fig. 14 können die Blöcke 90 entfallen, ebenso können bei Vorsehen der Blöcke 92 bzw. 92f die Blöcke 94 bzw. 94f entfallen, und es wird bei dieser Realisation mit relativ geringem Aufwand eine batteriespannungsunabhängige, stabile Rückkopplungsunterdrückung erfindungsgemäss erreicht.With the provision of the Limiterblockes 90 according to FIG b. 14, the blocks 90 can be omitted, as may 92 or 92 f blocks 94 and 94 f omitted when provision of the blocks, and there is a relatively low cost a battery voltage-independent, in this realization, stable Feedback suppression achieved according to the invention.

Anderseits kann die Funktion des erwähnten Blockes 90b vollständig durch Vorsehen des Batterieausgangsspannungs-gesteuerten Blockes 90 bzw. 90f gemäss den Fig. 4 bzw. 5 übernommen werden.On the other hand, the function of the mentioned block 90 b can be taken over completely by providing the battery output voltage-controlled block 90 or 90 f according to FIGS. 4 and 5.

Berücksichtigung der durch Batteriespannungsabfall bewirkten Signallimitierung mittels der gesteuerten Limiterblöcke 90, 90f bzw. 90b ist von grosser Wichtigkeit, um die Stabilität des Hörgerätes bei in weiten Grenzen variierenden Batteriespannungen sicherzustellen.Taking into account the signal limitation caused by battery voltage drop by means of the controlled limiter blocks 90, 90 f and 90 b is of great importance in order to ensure the stability of the hearing aid with battery voltages which vary within wide limits.

Um die Stabilität der Feedback-Unterdrückung bzw. -Kompensation auch in sehr lauter Umgebung zu gewährleisten, wo, z.B. gemäss Fig. 11, der akustisch-elektrische Wandler 1 übersteuert wird und damit nichtlinear wird, wird, falls erforderlich, ein nichtlineares Modell auch des akustisch-elektrischen Wandlers 1, gegebenenfalls auch das Verhalten des A/D-Wandlers 3 berücksichtigend, zwischen den Ausgang des Kompensatorfilters 15 (Fig. 1) bzw. 15f (z.B. Fig. 11) und den Subtraktionseingang der Differenzeinheit 13 geschaltet, je nach Anordnung im Frequenz- oder Zeitbereich arbeitend, wie dies bei 91 bzw. 91f in Fig. 11 eingetragen ist. Für das Modell 91, 91f gelten die Ausführungen analog zu denen, die bezüglich des Modells 92, 92f des elektrisch-akustischen Wandlers gemacht wurden.In order to ensure the stability of the feedback suppression or compensation even in a very noisy environment, where, for example according to FIG. 11, the acoustic-electrical converter 1 is overdriven and thus becomes non-linear, a non-linear model of the acoustic-electrical converter 1, possibly also taking into account the behavior of the A / D converter 3, switched between the output of the compensator filter 15 (FIG. 1) or 15 f (for example FIG. 11) and the subtraction input of the differential unit 13, depending on Arrangement operating in the frequency or time domain, as entered at 91 or 91 f in FIG. 11. For the model 91, 91 f , the explanations apply analogously to those which were made with regard to the model 92, 92 f of the electrical-acoustic transducer.

Eine weitere Verbesserung der Wirkung der Kompensationsfilterstrecke 15f kann dadurch erreicht werden, dass, gegebenenfalls bedingt, Rauschen r im Zeitbereich, wie in Fig. 15 schematisch dargestellt, ausgangsseitig des Verstärkungsfilters 5f überlagert wird.A further improvement in the effect of the compensation filter section 15 f can be achieved by superimposing, if necessary, noise r in the time domain, as shown schematically in FIG. 15, on the output side of the gain filter 5 f .

