[go: up one dir, main page]

EP0654770B1 - Device for early detection of fires - Google Patents

Device for early detection of fires Download PDF

Info

Publication number
EP0654770B1
EP0654770B1 EP94113869A EP94113869A EP0654770B1 EP 0654770 B1 EP0654770 B1 EP 0654770B1 EP 94113869 A EP94113869 A EP 94113869A EP 94113869 A EP94113869 A EP 94113869A EP 0654770 B1 EP0654770 B1 EP 0654770B1
Authority
EP
European Patent Office
Prior art keywords
signal
stage
arrangement according
signals
neural network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94113869A
Other languages
German (de)
French (fr)
Other versions
EP0654770A1 (en
Inventor
Jürg Dr. Werner
Max Schlegel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens Building Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Building Technologies AG filed Critical Siemens Building Technologies AG
Publication of EP0654770A1 publication Critical patent/EP0654770A1/en
Application granted granted Critical
Publication of EP0654770B1 publication Critical patent/EP0654770B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/16Security signalling or alarm systems, e.g. redundant systems
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion

Definitions

  • the present invention relates to an arrangement for the early detection of fires, with a A plurality of detectors connected to a control center, some with at least two Sensors for monitoring various fire parameters are equipped with Means for processing the signals from the sensors, which are arranged decentrally in the detectors and a microcontroller for processing the sensor signals and for signal processing have with the purpose of obtaining hazard signals, the extraction of the Danger signals occur in a neural network.
  • Such detectors have several advantages: By relocating signal processing from The central in the detectors is the limitation of the usual communication bandwidth Connections between the control panel and detectors without influence. In addition, the observation length the signals are not subject to restrictions and the possibility of overloading the head office is practically excluded. The high redundancy of the system has also the advantage that in the event of a failure or malfunction of the main processor in the central office Detectors can trigger an alarm themselves.
  • the use of the neural network has the advantage that the reliability of the detector function is generally improved by a wide range of possibilities Linkage of the different signal signatures, that is the recognition pattern, exists and can also be optimally used in the neural network.
  • a further neural network is connected upstream of the neural network for each sensor, which time pattern of the signals of the relevant sensor are sequentially supplied.
  • This other neural networks represent a type of transversal filter and deliver on their Output one signal signature per fire phenomenon.
  • the invention is intended to further reduce the false alarm rate per detection point and the Reliability of the detectors can be further improved.
  • the neural network digital filter bank is connected upstream, which receives the signals of at least one type of sensor are supplied, and which have several signal signatures at their output for the neural network or provides criteria for the fire phenomenon in question.
  • the reliability of the detector further improved because the neural network due to the plurality of signal signatures can be trained so that its functions are fully understandable and clear.
  • Fig. 1 shows an overview of the signal processing in the detector, which is divided into five stages S1 to S5 can be.
  • the first stage S1 consists of the sensor hardware and essentially contains a thermal sensor 1 formed by an NTC sensor, one by a light pulse transmitter and an optical sensor 2 formed by a light pulse receiver, a bias network 3 for the thermal sensor 1 and an ASIC 4.
  • the sensor hardware also includes another A / D converter 5 of a microcontroller MCU.
  • the MCU has a ROM mask that contains the operating system and the sensor software of the detector and thus all processes at the functional level, i.e. the Sensor control, signal processing as well as addressing and communication with the head office controls.
  • the ASIC 4 contains all amplifiers and filters for the signal of the Light pulse receiver, a one-chip temperature sensor, the control electronics for the light pulse transmitter, a crystal oscillator and start-up / power management and line monitoring for the MCU. There is a bidirectional, between the MCU and the ASIC 4 serial data bus and various control lines.
  • the signals are in the second stage S2 following the A / D converter 5 prepared, trying through different compensations, one if possible to get an exact image of the real measurement parameters.
  • the third stage S3 Signal signatures or criteria extracted, which are then in a fourth stage S4 neural network NN condensed into a scalar danger signal and one Risk level can be assigned.
  • the fifth stage S5 is finally in one Verification level 6 the decision about the final danger level is made and together with the functional state or status to the communication interface of the MCU forwarded.
  • the first three stages S1 to S3 are from the signal of the thermal Sensor 1 and separately from the signal of the optical sensor 2, what in the Figure symbolized by two signal paths, a "thermal” and an “optical” path which is then brought together in the fourth stage S4, that is to say in the neural network are.
  • the signal flow of the two paths through levels S1 to S3 is in 2a and 2b, and the neural network NN is shown in Fig. 3 in detail.
  • the NTC temperature sensor 1 is over the bias network 3 operated pulsed and the NTC voltage is fed to the A / D converter 5.
  • the NTC temperature data are subsequently analyzed in a stage 7, where Interruptions and short circuits are detected.
  • level 7 there is also the influence of small driving voltage changes to increase the measurement accuracy compensated for the measured value. Any glitches are shown below "anti-EMI" algorithm 8 removed. This limits the signal change from one Measurement to the next to certain values stored in the data memory of the MCU. Normal fire signals pass this algorithm unchanged.
  • the output signal of the A / D converter is then in a linearization stage 9 using an interpolation table according to the characteristics of the NTC sensor converted into a temperature value. Then in a block 10 the heat dissipation by connecting wires and plastic wall and in a block 11 the Heat capacity of the NTC sensor 1 compensated.
  • the output signals of the blocks 10 and 11 then pass through a digital filter bank 12 and are finally in a level 13 linked with parameters. At the exit of level 13 and thus on At the end of the thermal path there are several, from the NTC signal and thus from temperature-dependent signature signals or criteria S1 to Sm are available.
  • a pulse generator 14 drives which every 100s is almost 100 ⁇ s long current pulse, an infrared light emitting diode forming the light pulse transmitter 15, which sends a light pulse into the optical scattering space. That of any existing Smoke scattered light is collected by a lens and onto a receiver photodiode 15 'directed. The resulting photocurrent is synchronized with the transmission pulse integrated by an integrator 16.
  • the following, still differential Voltage amplifier 17 offers several selectable gain settings.
  • the coarse detector adjustment is then carried out.
  • a so-called AMB filter 18th eliminates DC components and low-frequency interference from the signal. High frequencies Faults have already been eliminated by integrator 17. At the exit of the AMB filter 18 appears as a single unipolar signal from a voltage amplifier 19 is further strengthened.
  • the output signal of the amplifier 19 is converted into digital data in the A / D converter 5, with which the software-based signal processing begins (FIG. 1, stage S2).
  • stage S2 the software-based signal processing begins.
  • the effective signal swing is now determined.
  • This arrives in a block 21 and can be corrected there thanks to the availability of the ASIC temperature so that extensive compensation of the temperature drops of the optoelectronic Components done.
  • the target size is the software fine adjustment, which is also carried out in block 21.
  • tracking eliminates those signal components which are caused by very slow environmental influences (for example dustiness) are caused, and which generate a false smoke signal over time and thus change the sensitivity would.
  • the result of the previous processing steps is a size that the effective, filtered, adjusted, temperature compensated and tracked Represents smoke value and the direct reference for determining the hazard level forms.
  • the last link (block 23) in optical signal processing is from Different parameter-controlled algorithms that determine the temporal behavior assess the size representing the smoke value.
  • the signature signals Sm + 1 to Sn are available.
  • the signature signals S1 to Sn of the thermal and the optical path form the Entry level L0 of a layered, neural network NN, which is shown in FIG. 3 is.
  • the representation of the neural network NN in FIG. 1 shows that these input variables are either dependent on the temperature signal (T), or the optical signal (O) or both.
  • the network points next to the entrance level L0 still further levels L1 to L5 with so-called neurons or nodes on.
  • the input variables of an addition weighted with parameters are stored in these and subjected to a maximum and / or minimum linkage. The addition takes place in the with A and the maximum and / or minimum linkage in the with M designated neurons.
  • the network can be used in a learning environment be involved. This will be through the learning effect of the network certain connections prove to be preferred and reinforce and others will atrophy as it were.
  • the network can also be used without a learning phase be structured. In both cases, the weights are used for safety reasons of the network frozen.
  • the danger signal will in a quantization stage 24 one of several, for example at least three, assigned to security levels, and this assigned to one of the security levels Signal is the output signal GS of the neural network NN.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Fire Alarms (AREA)
  • Vending Machines For Individual Products (AREA)
  • Looms (AREA)
  • Control Of Combustion (AREA)
  • Alarm Systems (AREA)

