EP0654770B1 - Device for early detection of fires - Google Patents
Device for early detection of fires Download PDFInfo
- Publication number
- EP0654770B1 EP0654770B1 EP94113869A EP94113869A EP0654770B1 EP 0654770 B1 EP0654770 B1 EP 0654770B1 EP 94113869 A EP94113869 A EP 94113869A EP 94113869 A EP94113869 A EP 94113869A EP 0654770 B1 EP0654770 B1 EP 0654770B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- stage
- arrangement according
- signals
- neural network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001514 detection method Methods 0.000 title claims description 5
- 238000012545 processing Methods 0.000 claims abstract description 20
- 230000003287 optical effect Effects 0.000 claims abstract description 16
- 238000012544 monitoring process Methods 0.000 claims abstract description 4
- 230000003750 conditioning effect Effects 0.000 claims abstract 3
- 238000013528 artificial neural network Methods 0.000 claims description 42
- 239000000779 smoke Substances 0.000 claims description 11
- 238000005259 measurement Methods 0.000 claims description 7
- 238000012795 verification Methods 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 3
- 230000007613 environmental effect Effects 0.000 claims description 3
- 230000005693 optoelectronics Effects 0.000 claims description 3
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 2
- 230000017525 heat dissipation Effects 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 claims 1
- 230000008030 elimination Effects 0.000 claims 1
- 238000003379 elimination reaction Methods 0.000 claims 1
- 239000010453 quartz Substances 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 1
- 230000001629 suppression Effects 0.000 claims 1
- 230000001537 neural effect Effects 0.000 abstract 1
- 230000006870 function Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 206010003694 Atrophy Diseases 0.000 description 1
- 206010069201 Smoke sensitivity Diseases 0.000 description 1
- 230000037444 atrophy Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B29/00—Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
- G08B29/16—Security signalling or alarm systems, e.g. redundant systems
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
Definitions
- the present invention relates to an arrangement for the early detection of fires, with a A plurality of detectors connected to a control center, some with at least two Sensors for monitoring various fire parameters are equipped with Means for processing the signals from the sensors, which are arranged decentrally in the detectors and a microcontroller for processing the sensor signals and for signal processing have with the purpose of obtaining hazard signals, the extraction of the Danger signals occur in a neural network.
- Such detectors have several advantages: By relocating signal processing from The central in the detectors is the limitation of the usual communication bandwidth Connections between the control panel and detectors without influence. In addition, the observation length the signals are not subject to restrictions and the possibility of overloading the head office is practically excluded. The high redundancy of the system has also the advantage that in the event of a failure or malfunction of the main processor in the central office Detectors can trigger an alarm themselves.
- the use of the neural network has the advantage that the reliability of the detector function is generally improved by a wide range of possibilities Linkage of the different signal signatures, that is the recognition pattern, exists and can also be optimally used in the neural network.
- a further neural network is connected upstream of the neural network for each sensor, which time pattern of the signals of the relevant sensor are sequentially supplied.
- This other neural networks represent a type of transversal filter and deliver on their Output one signal signature per fire phenomenon.
- the invention is intended to further reduce the false alarm rate per detection point and the Reliability of the detectors can be further improved.
- the neural network digital filter bank is connected upstream, which receives the signals of at least one type of sensor are supplied, and which have several signal signatures at their output for the neural network or provides criteria for the fire phenomenon in question.
- the reliability of the detector further improved because the neural network due to the plurality of signal signatures can be trained so that its functions are fully understandable and clear.
- Fig. 1 shows an overview of the signal processing in the detector, which is divided into five stages S1 to S5 can be.
- the first stage S1 consists of the sensor hardware and essentially contains a thermal sensor 1 formed by an NTC sensor, one by a light pulse transmitter and an optical sensor 2 formed by a light pulse receiver, a bias network 3 for the thermal sensor 1 and an ASIC 4.
- the sensor hardware also includes another A / D converter 5 of a microcontroller MCU.
- the MCU has a ROM mask that contains the operating system and the sensor software of the detector and thus all processes at the functional level, i.e. the Sensor control, signal processing as well as addressing and communication with the head office controls.
- the ASIC 4 contains all amplifiers and filters for the signal of the Light pulse receiver, a one-chip temperature sensor, the control electronics for the light pulse transmitter, a crystal oscillator and start-up / power management and line monitoring for the MCU. There is a bidirectional, between the MCU and the ASIC 4 serial data bus and various control lines.
- the signals are in the second stage S2 following the A / D converter 5 prepared, trying through different compensations, one if possible to get an exact image of the real measurement parameters.
- the third stage S3 Signal signatures or criteria extracted, which are then in a fourth stage S4 neural network NN condensed into a scalar danger signal and one Risk level can be assigned.
- the fifth stage S5 is finally in one Verification level 6 the decision about the final danger level is made and together with the functional state or status to the communication interface of the MCU forwarded.
- the first three stages S1 to S3 are from the signal of the thermal Sensor 1 and separately from the signal of the optical sensor 2, what in the Figure symbolized by two signal paths, a "thermal” and an “optical” path which is then brought together in the fourth stage S4, that is to say in the neural network are.
- the signal flow of the two paths through levels S1 to S3 is in 2a and 2b, and the neural network NN is shown in Fig. 3 in detail.
- the NTC temperature sensor 1 is over the bias network 3 operated pulsed and the NTC voltage is fed to the A / D converter 5.
- the NTC temperature data are subsequently analyzed in a stage 7, where Interruptions and short circuits are detected.
- level 7 there is also the influence of small driving voltage changes to increase the measurement accuracy compensated for the measured value. Any glitches are shown below "anti-EMI" algorithm 8 removed. This limits the signal change from one Measurement to the next to certain values stored in the data memory of the MCU. Normal fire signals pass this algorithm unchanged.
- the output signal of the A / D converter is then in a linearization stage 9 using an interpolation table according to the characteristics of the NTC sensor converted into a temperature value. Then in a block 10 the heat dissipation by connecting wires and plastic wall and in a block 11 the Heat capacity of the NTC sensor 1 compensated.
- the output signals of the blocks 10 and 11 then pass through a digital filter bank 12 and are finally in a level 13 linked with parameters. At the exit of level 13 and thus on At the end of the thermal path there are several, from the NTC signal and thus from temperature-dependent signature signals or criteria S1 to Sm are available.
