EP0596152B1 - Wechselspannungs-Vorschaltgerät für elektrische Entladungslampen - Google Patents
Wechselspannungs-Vorschaltgerät für elektrische Entladungslampen Download PDFInfo
- Publication number
- EP0596152B1 EP0596152B1 EP92119005A EP92119005A EP0596152B1 EP 0596152 B1 EP0596152 B1 EP 0596152B1 EP 92119005 A EP92119005 A EP 92119005A EP 92119005 A EP92119005 A EP 92119005A EP 0596152 B1 EP0596152 B1 EP 0596152B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- inductance
- phase
- alternative
- cycle
- lamp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007599 discharging Methods 0.000 claims abstract description 7
- 230000001419 dependent effect Effects 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims 1
- 230000006870 function Effects 0.000 description 7
- 230000010355 oscillation Effects 0.000 description 5
- 230000002123 temporal effect Effects 0.000 description 4
- 230000002457 bidirectional effect Effects 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/26—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC
- H05B41/28—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters
- H05B41/282—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices
- H05B41/2821—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage
- H05B41/2824—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage using control circuits for the switching element
Definitions
- the invention relates to an AC ballast for electric discharge lamps, and in particular for fluorescent lamps which have heated electrodes.
- An AC ballast in the preamble of claim 1 type is known from DE 41 01 980 Al.
- this known ballast becomes an inductor over a first electronic Switch charged and then this switch locked and the inductance is over a second electronic switch and the fluorescent lamp unload.
- the fluorescent lamp is a third electronic Switch connected in parallel. If the amplitude the input AC voltage is greater than a predetermined one Threshold, the lamp is constantly locked third switch, that is operated without a short circuit. If the input voltage is below the limit the third electronic switch will alternate on and off. Through the input and Turn off the third switch with high frequency achieved that the lamp voltage even at small values of the input voltage assumes a value that is appropriate for the Maintenance of lamp operation is sufficient.
- the height the resulting lamp voltage can be determined by a Change in duty cycle and / or frequency the actuation of the third switch in the desired one Dimensions are changed.
- the ballast delivers a over a period of the input voltage largely constant lamp power.
- suitable dimensioning of the circuit can be achieved be that the time course of the lamp power over a period of 360 ° of the input voltage has two adjacent maxima and in between goes to zero. On the one hand, this becomes a good efficiency and low harmonic generation causes.
- the invention has for its object an AC ballast to create that simple Determination or change of the ripple caused enables.
- the control unit specifies the cycle frequency, ie the cycle duration of the charging and discharging processes, or the maximum charging current of the inductance, as a function of the phase of the input voltage.
- the control unit contains either a formula or curve or a table in which a cycle frequency or cycle duration, or the upper limit value of the charging current, of the relevant charging and discharging process is contained for each phase position of the input voltage.
- the respective cycle is ended after the phase-dependent cycle duration.
- the invention is based on the idea that the power P transmitted to the lamp during a cycle of charging and discharging is proportional to the frequency of the cycle in question and proportional to the square of the maximum charging current of the inductor.
- the power P has the same time profile. Since the time course of the power is decisive for the ripple of the input current generated by the ballast, it is possible to influence the ripple in that the cycle frequency has a predetermined course with respect to the phase of the input voltage.
- the cycle frequency is significantly higher than the frequency of the input voltage. If the frequency of the input voltage (mains voltage) is 50 Hz, the cycle frequency is preferably of the order of 30 kHz.
- the cycle frequency can be varied over a period of the input voltage so that a curve arises from a fundamental oscillation (with the frequency of the input voltage) and numerous harmonics, the fundamental oscillation components of which correspond to the maximum permissible degree of deformation of the fundamental oscillation.
- the upper limit of the charging current is changed as a function of the phase position of the input voltage, in such a way that the square of the maximum value of the charging current is varied in accordance with a predetermined curve shape which has the frequency of the input voltage.
- the duration of the charge and discharge cycles, i.e. the cycle frequency f z , is constant.
- the maximum allowable degree of deformation of the performance curve can be determined according to the VDE regulations, for example be a specific one for each harmonic order provide for the maximum fundamental component. To this It is possible that a performance curve is compiled with which the harmonic components of the Mains input current the permissible limit values exceed. This can take into account the wish be a compromise between an even temporal power distribution and the maximum allowable Harmonic content.