Abstract

The arrangement contains a plurality of detectors which are connected to a central station and of which some are fitted with at least two sensors (1, 2) for monitoring different fire characteristics. One sensor (1) is preferably a thermal sensor and the other sensor (2) is an optical sensor. In addition, the arrangement contains means for processing the signals of the sensors. These means are arranged in a decentralised manner in the detectors and they contain a microcontroller (MCU) for conditioning the sensor signals and for signal processing for the purpose of obtaining danger signals. The danger signals are obtained in a neuronal network (NN). <IMAGE>

Description

Die vorliegende Erfindung betrifft eine Anordnung zur Früherkennung von Bränden, mit einer Mehrzahl von mit einer Zentrale verbundenen Meldern, von denen einige mit mindestens zwei Sensoren für die Überwachung von verschiedenen Brandkenngrössen ausgerüstet sind, und mit Mitteln für die Verarbeitung der Signale der Sensoren, welche dezentral in den Meldern angeordnet sind und einen Microcontroller für die Aufbereitung der Sensorsignale und für die Signalverarbeitung mit dem Zweck der Gewinnung von Gefahrensignalen aufweisen, wobei die Gewinnung der Gefahrensignale in einem neuronalen Netzwerk erfolgt.The present invention relates to an arrangement for the early detection of fires, with a A plurality of detectors connected to a control center, some with at least two Sensors for monitoring various fire parameters are equipped with Means for processing the signals from the sensors, which are arranged decentrally in the detectors and a microcontroller for processing the sensor signals and for signal processing have with the purpose of obtaining hazard signals, the extraction of the Danger signals occur in a neural network.

Derartige Melder haben mehrere Vorteile: Durch die Verlagerung der Signalverarbeitung von der Zentrale in die Melder ist die Beschränkung der Kommunikationsbandbreite der üblichen Verbindungen zwischen Zentrale und Meldern ohne Einfluss. Ausserdem ist die Beobachtungslänge der Signale keinen Einschränkungen unterworfen und die Möglichkeit einer Überlastung der Zentrale ist praktisch ausgeschlossen. Die hohe Redundanz des Systems hat ausserdem den Vorteil, dass bei Ausfall oder Störung des Hauptprozessors in der Zentrale die Melder selbst Alarm auslösen können.Such detectors have several advantages: By relocating signal processing from The central in the detectors is the limitation of the usual communication bandwidth Connections between the control panel and detectors without influence. In addition, the observation length the signals are not subject to restrictions and the possibility of overloading the head office is practically excluded. The high redundancy of the system has also the advantage that in the event of a failure or malfunction of the main processor in the central office Detectors can trigger an alarm themselves.

Die Verwendung des neuronalen Netzwerks hat den Vorteil, dass die Zuverlässigkeit der Melderfunktion ganz allgemein verbessert wird, indem eine breite Palette von Möglichkeiten der Verknüpfung der verschiedenen Signalsignaturen, das sind die Erkennungsmuster, besteht und in dem neuronalen Netzwerk auch optimal genutzt werden kann.The use of the neural network has the advantage that the reliability of the detector function is generally improved by a wide range of possibilities Linkage of the different signal signatures, that is the recognition pattern, exists and can also be optimally used in the neural network.

Bei einem in der EP-A-0 403 659 beschriebenen Brandmelder der eingangs genannten Art ist dem neuronalen Netzwerk für jeden Sensor ein weiteres neuronales Netzwerk vorgeschaltet, welchem Zeitmuster der Signale des betreffenden Sensors sequentiell zugeführt sind. Diese weiteren neuronalen Netzwerke stellen eine Art von Transversalfilter dar und liefern an ihrem Ausgang je eine Signalsignatur pro Brandphänomen.In a fire detector of the type mentioned in EP-A-0 403 659 a further neural network is connected upstream of the neural network for each sensor, which time pattern of the signals of the relevant sensor are sequentially supplied. This other neural networks represent a type of transversal filter and deliver on their Output one signal signature per fire phenomenon.

Durch die Erfindung soll nun die Fehlalarmrate pro Detektionspunkt weiter reduziert und die Zuverlässigkeit der Melder weiter verbessert werden.The invention is intended to further reduce the false alarm rate per detection point and the Reliability of the detectors can be further improved.

Diese Aufgabe wird erfindungsgemäss dadurch gelöst, das dem neuronalen Netzwerk eine digitale Filterbank vorgeschaltet ist, welcher die Signale mindestens einer Art der Sensoren zugeführt sind, und welche an ihrem Ausgang für das neuronale Netzwerk mehrere Signalsignaturen oder Kriterien für das betreffende Brandphänomen zur Verfügung stellt.This object is achieved according to the invention in that the neural network digital filter bank is connected upstream, which receives the signals of at least one type of sensor are supplied, and which have several signal signatures at their output for the neural network or provides criteria for the fire phenomenon in question.