- a pulse generator 14 drives which every 100s is almost 100 ⁇ s long current pulse, an infrared light emitting diode forming the light pulse transmitter 15, which sends a light pulse into the optical scattering space. That of any existing Smoke scattered light is collected by a lens and onto a receiver photodiode 15 'directed. The resulting photocurrent is synchronized with the transmission pulse integrated by an integrator 16.
- the following, still differential Voltage amplifier 17 offers several selectable gain settings.
- the coarse detector adjustment is then carried out.
- a so-called AMB filter 18th eliminates DC components and low-frequency interference from the signal. High frequencies Faults have already been eliminated by integrator 17. At the exit of the AMB filter 18 appears as a single unipolar signal from a voltage amplifier 19 is further strengthened.
- the output signal of the amplifier 19 is converted into digital data in the A / D converter 5, with which the software-based signal processing begins (FIG. 1, stage S2).
- stage S2 the software-based signal processing begins.
- the effective signal swing is now determined.
- This arrives in a block 21 and can be corrected there thanks to the availability of the ASIC temperature so that extensive compensation of the temperature drops of the optoelectronic Components done.
- the target size is the software fine adjustment, which is also carried out in block 21.
- tracking eliminates those signal components which are caused by very slow environmental influences (for example dustiness) are caused, and which generate a false smoke signal over time and thus change the sensitivity would.
- the result of the previous processing steps is a size that the effective, filtered, adjusted, temperature compensated and tracked Represents smoke value and the direct reference for determining the hazard level forms.
- the last link (block 23) in optical signal processing is from Different parameter-controlled algorithms that determine the temporal behavior assess the size representing the smoke value.
- the signature signals Sm + 1 to Sn are available.
- the signature signals S1 to Sn of the thermal and the optical path form the Entry level L0 of a layered, neural network NN, which is shown in FIG. 3 is.
- the representation of the neural network NN in FIG. 1 shows that these input variables are either dependent on the temperature signal (T), or the optical signal (O) or both.
- the network points next to the entrance level L0 still further levels L1 to L5 with so-called neurons or nodes on.
- the input variables of an addition weighted with parameters are stored in these and subjected to a maximum and / or minimum linkage. The addition takes place in the with A and the maximum and / or minimum linkage in the with M designated neurons.
- the network can be used in a learning environment be involved. This will be through the learning effect of the network certain connections prove to be preferred and reinforce and others will atrophy as it were.
- the network can also be used without a learning phase be structured. In both cases, the weights are used for safety reasons of the network frozen.
- the danger signal will in a quantization stage 24 one of several, for example at least three, assigned to security levels, and this assigned to one of the security levels Signal is the output signal GS of the neural network NN.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Fire-Detection Mechanisms (AREA)
- Fire Alarms (AREA)
- Vending Machines For Individual Products (AREA)
- Looms (AREA)
- Control Of Combustion (AREA)
- Alarm Systems (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft eine Anordnung zur Früherkennung von Bränden, mit einer Mehrzahl von mit einer Zentrale verbundenen Meldern, von denen einige mit mindestens zwei Sensoren für die Überwachung von verschiedenen Brandkenngrössen ausgerüstet sind, und mit Mitteln für die Verarbeitung der Signale der Sensoren, welche dezentral in den Meldern angeordnet sind und einen Microcontroller für die Aufbereitung der Sensorsignale und für die Signalverarbeitung mit dem Zweck der Gewinnung von Gefahrensignalen aufweisen, wobei die Gewinnung der Gefahrensignale in einem neuronalen Netzwerk erfolgt.The present invention relates to an arrangement for the early detection of fires, with a A plurality of detectors connected to a control center, some with at least two Sensors for monitoring various fire parameters are equipped with Means for processing the signals from the sensors, which are arranged decentrally in the detectors and a microcontroller for processing the sensor signals and for signal processing have with the purpose of obtaining hazard signals, the extraction of the Danger signals occur in a neural network.
Derartige Melder haben mehrere Vorteile: Durch die Verlagerung der Signalverarbeitung von der Zentrale in die Melder ist die Beschränkung der Kommunikationsbandbreite der üblichen Verbindungen zwischen Zentrale und Meldern ohne Einfluss. Ausserdem ist die Beobachtungslänge der Signale keinen Einschränkungen unterworfen und die Möglichkeit einer Überlastung der Zentrale ist praktisch ausgeschlossen. Die hohe Redundanz des Systems hat ausserdem den Vorteil, dass bei Ausfall oder Störung des Hauptprozessors in der Zentrale die Melder selbst Alarm auslösen können.Such detectors have several advantages: By relocating signal processing from The central in the detectors is the limitation of the usual communication bandwidth Connections between the control panel and detectors without influence. In addition, the observation length the signals are not subject to restrictions and the possibility of overloading the head office is practically excluded. The high redundancy of the system has also the advantage that in the event of a failure or malfunction of the main processor in the central office Detectors can trigger an alarm themselves.
Die Verwendung des neuronalen Netzwerks hat den Vorteil, dass die Zuverlässigkeit der Melderfunktion ganz allgemein verbessert wird, indem eine breite Palette von Möglichkeiten der Verknüpfung der verschiedenen Signalsignaturen, das sind die Erkennungsmuster, besteht und in dem neuronalen Netzwerk auch optimal genutzt werden kann.The use of the neural network has the advantage that the reliability of the detector function is generally improved by a wide range of possibilities Linkage of the different signal signatures, that is the recognition pattern, exists and can also be optimally used in the neural network.
Bei einem in der EP-A-0 403 659 beschriebenen Brandmelder der eingangs genannten Art ist dem neuronalen Netzwerk für jeden Sensor ein weiteres neuronales Netzwerk vorgeschaltet, welchem Zeitmuster der Signale des betreffenden Sensors sequentiell zugeführt sind. Diese weiteren neuronalen Netzwerke stellen eine Art von Transversalfilter dar und liefern an ihrem Ausgang je eine Signalsignatur pro Brandphänomen.In a fire detector of the type mentioned in EP-A-0 403 659 a further neural network is connected upstream of the neural network for each sensor, which time pattern of the signals of the relevant sensor are sequentially supplied. This other neural networks represent a type of transversal filter and deliver on their Output one signal signature per fire phenomenon.