Hierzu wird, wie in Fig. 15 dargestellt, an einem Spektrumdetektor 125 das momentane Signalspektrum ausgangsseitig des VerVerstärkungsfilters 5f untersucht, beispielsweise daraufhin, wie sehr einzelne Spektrallinien leistungsmässig überragen, d.h. wie sehr der Spektrumsverlauf spitzenbehaftet ist, m.a.W., generell z.B. die Energiedichteverteilung des Spektrums. Ueberschreitet die an der Einheit 125 überwachte Spektrumcharakteristik einen vorgegebenen Grenzverlauf, wie z.B. eine vorgegebene Energieverteilung von dominanten Spektrallinien zu übrigen Spektrallinien, so wird vorzugsweise über einen Rauschgenerator 127 an der Ueberlagerungseinheit 129 digitales Rauschen r eingekoppelt. Um dabei die Hörbarkeit dieses Rauschens zu vermindern, kann bevorzugterweise, wie be 133 in Fig. 16 dargestellt, eine Filtereinheit dem Rauschgenerator 127 nachgeschaltet sein, welche das Rauschen gesteuert so formt, dass es genügend schwach ist, verglichen mit dem am Wandler 9 übertragenen momentanen Nutzsignal, beispielsweise um 40dB schwächer ist.For this purpose, as shown in FIG. 15, the instantaneous signal spectrum on the output side of the amplification filter 5 f is examined on a spectrum detector 125, for example on how very individual spectral lines are superior in terms of performance, i.e. how much the spectrum profile is peaked, maW, generally, for example, the energy density distribution of the spectrum . If the spectrum characteristic monitored at the unit 125 exceeds a predetermined limit profile, such as a predetermined energy distribution from dominant spectral lines to other spectral lines, then digital noise r is preferably coupled into the superimposition unit 129 via a noise generator 127. In order to reduce the audibility of this noise, a filter unit, as shown at 133 in FIG. 16, can preferably be connected downstream of the noise generator 127, which filter controls the noise in such a way that it is sufficiently weak compared to the instantaneous signal transmitted at the converter 9 Useful signal, for example by 40dB is weaker.

Wie im weiteren bei 131 gestrichelt in Fig. 15 dargestellt, kann das Rauschen auch gegebenenfalls im Frequenzbereich eingekoppelt werden. Wird das Rauschen im Zeitbereich eingekoppelt, so besteht der Rauschgenerator 127 beispielsweise aus einem BPRN, im Frequenzbereich gemäss 127a in Fig. 17 beispielsweise aus einer Tabelle mit Rauschspektren oder einem Rauschalgorithmus.As further shown in dashed lines at 131 in FIG. 15, the noise can also be coupled in the frequency domain if necessary will. If the noise is injected in the time domain, for example, the noise generator 127 consists of a BPRN, in the frequency range according to 127a in FIG. 17, for example from a table with noise spectra or a Noise algorithm.

In Fig. 16 ist, ausgehend von der Darstellung von Fig. 15, eine bevorzugte Realisationsform der Rauschaufschaltung im Zeitbereich dargestellt. Hierzu wird das Ausgangssignal des Verstärkungsfilters 5f an einer Spektrumform-Detektoreinheit 125a untersucht, und wenn die Spektrumform eine vorgegebene Grenzcharakteristik verlässt, wird das über den linearen Filter 133 geführte Ausgangssignal des Rauschgenerators 127, wie mit der Aufschalteinheit 135 schematisch dargestellt, dem Signal u(nT) gemäss Fig. 15 überlagert, vorzugsweise eingangsseitig der Limitereinheit 90. Wie mit der Steuerverbindung sc dargestellt, wird bevorzugterweise das Uebertragungsverhalten des Filters 133 vom momentanen Spektrum gesteuert.16, starting from the representation of FIG. 15, shows a preferred form of implementation of the noise lock in the time domain. For this purpose, the output signal of the amplification filter 5 f is examined on a spectrum shape detector unit 125a, and when the spectrum shape leaves a predetermined limit characteristic, the output signal of the noise generator 127, which is passed through the linear filter 133, is represented by the signal u ( 15, preferably superimposed on the input side of the limiter unit 90. As shown with the control connection sc, the transmission behavior of the filter 133 is preferably controlled by the current spectrum.