Durch die digitale Filterbank, welche dem neuronalen Netzwerk mehrere Signalsignaturen für das betreffende Brandphänomen zur Verfügung stellt, wird die Zuverlässigkeit der Melder weiter verbessert, weil das neuronale Netzwerk aufgrund der Mehrzahl von Signalsignaturen so ausgebildet werden kann, dass seine Funktionen voll verständlich und überblickbar sind.Through the digital filter bank, which the neural network multiple signal signatures for the fire phenomenon in question, the reliability of the detector further improved because the neural network due to the plurality of signal signatures can be trained so that its functions are fully understandable and clear.

Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels und der Zeichnungen näher erläutert; dabei zeigt:

Fig. 1
ein Übersichtsdiagramm der Signalverarbeitung im Melder,
Fig. 2a, b
ein Schema der beiden Signalpfade der Signalverarbeitung; und
Fig. 3
in Diagramm des neuronalen Netzwerks der Signalverarbeitung.
The invention is explained in more detail below with the aid of an exemplary embodiment and the drawings; shows:
Fig. 1
an overview diagram of signal processing in the detector,
2a, b
a schematic of the two signal paths of signal processing; and
Fig. 3
in diagram of the neural network of signal processing.

Fig. 1 zeigt eine Übersicht der Signalverarbeitung im Melder, die in fünf Stufen S1 bis S5 aufgeteilt werden kann. Die erste Stufe S1 besteht aus der Sensor-Hardware und enthält im wesentlichen einen durch einen NTC-Sensor gebildeten Thermosensor 1, einen durch einen Lichtpulssender und einen Lichtpulsempfänger gebildeten optischen Sensor 2, ein Vorspannungsnetzwerk 3 für den Thermosensor 1 und einen ASIC 4. Zur Sensor-Hardware gehört ausserdem noch ein A/D-Wandler 5 eines Microcontrollers MCU.Fig. 1 shows an overview of the signal processing in the detector, which is divided into five stages S1 to S5 can be. The first stage S1 consists of the sensor hardware and essentially contains a thermal sensor 1 formed by an NTC sensor, one by a light pulse transmitter and an optical sensor 2 formed by a light pulse receiver, a bias network 3 for the thermal sensor 1 and an ASIC 4. The sensor hardware also includes another A / D converter 5 of a microcontroller MCU.

Die MCU weist in bekannter Weise eine ROM-Maske auf, die das Betriebssystem und die Sensorsoftware des Melders enthält und damit sämtliche Abläufe auf der Funktionsebene, also die Sensorsteuerung, die Signalverarbeitung sowie die Adressierung und die Kommunikation mit der Zentrale kontrolliert. Der ASIC 4 beinhaltet alle Verstärker und Filter für das Signal des Lichtimpulsempfängers, einen Einchip-Temperatursensor, die Ansteuerelektronik für den Lichtpulssender, einen Quarzoszillator und das Aufstart-/Power-Management sowie die Linienüberwachung für die MCU. Zwischen der MCU und dem ASIC 4 bestehen ein bidirektionaler, serieller Datenbus und diverse Kontrolleitungen. In a known manner, the MCU has a ROM mask that contains the operating system and the sensor software of the detector and thus all processes at the functional level, i.e. the Sensor control, signal processing as well as addressing and communication with the head office controls. The ASIC 4 contains all amplifiers and filters for the signal of the Light pulse receiver, a one-chip temperature sensor, the control electronics for the light pulse transmitter, a crystal oscillator and start-up / power management and line monitoring for the MCU. There is a bidirectional, between the MCU and the ASIC 4 serial data bus and various control lines.

In der an den A/D-Wandler 5 anschliessenden zweiten Stufe S2 werden die Signale aufbereitet, wobei durch verschiedene Kompensationen versucht wird, ein möglichst genaues Abbild der reellen Messgrössen zu erhalten. In der dritten Stufe S3 werden Signalsignaturen oder Kriterien extrahiert, die dann in der vierten Stufe S4 in einem neuronalen Netzwerk NN zu einem skalaren Gefahrensignal kondensiert und einer Gefahrenstufe zugeordnet werden. In der fünften Stufe S5 wird schliesslich in einer Verifizierungsstufe 6 der Entscheid über die definitive Gefahrenstufe gefällt und zusammen mit dem Funktionszustand oder Status an das Kommunikationsinterface der MCU weitergeleitet.The signals are in the second stage S2 following the A / D converter 5 prepared, trying through different compensations, one if possible to get an exact image of the real measurement parameters. In the third stage S3 Signal signatures or criteria extracted, which are then in a fourth stage S4 neural network NN condensed into a scalar danger signal and one Risk level can be assigned. In the fifth stage S5 is finally in one Verification level 6 the decision about the final danger level is made and together with the functional state or status to the communication interface of the MCU forwarded.

Gemäss Fig. 1 werden die ersten drei Stufen S1 bis S3 vom Signal des thermischen Sensors 1 und vom Signal des optischen Sensors 2 getrennt durchlaufen, was in der Figur durch zwei Signalpfade, einen "thermischen" und einen "optischen" Pfad, symbolisiert ist, die dann in der vierten Stufe S4, also im neuronalen Netzwerk zusammengeführt sind. Der Signalfluss der beiden Pfade durch die Stufen S1 bis S3 ist in den Fig. 2a und 2b, und das neuronale Netzwerk NN ist in Fig. 3 im Detail dargestellt.1, the first three stages S1 to S3 are from the signal of the thermal Sensor 1 and separately from the signal of the optical sensor 2, what in the Figure symbolized by two signal paths, a "thermal" and an "optical" path which is then brought together in the fourth stage S4, that is to say in the neural network are. The signal flow of the two paths through levels S1 to S3 is in 2a and 2b, and the neural network NN is shown in Fig. 3 in detail.