Durch die Erfindung soll nun die Fehlalarmrate pro Detektionspunkt weiter reduziert und die Zuverlässigkeit der Melder weiter verbessert werden.The invention is intended to further reduce the false alarm rate per detection point and the Reliability of the detectors can be further improved.
Diese Aufgabe wird erfindungsgemäss dadurch gelöst, das dem neuronalen Netzwerk eine digitale Filterbank vorgeschaltet ist, welcher die Signale mindestens einer Art der Sensoren zugeführt sind, und welche an ihrem Ausgang für das neuronale Netzwerk mehrere Signalsignaturen oder Kriterien für das betreffende Brandphänomen zur Verfügung stellt.This object is achieved according to the invention in that the neural network digital filter bank is connected upstream, which receives the signals of at least one type of sensor are supplied, and which have several signal signatures at their output for the neural network or provides criteria for the fire phenomenon in question.
Durch die digitale Filterbank, welche dem neuronalen Netzwerk mehrere Signalsignaturen für das betreffende Brandphänomen zur Verfügung stellt, wird die Zuverlässigkeit der Melder weiter verbessert, weil das neuronale Netzwerk aufgrund der Mehrzahl von Signalsignaturen so ausgebildet werden kann, dass seine Funktionen voll verständlich und überblickbar sind.Through the digital filter bank, which the neural network multiple signal signatures for the fire phenomenon in question, the reliability of the detector further improved because the neural network due to the plurality of signal signatures can be trained so that its functions are fully understandable and clear.
Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels und der Zeichnungen näher erläutert; dabei zeigt:
- Fig. 1
- ein Übersichtsdiagramm der Signalverarbeitung im Melder,
- Fig. 2a, b
- ein Schema der beiden Signalpfade der Signalverarbeitung; und
- Fig. 3
- in Diagramm des neuronalen Netzwerks der Signalverarbeitung.
- Fig. 1
- an overview diagram of signal processing in the detector,
- 2a, b
- a schematic of the two signal paths of signal processing; and
- Fig. 3
- in diagram of the neural network of signal processing.
Fig. 1 zeigt eine Übersicht der Signalverarbeitung im Melder, die in fünf Stufen S1 bis S5 aufgeteilt
werden kann. Die erste Stufe S1 besteht aus der Sensor-Hardware und enthält im wesentlichen
einen durch einen NTC-Sensor gebildeten Thermosensor 1, einen durch einen Lichtpulssender
und einen Lichtpulsempfänger gebildeten optischen Sensor 2, ein Vorspannungsnetzwerk
3 für den Thermosensor 1 und einen ASIC 4. Zur Sensor-Hardware gehört ausserdem
noch ein A/D-Wandler 5 eines Microcontrollers MCU.Fig. 1 shows an overview of the signal processing in the detector, which is divided into five stages S1 to S5
can be. The first stage S1 consists of the sensor hardware and essentially contains
a
Die MCU weist in bekannter Weise eine ROM-Maske auf, die das Betriebssystem und die Sensorsoftware des Melders enthält und damit sämtliche Abläufe auf der Funktionsebene, also die Sensorsteuerung, die Signalverarbeitung sowie die Adressierung und die Kommunikation mit der Zentrale kontrolliert. Der ASIC 4 beinhaltet alle Verstärker und Filter für das Signal des Lichtimpulsempfängers, einen Einchip-Temperatursensor, die Ansteuerelektronik für den Lichtpulssender, einen Quarzoszillator und das Aufstart-/Power-Management sowie die Linienüberwachung für die MCU. Zwischen der MCU und dem ASIC 4 bestehen ein bidirektionaler, serieller Datenbus und diverse Kontrolleitungen. In a known manner, the MCU has a ROM mask that contains the operating system and the sensor software of the detector and thus all processes at the functional level, i.e. the Sensor control, signal processing as well as addressing and communication with the head office controls. The ASIC 4 contains all amplifiers and filters for the signal of the Light pulse receiver, a one-chip temperature sensor, the control electronics for the light pulse transmitter, a crystal oscillator and start-up / power management and line monitoring for the MCU. There is a bidirectional, between the MCU and the ASIC 4 serial data bus and various control lines.
In der an den A/D-Wandler 5 anschliessenden zweiten Stufe S2 werden die Signale
aufbereitet, wobei durch verschiedene Kompensationen versucht wird, ein möglichst
genaues Abbild der reellen Messgrössen zu erhalten. In der dritten Stufe S3 werden
Signalsignaturen oder Kriterien extrahiert, die dann in der vierten Stufe S4 in einem
neuronalen Netzwerk NN zu einem skalaren Gefahrensignal kondensiert und einer
Gefahrenstufe zugeordnet werden. In der fünften Stufe S5 wird schliesslich in einer
Verifizierungsstufe 6 der Entscheid über die definitive Gefahrenstufe gefällt und zusammen
mit dem Funktionszustand oder Status an das Kommunikationsinterface der
MCU weitergeleitet.The signals are in the second stage S2 following the A /
Gemäss Fig. 1 werden die ersten drei Stufen S1 bis S3 vom Signal des thermischen
Sensors 1 und vom Signal des optischen Sensors 2 getrennt durchlaufen, was in der
Figur durch zwei Signalpfade, einen "thermischen" und einen "optischen" Pfad, symbolisiert
ist, die dann in der vierten Stufe S4, also im neuronalen Netzwerk zusammengeführt
sind. Der Signalfluss der beiden Pfade durch die Stufen S1 bis S3 ist in
den Fig. 2a und 2b, und das neuronale Netzwerk NN ist in Fig. 3 im Detail dargestellt.1, the first three stages S1 to S3 are from the signal of the
Nachfolgend soll nun zuerst der thermische und dann der optische Signalpfad näher
beschrieben werden: Der NTC-Temperatursensor 1 wird über das Vorspannungsnetzwerk
3 gepulst betrieben und die NTC-Spannung wird dem A/D-Wandler 5 zugeleitet.