In Fig. 17 ist eine bevorzugte Ausführungsvariante der Rauschaufschaltung im Frequenzbereich gemäss der gestrichelten Ausführungsvariante mit dem Block 131 von Fig. 15 dargestellt. Das Spektrum ausgangsseitig des Verstärkungsfilters 5f wird an einer Spektrumform-Detektoreinheit 125b, analog zur Einheit 125a von Fig. 16, untersucht. Das Ausgangssignal eines Rauschgenerators 127a, worin z.B. Rauschspektren in Tabellen abgespeichert und abrufbar sind, wird über ein Formungsfilter 137 dem Spektrum ausgangsseitig des Verstärkungsfilters 5f dann überlagert, wie schematisch mit dem Schalter 135a dargestellt, wenn die Spektrumform-Detektoreinheit 125b eine momentane Spektrumsform detektiert, welche das erwähnte Rauschaufschalten erforderlich macht. Die Ueberlagerung des Rauschens im Frequenzbereich erfolgt an einer Additionseinheit 129a.FIG. 17 shows a preferred embodiment variant of the noise lock in the frequency range according to the dashed embodiment variant with block 131 of FIG. 15. The spectrum on the output side of the amplification filter 5 f is examined on a spectrum shape detector unit 125 b , analogously to the unit 125 a of FIG. 16. The output signal of a noise generator 127a, which, for example, noise spectra stored in tables and are available is, the output side of the amplifying filter 5 f then layered over a shaping filter 137 of the spectrum, as shown schematically by the switch 135a, when the spectrum shape detecting unit 125 b detects a current spectrum shape , which necessitates the noise switching mentioned. The noise in the frequency range is superimposed on an addition unit 129a.

Das Formungsfilter 137 ist wiederum durch das momentane Spektrum, z.B. ausgangsseitig des Verstärkungsfilters 5f, gesteuert.The shaping filter 137 is in turn controlled by the current spectrum, for example on the output side of the gain filter 5 f .

Claims (34)