Nachfolgend soll nun zuerst der thermische und dann der optische Signalpfad näher beschrieben werden: Der NTC-Temperatursensor 1 wird über das Vorspannungsnetzwerk 3 gepulst betrieben und die NTC-Spannung wird dem A/D-Wandler 5 zugeleitet. Die NTC-Temperaturdaten werden nachfolgend in einer Stufe 7 analysiert, wobei Unterbrechungen und Kurzschluss erkannt werden. In der Stufe 7 wird ausserdem zur Erhöhung der Messgenauigkeit der Einfluss von kleinen Treiberspannungsänderungen auf den Messwert kompensiert. Allfällige Störspitzen werden im nachfolgenden "anti-EMI"-Algorithmus 8 entfernt. Dieser begrenzt die Signaländerung von einer Messung zur nächsten auf bestimmte, im Datenspeicher der MCU gespeicherte Werte. Normale Brandsignale passieren diesen Algorithmus unverändert.In the following, the thermal and then the optical signal path should now be closer The NTC temperature sensor 1 is over the bias network 3 operated pulsed and the NTC voltage is fed to the A / D converter 5. The NTC temperature data are subsequently analyzed in a stage 7, where Interruptions and short circuits are detected. In level 7 there is also the influence of small driving voltage changes to increase the measurement accuracy compensated for the measured value. Any glitches are shown below "anti-EMI" algorithm 8 removed. This limits the signal change from one Measurement to the next to certain values stored in the data memory of the MCU. Normal fire signals pass this algorithm unchanged.

Anschliessend wird in einer Linearisierungsstufe 9 das Ausgangssignal des A/D-Wandlers mittels einer Interpolationstabelle gemäss der Charakteristik des NTC-Sensors in einen Temperaturwert umgerechnet. Dann wird in einem Block 10 die Wärmeableitung durch Anschlussdrähte und Kunststoffwandung und in einem Block 11 die Wärmekapazität des NTC-Sensors 1 kompensiert. Die Ausgangssignale der Blöcke 10 und 11 durchlaufen dann eine digitale Filterbank 12 und werden schliesslich in einer Stufe 13 mit Parametern verknüpft. Am Ausgang der Stufe 13 und damit am Ende des thermischen Pfads stehen dann mehrere, vom NTC-Signal und damit von der Temperatur abhängige Signatursignale oder Kriterien S1 bis Sm zur Verfügung.The output signal of the A / D converter is then in a linearization stage 9 using an interpolation table according to the characteristics of the NTC sensor converted into a temperature value. Then in a block 10 the heat dissipation by connecting wires and plastic wall and in a block 11 the Heat capacity of the NTC sensor 1 compensated. The output signals of the blocks 10 and 11 then pass through a digital filter bank 12 and are finally in a level 13 linked with parameters. At the exit of level 13 and thus on At the end of the thermal path there are several, from the NTC signal and thus from temperature-dependent signature signals or criteria S1 to Sm are available.

Im optischen Signalpfad treibt ein Pulsgenerator 14, der alle 3s einen knapp 100µs langen Strompuls erzeugt, eine den Lichtimpulssender bildende Infrarot-Leuchtdiode 15, die einen Lichtpuls in den optischen Streuraum sendet. Das von allfällig vorhandenem Rauch gestreute Licht wird von einer Linse gesammelt und auf eine Empfänger-Photodiode 15' geleitet. Der resultierende Photostrom wird synchron zum Sendepuls von einem Integrator 16 integriert. Der nachfolgende, immer noch differentielle Spannungsverstärker 17 bietet mehrere wählbare Verstärkungseinstellungen an. Damit wird der Melder-Grobabgleich vorgenommen. Ein sogenanntes AMB-Filter 18 eliminiert Gleichstromanteile und niederfrequente Störungen aus dem Signal. Hochfrequente Störungen wurden bereits vom Integrator 17 beseitigt. Am Ausgang des AMB-Filters 18 erscheint ein einziges unipolares Signal, das von einem Spannungsverstärker 19 weiter verstärkt wird.In the optical signal path, a pulse generator 14 drives which every 100s is almost 100µs long current pulse, an infrared light emitting diode forming the light pulse transmitter 15, which sends a light pulse into the optical scattering space. That of any existing Smoke scattered light is collected by a lens and onto a receiver photodiode 15 'directed. The resulting photocurrent is synchronized with the transmission pulse integrated by an integrator 16. The following, still differential Voltage amplifier 17 offers several selectable gain settings. The coarse detector adjustment is then carried out. A so-called AMB filter 18th eliminates DC components and low-frequency interference from the signal. High frequencies Faults have already been eliminated by integrator 17. At the exit of the AMB filter 18 appears as a single unipolar signal from a voltage amplifier 19 is further strengthened.

Das Ausgangssignal des Verstärkers 19 wird im A/D-Wandler 5 in digitale Daten umgewandelt, womit die softwaremässige Signalverarbeitung beginnt (Fig. 1, Stufe S2). Durch Differenzbildung in einer Stufe 20 zwischen einer Hell- und einer Dunkelmessung wird jetzt der effektive Signalhub bestimmt. Dieser gelangt in einen Block 21 und kann dort dank der Verfügbarkeit der ASIC-Temperatur so korrigiert werden, dass eine weitgehende Kompensation der Temperaturabgänge der optoelektronischen Bauteile erfolgt. Als letzte und praktisch stufenlose Anpassung der Signale an eine Sollgrösse dient der softwaremässige Feinabgleich, der ebenfalls im Block 21 erfolgt. Im nächsten Block 22 beseitigt eine Nachführung diejenigen Signalanteile, die durch sehr langsame Umwelteinflüsse (beispielsweise Verstaubung) verursacht sind, und die mit der Zeit ein Scheinrauchsignal erzeugen und damit die Empfindlichkeit verändern würden. The output signal of the amplifier 19 is converted into digital data in the A / D converter 5, with which the software-based signal processing begins (FIG. 1, stage S2). By forming the difference in a stage 20 between a light and a dark measurement the effective signal swing is now determined. This arrives in a block 21 and can be corrected there thanks to the availability of the ASIC temperature so that extensive compensation of the temperature drops of the optoelectronic Components done. As the last and practically continuous adjustment of the signals to one The target size is the software fine adjustment, which is also carried out in block 21. In the next block 22, tracking eliminates those signal components which are caused by very slow environmental influences (for example dustiness) are caused, and which generate a false smoke signal over time and thus change the sensitivity would.

Das Resultat aus den bisherigen Verarbeitungsschritten ist eine Grösse , die den effektiven, gefilterten, abgeglichenen, temperaturkompensierten und nachgeführten Rauchwert darstellt und die unmittelbare Referenz für die Ermittlung der Gefahrenstufe bildet. Als letztes Glied (Block 23) in der optischen Signalverarbeitung wirken von verschiedenen Parametersätzen gesteuerte Algorithmen, die das zeitliche Verhalten der den Rauchwert darstellenden Grösse beurteilen. Am Ende des optischen Signalverarbeitungspfades stehen dann die Signatursignale Sm+1 bis Sn zur Verfügung.The result of the previous processing steps is a size that the effective, filtered, adjusted, temperature compensated and tracked Represents smoke value and the direct reference for determining the hazard level forms. The last link (block 23) in optical signal processing is from Different parameter-controlled algorithms that determine the temporal behavior assess the size representing the smoke value. At the end of the optical signal processing path then the signature signals Sm + 1 to Sn are available.

