[go: up one dir, main page]

EP0646901B1 - Method for processing passive infrared detector signals and infrared detector for carrying out the method - Google Patents

Method for processing passive infrared detector signals and infrared detector for carrying out the method Download PDF

Info

Publication number
EP0646901B1
EP0646901B1 EP94113876A EP94113876A EP0646901B1 EP 0646901 B1 EP0646901 B1 EP 0646901B1 EP 94113876 A EP94113876 A EP 94113876A EP 94113876 A EP94113876 A EP 94113876A EP 0646901 B1 EP0646901 B1 EP 0646901B1
Authority
EP
European Patent Office
Prior art keywords
pulses
data
fuzzy
signals
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94113876A
Other languages
German (de)
French (fr)
Other versions
EP0646901A1 (en
Inventor
Peter Stierli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Building Technologies AG
Original Assignee
Siemens Building Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Building Technologies AG filed Critical Siemens Building Technologies AG
Publication of EP0646901A1 publication Critical patent/EP0646901A1/en
Application granted granted Critical
Publication of EP0646901B1 publication Critical patent/EP0646901B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/19Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems

Definitions

  • the present invention relates to a method for processing the signals of a passive Infrared detector, which depends on an incident infrared radiation in the following generates electrical signals referred to as sensor signals and then evaluates them, wherein the sensor signals are digitized and processed in the form of pulses, their evaluation by means of fuzzy logic (7), the data being a series of several Pulses are compared with rules stored in the form of linguistic variables,
  • Detection systems are also known in which the sensor signal is continuous with a Set of stored reference patterns compared and an alarm if there is sufficient correlation is triggered. Although these systems are very reliable and sensitive, they do require a high numerical effort. And that means that in the detector to provide the necessary storage capacity and performance a large and thus expensive processor can be provided got to.
  • JP-A-50 018 827 The signals from an infrared detector are processed with fuzzy logic, the body Presence of a human body is then assumed if that from the infrared detector measured temperature is in the range of a person's body temperature. Not to mention of the fact that it is difficult to absolute temperature at a distance of several meters in a clothed person essentially the temperature of his Clothes and not those of his body, but in the case of a coat the clothes rather Will have room temperature as body temperature. For this reason, this is known device unsuitable for use as intrusion detector.
  • the invention is now to provide a method of the type mentioned at the beginning a good discrimination of the strongly overlapping classes of interference signals on the one hand and intrusion signals on the other hand, with a high detection power and in particular also in the peripheral surveillance area.
  • a simple evaluation possible with little numerical effort and realizable with a simple microcontroller be.
  • this object is achieved in that the pulses are characterized by data are used, with the amplitude and / and / or or duration can be used and that to convert the digitized sensor signals into Pulse the course of the signals is examined, and at a certain distance of the signal from a pulse start is set in its rest position and a pulse end is set on returning to the rest position.
  • the invention further relates to an infrared detector for carrying out the method mentioned, with at least one sensor element for generating the sensor signals and with an evaluation circuit for their processing and evaluation, which contains a fuzzy controller to which the Pulse data are supplied, characterized in that the fuzzy controller has a rule base and contains an inference machine and forms part of a microcontroller which has a pulse processing stage for processing the digitized sensor signals in pulses and for storing the contains the data describing pulses.
  • a pulse begins when the signal is in the positive or negative direction away from the rest position and it ends when it returns to the rest position. They will be the ones Pulse-characterizing data, such as amplitude, duration, polarity, distance and the like, are stored, and there is always a pulse data series for the evaluation, that is the data of one Series of successive pulses.
  • fuzzy logic instead of strict classic logic for signal evaluation has the advantage that the rules for evaluation are based on an empirical Knowledge base that can be used in classic analytical algorithms only would be much more cumbersome and complex to implement.
  • the pulse data series of a number always stands for the examination for alarm plausibility past pulses are available, the criteria for triggering the alarm in Form of fuzzy links of the previously fuzzified, that is, in linguistic Variable transformed, pulse data are formulated.
  • the criteria include in linguistic form a knowledge base about the assignment of a pulse series to the class Burglary or disruption, the content of the knowledge base being the entirety of the observation of countless walking tests obtained and those made with interference signals Represents experiences.
  • fuzzy sets that are by definition out of focus deliver an equally blurred result, whose defuzzification provides a sharp decision for or against an alarm.
  • the rules in linguistic form in the microcontroller of the evaluation circuit need minimal memory requirements.
  • the fuzzification and defuzzification So the conversion of sharp numbers into fuzzy areas, or the Obtaining clear or sharp statements from fuzzy areas, numerically much less demanding than the processing of classic rules.
  • an IR detector contains a sensor element 1, which has an associated optics 2 of a certain focal length with IR radiation from the room to be monitored and depending on the Level of the incident radiation, hereinafter referred to as the sensor signal emits electrical signal.
  • the use of a single sensor element 1 is not to understand restrictively; it can of course also be two or more Sensor elements may be provided.
  • the sensor signal is from an amplifier 3 amplified, and its output signal is fed to an analog / digital converter 4 and after digitization takes place in a pulse processing stage 5, the part a microcontroller 6 forms.
  • the microcontroller 6 also contains one Fuzzy controller 7.
  • the digitized sensor signals are first in the Data rate greatly reduced by storing them as "pulses".
  • pulse By definition, begins when the signal is positive or negative Direction far enough from the rest position, and it ends at the Return to the rest position.
  • Each pulse is characterized by data such as Amplitude, duration, polarity, distance and the like are described and this data are saved.