Die NTC-Temperaturdaten werden nachfolgend in einer Stufe 7 analysiert, wobei
Unterbrechungen und Kurzschluss erkannt werden. In der Stufe 7 wird ausserdem
zur Erhöhung der Messgenauigkeit der Einfluss von kleinen Treiberspannungsänderungen
auf den Messwert kompensiert. Allfällige Störspitzen werden im nachfolgenden
"anti-EMI"-Algorithmus 8 entfernt. Dieser begrenzt die Signaländerung von einer
Messung zur nächsten auf bestimmte, im Datenspeicher der MCU gespeicherte Werte.
Normale Brandsignale passieren diesen Algorithmus unverändert.In the following, the thermal and then the optical signal path should now be closer
The
Anschliessend wird in einer Linearisierungsstufe 9 das Ausgangssignal des A/D-Wandlers
mittels einer Interpolationstabelle gemäss der Charakteristik des NTC-Sensors
in einen Temperaturwert umgerechnet. Dann wird in einem Block 10 die Wärmeableitung
durch Anschlussdrähte und Kunststoffwandung und in einem Block 11 die
Wärmekapazität des NTC-Sensors 1 kompensiert. Die Ausgangssignale der Blöcke
10 und 11 durchlaufen dann eine digitale Filterbank 12 und werden schliesslich in
einer Stufe 13 mit Parametern verknüpft. Am Ausgang der Stufe 13 und damit am
Ende des thermischen Pfads stehen dann mehrere, vom NTC-Signal und damit von
der Temperatur abhängige Signatursignale oder Kriterien S1 bis Sm zur Verfügung.The output signal of the A / D converter is then in a
Im optischen Signalpfad treibt ein Pulsgenerator 14, der alle 3s einen knapp 100µs
langen Strompuls erzeugt, eine den Lichtimpulssender bildende Infrarot-Leuchtdiode
15, die einen Lichtpuls in den optischen Streuraum sendet. Das von allfällig vorhandenem
Rauch gestreute Licht wird von einer Linse gesammelt und auf eine Empfänger-Photodiode
15' geleitet. Der resultierende Photostrom wird synchron zum Sendepuls
von einem Integrator 16 integriert. Der nachfolgende, immer noch differentielle
Spannungsverstärker 17 bietet mehrere wählbare Verstärkungseinstellungen an.
Damit wird der Melder-Grobabgleich vorgenommen. Ein sogenanntes AMB-Filter
18
eliminiert Gleichstromanteile und niederfrequente Störungen aus dem Signal. Hochfrequente
Störungen wurden bereits vom Integrator 17 beseitigt. Am Ausgang des
AMB-Filters 18 erscheint ein einziges unipolares Signal, das von einem Spannungsverstärker
19 weiter verstärkt wird.In the optical signal path, a
Das Ausgangssignal des Verstärkers 19 wird im A/D-Wandler 5 in digitale Daten umgewandelt,
womit die softwaremässige Signalverarbeitung beginnt (Fig. 1, Stufe S2).
Durch Differenzbildung in einer Stufe 20 zwischen einer Hell- und einer Dunkelmessung
wird jetzt der effektive Signalhub bestimmt. Dieser gelangt in einen Block 21 und
kann dort dank der Verfügbarkeit der ASIC-Temperatur so korrigiert werden, dass
eine weitgehende Kompensation der Temperaturabgänge der optoelektronischen
Bauteile erfolgt. Als letzte und praktisch stufenlose Anpassung der Signale an eine
Sollgrösse dient der softwaremässige Feinabgleich, der ebenfalls im Block 21 erfolgt.
Im nächsten Block 22 beseitigt eine Nachführung diejenigen Signalanteile, die durch
sehr langsame Umwelteinflüsse (beispielsweise Verstaubung) verursacht sind, und
die mit der Zeit ein Scheinrauchsignal erzeugen und damit die Empfindlichkeit verändern
würden. The output signal of the
Das Resultat aus den bisherigen Verarbeitungsschritten ist eine Grösse , die den effektiven, gefilterten, abgeglichenen, temperaturkompensierten und nachgeführten Rauchwert darstellt und die unmittelbare Referenz für die Ermittlung der Gefahrenstufe bildet. Als letztes Glied (Block 23) in der optischen Signalverarbeitung wirken von verschiedenen Parametersätzen gesteuerte Algorithmen, die das zeitliche Verhalten der den Rauchwert darstellenden Grösse beurteilen. Am Ende des optischen Signalverarbeitungspfades stehen dann die Signatursignale Sm+1 bis Sn zur Verfügung.The result of the previous processing steps is a size that the effective, filtered, adjusted, temperature compensated and tracked Represents smoke value and the direct reference for determining the hazard level forms. The last link (block 23) in optical signal processing is from Different parameter-controlled algorithms that determine the temporal behavior assess the size representing the smoke value. At the end of the optical signal processing path then the signature signals Sm + 1 to Sn are available.
Die Signatursignale S1 bis Sn des thermischen und des optischen Pfades bilden die Eingangsebene L0 eines geschichteten, neuronalen Netzwerks NN, das in Fig. 3 dargestellt ist. Aus der Darstellung des neuronalen Netzwerks NN in Fig. 1 ist ersichtlich, dass diese Eingangsgrössen entweder vom Temperatursignal (T) abhängig sind, oder vom optischen Signal (O) oder von beiden. Das Netzwerk weist neben der Eingangsebene L0 noch weitere Ebenen L1 bis L5 mit sogenannten Neuronen oder Knoten auf. In diesen werden die mit Parametern gewichteten Eingangsgrössen einer Addition und einer Maximum- und/oder Minimumverknüpfung unterworfen. Die Addition erfolgt in den mit A und die Maximum- und/oder Minimumverknüpfung in den mit M bezeichneten Neuronen.The signature signals S1 to Sn of the thermal and the optical path form the Entry level L0 of a layered, neural network NN, which is shown in FIG. 3 is. The representation of the neural network NN in FIG. 1 shows that these input variables are either dependent on the temperature signal (T), or the optical signal (O) or both. The network points next to the entrance level L0 still further levels L1 to L5 with so-called neurons or nodes on. The input variables of an addition weighted with parameters are stored in these and subjected to a maximum and / or minimum linkage. The addition takes place in the with A and the maximum and / or minimum linkage in the with M designated neurons.