Die Signatursignale S1 bis Sn des thermischen und des optischen Pfades bilden die Eingangsebene L0 eines geschichteten, neuronalen Netzwerks NN, das in Fig. 3 dargestellt ist. Aus der Darstellung des neuronalen Netzwerks NN in Fig. 1 ist ersichtlich, dass diese Eingangsgrössen entweder vom Temperatursignal (T) abhängig sind, oder vom optischen Signal (O) oder von beiden. Das Netzwerk weist neben der Eingangsebene L0 noch weitere Ebenen L1 bis L5 mit sogenannten Neuronen oder Knoten auf. In diesen werden die mit Parametern gewichteten Eingangsgrössen einer Addition und einer Maximum- und/oder Minimumverknüpfung unterworfen. Die Addition erfolgt in den mit A und die Maximum- und/oder Minimumverknüpfung in den mit M bezeichneten Neuronen.The signature signals S1 to Sn of the thermal and the optical path form the Entry level L0 of a layered, neural network NN, which is shown in FIG. 3 is. The representation of the neural network NN in FIG. 1 shows that these input variables are either dependent on the temperature signal (T), or the optical signal (O) or both. The network points next to the entrance level L0 still further levels L1 to L5 with so-called neurons or nodes on. The input variables of an addition weighted with parameters are stored in these and subjected to a maximum and / or minimum linkage. The addition takes place in the with A and the maximum and / or minimum linkage in the with M designated neurons.

Dabei ist die Maximumverknüpfung die nichtlineare Netzwerfunktion: yi = max (w1* x1, w2* x2,..., wn* xn), [xi=Eingangswert, yi=Ausgangswert] die nach dem Prinzip "alles gehört dem Stärksten" arbeitet.The maximum linkage is the nonlinear network function: yi = max (w1 * x1, w2 * x2, ..., wn * xn), [xi = input value, yi = output value] who works on the principle that "everything belongs to the strongest".

Die Addition ist das das Skalarprodukt: yi = Σ wi* xi, [xi= Eingangswert, yi=Ausgangswert]. The addition is the dot product: yi = Σ wi * xi, [xi = input value, yi = output value].

Zwischen den Neuronen sind grundsätzlich alle Verbindungen möglich. In einer Lernphase während der Entwicklung des Melders kann das Netzwerk in eine Lernumgebung eingebunden werden. Dabei werden sich durch den Lerneffekt des Netzwerks bestimmte Verbindungen als bevorzugt erweisen und sich verstärken und andere werden gleichsam verkümmern. Alternativ kann das Netzwerk auch ohne Lernphase struiert werden. In beiden Fällen werden aus Sicherheitsgründen im Betrieb die Gewichte des Netzwerks eingefroren.In principle, all connections are possible between the neurons. In a learning phase During the development of the detector, the network can be used in a learning environment be involved. This will be through the learning effect of the network certain connections prove to be preferred and reinforce and others will atrophy as it were. Alternatively, the network can also be used without a learning phase be structured. In both cases, the weights are used for safety reasons of the network frozen.

Zwischen der Eingangs- und der Ausgangsebene L0 bzw. L5 des neuronalen Netzwerks NN erfolgt eine Konzentration der jeweiligen Eingangsgrössen auf eine einzige Ausgangsgrösse, die ein skalares Gefahrensignal darstellt. Das Gefahrensignal wird in einer Quantisierungsstufe 24 einer von mehreren, beispielsweise von mindestens drei, Gefahrenstufen zugeordnet, und dieses einer der Gefahrenstufen zugeordnete Signal ist das Ausgangssignal GS des neuronalen Netzwerks NN.Between the input and output levels L0 and L5 of the neural network NN there is a concentration of the respective input variables on a single one Output variable that represents a scalar danger signal. The danger signal will in a quantization stage 24 one of several, for example at least three, assigned to security levels, and this assigned to one of the security levels Signal is the output signal GS of the neural network NN.

Schliesslich erfolgt in der dem neuronalen Netzwerk nachgeordneten Verfifizierungsstufe 6 die Verifizierung der definitiven Gefahrenstufe. Das entsprechende Ausgangssignal GSdef wird zusammen mit dem Funktionszustand (Fig. 1, "Status") über das Kommunikationsinterface der MCU der Zentrale mitgeteilt.Finally, the verification level that follows the neural network takes place 6 verification of the final danger level. The corresponding output signal GSdef is together with the functional state (Fig. 1, "Status") on the Communication interface of the MCU communicated to the control center.

Abschliessend sollen noch einige besonders vorteilhafte Eigenschaften und Zusatzfunktionen des beschriebenen Brandmelders erwähnt werden:

  • Die Messung der aktuellen ASIC-Temperatur mit Hilfe eines Einchip-Temperatursensors wurde bereits erwähnt. Diese Messung, die periodisch erfolgt, liefert einen Temperaturwert, mit dem die Temperaturgänge der optoelektronischen Bauteile softwaremässig kompensiert werde, so dass auch bei extremen Temperaturen zuverlässige Rauchdichtemessungen vorgenommen werden können.
  • Die Funktionsweise der Signalnachführung wurde ebenfalls bereits erwähnt. Das Rauchdichtesignal wird von sehr niederfrequenten Anteilen befreit, um Einflüsse der Umwelt auszufiltern, die signifikant langsamer sind als Brandphänomene (beispielsweise Verstaubung). Damit wird eine sehr gute Langzeitkonstanz der Rauchempfindlichkeit erreicht.
  • Regelmässig wird automatisch ein Selbsttest auf gewisse Fehler durchgeführt, der den Melder einer detaillierten Diagnose unterzieht.
Finally, some particularly advantageous properties and additional functions of the fire detector described should be mentioned:
  • The measurement of the current ASIC temperature with the aid of a single-chip temperature sensor has already been mentioned. This measurement, which is carried out periodically, provides a temperature value with which the temperature responses of the optoelectronic components are compensated for by software, so that reliable smoke density measurements can also be carried out at extreme temperatures.
  • The functionality of signal tracking has also already been mentioned. The smoke density signal is freed from very low-frequency components in order to filter out environmental influences that are significantly slower than fire phenomena (e.g. dustiness). This ensures a very good long-term consistency in smoke sensitivity.
  • A self-test for certain errors is carried out automatically, which subjects the detector to a detailed diagnosis.