  • the optics 2 contains a mirror system in a known manner, which is a variety of corresponds to optical bundling means and the IR radiation from a variety of fan-like radiation reception areas focused on sensor 1 (see for example GB-A-2 047 886 or EP-A-0 361 224). These radiation receiving areas are discrete zones, one passing through such a zone Object a positive sensor signal when entering and a negative sensor signal when leaving causes, both together give a characteristic signal. Such a thing The signal can be, for example, small positive, large positive, large negative through the pulses and described as small negative within a certain period of time. In the The pulses derived from the sensor signal are then evaluated examines whether they are of a type and characteristic of the intrusion of a person Have configuration, always a group of several successive Pulse is examined.
  • the digitized Sensor signal generally obtained a maximum of three, a maximum of four, such pulses so that it does not make sense to examine more than four pulses.
  • the procedure in this investigation is such that the last four pulses are always used are stored and examined, the examination being carried out in the fuzzy controller 7 he follows
  • the fuzzy controller 7 contains a rule base 8 in a known manner, an inference engine 9, a process interface 10, and an action interface 11 whose output is monitored when an unwanted intruder is detected in the An alarm signal AS is available in the room.
  • the fuzzy logic the meantime extensive literature on this subject referred to, for example, the Book “Fuzzy Set Theory and its Applications” by H.-J. Carpenter, Kluwer Academic Publishers, 1991.
  • the rule base 8 contains a set of linguistic rules for the in a known manner Evaluation of the pulses. Based on these rules, an algorithm is constructed where the values are defined as so-called fuzzy sets, which are fuzzy sets are. Linguistic variables are words and expressions of everyday language or a natural language. These variables should be the natural language values Expressions (small, medium, large) can take, these expressions There are names for the fuzzy sets mentioned.
  • the rules of fuzzy logic like classic logic, consist of one Condition or premise part and from a conclusion part.
  • the condition part is in Fig. 2 by the process interface 10 and the conclusion part symbolized by the action interface 11.
  • the inference machine 9 links the Direction of influence and the strength of the current states in the fuzzy sets due to of empirical technological knowledge.
  • Rule 3 shows a graphical representation with a typical fuzzy rule Basics of a fuzzy controller.
  • A, B and C are input variables, X are output variables.
  • the sentence beginning with "if” is the condition part, the part that starts with "then” is the conclusion part.
  • fuzzy sets or fuzzy sets are the central concept of fuzzy logic the membership of elements in a fuzzy set by the so-called membership or membership function is defined. While with sharp quantities one One, which means belonging and a zero not belonging, are in the fuzzy sets as values for the membership function not just zero or one, but any Values in between allowed.
  • fuzzification The conversion of sharp numbers to fuzzy amounts is called fuzzification designated.
  • Each has an input variable, which is in practice, for example a sensor signal, at least one function depicted as a matrix. x-scaling this function has a numerical equivalent in the respective sensor signal, and the y-scale corresponds to the truthfulness or degree of approximation the corresponding statement and can take any value from 0 to 1. That degree the approximation is calculated by the membership function.
  • a suitable operator is used for the statements in the condition section searched for a size for the membership values; this size is the minimum value the membership function, then the operator is the minimum operator as in FIG. 3 and this in turn is the average of the two fuzzy sets for the input variables A and B.
  • the result of the conclusion of the two rules 1 and 2 is the average of the fuzzy sets for A and B or B and C.
  • the unsharp one supplied by the inference machine 9 (FIG. 2) then becomes Result a sharp output size is calculated, for example, by The center of gravity of the synthetic membership function is calculated.
  • IR detectors enables good and clean Separation between intrusion and interference signals with high detection performance.
  • very noisy sensor signals and signals from the peripheral monitoring area can be clearly evaluated.
  • By saving of the sensor signals in the form of pulses results in a strong reduction in the Memory requirements, especially those for the rules in linguistic form.
  • the fuzzification and defuzzification are numerically relatively undemanding are and require little effort, even with a simple Microcontroller is realizable.
  • fuzzy logic typical of fuzzy logic makes it unlikely that a signal discarded due to a narrowly missed condition becomes.
  • the processing described corresponds rather to the very different and fuzzy Intrusion signals.
  • the algorithm is based on the fuzzy formulation Simple and transparent core. As soon as it is written, it also applies to itself changing framework conditions, in which case only a few constants are changed must be (so-called parameterization). The constants are due to Trials and simulations optimized.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Feedback Control In General (AREA)
  • Burglar Alarm Systems (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Verarbeitung der Signale eines passiven Infrarot-Detektors, welcher in Abhängigkeit von einer auftreffenden Infrarot-Strahlung im folgenden als Sensorsignale bezeichnete elektrische Signale erzeugt und diese anschliessend auswertet, wobei die Sensorsignale digitalisiert und in Form von Pulsen verarbeitet werden, deren Auswertung mittels einer Fuzzy-Logik (7) erfolgt, wobei jeweils die Daten einer Reihe von mehreren Pulsen mit in Form linguistischer Variabler gespeicherten Regeln verglichen werden,The present invention relates to a method for processing the signals of a passive Infrared detector, which depends on an incident infrared radiation in the following generates electrical signals referred to as sensor signals and then evaluates them, wherein the sensor signals are digitized and processed in the form of pulses, their evaluation by means of fuzzy logic (7), the data being a series of several Pulses are compared with rules stored in the form of linguistic variables,

Bei bekannten Verfahren dieser Art wird im einfachsten Fall entweder das Sensorsignal auf das Ueber- oder Unterschreiten von positiven oder negativen Schwellwerten untersucht, oder es wird die Anzahl der Schwellwertdurchgänge gezählt. Es ist auch bekannt, einen Alarm dann auszulösen, wenn eine aufeinanderfolgende Überschreitung einer positiven und einer negativen Schwelle oder umgekehrt stattfindet.In known methods of this type, in the simplest case, either the sensor signal on the Exceeding or falling below positive or negative threshold values is examined, or it is counted the number of threshold passes. It is also known to trigger an alarm if a successive crossing of a positive and a negative threshold or vice versa.