Dabei ist die Maximumverknüpfung die nichtlineare Netzwerfunktion:
Die Addition ist das das Skalarprodukt:
Zwischen den Neuronen sind grundsätzlich alle Verbindungen möglich. In einer Lernphase während der Entwicklung des Melders kann das Netzwerk in eine Lernumgebung eingebunden werden. Dabei werden sich durch den Lerneffekt des Netzwerks bestimmte Verbindungen als bevorzugt erweisen und sich verstärken und andere werden gleichsam verkümmern. Alternativ kann das Netzwerk auch ohne Lernphase struiert werden. In beiden Fällen werden aus Sicherheitsgründen im Betrieb die Gewichte des Netzwerks eingefroren.In principle, all connections are possible between the neurons. In a learning phase During the development of the detector, the network can be used in a learning environment be involved. This will be through the learning effect of the network certain connections prove to be preferred and reinforce and others will atrophy as it were. Alternatively, the network can also be used without a learning phase be structured. In both cases, the weights are used for safety reasons of the network frozen.
Zwischen der Eingangs- und der Ausgangsebene L0 bzw. L5 des neuronalen Netzwerks
NN erfolgt eine Konzentration der jeweiligen Eingangsgrössen auf eine einzige
Ausgangsgrösse, die ein skalares Gefahrensignal darstellt. Das Gefahrensignal wird
in einer Quantisierungsstufe 24 einer von mehreren, beispielsweise von mindestens
drei, Gefahrenstufen zugeordnet, und dieses einer der Gefahrenstufen zugeordnete
Signal ist das Ausgangssignal GS des neuronalen Netzwerks NN.Between the input and output levels L0 and L5 of the neural network
NN there is a concentration of the respective input variables on a single one
Output variable that represents a scalar danger signal. The danger signal will
in a
Schliesslich erfolgt in der dem neuronalen Netzwerk nachgeordneten Verfifizierungsstufe
6 die Verifizierung der definitiven Gefahrenstufe. Das entsprechende Ausgangssignal
GSdef wird zusammen mit dem Funktionszustand (Fig. 1, "Status") über das
Kommunikationsinterface der MCU der Zentrale mitgeteilt.Finally, the verification level that follows the neural network takes
Abschliessend sollen noch einige besonders vorteilhafte Eigenschaften und Zusatzfunktionen des beschriebenen Brandmelders erwähnt werden:
- Die Messung der aktuellen ASIC-Temperatur mit Hilfe eines Einchip-Temperatursensors wurde bereits erwähnt. Diese Messung, die periodisch erfolgt, liefert einen Temperaturwert, mit dem die Temperaturgänge der optoelektronischen Bauteile softwaremässig kompensiert werde, so dass auch bei extremen Temperaturen zuverlässige Rauchdichtemessungen vorgenommen werden können.
- Die Funktionsweise der Signalnachführung wurde ebenfalls bereits erwähnt. Das Rauchdichtesignal wird von sehr niederfrequenten Anteilen befreit, um Einflüsse der Umwelt auszufiltern, die signifikant langsamer sind als Brandphänomene (beispielsweise Verstaubung). Damit wird eine sehr gute Langzeitkonstanz der Rauchempfindlichkeit erreicht.
- Regelmässig wird automatisch ein Selbsttest auf gewisse Fehler durchgeführt, der den Melder einer detaillierten Diagnose unterzieht.
- The measurement of the current ASIC temperature with the aid of a single-chip temperature sensor has already been mentioned. This measurement, which is carried out periodically, provides a temperature value with which the temperature responses of the optoelectronic components are compensated for by software, so that reliable smoke density measurements can also be carried out at extreme temperatures.
- The functionality of signal tracking has also already been mentioned. The smoke density signal is freed from very low-frequency components in order to filter out environmental influences that are significantly slower than fire phenomena (e.g. dustiness). This ensures a very good long-term consistency in smoke sensitivity.
- A self-test for certain errors is carried out automatically, which subjects the detector to a detailed diagnosis.
Wenn auch die Verlagerung der Signalverarbeitung von der Zentrale in die Melder und die Verwendung eines neuronalen Netzwerks bei der Signalverarbeitung für Melder mit Mehrfachsensoren besonders vorteilhaft ist, so können selbstverständlich auch Melder mit nur einem Sensor in der beschriebenen Art ausgebildet sein. Ausserdem sei noch erwähnt, dass das neuronale Netzwerk NN einen ganz speziellen, einer Fuzzy-Logic verwandten Typus darstellt und daher auch durch eine Fuzzy-Logic ersetzt werden könnte.If the shift of the signal processing from the central to the detectors and the use of a neural network for signal processing for detectors Multiple sensors is particularly advantageous, so can of course also detectors be formed with only one sensor in the manner described. In addition, is still mentions that the neural network NN has a very special, a fuzzy logic represents related type and can therefore also be replaced by a fuzzy logic could.
Ein ganz wesentliches Merkmal der vorliegenden Anordnung ist durch die digitale Filterbank 12 und den Block 23 (Fig. 1) gebildet, wobei insbesondere die digitale Filterbank rekursive Filter enthalten kann. Wenn man anstelle dieser Filterbank und/oder des Blocks 23 je ein neuronales Netzwerk verwenden und diesem Zeitmuster der Sensorsignale sequentiell zuführen würde, dann hätte man gegenüber der vorgeschlagenen Lösung zwei wesentliche Nachteile:
- Diese neuronalen Netzwerke wären eine Art von Transversalfilter und hätten ein wesentlich geringeres Gedächtnis als rekursive Filter;
- am Ausgang jedes dieser neuronalen Netzwerke wäre nur je eine Signalsignatur pro Brandphänomen (Rauch, Temperatur) erhältlich, wogegen die vorgeschlagene Lösung S1 bis Sm Signalsignaturen für das Brandphänomen Temperatur und Sm+1 bis Sn Signalsignaturen für das Brandphänomen Rauch zur Verfügung stellt. Diese Mehrzahl von Signalsignaturen ist aber für die sichere Funktion des neuronalen Netzwerks NN (Fig. 3) sehr wichtig, weil man dieses dann so ausbilden kann, dass seine Funktionen voll verständlich und überblickbar sind. Und letzteres ist in einem Sicherheitssystem unbedingt erforderlich.