Wenn auch die Verlagerung der Signalverarbeitung von der Zentrale in die Melder und die Verwendung eines neuronalen Netzwerks bei der Signalverarbeitung für Melder mit Mehrfachsensoren besonders vorteilhaft ist, so können selbstverständlich auch Melder mit nur einem Sensor in der beschriebenen Art ausgebildet sein. Ausserdem sei noch erwähnt, dass das neuronale Netzwerk NN einen ganz speziellen, einer Fuzzy-Logic verwandten Typus darstellt und daher auch durch eine Fuzzy-Logic ersetzt werden könnte.If the shift of the signal processing from the central to the detectors and the use of a neural network for signal processing for detectors Multiple sensors is particularly advantageous, so can of course also detectors be formed with only one sensor in the manner described. In addition, is still mentions that the neural network NN has a very special, a fuzzy logic represents related type and can therefore also be replaced by a fuzzy logic could.

Ein ganz wesentliches Merkmal der vorliegenden Anordnung ist durch die digitale Filterbank 12 und den Block 23 (Fig. 1) gebildet, wobei insbesondere die digitale Filterbank rekursive Filter enthalten kann. Wenn man anstelle dieser Filterbank und/oder des Blocks 23 je ein neuronales Netzwerk verwenden und diesem Zeitmuster der Sensorsignale sequentiell zuführen würde, dann hätte man gegenüber der vorgeschlagenen Lösung zwei wesentliche Nachteile:

  • Diese neuronalen Netzwerke wären eine Art von Transversalfilter und hätten ein wesentlich geringeres Gedächtnis als rekursive Filter;
  • am Ausgang jedes dieser neuronalen Netzwerke wäre nur je eine Signalsignatur pro Brandphänomen (Rauch, Temperatur) erhältlich, wogegen die vorgeschlagene Lösung S1 bis Sm Signalsignaturen für das Brandphänomen Temperatur und Sm+1 bis Sn Signalsignaturen für das Brandphänomen Rauch zur Verfügung stellt. Diese Mehrzahl von Signalsignaturen ist aber für die sichere Funktion des neuronalen Netzwerks NN (Fig. 3) sehr wichtig, weil man dieses dann so ausbilden kann, dass seine Funktionen voll verständlich und überblickbar sind. Und letzteres ist in einem Sicherheitssystem unbedingt erforderlich.
A very essential feature of the present arrangement is formed by the digital filter bank 12 and the block 23 (FIG. 1), it being possible in particular for the digital filter bank to contain recursive filters. If one were to use a neural network instead of this filter bank and / or block 23 and to supply this time pattern of the sensor signals sequentially, then one would have two major disadvantages compared to the proposed solution:
  • These neural networks would be a type of transversal filter and have a much smaller memory than recursive filters;
  • only one signal signature per fire phenomenon (smoke, temperature) would be available at the output of each of these neural networks, whereas the proposed solution S1 to Sm provides signal signatures for the temperature fire phenomenon and Sm + 1 to Sn signal signatures for the smoke fire phenomenon. However, this plurality of signal signatures is very important for the safe functioning of the neural network NN (FIG. 3), because it can then be designed in such a way that its functions are fully understandable and clear. And the latter is absolutely essential in a security system.

Claims (16)

  1. Arrangement for the early detection of fires, with a number of detectors connected to a control centre, some of which are fitted with at least two sensors (1, 2) for monitoring different fire parameters, and with means for processing the signals of the sensors (1, 2) which are arranged locally in the detectors and have a microcontroller (MCU) for conditioning the sensor signals and for signal processing, with the aim of obtaining alarm signals, wherein the alarm signals are obtained in a neural network (NN), characterised in that a digital filter bank (12) is connected upstream of the neural network (NN), the digital filter bank being fed with the signals of at least one type of the sensors (1), and making available at its output to the neural network several signal signatures or criteria (S1 to Sm) for the respective fire phenomenon.
  2. Arrangement according to Claim 1, characterised in that the digital filter bank (12) contains recursive filters.
  3. Arrangement according to Claim 1 or 2, characterised in that the neural network (NN) has several levels (L1 to L5) with nodes (A, M), in which the input variables, weighted with parameters, undergo an addition and a maximum and/or minimum linkage.
  4. Arrangement according to Claim 3, characterised in that the signal processing has a separate path for each of the two sensors (1, 2), and that the two paths are combined at the input of the neural network (NN).
  5. Arrangement according to Claim 4, characterised in that the microcontroller (MCU) has a mask with the operating system and the sensor software of the detector, and a data memory, and that an ASIC (4) that contains the amplifier and filter for the signal of the receiver of the optical sensor (2), a temperature sensor, the drive electronics for the transmitter of the optical sensor, and a quartz oscillator, is allocated to the microcontroller (MCU).
  6. Arrangement according to Claim 4, characterised in that the thermal path contains a first stage (S1) with a biassing network (3) for the operation of the thermal sensor (1) and with an A/D converter (5), a second stage (S2) for conditioning the signals for possible compensations, and a third stage (S3) for obtaining signal signatures, which form input variables for the neural network (NN).
  7. Arrangement according to Claim 6, characterised in that the second stage (S2) has a block (7) for analyzing the output signals of the A/D converter (5) for possible errors and/or for compensation of the effects of changes in the drive voltage on the measured value and/or a block (8) for removing glitches, a block (9) for converting the measured value into a temperature value and/or a block (10 or 11 respectively) for compensating the heat dissipation and/or the thermal capacity.
  8. Arrangement according to Claim 7, characterised in that in the block (8) the signal change from one measurement to the other is limited to certain values to remove glitches.
  9. Arrangement according to Claim 6, characterised in that the third stage (S3) contains means for linking the output signals of the said elements, so that various signature signals derived from the temperature signals are available at the end of the thermal path.
  10. Arrangement according to Claim 4, characterised in that the optical path contains a first stage (S1) with a pulse generator (14) for driving the transmitter (15) and with an integrator (16) for the signal of the receiver (15') of the optical sensor (2), as well as an A/D converter (5), a second stage (S2) for implementing any compensations, and a third stage (S3) for obtaining signal signatures, which form input variables for the neural network (NN).
  11. Arrangement according to Claim 10, characterised in that a voltage amplifier (17) for the coarse adjustment is connected downstream of the integrator (16) and a filter (18) for the selective detection of the received light pulse and suppression of interference signals is connected downstream of said voltage amplifier.
  12. Arrangement according to Claim 11, characterised in that a calculation of the signal pulse values is made via the filter (18) before, after and during a light pulse.
  13. Arrangement according to Claim 10 or 11, characterised in that the second stage (S2) contains a block (20) for determining the signal deviation, a block (21) for compensation of the temperature outputs of the opto-electronic components and/or for the fine adjustment, and/or a block (22) for compensation of the background signal and for the elimination of signal components composed of slow environmental effects, so that the output signal of the second stage represents an adjusted, temperature-compensated and corrected smoke value.
  14. Arrangement according to Claim 10, characterised in that the third stage (S3) contains a block (23) for assessing the time characteristic of the smoke value supplied by the second stage (S2) via a filter arrangement, and that the smoke value signal thus filtered forms a signature signal of the optical path.
  15. Arrangement according to Claims 6 and 10, characterised in that a concentration of the input variables takes place in the nodes (A, M) of the neural network (NN), and that a scalar alarm signal is obtainable at the output level (L5) of the network, and is allocated in a quantizing stage (24) to one of several alarm stages.
  16. Arrangement according to Claim 15, characterised in that a verification stage (6) for verifying the definitive alarm stage is connected downstream of the neural network (NN).
EP94113869A 1993-11-22 1994-09-05 Device for early detection of fires Expired - Lifetime EP0654770B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH347993 1993-11-22
CH3479/93 1993-11-22
CH03479/93A CH686913A5 (en) 1993-11-22 1993-11-22 Arrangement for early detection of fires.