Alle auf einfachen Schwellwerten basierenden Detektoren sind prinzipbedingt sehr störungsanfällig, da ein einziger Störimpuls mit genügend grosser Amplitude einen Fehlalarm auslösen kann. Andererseits verlieren diejenigen Detektoren, bei denen mehrere Impulse gezählt werden, sei dies polaritätsabhängig oder nicht, relativ rasch an Empfindlichkeit, besonders dann, wenn sich ein Eindringling am Rand des Detektionsbereichs befindet oder sich nur durch eine Zone des Bedeckungsmusters bewegt.In principle, all detectors based on simple threshold values are very susceptible to failure, since a single interference pulse with a sufficiently large amplitude can trigger a false alarm. On the other hand, those detectors in which several pulses are counted are lost this depends on the polarity or not, relatively quickly in sensitivity, especially when an intruder is at the edge of the detection area or only through a zone of the Covering pattern moves.

Es sind auch Detektionssysteme bekannt, bei denen das Sensorsignal kontinuierlich mit einem Satz abgespeicherter Referenzmuster verglichen und bei genügender Korrelation ein Alarm ausgelöst wird. Diese Systeme sind zwar sehr zuverlässig und empfindlich, sie bedingen aber einen hohen numerischen Aufwand. Und das bedeutet, dass im Detektor zur Bereitstellung der nötigen Speicherkapazität und Leistung ein grosser und damit teurer Prozessor vorgesehen sein muss.Detection systems are also known in which the sensor signal is continuous with a Set of stored reference patterns compared and an alarm if there is sufficient correlation is triggered. Although these systems are very reliable and sensitive, they do require a high numerical effort. And that means that in the detector to provide the necessary storage capacity and performance a large and thus expensive processor can be provided got to.

Bei einer in der JP-A-50 018 827 beschriebenen Einrichtung zur Detektion eines menschlichen Körpers werden die Signale eines Infrarot-Detektors mit einer Fuzzy-Logik verarbeitet, wobei die Anwesenheit eines menschlichen Körpers dann angenommen wird, wenn die vom Infrarot-Detektor gemessene Temperatur im Bereich der Körpertemperatur eines Menschen liegt. Ganz abgesehen davon, dass es schwierig ist, eine Temperatur auf eine Distanz von mehreren Metern absolut zu messen, wird bei einem bekleideten Menschen im wesentlichen die Temperatur seiner Kleidung und nicht die seines Körpers gemessen, wobei im Fall eines Mantels die Kleidung eher Raumtemperatur als Körpertemperatur haben wird. Aus diesem Grund ist diese bekannte Einrichtung zur Verwendung als Eindringdetektor ungeeignet.In a device for detecting a human being described in JP-A-50 018 827 The signals from an infrared detector are processed with fuzzy logic, the body Presence of a human body is then assumed if that from the infrared detector measured temperature is in the range of a person's body temperature. Not to mention of the fact that it is difficult to absolute temperature at a distance of several meters in a clothed person essentially the temperature of his Clothes and not those of his body, but in the case of a coat the clothes rather Will have room temperature as body temperature. For this reason, this is known device unsuitable for use as intrusion detector.

Durch die Erfindung soll nun ein Verfahren der eingangs genannten Art angegeben werden, bei dem eine gute Diskriminierung der einander stark überlappenden Klassen von Störsignalen einerseits und Einbruchssignalen andererseits erfolgt, und zwar bei hoher Detektionsleistung und insbesondere auch im peripheren Überwachungsbereich. Ausserdem soll eine einfache Auswertung mit geringem numerischem Aufwand möglich und mit einem einfachen Microcontroller realisierbar sein.The invention is now to provide a method of the type mentioned at the beginning a good discrimination of the strongly overlapping classes of interference signals on the one hand and intrusion signals on the other hand, with a high detection power and in particular also in the peripheral surveillance area. In addition, a simple evaluation possible with little numerical effort and realizable with a simple microcontroller be.

Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass die Pulse durch Daten charakterisiert werden, wobei als charakterisierende Daten zur Beschreibung der Pulse deren Amplitude und/ oder Dauer verwendet werden, und dass zur Umwandlung der digitalisierten Sensorsignale in Pulse der Verlauf der Signale untersucht, und bei einer bestimmten Entfernung des Signals von seiner Ruhelage ein Pulsbeginn und bei der Rückkehr in die Ruhelage ein Pulsende gesetzt wird.According to the invention, this object is achieved in that the pulses are characterized by data are used, with the amplitude and / and / or or duration can be used and that to convert the digitized sensor signals into Pulse the course of the signals is examined, and at a certain distance of the signal from a pulse start is set in its rest position and a pulse end is set on returning to the rest position.

Die Erfindung betrifft weiter einen Infrarot-Detektor zur Durchführung des genannten Verfahrens, mit mindestens einem Sensorelement zur Erzeugung der Sensorsignale und mit einer Auswerteschaltung zu deren Verarbeitung und Auswertung, welche einen Fuzzy-Controller enthält, dem die Pulsdaten zugeführt sind, dadurch gekennzeichnet, dass der Fuzzy-Controller eine Regelbasis und eine Inferenzmaschine enthält und Teil eines Microcontrollers bildet, welcher eine Pulsverarbeitungsstufe zur Verarbeitung der digitalisierten Sensorsignale in Pulse und zur Speicherung der die Pulse beschreibenden Daten enthält.The invention further relates to an infrared detector for carrying out the method mentioned, with at least one sensor element for generating the sensor signals and with an evaluation circuit for their processing and evaluation, which contains a fuzzy controller to which the Pulse data are supplied, characterized in that the fuzzy controller has a rule base and contains an inference machine and forms part of a microcontroller which has a pulse processing stage for processing the digitized sensor signals in pulses and for storing the contains the data describing pulses.

Durch die Verarbeitung der Sensorsignale in Pulsform findet eine starke Reduktion der Datenrate statt, wodurch eine wesentliche Voraussetzung für eine einfache Auswertung geschaffen ist. Definitionsgemäss beginnt ein Puls dann, wenn sich das Signal in positiver oder negativer Richtung von der Ruhelage entfernt, und er endet bei der Rückkehr in die Ruhelage. Es werden die den Puls charakterisierenden Daten, wie Amplitude, Dauer, Polarität, Abstand und dergleichen gespeichert, und es wird für die Auswertung immer eine Pulsdatenreihe, das sind die Daten einer Reihe von aufeinanderfolgenden Pulsen, verwendet.By processing the sensor signals in pulse form, the data rate is greatly reduced instead, which creates an essential prerequisite for simple evaluation. By definition A pulse begins when the signal is in the positive or negative direction away from the rest position and it ends when it returns to the rest position. They will be the ones Pulse-characterizing data, such as amplitude, duration, polarity, distance and the like, are stored, and there is always a pulse data series for the evaluation, that is the data of one Series of successive pulses.