  1. Hearing aid having an acoustic/electric transducer (1) with an output-side A/D converter (3), and an electric/acoustic transducer (9) with an input-side D/A converter (7), an amplifying filter section (5) between the A/D and D/A converters (3, 7) and an adaptive compensator filter (15f) whose signal input is operationally connected to the D/A converter input and whose signal output is operationally connected to an input of a subtraction unit (13), the second input of the subtraction unit (13) being operationally connected to the output of the A/D converter (3), while its output acts on an adaptation input (Af) of the compensator filter (15f) and on the input of the amplifying filter section (5f), it being the case, furthermore, that the signals fed to the signal input (Ef) and adaptation input (Af) of the compensator filter (15f) are transformed from the time domain into the frequency domain at at least one transformation unit (20, 28) which carries out fast orthogonal transformation, characterized in that the at least one transformation unit (22, 20; 20, 28) is arranged on the output side of the subtraction unit (13), and an inverse transformation unit (24) corresponding to the transformation unit acts between the output of the compensator filter (15f) and the assigned input of the subtraction unit (13).
  2. Aid according to Claim 1, characterized in that one transformation unit (22, 20) each is connected upstream of the signal input (Ef) and of the adaptation input (Af) of the compensator filter (15f).
  3. Aid according to Claim 1, characterized in that one transformation unit (20, 28) each is connected upstream of the adaptation input (Af) of the compensator filter (15f) and of the input of the amplifying filter (5f), and an inverse transformation unit (26) is connected upstream of the input of the D/A converter (7).
  4. Aid according to Claim 1, characterized in that a common transformation unit (30) is connected upstream jointly of the adaptation input (Af) of the compensator filter (15f) and of the input of the amplifying filter section (5f).
  5. Aid according to one of Claims 1 to 4, characterized in that a transformation unit (20, 28; 30; 30a, 32, 34) connected upstream of the input of the amplifying filter (5f), an inverse transformation unit connected downstream of the input of the compensator filter (15f), and an inverse transformation unit connected upstream (26) of the D/A converter operate using the overlap-save technique.
  6. Aid according to one of Claims 1 to 5, characterized in that a transformation unit (30; 30a) connected upstream of the adaptation input (Af) of the compensator filter (15f) operates using the overlap-add technique.
  7. Aid according to one of Claims 1 to 6, characterized in that connected downstream of the output of the subtraction unit (13) is a transformation unit (30a) which operates using the overlap-add technique, and its output acts on the adaptation input (Af) of the compensator filter (15f) and is fed to a block storage arrangement (32), in which successive mutually succeeding signal blocks formed using the overlap-add technique are stored, mutually assigned memory locations for mutually assigned block locations being added with the correct sign at an addition unit (34) in such a way that the output block of the addition unit represents a block in the overlap-save technique, and the output of the addition unit (34) is fed to the input of the amplifying filter section (5f).
  8. Aid according to one of Claims 1 to 7, characterized in that the amplifying filter section (5f) comprises an amplifying filter (40) and a delay unit (42) connected downstream of the latter.
  9. Aid according to one of Claims 7 or 8, characterized in that the compensator filter (15f) comprises:
    delay stages (56) connected in series downstream of the input (Ef) of the compensator filter,
    a number 1 ≤ i ≤ L of component compensators (50), where component estimation signals Y i[k+1] for 1 ≤ i ≤ L are generated, k denoting the block number, counted for the time domain/frequency domain transformation on the output side of the subtraction unit (13),
    an addition unit (52), where the component estimation signals Y i[k+1] of all 1 ≤ i ≤ L component compensators (50) are added and whose output forms the output of the compensator filter (15f).
  10. Aid according to Claim 9, characterized in that each component compensator (50) comprises:
    a component compensator input connected to the input (Ef) of the compensator filter (15f) via a number of delay stages (56), the number of delay stages corresponding to the number of component compensators connected upstream of a component compensator, each delay stage (56) connecting the input and the output of a component compensator (50),
    a first multiplication stage (54) operationally connected to the output of the component compensator,
    connected downstream of the output of the first multiplication stage (54), an input of a second multiplication stage (58), whose second input is operationally connected to the adaptation input (Af),
    the output of the second multiplication stage (58) acting via an accumulation unit (60) on one input of a third multiplication stage (64), whose second input is operationally connected to the input of the component compensator (50) and whose output acts on the addition unit (52).
  11. Aid according to one of Claims 1 to 10, characterized in that connected upstream of the input of the amplifying filter stage is a transformation unit whose output signal, in addition to acting on the amplifying filter section, acts on a power-detection unit (70) whose output signal controls the effectiveness of a signal at the adaptation input whenever the energy of the signal at the output of the transformation unit exceeds a given threshold value.
  12. Aid according to Claim 11, characterized in that acting on the second input of the first multiplication stage (54) is the output of a fourth multiplication unit (80), whose one input is fed a signal corresponding to a reference step size (µ0), and whose second input is fed the output of a scaling unit (78) to which the outputs of two interpolation filters (72, 74) are fed, to both of which the output signal of the amplifying filter section is applied via the power-detection unit (70).
  13. Aid according to Claim 12, characterized in that instead of one of the interpolation filters (74) a temporally constant signal is fed to the scaling unit (78) (γ = 1).