Publications (2)

Publication Number Publication Date
EP0654770A1 EP0654770A1 (en) 1995-05-24
EP0654770B1 true EP0654770B1 (en) 2000-02-02

Family

ID=4256867

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94113869A Expired - Lifetime EP0654770B1 (en) 1993-11-22 1994-09-05 Device for early detection of fires

Country Status (10)

Country Link
US (1) US5751209A (en)
EP (1) EP0654770B1 (en)
JP (1) JPH07192189A (en)
CN (1) CN1052087C (en)
AT (1) ATE189549T1 (en)
CH (1) CH686913A5 (en)
DE (1) DE59409119D1 (en)
DK (1) DK0654770T3 (en)
ES (1) ES2144474T3 (en)
PT (1) PT654770E (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19902319B4 (en) * 1999-01-21 2011-06-30 Novar GmbH, Albstadt-Ebingen Zweigniederlassung Neuss, 41469 Scattered light fire detectors

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659292A (en) * 1995-02-21 1997-08-19 Pittway Corporation Apparatus including a fire sensor and a non-fire sensor
ATE208074T1 (en) 1995-08-23 2001-11-15 Siemens Building Tech Ag FIRE ALARM
ES2198939T3 (en) * 1998-09-09 2004-02-01 Siemens Building Technologies Ag FIRE DETECTOR AND FIRE ALARM SYSTEM.
DE19932906A1 (en) * 1999-07-12 2001-01-18 Siemens Ag Method and arrangement for detecting a heat source in a monitored area
US6493687B1 (en) * 1999-12-18 2002-12-10 Detection Systems, Inc. Apparatus and method for detecting glass break
DE10011411C2 (en) 2000-03-09 2003-08-14 Bosch Gmbh Robert Imaging fire detector
US6184792B1 (en) 2000-04-19 2001-02-06 George Privalov Early fire detection method and apparatus
US7034701B1 (en) * 2000-06-16 2006-04-25 The United States Of America As Represented By The Secretary Of The Navy Identification of fire signatures for shipboard multi-criteria fire detection systems
PT102617B (en) 2001-05-30 2004-01-30 Inst Superior Tecnico COMPUTER-CONTROLLED LIDAR SYSTEM FOR SMOKING LOCATION, APPLICABLE, IN PARTICULAR, TO EARLY DETECTION OF FIREFIGHTERS
FR2831981B1 (en) * 2001-11-08 2005-07-08 Cit Alcatel METHOD AND DEVICE FOR ANALYZING ALARMS FROM A COMMUNICATION NETWORK
WO2005045775A1 (en) * 2003-11-07 2005-05-19 Axonx, L.L.C. Smoke detection method and apparatus
US7680297B2 (en) * 2004-05-18 2010-03-16 Axonx Fike Corporation Fire detection method and apparatus
US7202794B2 (en) * 2004-07-20 2007-04-10 General Monitors, Inc. Flame detection system
US8248226B2 (en) 2004-11-16 2012-08-21 Black & Decker Inc. System and method for monitoring security at a premises
EP1768074A1 (en) 2005-09-21 2007-03-28 Siemens Schweiz AG Early detection of fires
US7769204B2 (en) * 2006-02-13 2010-08-03 George Privalov Smoke detection method and apparatus
EP2126788A4 (en) * 2007-01-16 2011-03-16 Utc Fire & Security Corp System and method for video based fire detection
US8378808B1 (en) 2007-04-06 2013-02-19 Torrain Gwaltney Dual intercom-interfaced smoke/fire detection system and associated method
US7786880B2 (en) * 2007-06-01 2010-08-31 Honeywell International Inc. Smoke detector
US7986228B2 (en) 2007-09-05 2011-07-26 Stanley Convergent Security Solutions, Inc. System and method for monitoring security at a premises using line card
DE502008002126D1 (en) 2008-02-15 2011-02-10 Siemens Ag Hazard detection with inclusion of a built in a microcontroller temperature measuring device
CN104008625A (en) * 2014-05-21 2014-08-27 关宏 Intelligent fire evacuation system achieving evacuation through images
CN104933841B (en) * 2015-04-30 2018-04-10 重庆三峡学院 A kind of fire prediction method based on self organizing neural network
WO2018079400A1 (en) * 2016-10-24 2018-05-03 ホーチキ株式会社 Fire monitoring system
WO2019089450A1 (en) * 2017-10-30 2019-05-09 Carrier Corporation Compensator in a detector device
CA3100971A1 (en) * 2018-05-21 2019-11-28 Tyco Fire Products Lp Systems and methods of real-time electronic fire sprinkler location and activation
US11361654B2 (en) * 2020-08-19 2022-06-14 Honeywell International Inc. Operating a fire system network
CN114333251B (en) * 2021-12-29 2023-06-20 成都中科慧源科技有限公司 Intelligent alarm, method, system, equipment and storage medium