Die Verwendung der Fuzzy-Logik anstatt von strenger klassischer Logik bei der Signalauswertung hat den Vorteil, dass die Regeln für die Auswertung auf einer empirischen Wissensbasis basieren können, die in klasssische analytische Algorithmen nur wesentlich umständlicher und aufwendiger umsetzbar wäre.The use of fuzzy logic instead of strict classic logic for signal evaluation has the advantage that the rules for evaluation are based on an empirical Knowledge base that can be used in classic analytical algorithms only would be much more cumbersome and complex to implement.

Für die Untersuchung auf Alarmplausibilität steht immer die Pulsdatenreihe einer Anzahl vergangener Pulse zur Verfügung, wobei die Kriterien für die Alarmauslösung in Form von Fuzzy-Verknüpfungen der zuvor fuzzifizierten, das heisst, in linguistische Variable transformierten, Pulsdaten formuliert sind. Die Kriterien enthalten also in linguistischer Form eine Wissensbasis über die Zuordnung einer Pulsreihe zur Klasse Einbruch oder Störung, wobei der Inhalt der Wissensbasis die Gesamtheit von aus der Beobachtung von zahllosen Gehtests gewonnenen und der mit Störsignalen gemachten Erfahrungen darstellt.The pulse data series of a number always stands for the examination for alarm plausibility past pulses are available, the criteria for triggering the alarm in Form of fuzzy links of the previously fuzzified, that is, in linguistic Variable transformed, pulse data are formulated. So the criteria include in linguistic form a knowledge base about the assignment of a pulse series to the class Burglary or disruption, the content of the knowledge base being the entirety of the observation of countless walking tests obtained and those made with interference signals Represents experiences.

Die per definitionem unscharfen Fuzzy-Sets liefern ein ebenso unscharfes Ergebnis, dessen Defuzzifizierung eine scharfe Entscheidung für oder gegen einen Alarm liefert. Die Regeln in linguistischer Form im Microcontroller der Auswerteschaltung benötigen nur einen minimalen Speicherbedarf. Ausserdem sind die Fuzzyfizierung und die Defuzzyfizierung, also die Umsetzung scharfer Zahlen in unscharfe Bereiche, bzw. die Gewinnung von eindeutigen oder scharfen Aussagen aus unscharfen Bereichen, numerisch wesentlich anspruchsloser als die Verarbeitung klassischer Regeln.The fuzzy sets that are by definition out of focus deliver an equally blurred result, whose defuzzification provides a sharp decision for or against an alarm. The rules in linguistic form in the microcontroller of the evaluation circuit need minimal memory requirements. In addition, the fuzzification and defuzzification, So the conversion of sharp numbers into fuzzy areas, or the Obtaining clear or sharp statements from fuzzy areas, numerically much less demanding than the processing of classic rules.

Nachfolgend wird die Erfindung anhand eines Ausführungsbeispiels und der Zeichnungen näher erläutert; es zeigen:

Fig. 1
ein Blockschaltbild eines Ausführungsbeispiels eines erfindungsgemässen IR-Detektors,
Fig. 2
ein Detail des Schaltbildes von Fig. 1; und
Fig. 3
ein Diagramm zur Funktionserläuterung.
The invention is explained in more detail below using an exemplary embodiment and the drawings; show it:
Fig. 1
2 shows a block diagram of an exemplary embodiment of an IR detector according to the invention,
Fig. 2
a detail of the circuit diagram of Fig. 1; and
Fig. 3
a diagram to explain the function.

Gemäss Fig. 1 enthält ein erfindungsgemässer IR-Detektor ein Sensorelement 1, welches über eine zugeordnete Optik 2 einer bestimmten Brennweite mit IR-Strahlung aus dem zu überwachenden Raum beaufschlagt ist und in Abhängigkeit vom Pegel der auftreffenden Strahlung ein nachfolgend als Sensorsignal bezeichnetes elektrisches Signal abgibt. Die Verwendung eines einzigen Sensorelements 1 ist nicht einschränkend zu verstehen; es können selbstverständlich auch zwei oder mehr Sensorelemente vorgesehen sein. Das Sensorsignal wird von einem Verstärker 3 verstärkt, und dessen Ausgangssignal wird einem Analog/Digital-Wandler 4 zugeführt und gelangt nach erfolgter Digitalisierung in eine Pulsverarbeitungsstufe 5, die Teil eines Microcontrollers 6 bildet. Der Microcontroller 6 enthält ausserdem noch einen Fuzzy-Controller 7.1, an IR detector according to the invention contains a sensor element 1, which has an associated optics 2 of a certain focal length with IR radiation from the room to be monitored and depending on the Level of the incident radiation, hereinafter referred to as the sensor signal emits electrical signal. The use of a single sensor element 1 is not to understand restrictively; it can of course also be two or more Sensor elements may be provided. The sensor signal is from an amplifier 3 amplified, and its output signal is fed to an analog / digital converter 4 and after digitization takes place in a pulse processing stage 5, the part a microcontroller 6 forms. The microcontroller 6 also contains one Fuzzy controller 7.