  14. Aid according to one of Claims 12 or 13, characterized in that an inverse transformation unit (82), a zeroing unit (84) and a transformation unit (86) are connected between the output of the accumulation unit (60) and the input of the third multiplication stage (64).
  15. Aid according to one of Claims 1 to 14, characterized in that an amplitude-limiting unit (90, 90f) is connected upstream of the electric/acoustic (el/ak) transducer (9).
  16. Aid according to one of Claims 3 to 14, characterized in that a transformation unit (22a) is connected upstream of the input of the compensation filter (15f), and an inverse transformation unit (26a) as well as an amplitude-limiting unit (90) are connected downstream of the output of the amplifying filter section (5f).
  17. Aid according to one of Claims 1 to 16, characterized in that at least one unit (91, 91f, 92, 92f), which operates in the frequency and/or time domain and models the electric/acoustic transducer (9) and/or the acoustic/electric transducer (1), is connected upstream and/or downstream of the compensation filter (15f).
  18. Aid according to one of Claims 3 or 4, characterized in that a transformation unit (22a) is connected upstream of the compensation filter (15f), and an inverse transformation unit (26a) is connected downstream of the amplifying filter section (5f), and a unit (92) modelling the electric/acoustic transducer (9) and/or the acoustic/electric transducer (1) in the time domain is connected upstream of the transformation unit (22a) connected upstream of the compensation filter (15f), and/or a unit (92f) modelling the electric/acoustic transducer (9) and/or the acoustic/electric transducer (1) in the frequency domain is connected downstream of the transformation unit (22a).
  19. Aid according to one of Claims 1 to 18, characterized in that one unit (92; 94) each which preferably models the electric/acoustic transducer (9) and/or the acoustic/electric transducer (1) in the time domain is provided, connected upstream of the compensation filter (15f) and downstream of the amplifying filter (5f).
  20. Aid according to one of Claims 1 to 19, characterized in that it comprises at least one limiter unit (90, 90f, 90b) operating in the time domain or frequency domain, and is fed electrically by a battery, and in that a measuring device whose output controls the limiter unit is further provided for detecting the ACTUAL battery state (122).
  21. Aid according to one of Claims 1 to 20, characterized in that the D/A converter has a gain control input, the aid is fed by battery, and a measuring device (122) for the ACTUAL state of the feed battery (120) is provided whose output is led to the gain control input of the D/A converter.
  22. Aid according to one of Claims 1 to 21, characterized in that it comprises at least one unit (91, 91f, 92, 92f, 94, 94f) preferably modelling the electric/acoustic transducer (9) and/or the acoustic/electric transducer (1) in the time domain, is fed by battery, and comprises a measuring device (122) for the ACTUAL state of the battery (120) whose output is led to parameter control inputs on the at least one modelling unit.
  23. Aid according to one of Claims 1 to 22, characterized in that, preferably in the time domain, the compensation filter (15f) is fed (129, 135a) a noise signal (r) on the input side, preferably at least from time to time.
  24. Aid according to Claim 23, characterized in that the signal is fed on the output side of the amplifying filter to a detection unit (125, 125a, 125b), where the instantaneous form of its spectrum is examined as to whether it fulfils a prescribed condition or not, and in that the output signal of the detection unit controls the connection (135, 135a) of the noise signal.
  25. Aid according to Claim 23, characterized in that the noise signal is fed via a shaping filter which is controlled by the instantaneous spectrum of the output signal of the subtraction unit.
  26. Aid according to one of Claims 1 to 22, characterized in that provided in the frequency domain is a noise generator (127a) whose output signal is injected in a superimposed fashion on the output side of the amplifying filter section (5f).
  27. Aid according to Claim 26, characterized in that the output of the noise generator (127a) is led via a shaping filter (137) which is fed, as control signal for its shaping performance, the instantaneous spectrum of a signal on the output side of the subtraction unit (13).
  28. Aid according to one of Claims 1 to 27, characterized in that, at least from time to time, a noise signal is superimposed on the signal transmitted electrically thereto, via a linear filter (133) whose response characteristic is controlled by the instantaneous spectrum of the electrically transmitted signal.
  29. Aid according to one of Claims 1 to 28, characterized in that a unit (91, 91f) modelling the response characteristic of the acoustic/electric transducer (1) of the aid is provided in a compensation branch.
  30. Aid according to one of Claims 1 to 29, characterized in that an electric transmission unit is provided which simulates the response characteristic of the electric/acoustic transducer and comprises a linear transmission component (100, 102, 106, 108) and a nonlinear transmission component (104).
  31. Aid according to Claim 30, characterized in that the linear transmission component comprises linear amplifiers as well as filters.
  32. Aid according to Claim 31, characterized in that the linear transmission component comprises an input-side ante-filter which essentially has a low-pass characteristic and downstream of which the nonlinear transmission component (104) is connected, a compensator filter unit (108) having a frequency response which is essentially inverse to the frequency response of the ante-filter being connected downstream of the latter.
  33. Aid according to Claim 32, characterized in that a linear amplifying element (102) is connected upstream of the nonlinear transmission unit (104), and a linear amplifying compensation element (106) which compensates the gain of the linear amplifying element is connected downstream of said nonlinear transmission unit (104).
  34. Aid according to Claim 31, characterized in that the nonlinear unit has a response characteristic with saturation performance.
EP94117510A 1993-11-10 1994-11-07 Hearing aid with cancellation of acoustic feedback Expired - Lifetime EP0656737B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP94117510A EP0656737B1 (en) 1993-11-10 1994-11-07 Hearing aid with cancellation of acoustic feedback