- the ballast according to the invention sets the AC voltage coming into the network without being converted into a DC voltage in an AC supply for the Discharge lamp around.
- This AC supply is high-frequency (e.g. 30 kHz)
- the envelope curve corresponds to that Frequency of the input voltage (e.g. 50Hz).
- the envelope of the alternating supply current has a temporal Between, a sine function and a Rectangular function.
- the ballast according to the invention also offers the Possibility in the ignition phase to the usual To waive burst pulses from the control unit generated separately to ignite the fluorescent lamp. Rather, the ignition can be done with the same high frequency Impulses are carried out with those too later stationary lamp operation takes place. A separate Ignition phase that precedes the operating phase therefore not necessary.
- the ballast according to the invention offers the possibility of one of the fluorescent lamps parallel connected further switch, by the control unit should be controlled to do without.
- a resistance element in the ballast according to the invention be used, for example a PTC resistor, which becomes high-resistance after the preheating phase.
- the input voltage U N which is the line voltage of 50 Hz, is present at the input.
- This mains voltage is fed to the ballast via a filter and radio interference suppression circuit (not shown).
- One pole of the input voltage U N is connected to the one main connection of the bidirectional electronic switch T1, the other main connection of which is connected to the inductance L.
- the inductance L lies in a transverse branch of the circuit and connects the second main connection of the switch T1 via a measuring resistor R to the other pole of the input voltage U N.
- the discharge lamp EL has at opposite ends an electrode E1 and E2 on.
- the electrodes E1 and E2 are by a third bidirectional electronic switch T3 with each other connected.
- the electronic switches T1, T2 and T3 are controlled by the control unit SE, which is a microprocessor.
- This microprocessor is connected to the poles of the input voltage U N , so that it receives information about the time course of the input voltage and in particular about the respective phase position of the input voltage. It is also connected to the two ends of the measuring resistor R, so that it receives information about the current i flowing through the inductance L.
- FIG. 2 shows the time course of the current i flowing through the inductance L in the operating phase.
- the switches T1 and T2 are operated inversely to each other. If the switch T1 is conductive and the switch T2 is blocked, the inductance L charges, which is denoted by 10 in FIG. 2.
- the current i increases linearly because there is practically no ohmic resistance in the series circuit which contains the electronic switch T1 and the inductance L.
- the value of the measuring resistor R is very small.
- the control unit SE determines the limit value i o in the control unit SE and the control unit then carries out the discharge phase of the inductance L, in which the switch T1 is blocked and the switch T2 is conductive.
- the inductance L discharges, striving to maintain the current that has flowed in the charging phase.
- the current now flows from the inductance L via the measuring resistor R, the discharge lamp EL and the conductive switch T2 back to the inductance L. Since the current flows through a consumer, namely the discharge lamp EL, it decreases in the manner of an e-function.
- the discharge phase 11 is ended when the cycle time t z has reached a predetermined value, the size of which will be explained. After the first cycle time t z 1 has elapsed, the next cycle time t z 2 follows.
- the charging time in which the inductance L is charged is t a 1 and the discharging time in which the inductance L is discharged via the discharge lamp EL is t e 1.
- the charging time t a 2 is the charging time t a 2 and the final charging time t e 2.
- the duration of the charging times t a 1 and t a 2 depends on the current level of the input voltage U N , that is, inter alia, also on the phase position of the input voltage. If the input voltage is large, the charging time, namely the time until the current i reaches the limit value i o , is small, and if the input voltage is small, the charging time is large. In any case, the charging phase continues until the current has reached the limit value i o , so that, regardless of the instantaneous level of the input voltage, the energy transferred into the inductance L is always the same. This energy is discharged in the subsequent discharge phase 11.
- the charge / discharge cycles take place in the cycle time t z .
- the cycle frequency f z is 1 / t z .
- the lamp power P is proportional to the cycle frequency f z .
- Fig. 3 the current i and the power P are above that Phase angle of the input voltage plotted.
- the curve 20 gives the time profile of the power P in the case of an ohmic consumer.
- the performance curve 20 corresponds to the square of the sine of the input voltage. With such a curve course none Harmonics generated. This course of the performance curve However, 20 has the disadvantage that the performance is temporal fluctuates greatly.