In der Pulsverarbeitungsstufe 5 werden die digitalisierten Sensorsignale zuerst in der Datenrate stark reduziert, indem sie als "Pulse" gespeichert werden. Ein solcher Puls beginnt definitionsgemäss dann, wenn sich das Signal in positiver oder negativer Richtung von der Ruhelage genügend weit entfernt hat, und er endet bei der Rückkehr in die Ruhelage. Jeder Puls wird durch ihn charakterisierende Daten, wie Amplitude, Dauer, Polarität, Abstand und dergleichen beschrieben und diese Daten werden gespeichert.In the pulse processing stage 5, the digitized sensor signals are first in the Data rate greatly reduced by storing them as "pulses". Such a pulse By definition, begins when the signal is positive or negative Direction far enough from the rest position, and it ends at the Return to the rest position. Each pulse is characterized by data such as Amplitude, duration, polarity, distance and the like are described and this data are saved.

Die Optik 2 enthält in bekannter Weise ein Spiegelsystem, welches einer Vielzahl von optischen Bündelungsmitteln entspricht und die IR-Strahlung aus einer Vielzahl von fächerartigen Strahlungsempfangsbereichen auf den Sensor 1 fokussiert (siehe dazu beispielsweise die GB-A-2 047 886 oder die EP-A-0 361 224). Diese Strahlungsempfangsbereiche sind diskrete Zonen, wobei ein eine solche Zone passierendes Objekt beim Eindringen ein positives und beim Verlassen ein negatives Sensorsignal bewirkt, die beide zusammen ein charakteristisches Signal ergeben. Ein derartiges Signal kann beispielsweise durch die Pulse klein positiv, gross positiv, gross negativ und klein negativ innerhalb einer bestimmten Zeitspanne beschrieben werden. Bei der Auswertung werden dann die aus dem Sensorsignal abgeleiteten Pulse daraufhin untersucht, ob sie eine für das Eindringen einer Person charakteristische Art und Konfiguration aufweisen, wobei immer eine Gruppe von mehreren aufeinanderfolgenden Pulsen untersucht wird. The optics 2 contains a mirror system in a known manner, which is a variety of corresponds to optical bundling means and the IR radiation from a variety of fan-like radiation reception areas focused on sensor 1 (see for example GB-A-2 047 886 or EP-A-0 361 224). These radiation receiving areas are discrete zones, one passing through such a zone Object a positive sensor signal when entering and a negative sensor signal when leaving causes, both together give a characteristic signal. Such a thing The signal can be, for example, small positive, large positive, large negative through the pulses and described as small negative within a certain period of time. In the The pulses derived from the sensor signal are then evaluated examines whether they are of a type and characteristic of the intrusion of a person Have configuration, always a group of several successive Pulse is examined.

Die Praxis hat gezeigt, dass innerhalb des betrachteten Zeitfensters aus dem digitalisierten Sensorsignal in der Regel höchstens drei, maximal vier, derartige Pulse gewonnen werden können, so dass es nicht sinnvoll ist, mehr als vier Pulse zu untersuchen. Man geht bei dieser Untersuchung so vor, dass immer die letzten vier Pulse gespeichert und untersucht werden, wobei die Untersuchung im Fuzzy-Controller 7 erfolgtPractice has shown that within the time window considered, the digitized Sensor signal generally obtained a maximum of three, a maximum of four, such pulses so that it does not make sense to examine more than four pulses. The procedure in this investigation is such that the last four pulses are always used are stored and examined, the examination being carried out in the fuzzy controller 7 he follows

Gemäss Fig. 2 enthält der Fuzzy-Controller 7 in bekannter Weise eine Regelbasis 8, eine Inferenzmaschine 9, ein Prozess-Interface 10, und ein Aktions-lnterface 11, an dessen Ausgang bei Detektion eines unerwünschten Eindringlings im überwachten Raum ein Alarmsignal AS erhältlich ist. Bezüglich der Fuzzy-Logik wird auf die mittlerweile umfangreiche Literatur zu diesem Thema verwiesen, beispielsweise auf das Buch "Fuzzy Set Theory and its Applications" von H.-J. Zimmermann, Kluwer Academic Publishers, 1991.2, the fuzzy controller 7 contains a rule base 8 in a known manner, an inference engine 9, a process interface 10, and an action interface 11 whose output is monitored when an unwanted intruder is detected in the An alarm signal AS is available in the room. Regarding the fuzzy logic, the meantime extensive literature on this subject referred to, for example, the Book "Fuzzy Set Theory and its Applications" by H.-J. Carpenter, Kluwer Academic Publishers, 1991.

Die Regelbasis 8 enthält in bekannter Weise einen Satz linguistischer Regeln für die Auswertung der Pulse. Ausgehend von diesen Regeln wird ein Algorithmus konstruiert, bei dem die Werte als sogenannte Fuzzy-Sets, das sind unscharfe Mengen, definiert sind. Linguistische Variable sind Wörter und Ausdrücke der Umgangssprache oder einer natürlichen Sprache. Diese Variablen sollen als Werte die natürlichsprachigen Ausdrücke (klein, mittel, gross) annehmen können, wobei diese Ausdrücke Namen für die genannten Fuzzy-Sets sind.The rule base 8 contains a set of linguistic rules for the in a known manner Evaluation of the pulses. Based on these rules, an algorithm is constructed where the values are defined as so-called fuzzy sets, which are fuzzy sets are. Linguistic variables are words and expressions of everyday language or a natural language. These variables should be the natural language values Expressions (small, medium, large) can take, these expressions There are names for the fuzzy sets mentioned.

Die Regeln der Fuzzy-Logik bestehen ebenso wie der klassischen Logik aus einem Bedingungs- oder Prämissenteil und aus einem Schlussfolgerungsteil. Der Bedingungsteil ist in Fig. 2 durch das Prozess-Interface 10 und der Schlussfolgerungsteil durch das Aktions-lnterface 11 symbolisiert. Die Inferenzmaschine 9 verknüpft die Einflussrichtung und die Stärke der momentanen Zustände in den Fuzzy-Sets aufgrund von empirischem technologischem Wissen. The rules of fuzzy logic, like classic logic, consist of one Condition or premise part and from a conclusion part. The condition part is in Fig. 2 by the process interface 10 and the conclusion part symbolized by the action interface 11. The inference machine 9 links the Direction of influence and the strength of the current states in the fuzzy sets due to of empirical technological knowledge.