- These neural networks would be a type of transversal filter and have a much smaller memory than recursive filters;
- only one signal signature per fire phenomenon (smoke, temperature) would be available at the output of each of these neural networks, whereas the proposed solution S1 to Sm provides signal signatures for the temperature fire phenomenon and Sm + 1 to Sn signal signatures for the smoke fire phenomenon. However, this plurality of signal signatures is very important for the safe functioning of the neural network NN (FIG. 3), because it can then be designed in such a way that its functions are fully understandable and clear. And the latter is absolutely essential in a security system.
Claims (16)
- Arrangement for the early detection of fires, with a number of detectors connected to a control centre, some of which are fitted with at least two sensors (1, 2) for monitoring different fire parameters, and with means for processing the signals of the sensors (1, 2) which are arranged locally in the detectors and have a microcontroller (MCU) for conditioning the sensor signals and for signal processing, with the aim of obtaining alarm signals, wherein the alarm signals are obtained in a neural network (NN), characterised in that a digital filter bank (12) is connected upstream of the neural network (NN), the digital filter bank being fed with the signals of at least one type of the sensors (1), and making available at its output to the neural network several signal signatures or criteria (S1 to Sm) for the respective fire phenomenon.
- Arrangement according to Claim 1, characterised in that the digital filter bank (12) contains recursive filters.
- Arrangement according to Claim 1 or 2, characterised in that the neural network (NN) has several levels (L1 to L5) with nodes (A, M), in which the input variables, weighted with parameters, undergo an addition and a maximum and/or minimum linkage.
- Arrangement according to Claim 3, characterised in that the signal processing has a separate path for each of the two sensors (1, 2), and that the two paths are combined at the input of the neural network (NN).
- Arrangement according to Claim 4, characterised in that the microcontroller (MCU) has a mask with the operating system and the sensor software of the detector, and a data memory, and that an ASIC (4) that contains the amplifier and filter for the signal of the receiver of the optical sensor (2), a temperature sensor, the drive electronics for the transmitter of the optical sensor, and a quartz oscillator, is allocated to the microcontroller (MCU).
- Arrangement according to Claim 4, characterised in that the thermal path contains a first stage (S1) with a biassing network (3) for the operation of the thermal sensor (1) and with an A/D converter (5), a second stage (S2) for conditioning the signals for possible compensations, and a third stage (S3) for obtaining signal signatures, which form input variables for the neural network (NN).
- Arrangement according to Claim 6, characterised in that the second stage (S2) has a block (7) for analyzing the output signals of the A/D converter (5) for possible errors and/or for compensation of the effects of changes in the drive voltage on the measured value and/or a block (8) for removing glitches, a block (9) for converting the measured value into a temperature value and/or a block (10 or 11 respectively) for compensating the heat dissipation and/or the thermal capacity.
- Arrangement according to Claim 7, characterised in that in the block (8) the signal change from one measurement to the other is limited to certain values to remove glitches.
- Arrangement according to Claim 6, characterised in that the third stage (S3) contains means for linking the output signals of the said elements, so that various signature signals derived from the temperature signals are available at the end of the thermal path.
- Arrangement according to Claim 4, characterised in that the optical path contains a first stage (S1) with a pulse generator (14) for driving the transmitter (15) and with an integrator (16) for the signal of the receiver (15') of the optical sensor (2), as well as an A/D converter (5), a second stage (S2) for implementing any compensations, and a third stage (S3) for obtaining signal signatures, which form input variables for the neural network (NN).
- Arrangement according to Claim 10, characterised in that a voltage amplifier (17) for the coarse adjustment is connected downstream of the integrator (16) and a filter (18) for the selective detection of the received light pulse and suppression of interference signals is connected downstream of said voltage amplifier.
- Arrangement according to Claim 11, characterised in that a calculation of the signal pulse values is made via the filter (18) before, after and during a light pulse.
- Arrangement according to Claim 10 or 11, characterised in that the second stage (S2) contains a block (20) for determining the signal deviation, a block (21) for compensation of the temperature outputs of the opto-electronic components and/or for the fine adjustment, and/or a block (22) for compensation of the background signal and for the elimination of signal components composed of slow environmental effects, so that the output signal of the second stage represents an adjusted, temperature-compensated and corrected smoke value.
- Arrangement according to Claim 10, characterised in that the third stage (S3) contains a block (23) for assessing the time characteristic of the smoke value supplied by the second stage (S2) via a filter arrangement, and that the smoke value signal thus filtered forms a signature signal of the optical path.
- Arrangement according to Claims 6 and 10, characterised in that a concentration of the input variables takes place in the nodes (A, M) of the neural network (NN), and that a scalar alarm signal is obtainable at the output level (L5) of the network, and is allocated in a quantizing stage (24) to one of several alarm stages.