- the fluorescent lamp is desirable to operate with constant power over time.
- the power curve 22 which can be implemented with the circuit according to FIG. 1.
- the mains input current contains harmonic components, the maximum value permissible according to DIN VDE 0838 being adopted for each harmonic order.
- This standard provides the following maximum values for the fundamental oscillation components of the harmonics of the mains input current: Harmonic order n Maximum value stated in% of the basic oscillation current of the lamp 2nd 5 3rd 30 ⁇ 5 7 7 4th 9 3rd 11 ⁇ n ⁇ 39 2nd
- the power curve 22 thus results with that shown temporal course.
- the integral (i.e. the Area) of this power curve 22 is equal to that the power curve 20 and also equal to that the power curve 21. It can be seen that the essentially trapezoidal power curve 22 a compromise between the power curves 20 and 21 because it is flatter and wider than the power curve 20, on the other hand, however, contains fewer harmonic components than the performance curve 21.
- the power curve 22 is in the present embodiment based on those shown in the table permissible input current harmonics determined has been, so to speak, like a Fourier synthesis.
- the cycle frequency f z is selected so that its time profile corresponds to the time profile of the power curve 22.
- Such a time course of the cycle frequency f z over the phase of the input voltage is stored in a memory of the control unit SE, for example in the form of a table. If a certain phase position of the input voltage is determined, the associated value of the cycle frequency is read from the memory. The duration of the respective cycle time t z results from the value of the cycle frequency. After the cycle time t z has elapsed, the respective cycle is ended and the next cycle begins with the associated new cycle duration.
- the control unit SE contains in a table the different cycle frequencies or the cycle times (the reciprocal values of the cycle frequencies) as a function of the phase angles of the input voltage.
- the discharge lamp EL is a fluorescent lamp with heatable electrodes E1 and E2. With such a fluorescent lamp, preheating must be carried out before ignition.
- FIG. 4 shows a) the course of the current i in the preheating phase.
- the limit value i o at which the charging phase of the inductance is ended, is reduced to the value i ov , which is lower than i o .
- the representations b) and c) show the switching states of the electronic switches T1 and T2, which are controlled by the control unit SE as a function of the preheating limit value i ov being reached.
- the frequency of the preheating periods is also varied in accordance with the power curve 22 in FIG. 3 as a function of the phase position of the input voltage.
- Representation d) in Fig. 4 shows the switching state of the third electronic switch T3, which is conductive in the preheating phase.
- the ignition phase is carried out.
- the electronic switch T3 is permanently blocked in the ignition phase and the subsequent operating phase.
- the normal limit value i o of the charging current is effective, which is also effective in the operating phase.
- the cycle duration t z varies in accordance with the power curve 22 in FIG. 3.
- an actuator SG is connected to the control unit SE, with which the dimming operation of the discharge lamp EL can be controlled.
- the limit value i o of the current is reduced, so that the power supplied to the lamp is reduced.
- FIG. 5 differs from that of FIG. 1 in that the inductance L consists of a transformer, the primary winding L1 is connected in series with the first electronic switch Tl and the measuring resistor R to the input voltage U N and the secondary winding L2 forms a closed circuit with the switch T2 and the discharge lamp EL.
- the two circuits are thus galvanically decoupled from one another by the transformer.
- the third switch T3 of FIG. 1 is replaced by a resistance element R v , which becomes high-resistance after the preheating phase has ended.
- This resistance element R v is, for example, a PTC resistor which has a low resistance in the cold state during the preheating phase and which then becomes high resistance.
- the resistance element R v can also be used in the circuit according to FIG. 1 in order to replace the third switch T3 there.
- the two switches T1 and T2 are controlled in FIG. 5 in the same way as was explained with reference to FIG. 1.
- the inductor L consists of two partial inductors L3 and L4.
- the parallel inductor L3 is arranged in the same way as the inductor L in FIG. 1 and the series inductor L4 is arranged between the first electronic switch T1 and the second electronic switch T2.
- Both partial inductors L3 and L4 are magnetically coupled to one another by a common core 25.
- voltages U 1 and U 2 arise at the partial inductors L3 and L4, which add up to give the ignition voltage for the lamp.