Fig. 3 zeigt anhand einer graphischen Darstellung mit einer typischen Fuzzy-Regel die Grundzüge eines Fuzzy-Controllers. Die in der Figur als Regel 1 bezeichnete Regel lautet: "Falls A = GROSS und B = NORMAL, dann X = KLEIN". Die Regel 2 lautet: beispielsweise: "Falls B = NORMAL und C = KLEIN, dann X = NORMAL". A, B und C sind Eingangsvariable, X sind Ausgangsvariable. Der mit "falls" beginnende Satzteil ist der Bedingungsteil, der mit "dann" beginnende der Schlussfolgerungsteil.3 shows a graphical representation with a typical fuzzy rule Basics of a fuzzy controller. The rule designated Rule 1 in the figure reads: "If A = LARGE and B = NORMAL, then X = SMALL". Rule 2 is: for example: "If B = NORMAL and C = SMALL, then X = NORMAL". A, B and C are input variables, X are output variables. The sentence beginning with "if" is the condition part, the part that starts with "then" is the conclusion part.

Zentraler Begriff der Fuzzy-Logik sind die Fuzzy-Sets oder unscharfen Mengen, wobei die Zugehörigkeit von Elementen zu einem Fuzzy-Set durch die sogenannte Zugehörigkeits- oder Membership-Funktion definiert ist. Während bei scharfen Mengen eine Eins die Zugehörigkeit und eine Null Nichtzugehörigkeit bedeutet, sind bei den Fuzzy-Sets als Werte für die Zugehörigkeitsfunktion nicht nur Null oder Eins, sondern beliebige Werte dazwischen zugelassen.The fuzzy sets or fuzzy sets are the central concept of fuzzy logic the membership of elements in a fuzzy set by the so-called membership or membership function is defined. While with sharp quantities one One, which means belonging and a zero not belonging, are in the fuzzy sets as values for the membership function not just zero or one, but any Values in between allowed.

Die Umwandlung von scharfen Zahlen in unscharfe Mengen wird als Fuzzyfizierung bezeichnet. Bei dieser hat jede Eingangsvariable, das ist in der Praxis beispielsweise ein Sensorsignal, mindestens eine als Matrix abgebildete Funktion.Die x-Skalierung dieser Funktion hat eine numerische Entsprechung im jeweiligen Sensorsignal, und die y-Skalierung entspricht dem Wahrheitsgehalt oder dem Grad der Annäherung an die entsprechende Aussage und kann jeden Wert von 0 bis 1 annehmen. Dieser Grad der Annäherung wird durch die Zugehörigkeitsfunktion berechnet.The conversion of sharp numbers to fuzzy amounts is called fuzzification designated. Each has an input variable, which is in practice, for example a sensor signal, at least one function depicted as a matrix. x-scaling this function has a numerical equivalent in the respective sensor signal, and the y-scale corresponds to the truthfulness or degree of approximation the corresponding statement and can take any value from 0 to 1. That degree the approximation is calculated by the membership function.

Für die im Bedingungsteil vorhandenen Aussagen wird mit einem geeigneten Operator eine Grösse für die Zugehörigkeitswerte gesucht; ist diese Grösse der Minimalwert der Zugehörigkeitsfunktion, dann ist der Operator so wie in Fig. 3 der Minimum-Operator und dieser ist wiederum der Durchschnitt der beiden Fuzzy-Sets für die Eingangsvariablen A und B. Das Ergebnis der Schlussfolgerung der beiden Regeln 1 und 2 ist also der Durchschnitt durch die Fuzzy-Sets für A und B bzw. B und C.A suitable operator is used for the statements in the condition section searched for a size for the membership values; this size is the minimum value the membership function, then the operator is the minimum operator as in FIG. 3 and this in turn is the average of the two fuzzy sets for the input variables A and B. The result of the conclusion of the two rules 1 and 2 is the average of the fuzzy sets for A and B or B and C.

Aus diesen Schlussfolgerungen wird nun eine scharfe Ausgangsgrösse berechnet (Aktions-lnterface 11, Fig. 2). Wenn so wie in Fig. 3 Schlussfolgerungen aus mehreren Regeln vorhanden sind, dann werden die Zugehörigkeitswerte für die jeweiligen Regeln synthetisiert. Und das geschieht beispielsweise durch einen Vergleich zwischen den Schlussfolgerungsteilen der Regeln, um den Maximalwert der Zugehörigkeitswerte der Schlussfolgerungsteile zu erhalten und eine neue Zugehörigkeitsfunktion zu erzeugen. Dieser Vorgang wird als Maximum-Operator bezeichnet; er stellt die Vereinigung der Schlussfolgerungsteile dar.A sharp starting point is now calculated from these conclusions (Action interface 11, Fig. 2). If so as in Fig. 3 conclusions from several Rules exist, then the membership values for each Rules synthesized. And that happens, for example, by a comparison between the conclusion parts of the rules to the maximum value of the membership values to get the conclusion parts and a new membership function to create. This process is called the maximum operator; he puts the Union of the conclusion parts.

Anschliessend wird aus dem von der Inferenzmaschine 9 (Fig. 2) gelieferten unscharfen Ergebnis eine scharfe Ausgangsgrösse berechnet, was beispielsweise durch Berechnung des Schwerpunkts der synthetischen Zugehörigkeitsfunktion erfolgt.The unsharp one supplied by the inference machine 9 (FIG. 2) then becomes Result a sharp output size is calculated, for example, by The center of gravity of the synthetic membership function is calculated.