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP93118186 1993-11-10
EP19930118186 EP0585976A3 (en) 1993-11-10 1993-11-10 Hearing aid with cancellation of acoustic feedback
EP94117510A EP0656737B1 (en) 1993-11-10 1994-11-07 Hearing aid with cancellation of acoustic feedback

Publications (2)

Publication Number Publication Date
EP0656737A1 EP0656737A1 (en) 1995-06-07
EP0656737B1 true EP0656737B1 (en) 1998-01-21

Family

ID=8213409

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19930118186 Withdrawn EP0585976A3 (en) 1993-11-10 1993-11-10 Hearing aid with cancellation of acoustic feedback
EP94117510A Expired - Lifetime EP0656737B1 (en) 1993-11-10 1994-11-07 Hearing aid with cancellation of acoustic feedback

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP19930118186 Withdrawn EP0585976A3 (en) 1993-11-10 1993-11-10 Hearing aid with cancellation of acoustic feedback

Country Status (5)

Country Link
US (1) US5661814A (en)
EP (2) EP0585976A3 (en)
AT (1) ATE162679T1 (en)
DE (1) DE59405093D1 (en)
DK (1) DK0656737T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19957128C1 (en) * 1999-11-26 2001-08-16 Siemens Audiologische Technik Signal level limitation method for digital hearing aid has sampling rate of digital signal raised prior to limitation of maximum signal value