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3099825A (en) * 1960-09-30 1963-07-30 Harriman Cy Control units for fire protective signaling systems
US3703721A (en) * 1971-06-01 1972-11-21 Audio Alert Corp Fire alarm system
US4027302A (en) * 1976-06-03 1977-05-31 W. E. Healey & Associates, Inc. Double detection circuit for conserving energy in fire detection systems and the like
US4319229A (en) * 1980-06-09 1982-03-09 Firecom, Inc. Alarm system having plural diverse detection means
JPS58127292A (en) * 1982-01-26 1983-07-29 ニツタン株式会社 Fire sensing system
US4633230A (en) * 1984-05-04 1986-12-30 Tam Wee M Cooking, fire, and burglar alarm system
JPH0778484B2 (en) * 1986-05-16 1995-08-23 株式会社日立製作所 Air-fuel ratio sensor temperature controller
EP0338218B1 (en) * 1988-03-30 1993-09-15 Cerberus Ag Early fire detection method
US5168262A (en) * 1988-12-02 1992-12-01 Nohmi Bosai Kabushiki Kaisha Fire alarm system
IT225152Z2 (en) * 1990-11-05 1996-10-22 G P B Beghelli S R L Ora Begne IMPROVEMENT IN EMERGENCY LAMPS, ESPECIALLY OF THE PORTABLE TYPE, PROVIDED WITH A SENSOR OF A GAS AND / OR HARMFUL COMBUSION SMOKE.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19902319B4 (en) * 1999-01-21 2011-06-30 Novar GmbH, Albstadt-Ebingen Zweigniederlassung Neuss, 41469 Scattered light fire detectors

Also Published As

Publication number Publication date
CN1122486A (en) 1996-05-15
DE59409119D1 (en) 2000-03-09
JPH07192189A (en) 1995-07-28
US5751209A (en) 1998-05-12
ES2144474T3 (en) 2000-06-16
EP0654770A1 (en) 1995-05-24
CH686913A5 (en) 1996-07-31
ATE189549T1 (en) 2000-02-15
PT654770E (en) 2000-07-31
DK0654770T3 (en) 2000-07-17
CN1052087C (en) 2000-05-03

Similar Documents

Publication Publication Date Title
EP0654770B1 (en) Device for early detection of fires
DE4436658B4 (en) Device and method for troubleshooting
DE10297009B4 (en) Sensor fusion using self-evaluating process sensors
DE69737336T2 (en) Validity checking sensors
DE60014709T2 (en) TWO-WIRE TRANSMITTER WITH SELF-TESTING AND LOW POWER
DE69226277T2 (en) FAIL-SAFE SENSOR CIRCUIT
DE3611816C2 (en)
DE10140134A1 (en) Multi-sensor detector e.g. for detecting gas quality to detect fire state, delivers information relating to ambient states via data communication medium
EP1860410A1 (en) Method for processing the output signal of a transducer and force measuring device
DE3832428A1 (en) PERSONAL DETECTING DEVICE
DE2710877C2 (en) Burglar alarm system
WO2006037804A1 (en) Scattered light smoke detector
DE69019652T2 (en) Acquisition and measurement of signals in fiber optic systems.
EP0157117A1 (en) Testing device for an intrusion-signalling apparatus
DE4141469C2 (en) Method for operating an optical sensor arrangement for the detection of objects present in a monitoring area, and such an optical sensor arrangement
WO1995033248A1 (en) Active ir intrusion detector
EP1071931B1 (en) Sensor device and method for operating a sensor device
EP0660282B1 (en) System for the early detection of fires
DE19625896A1 (en) Warning of impending failure in auto-calibration system of e.g. gas analysis instruments
EP0231786A2 (en) Process for eliminating disturbances in measuring signals
DE3818500A1 (en) ERROR DETECTION SYSTEM FOR OPTICAL LIGHT SENSORS
WO1997028521A1 (en) Device for the production of an alarm and for surveillance of an area
DE3885745T2 (en) ELECTROOPTIC DATA PROCESSING SYSTEM WITH NOISE IMMUNITY.
EP1736748A1 (en) Method of processing the output signal of a mesuring transducer and force measuring device for carrying out the method.
EP0707247B1 (en) Analyzer, in particular for waste water

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IE IT LI LU NL PT SE

17P Request for examination filed

Effective date: 19951115

17Q First examination report despatched

Effective date: 19980421

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS BUILDING TECHNOLOGIES AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IE IT LI LU NL PT SE

REF Corresponds to:

Ref document number: 189549

Country of ref document: AT

Date of ref document: 20000215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000202

REF Corresponds to:

Ref document number: 59409119

Country of ref document: DE

Date of ref document: 20000309

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2144474

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20000428

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: SIEMENS BUILDING TECHNOLOGIES AG C-IPR

Free format text: SIEMENS BUILDING TECHNOLOGIES AG#ALTE LANDSTRASSE 411#8708 MAENNEDORF (CH) -TRANSFER TO- SIEMENS BUILDING TECHNOLOGIES AG C-IPR#GUBELSTRASSE 22#6300 ZUG (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20070910

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20070911

Year of fee payment: 14

REG Reference to a national code

Ref country code: PT

Ref legal event code: PC4A

Owner name: SIEMENS SCHWEIZ AG, US

Effective date: 20080829

REG Reference to a national code

Ref country code: PT

Ref legal event code: PC4A

Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

Effective date: 20080829

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS AKTIENGESELLSCHAFT

Free format text: SIEMENS BUILDING TECHNOLOGIES AG C-IPR#GUBELSTRASSE 22#6300 ZUG (CH) -TRANSFER TO- SIEMENS AKTIENGESELLSCHAFT#WITTELSBACHERPLATZ 2#80333 MUENCHEN (DE)

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090514 AND 20090520

BECA Be: change of holder's address

Owner name: SIEMENS A.G.WITTELSBACHERPLATZ 2, DE-80333 MUENCHE

Effective date: 20100423

BECH Be: change of holder

Owner name: SIEMENS A.G.

Effective date: 20100423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080905

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20110318

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20110923

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20110810

Year of fee payment: 18

Ref country code: PT

Payment date: 20110825

Year of fee payment: 18

Ref country code: SE

Payment date: 20110908

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110927

Year of fee payment: 18

Ref country code: NL

Payment date: 20110913

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20111013

Year of fee payment: 18

Ref country code: BE

Payment date: 20111013

Year of fee payment: 18

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20130305

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20120930

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120906

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 189549

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130305

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120905

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130401

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120905

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20131018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120906

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130924

Year of fee payment: 20

Ref country code: GB

Payment date: 20130911

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20131210

Year of fee payment: 20

Ref country code: DE

Payment date: 20131120

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59409119

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140904