Der Entwurf des Fuzzy-Controllers 7 (Fig, 1, 2) wird grob in folgenden Schritten vollzogen:

  • Definition aller Eingangs- und Ausgangsvariablen: Die Eingangsvariablen sind im vorliegenden Fall die die aus dem Sensorsignal gewonnenen Pulse charakterisierenden Daten und ein Zeitfenster, die Ausgangsvariable ist ein Wert, der angibt, ob es sich um eine blosse Störung oder um ein unbefugtes Eindringen handelt.
  • Definition der unscharfen Mengen (Fuzzy-Sets) für die linguistischen Variablen.
  • Aufstellen der Regeln: Eine geeignete Regel ist beispielsweise die, dass unbefugtes Eindringen dann vorliegt, wenn die Bedingung einer Pulsreihe aus drei aufeinanderfolgenden Pulsen mit den Amplituden klein positiv, gross negativ und klein positiv im Zeitraum lang erfüllt ist.
  • Festlegung der Inferenzmaschine: Es wird als Operator beispielsweise eine spezielle UND-Funktion, das sogenannte FUZZY-UND der Form F = y * min(A,B) + 0.5 * (1-y) * (A+B) gewählt, wobei A und B die Eingangsvariablen sind und y ein Gamma-Faktor. Für den Gamma-Faktor y=1 geht der FUZZY-UND-Operator in den Minimum-Operator (Fig. 3) über.
  • Definition der Berechnung der scharfen Ausgangsgrössen: Diese auch als Defuzzyfizierung bezeichnete Operation, bei der aus einer unscharfen Menge über eine Ausgangszugehörigkeitsfunktion eine scharfe Grösse gewonnen wird, erfolgt vorzugsweise so wie in Fig. 3 durch Schwerpunktbildung.
The design of the fuzzy controller 7 (FIGS. 1, 2) is carried out roughly in the following steps:
  • Definition of all input and output variables: In the present case, the input variables are the data characterizing the pulses obtained from the sensor signal and a time window, the output variable is a value that indicates whether it is a mere fault or an unauthorized entry.
  • Definition of the fuzzy sets for the linguistic variables.
  • Establishing the rules: A suitable rule is, for example, that unauthorized intrusion exists if the condition of a pulse series consisting of three successive pulses with the amplitudes small positive, large negative and small positive is met for a period of time.
  • Definition of the inference machine: As an operator, for example, a special AND function, the so-called FUZZY-AND of the form F = y * min (A, B) + 0.5 * (1-y) * (A + B) where A and B are the input variables and y is a gamma factor. For the gamma factor y = 1, the FUZZY AND operator changes to the minimum operator (FIG. 3).
  • Definition of the calculation of the sharp output variables: This operation, also known as defuzzification, in which a sharp variable is obtained from an unsharp quantity using an output membership function, is preferably carried out as in FIG. 3 by forming a center of gravity.

Die beschriebene Signalverarbeitung in IR-Detektoren ermöglicht eine gute und saubere Trennung zwischen Einbruchs- und Störsignalen bei hoher Detektionsleistung. Insbesondere können auch stark verrauschte Sensorsignale und Signale aus dem peripheren Ueberwachungsbereich eindeutig ausgewertet werden. Durch die Speicherung der Sensorsignale in Form von Pulsen ergibt sich eine starke Reduktion des Speicherbedarfs, insbesondere auch desjenigen für die Regeln in linguistischer Form. Dazu kommt, dass die Fuzzyfizierung und die Defuzzyfizierung numerisch relativ anspruchslos sind und einen geringen Aufwand erfordern, der schon mit einem einfachen Microcontroller realisierbar ist.The signal processing described in IR detectors enables good and clean Separation between intrusion and interference signals with high detection performance. In particular, very noisy sensor signals and signals from the peripheral monitoring area can be clearly evaluated. By saving of the sensor signals in the form of pulses results in a strong reduction in the Memory requirements, especially those for the rules in linguistic form. In addition, the fuzzification and defuzzification are numerically relatively undemanding are and require little effort, even with a simple Microcontroller is realizable.

Durch die für die Fuzzy-Logik typischen unscharfen Formulierungen ist es unwahrscheinlich, dass ein Signal aufgrund einer knapp verpassten Bedingung verworfen wird. Die beschriebene Verarbeitung entspricht eher den sehr verschiedenen und unscharfen Einbruchssignalen. Der Algorithmus ist durch die Fuzzy-Formulierung im Kern einfach und transparent. Sobald er einmal geschrieben ist, gilt er auch für sich ändernde Rahmenbedingungen, wobei in diesem Fall nur einige Konstanten geändert werden müssen (sogenannte Parametrierung). Die Konstanten werden aufgrund von Versuchen und Simulationen optimiert.The fuzzy logic typical of fuzzy logic makes it unlikely that a signal discarded due to a narrowly missed condition becomes. The processing described corresponds rather to the very different and fuzzy Intrusion signals. The algorithm is based on the fuzzy formulation Simple and transparent core. As soon as it is written, it also applies to itself changing framework conditions, in which case only a few constants are changed must be (so-called parameterization). The constants are due to Trials and simulations optimized.

Claims (6)

  1. Process for processing the signals of a passive infra-red detector, which generates electrical signals, described below as sensor signals, in relation to incident infra-red radiation, then evaluates these electrical signals, wherein the sensor signals are digitized and processed in the form of pulses, whose evaluation is carried out by means of fuzzy logic (7), wherein in each case the data of a series of several pulses are compared to rules stored in the form of linguistic variables, characterised in that the pulses are characterised by data, wherein as characterising data for describing the pulses, their amplitude and/or duration are used, and that for the conversion of the digitized sensor signals into pulses the waveform of the signals is examined, and at a certain excursion of the signal from its normal position a pulse start is set and on return to the normal position a pulse end is set.
  2. Process according to Claim 1, characterised in that, as characterising data for describing the pulses, their polarity and/or their mutual spacing are used.
  3. Process according to Claim 1 or 2, characterised in that, in each case the data of the last n successive pulses are compared with the stored rules, where the value of n lies between 2 and 4, and is preferably 3.
  4. Infra-red detector for implementing the process according to Claim 1, having at least one sensor element for generating the sensor signals and having an evaluation circuit for processing and evaluating them, which contains a fuzzy controller (7) to which the pulse data are fed, characterised in that the fuzzy controller (7) contains a rule base (8) and an inference machine (9) and forms part of a microcontroller (6), which contains a pulse processing stage (5) for processing the digitized sensor signals in pulses and for storing the data describing the amplitude and/or duration of the pulses.
  5. Infra-red detector according to Claim 4, characterised in that the rules stored in the rule base (8) of the fuzzy controller (7) are of the type that their condition part contains number and data of pulses and the time interval of the occurrence of the pulses.
  6. Infra-red detector according to Claim 4 or 5, characterised in that the inference machine (9) of the fuzzy controller has a FUZZY-AND function as the operator.
EP94113876A 1993-10-04 1994-09-05 Method for processing passive infrared detector signals and infrared detector for carrying out the method Expired - Lifetime EP0646901B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH2975/93 1993-10-04
CH02975/93A CH686805A5 (en) 1993-10-04 1993-10-04 A method for processing the signals of a passive infrared detector and infrared detector for implementing the method.
CH297593 1993-10-04