- Arrangement according to Claim 15, characterised in that a verification stage (6) for verifying the definitive alarm stage is connected downstream of the neural network (NN).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH347993 | 1993-11-22 | ||
CH3479/93 | 1993-11-22 | ||
CH03479/93A CH686913A5 (en) | 1993-11-22 | 1993-11-22 | Arrangement for early detection of fires. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0654770A1 EP0654770A1 (en) | 1995-05-24 |
EP0654770B1 true EP0654770B1 (en) | 2000-02-02 |
Family
ID=4256867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94113869A Expired - Lifetime EP0654770B1 (en) | 1993-11-22 | 1994-09-05 | Device for early detection of fires |
Country Status (10)
Country | Link |
---|---|
US (1) | US5751209A (en) |
EP (1) | EP0654770B1 (en) |
JP (1) | JPH07192189A (en) |
CN (1) | CN1052087C (en) |
AT (1) | ATE189549T1 (en) |
CH (1) | CH686913A5 (en) |
DE (1) | DE59409119D1 (en) |
DK (1) | DK0654770T3 (en) |
ES (1) | ES2144474T3 (en) |
PT (1) | PT654770E (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19902319B4 (en) * | 1999-01-21 | 2011-06-30 | Novar GmbH, Albstadt-Ebingen Zweigniederlassung Neuss, 41469 | Scattered light fire detectors |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5659292A (en) * | 1995-02-21 | 1997-08-19 | Pittway Corporation | Apparatus including a fire sensor and a non-fire sensor |
ATE208074T1 (en) | 1995-08-23 | 2001-11-15 | Siemens Building Tech Ag | FIRE ALARM |
ES2198939T3 (en) * | 1998-09-09 | 2004-02-01 | Siemens Building Technologies Ag | FIRE DETECTOR AND FIRE ALARM SYSTEM. |
DE19932906A1 (en) * | 1999-07-12 | 2001-01-18 | Siemens Ag | Method and arrangement for detecting a heat source in a monitored area |
US6493687B1 (en) * | 1999-12-18 | 2002-12-10 | Detection Systems, Inc. | Apparatus and method for detecting glass break |
DE10011411C2 (en) | 2000-03-09 | 2003-08-14 | Bosch Gmbh Robert | Imaging fire detector |
US6184792B1 (en) | 2000-04-19 | 2001-02-06 | George Privalov | Early fire detection method and apparatus |
US7034701B1 (en) * | 2000-06-16 | 2006-04-25 | The United States Of America As Represented By The Secretary Of The Navy | Identification of fire signatures for shipboard multi-criteria fire detection systems |
PT102617B (en) | 2001-05-30 | 2004-01-30 | Inst Superior Tecnico | COMPUTER-CONTROLLED LIDAR SYSTEM FOR SMOKING LOCATION, APPLICABLE, IN PARTICULAR, TO EARLY DETECTION OF FIREFIGHTERS |
FR2831981B1 (en) * | 2001-11-08 | 2005-07-08 | Cit Alcatel | METHOD AND DEVICE FOR ANALYZING ALARMS FROM A COMMUNICATION NETWORK |
WO2005045775A1 (en) * | 2003-11-07 | 2005-05-19 | Axonx, L.L.C. | Smoke detection method and apparatus |
US7680297B2 (en) * | 2004-05-18 | 2010-03-16 | Axonx Fike Corporation | Fire detection method and apparatus |
US7202794B2 (en) * | 2004-07-20 | 2007-04-10 | General Monitors, Inc. | Flame detection system |
US8248226B2 (en) | 2004-11-16 | 2012-08-21 | Black & Decker Inc. | System and method for monitoring security at a premises |
EP1768074A1 (en) | 2005-09-21 | 2007-03-28 | Siemens Schweiz AG | Early detection of fires |
US7769204B2 (en) * | 2006-02-13 | 2010-08-03 | George Privalov | Smoke detection method and apparatus |
EP2126788A4 (en) * | 2007-01-16 | 2011-03-16 | Utc Fire & Security Corp | System and method for video based fire detection |
US8378808B1 (en) | 2007-04-06 | 2013-02-19 | Torrain Gwaltney | Dual intercom-interfaced smoke/fire detection system and associated method |
US7786880B2 (en) * | 2007-06-01 | 2010-08-31 | Honeywell International Inc. | Smoke detector |
US7986228B2 (en) | 2007-09-05 | 2011-07-26 | Stanley Convergent Security Solutions, Inc. | System and method for monitoring security at a premises using line card |
DE502008002126D1 (en) † | 2008-02-15 | 2011-02-10 | Siemens Ag | Hazard detection with inclusion of a built in a microcontroller temperature measuring device |
CN104008625A (en) * | 2014-05-21 | 2014-08-27 | 关宏 | Intelligent fire evacuation system achieving evacuation through images |
CN104933841B (en) * | 2015-04-30 | 2018-04-10 | 重庆三峡学院 | A kind of fire prediction method based on self organizing neural network |
WO2018079400A1 (en) * | 2016-10-24 | 2018-05-03 | ホーチキ株式会社 | Fire monitoring system |
WO2019089450A1 (en) * | 2017-10-30 | 2019-05-09 | Carrier Corporation | Compensator in a detector device |
CA3100971A1 (en) * | 2018-05-21 | 2019-11-28 | Tyco Fire Products Lp | Systems and methods of real-time electronic fire sprinkler location and activation |
US11361654B2 (en) * | 2020-08-19 | 2022-06-14 | Honeywell International Inc. | Operating a fire system network |
CN114333251B (en) * | 2021-12-29 | 2023-06-20 | 成都中科慧源科技有限公司 | Intelligent alarm, method, system, equipment and storage medium |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3099825A (en) * | 1960-09-30 | 1963-07-30 | Harriman Cy | Control units for fire protective signaling systems |
US3703721A (en) * | 1971-06-01 | 1972-11-21 | Audio Alert Corp | Fire alarm system |
US4027302A (en) * | 1976-06-03 | 1977-05-31 | W. E. Healey & Associates, Inc. | Double detection circuit for conserving energy in fire detection systems and the like |
US4319229A (en) * | 1980-06-09 | 1982-03-09 | Firecom, Inc. | Alarm system having plural diverse detection means |
JPS58127292A (en) * | 1982-01-26 | 1983-07-29 | ニツタン株式会社 | Fire sensing system |
US4633230A (en) * | 1984-05-04 | 1986-12-30 | Tam Wee M | Cooking, fire, and burglar alarm system |
JPH0778484B2 (en) * | 1986-05-16 | 1995-08-23 | 株式会社日立製作所 | Air-fuel ratio sensor temperature controller |
EP0338218B1 (en) * | 1988-03-30 | 1993-09-15 | Cerberus Ag | Early fire detection method |
US5168262A (en) * | 1988-12-02 | 1992-12-01 | Nohmi Bosai Kabushiki Kaisha | Fire alarm system |
IT225152Z2 (en) * | 1990-11-05 | 1996-10-22 | G P B Beghelli S R L Ora Begne | IMPROVEMENT IN EMERGENCY LAMPS, ESPECIALLY OF THE PORTABLE TYPE, PROVIDED WITH A SENSOR OF A GAS AND / OR HARMFUL COMBUSION SMOKE. |
-
1993
- 1993-11-22 CH CH03479/93A patent/CH686913A5/en not_active IP Right Cessation
-
1994
- 1994-09-05 DK DK94113869T patent/DK0654770T3/en active
- 1994-09-05 ES ES94113869T patent/ES2144474T3/en not_active Expired - Lifetime
- 1994-09-05 PT PT94113869T patent/PT654770E/en unknown
- 1994-09-05 AT AT94113869T patent/ATE189549T1/en active
- 1994-09-05 DE DE59409119T patent/DE59409119D1/en not_active Expired - Lifetime
- 1994-09-05 EP EP94113869A patent/EP0654770B1/en not_active Expired - Lifetime
- 1994-09-20 JP JP6225006A patent/JPH07192189A/en active Pending
- 1994-11-20 US US08/345,735 patent/US5751209A/en not_active Expired - Lifetime