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69530961T2 (en) * 1994-04-12 2004-05-13 Koninklijke Philips Electronics N.V. SIGNAL AMPLIFIER SYSTEM WITH IMPROVED ECHO CANCELLATION
KR100573500B1 (en) * 1996-02-27 2006-09-20 코닌클리케 필립스 일렉트로닉스 엔.브이. Signal Coding and Decoding Method and Apparatus
US5909497A (en) * 1996-10-10 1999-06-01 Alexandrescu; Eugene Programmable hearing aid instrument and programming method thereof
EP0930801B1 (en) * 1998-01-14 2008-11-05 Bernafon AG Circuit and method for adaptive suppression of acoustic feedback
JP3267556B2 (en) * 1998-02-18 2002-03-18 沖電気工業株式会社 Echo canceller and transmitter
US6347148B1 (en) 1998-04-16 2002-02-12 Dspfactory Ltd. Method and apparatus for feedback reduction in acoustic systems, particularly in hearing aids
KR100363252B1 (en) * 1999-04-30 2002-11-30 삼성전자 주식회사 Adaptive feedback cancellation apparatus and method for multi-band compression hearing aids
DE19922133C2 (en) * 1999-05-12 2001-09-13 Siemens Audiologische Technik Hearing aid device with oscillation detector and method for determining oscillations in a hearing aid device
DK1203510T3 (en) * 1999-07-19 2006-09-18 Oticon As Feedback cancellation with low frequency input
US6633202B2 (en) 2001-04-12 2003-10-14 Gennum Corporation Precision low jitter oscillator circuit
US6937738B2 (en) 2001-04-12 2005-08-30 Gennum Corporation Digital hearing aid system
US7076073B2 (en) 2001-04-18 2006-07-11 Gennum Corporation Digital quasi-RMS detector
ES2258575T3 (en) * 2001-04-18 2006-09-01 Gennum Corporation MULTIPLE CHANNEL HEARING INSTRUMENT WITH COMMUNICATION BETWEEN CHANNELS.
US20020191800A1 (en) * 2001-04-19 2002-12-19 Armstrong Stephen W. In-situ transducer modeling in a digital hearing instrument
ATE526792T1 (en) * 2001-08-15 2011-10-15 Sound Design Technologies Ltd RECONFIGURABLE LOW POWER HEARING AID DEVICE
US6650124B2 (en) 2001-10-05 2003-11-18 Phonak Ag Method for checking an occurrence of a signal component and device to perform the method
AU2001291588A1 (en) * 2001-10-05 2001-12-17 Phonak Ag Method for verifying the availability of a signal component and device for carrying out said method
DE10244184B3 (en) * 2002-09-23 2004-04-15 Siemens Audiologische Technik Gmbh Feedback compensation for hearing aids with system distance estimation
FR2853804A1 (en) * 2003-07-11 2004-10-15 France Telecom Audio signal decoding process, involves constructing uncorrelated signal from audio signals based on audio signal frequency transformation, and joining audio and uncorrelated signals to generate signal representing acoustic scene
AU2003236382B2 (en) 2003-08-20 2011-02-24 Phonak Ag Feedback suppression in sound signal processing using frequency transposition
AU2004201374B2 (en) 2004-04-01 2010-12-23 Phonak Ag Audio amplification apparatus
US7756276B2 (en) 2003-08-20 2010-07-13 Phonak Ag Audio amplification apparatus
JP2007522754A (en) * 2004-02-11 2007-08-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Acoustic feedback suppression
US7324651B2 (en) 2004-03-15 2008-01-29 Phonak Ag Feedback suppression
DK1469702T3 (en) * 2004-03-15 2017-02-13 Sonova Ag Feedback suppression
US8553899B2 (en) 2006-03-13 2013-10-08 Starkey Laboratories, Inc. Output phase modulation entrainment containment for digital filters
WO2008051570A1 (en) 2006-10-23 2008-05-02 Starkey Laboratories, Inc. Entrainment avoidance with an auto regressive filter
US8509465B2 (en) 2006-10-23 2013-08-13 Starkey Laboratories, Inc. Entrainment avoidance with a transform domain algorithm
US8452034B2 (en) 2006-10-23 2013-05-28 Starkey Laboratories, Inc. Entrainment avoidance with a gradient adaptive lattice filter
US9654885B2 (en) 2010-04-13 2017-05-16 Starkey Laboratories, Inc. Methods and apparatus for allocating feedback cancellation resources for hearing assistance devices
US9113276B2 (en) * 2012-03-27 2015-08-18 Starkey Laboratories, Inc. Automatic reconfiguration of a hearing assistance device based on battery characteristics
CA2897054A1 (en) 2013-01-11 2014-07-17 Zpower, Llc Methods and systems for recharging a battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631749A (en) * 1984-06-22 1986-12-23 Heath Company ROM compensated microphone
US4658426A (en) * 1985-10-10 1987-04-14 Harold Antin Adaptive noise suppressor
AU596633B2 (en) * 1986-01-21 1990-05-10 Antin, Mark Digital hearing enhancement apparatus
US4823795A (en) * 1987-03-13 1989-04-25 Minnesota Mining And Manufacturing Company Signal processor for and an auditory prosthesis having spectral to temporal transformation
US4815139A (en) * 1988-03-16 1989-03-21 Nelson Industries, Inc. Active acoustic attenuation system for higher order mode non-uniform sound field in a duct
DE4111884A1 (en) * 1991-04-09 1992-10-15 Klippel Wolfgang CIRCUIT ARRANGEMENT FOR CORRECTING THE LINEAR AND NON-LINEAR TRANSMISSION BEHAVIOR OF ELECTROACOUSTIC TRANSDUCERS
DK170600B1 (en) * 1992-03-31 1995-11-06 Gn Danavox As Hearing aid with compensation for acoustic feedback
US5347586A (en) * 1992-04-28 1994-09-13 Westinghouse Electric Corporation Adaptive system for controlling noise generated by or emanating from a primary noise source
US5444786A (en) * 1993-02-09 1995-08-22 Snap Laboratories L.L.C. Snoring suppression system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19957128C1 (en) * 1999-11-26 2001-08-16 Siemens Audiologische Technik Signal level limitation method for digital hearing aid has sampling rate of digital signal raised prior to limitation of maximum signal value