Publications (2)

Publication Number Publication Date
EP0646901A1 EP0646901A1 (en) 1995-04-05
EP0646901B1 true EP0646901B1 (en) 1999-10-27

Family

ID=4245848

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94113876A Expired - Lifetime EP0646901B1 (en) 1993-10-04 1994-09-05 Method for processing passive infrared detector signals and infrared detector for carrying out the method

Country Status (7)

Country Link
EP (1) EP0646901B1 (en)
JP (1) JPH07159238A (en)
CA (1) CA2130737A1 (en)
CH (1) CH686805A5 (en)
DE (1) DE59408859D1 (en)
ES (1) ES2139696T3 (en)
IL (1) IL110760A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE203118T1 (en) * 1994-12-19 2001-07-15 Siemens Building Tech Ag METHOD AND ARRANGEMENT FOR DETECTING A FLAME
FR2756401B1 (en) * 1996-11-28 1999-02-19 Valeo Electronique METHOD AND DEVICE FOR DETECTING INTRUSION IN A MOTOR VEHICLE
DE19709805A1 (en) * 1997-03-10 1998-09-24 Stribel Gmbh Room monitoring device
ATE274732T1 (en) 2001-11-05 2004-09-15 Siemens Building Tech Ag PASSIVE INFRARED DETECTOR
NO20052403A (en) 2005-05-18 2006-09-18 Idtec Pte Ltd System and procedure for burglary detection
CN107016813A (en) * 2017-06-16 2017-08-04 合肥讯邦网络科技有限公司 A kind of intelligent information safety-protection system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3369019D1 (en) * 1982-10-01 1987-02-12 Cerberus Ag Infrared detector for spotting an intruder in an area
JPH04256130A (en) * 1991-02-08 1992-09-10 Nissan Motor Co Ltd Arithmetic circuit for fuzzy control
JPH0518827A (en) * 1991-07-10 1993-01-26 Matsushita Electric Ind Co Ltd Human body detection device
JPH0552963A (en) * 1991-08-22 1993-03-02 Matsushita Electric Ind Co Ltd Human body detection device and air-conditioning equipment with it

Also Published As

Publication number Publication date
JPH07159238A (en) 1995-06-23
IL110760A0 (en) 1994-11-11
CA2130737A1 (en) 1995-04-05
DE59408859D1 (en) 1999-12-02
EP0646901A1 (en) 1995-04-05
IL110760A (en) 1997-02-18
CH686805A5 (en) 1996-06-28
ES2139696T3 (en) 2000-02-16

Similar Documents

Publication Publication Date Title
DE69413117T2 (en) Passive type moving object detection system
DE2938969C2 (en) Ultrasonic room surveillance system based on the pulse-echo method
DE3505052C2 (en)
EP0107042B1 (en) Infrared detector for spotting an intruder in an area
DE3832428C2 (en)
DE69434352T2 (en) Device and method for data processing in a smoke detection system
EP0654770B1 (en) Device for early detection of fires
DE2524734B2 (en) Information processing device for recognizing an Er¬ that can be characterized by a set of input signals
DE2012024A1 (en) Method and device for monitoring and evaluating wave trains
DE3603568C2 (en)
DE4430016A1 (en) Image evaluation system for security and alarm system
EP0646901B1 (en) Method for processing passive infrared detector signals and infrared detector for carrying out the method
EP0750764B1 (en) Process and arrangement for fuzzy control
DE4002829A1 (en) METHOD FOR DETECTING METAL OBJECTS
DE3221997A1 (en) DEVICE FOR MONITORING ARMORED ROOMS, ESPECIALLY SAFE AND CABINETS, AND FOR GENERATING AN ALARM SIGNAL WHEN A BURGLAR ATTEMPT IS TAKEN
EP0660282B1 (en) System for the early detection of fires
DE2427328A1 (en) BURGLAR SYSTEM
DE3622371C2 (en)
DE60109442T2 (en) SYSTEM FOR COUNTING LIVING
DE2329580A1 (en) BURGLAR SYSTEM
DE68925937T2 (en) Detection and processing of waveforms
DE2937686A1 (en) COMBINATION DETECTOR
DE69502502T2 (en) FIRE ALARM DEVICE WITH ANALOG SENSOR
EP0681234B1 (en) Method for fuzzy inference in a fuzzy control circuit
DE3624195A1 (en) DETECTION PROCESS FOR A PASSIVE INFRARED MOTION DETECTOR AND ARRANGEMENT FOR PERFORMING THE PROCEDURE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19950921

17Q First examination report despatched

Effective date: 19980730

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS BUILDING TECHNOLOGIES AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19991027

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19991027

REF Corresponds to:

Ref document number: 59408859

Country of ref document: DE

Date of ref document: 19991202

ITF It: translation for a ep patent filed
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2139696

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20061024

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070926

Year of fee payment: 14

Ref country code: BE

Payment date: 20070918

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070906

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081121

Year of fee payment: 15

BERE Be: lapsed

Owner name: *SIEMENS BUILDING TECHNOLOGIES A.G.

Effective date: 20080930

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090514 AND 20090520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080905

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090910

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100905

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100905

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20091008

Year of fee payment: 16