- 1994-11-22 CN CN94118504A patent/CN1052087C/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19902319B4 (en) * | 1999-01-21 | 2011-06-30 | Novar GmbH, Albstadt-Ebingen Zweigniederlassung Neuss, 41469 | Scattered light fire detectors |
Also Published As
Publication number | Publication date |
---|---|
CN1122486A (en) | 1996-05-15 |
DE59409119D1 (en) | 2000-03-09 |
JPH07192189A (en) | 1995-07-28 |
US5751209A (en) | 1998-05-12 |
ES2144474T3 (en) | 2000-06-16 |
EP0654770A1 (en) | 1995-05-24 |
CH686913A5 (en) | 1996-07-31 |
ATE189549T1 (en) | 2000-02-15 |
PT654770E (en) | 2000-07-31 |
DK0654770T3 (en) | 2000-07-17 |
CN1052087C (en) | 2000-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0654770B1 (en) | Device for early detection of fires | |
DE4436658B4 (en) | Device and method for troubleshooting | |
DE10297009B4 (en) | Sensor fusion using self-evaluating process sensors | |
DE69737336T2 (en) | Validity checking sensors | |
DE60014709T2 (en) | TWO-WIRE TRANSMITTER WITH SELF-TESTING AND LOW POWER | |
DE69226277T2 (en) | FAIL-SAFE SENSOR CIRCUIT | |
DE3611816C2 (en) | ||
DE10140134A1 (en) | Multi-sensor detector e.g. for detecting gas quality to detect fire state, delivers information relating to ambient states via data communication medium | |
EP1860410A1 (en) | Method for processing the output signal of a transducer and force measuring device | |
DE3832428A1 (en) | PERSONAL DETECTING DEVICE | |
DE2710877C2 (en) | Burglar alarm system | |
WO2006037804A1 (en) | Scattered light smoke detector | |
DE69019652T2 (en) | Acquisition and measurement of signals in fiber optic systems. | |
EP0157117A1 (en) | Testing device for an intrusion-signalling apparatus | |
DE4141469C2 (en) | Method for operating an optical sensor arrangement for the detection of objects present in a monitoring area, and such an optical sensor arrangement | |
WO1995033248A1 (en) | Active ir intrusion detector | |
EP1071931B1 (en) | Sensor device and method for operating a sensor device | |
EP0660282B1 (en) | System for the early detection of fires | |
DE19625896A1 (en) | Warning of impending failure in auto-calibration system of e.g. gas analysis instruments | |
EP0231786A2 (en) | Process for eliminating disturbances in measuring signals | |
DE3818500A1 (en) | ERROR DETECTION SYSTEM FOR OPTICAL LIGHT SENSORS | |
WO1997028521A1 (en) | Device for the production of an alarm and for surveillance of an area | |
DE3885745T2 (en) | ELECTROOPTIC DATA PROCESSING SYSTEM WITH NOISE IMMUNITY. | |
EP1736748A1 (en) | Method of processing the output signal of a mesuring transducer and force measuring device for carrying out the method. | |
EP0707247B1 (en) | Analyzer, in particular for waste water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB IE IT LI LU NL PT SE |
|
17P | Request for examination filed |
Effective date: 19951115 |
|
17Q | First examination report despatched |
Effective date: 19980421 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS BUILDING TECHNOLOGIES AG |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB IE IT LI LU NL PT SE |
|
REF | Corresponds to: |
Ref document number: 189549 Country of ref document: AT Date of ref document: 20000215 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20000202 |
|
REF | Corresponds to: |
Ref document number: 59409119 Country of ref document: DE Date of ref document: 20000309 |
|
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2144474 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20000428 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: SIEMENS BUILDING TECHNOLOGIES AG C-IPR Free format text: SIEMENS BUILDING TECHNOLOGIES AG#ALTE LANDSTRASSE 411#8708 MAENNEDORF (CH) -TRANSFER TO- SIEMENS BUILDING TECHNOLOGIES AG C-IPR#GUBELSTRASSE 22#6300 ZUG (CH) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20070910 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20070911 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: PC4A Owner name: SIEMENS SCHWEIZ AG, US Effective date: 20080829 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: PC4A Owner name: SIEMENS AKTIENGESELLSCHAFT, DE Effective date: 20080829 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Ref country code: FR Ref legal event code: CD |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: SIEMENS AKTIENGESELLSCHAFT Free format text: SIEMENS BUILDING TECHNOLOGIES AG C-IPR#GUBELSTRASSE 22#6300 ZUG (CH) -TRANSFER TO- SIEMENS AKTIENGESELLSCHAFT#WITTELSBACHERPLATZ 2#80333 MUENCHEN (DE) Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20090514 AND 20090520 |
|
BECA | Be: change of holder's address |
Owner name: SIEMENS A.G.WITTELSBACHERPLATZ 2, DE-80333 MUENCHE Effective date: 20100423 |
|
BECH | Be: change of holder |
Owner name: SIEMENS A.G. Effective date: 20100423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080905 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: SD Effective date: 20110318 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20110923 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20110810 Year of fee payment: 18 Ref country code: PT Payment date: 20110825 Year of fee payment: 18 Ref country code: SE Payment date: 20110908 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20110927 Year of fee payment: 18 Ref country code: NL Payment date: 20110913 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20111013 Year of fee payment: 18 Ref country code: BE Payment date: 20111013 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20130305 |
|
BERE | Be: lapsed |
Owner name: SIEMENS A.G. Effective date: 20120930 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20130401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120906 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 189549 Country of ref document: AT Kind code of ref document: T Effective date: 20120905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130305 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120905 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120930 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130401 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120905 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20131018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120906 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20130924 Year of fee payment: 20 Ref country code: GB Payment date: 20130911 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20131210 Year of fee payment: 20 Ref country code: DE Payment date: 20131120 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59409119 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20140904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140904 |