Also Published As

Publication number Publication date
EP0585976A3 (en) 1994-06-01
ATE162679T1 (en) 1998-02-15
EP0656737A1 (en) 1995-06-07
DE59405093D1 (en) 1998-02-26
DK0656737T3 (en) 1998-09-14
EP0585976A2 (en) 1994-03-09
US5661814A (en) 1997-08-26

Similar Documents

Publication Publication Date Title
EP0656737B1 (en) Hearing aid with cancellation of acoustic feedback
DE3908881C2 (en) Active noise reduction system with digital filters
DE69330642T2 (en) HEARING AID WITH COMPENSATING ACOUSTIC FEEDBACK
DE60028779T2 (en) FEEDBACK CANCELLATION WITH LOW FREQUENCY INPUT
DE2345544C3 (en) SOUND REPRODUCTION SYSTEM
DE69835644T2 (en) Acoustic echo canceler
EP0930801B1 (en) Circuit and method for adaptive suppression of acoustic feedback
DE69902687T2 (en) HEARING AID SYSTEM AND HEARING AID FOR SITU ADAPTATION
DE2718491C2 (en) Circuit arrangement for amplifying the signals of an electromagnetic converter and for generating a bias voltage for the converter
EP1872360A1 (en) Method for reproducing a secondary path in an active noise reduction system
EP1048111A1 (en) Method and device for compensating phase delays
DE102006023735A1 (en) Measuring box for a hearing device and corresponding measuring method
DE2618268B2 (en) Method for compressing a signal and for expanding the compressed signal and arrangement for carrying out the method
DE69327951T2 (en) HEARING AID WITH COMPENSATING ACOUSTIC FEEDBACK
EP1542500B1 (en) Hearing aid with noise suppression and corresponding method for noise suppression
DE102019123971B4 (en) ACTIVE NOISE COMPENSATION SYSTEM AND METHOD
DE69305738T2 (en) IMPEDANCE IMPLEMENTATION FOR A SUBSCRIBER LINE INTERFACE CIRCUIT
EP1458216B1 (en) Device and method for adaption of microphones in a hearing aid
DE102009055889B4 (en) Signal processing circuit for generating a loudspeaker signal and signal processing method
EP0542710A1 (en) Method for processing signals
DE10054540B4 (en) Amplifier circuit, in particular line driver and method for amplifying a signal, in particular method for driving a line signal
EP2856642B1 (en) Switched amplifier for variable supply voltage
DE2316939C3 (en) Electrical hearing aid circuit
EP1020068B1 (en) Echo compensation method, echo compensation device and telecommunication device
EP1351550A1 (en) Method for adapting a signal amplification in a hearing aid and a hearing aid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950314

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE DK ES FR GB GR IT LI NL SE

17Q First examination report despatched

Effective date: 19960704

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE DK ES FR GB GR IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19980121

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980121

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980121

REF Corresponds to:

Ref document number: 162679

Country of ref document: AT

Date of ref document: 19980215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980126

REF Corresponds to:

Ref document number: 59405093

Country of ref document: DE

Date of ref document: 19980226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980421

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: SIEMENS AUDIOLOGISCHE TECHNIK GMBH

Effective date: 19981019

NLR1 Nl: opposition has been filed with the epo

Opponent name: SIEMENS AUDIOLOGISCHE TECHNIK GMBH

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20001130

Year of fee payment: 7

Ref country code: NL

Payment date: 20001130

Year of fee payment: 7

R26 Opposition filed (corrected)

Opponent name: SIEMENS AUDIOLOGISCHE TECHNIK GMBH

Effective date: 19981019

NLR1 Nl: opposition has been filed with the epo

Opponent name: SIEMENS AUDIOLOGISCHE TECHNIK GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011107

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SIEMENS AUDIOLOGISCHE TECHNIK GMBH

Effective date: 19981019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020601

NLR1 Nl: opposition has been filed with the epo

Opponent name: SIEMENS AUDIOLOGISCHE TECHNIK GMBH

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020601

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 20041003

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20061108

Year of fee payment: 13

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20101110

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101104

Year of fee payment: 17

Ref country code: CH

Payment date: 20101112

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101103

Year of fee payment: 17

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59405093

Country of ref document: DE

Effective date: 20120601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120601