- the voltage occurring at switch T1 only has the maximum value of U N + U 1 .
- the switch T1 therefore does not need to have such a high dielectric strength as in the exemplary embodiment in FIG. 1.
- two first electronic switches T11 and T12 are provided, each of which is connected in series with a rectifier D1 or D2, the rectifiers D1 and D2 being polarized in opposite directions to one another.
- the two series connections from the switch T11 and the rectifier D1 on the one hand and the switch T12 and the rectifier D2 on the other hand form a parallel connection.
- the connection of the switch T11 to the rectifier D1 is connected via an inductor L5 and a measuring resistor R to the second pole of the input voltage U N.
- the connection point between the switch T12 and the rectifier D2 is connected to the measuring resistor R via an inductor L6.
- switch T11 controls the positive half-wave and switch T12 controls the negative half-wave of the input voltage, which is shown in FIG. 8.
- the switches T11 and T12 are controlled by the control unit SE in the same manner as was explained with reference to FIG. 1, with the difference that the switch T11 is blocked during the negative half-wave of the input voltage and the switch T12 is blocked during the positive half-wave .
- the one Rectifier circuit D1, D2, D3, D4 connected in series is.
- the inductance L5 is connected to the cathodes Rectifiers D1 and D3 connected and the inductance L6 is connected to the anodes of rectifiers D2 and D4.
- the charging current flows in the positive half-wave via switch T1 and rectifier D3 to inductance L5 and the discharge current flows from the inductor L5 by the lamp EL and the rectifier D1.
- the negative half wave of the input voltage flows the charging current via the switch T1, the rectifier D4 and the inductance L6 and the discharge current overflow the lamp EL and the diode D2. In this case it is only there is a single electronic switch to be controlled.
Landscapes
- Circuit Arrangements For Discharge Lamps (AREA)
- Electroluminescent Light Sources (AREA)
Description
- Fig. 1
- eine schematische Darstellung einer ersten Ausführungsform des Vorschaltgerätes,
- Fig. 2
- den zeitlichen Verlauf der aufeinanderfolgenden Zykluszeiten bei der Schaltung nach Fig. 1,
- Fig. 3
- eine graphische Darstellung verschiedener Verläufe von Leistung und Eingangsstrom über der Phasenlage der Eingangsspannung bei der Schaltung nach Fig. 1,
- Fig. 4
- Zeitdiagramme während der Vorheizphase, der Zündphase und der Betriebsphase,
- Fig. 5
- eine zweite Ausführungsform, bei der die Induktivität ein Transformator ist und der Lade- und Entladestromkreis voneinander galvanisch entkoppelt sind,
- Fig. 6
- eine dritte Ausführungsform, bei der die Induktivität in eine Parallelinduktivität und eine Serieninduktivität, die magnetisch miteinander gekoppelt sind, unterteilt ist,
- Fig. 7
- eine vierte Ausführungsform mit zwei ersten elektronischen Schaltern für jeweils eine Halbwelle der Eingangsspannung,
- Fig. 8
- ein Zeitdiagramm der Schaltung nach Fig. 7 und
- Fig. 9
- ein Ausführungsbeispiel ähnlich demjenigen von Fig. 8, jedoch mit nur einem einzigen ersten elektronischen Schalter.
Oberschwingungsordnung n | Maximalwert angegeben in % des Grundschwingungsstromes der Leuchte |
2 | 5 |
3 | 30λ |
5 | 7 |
7 | 4 |
9 | 3 |
11 ≤ n ≤ 39 | 2 |
Claims (12)
- Wechselspannungs-Vorschaltgerät für elektrische Entladungslampen, mit einer Induktivität (L), einem ersten elektronischen Schalter (T1) zum Laden der Induktivität durch Anschließen der Induktivität (L) an die Eingangsspannung (UN), einem zu dem ersten elektronischen Schalter (T1) invers betriebenen zweiten elektronischen Schalter (T2) oder Gleichrichter (D1,D2) zum Entladen der Induktivität (L) über die Entladungslampe (EL), und einer Steuereinheit (SE), die den Lade- und Entladezyklus der Induktivität (L) steuert,
dadurch gekennzeichnet
daß die Steuereinheit (SE) die Zyklusfrequenz (fz) der Lade- und Entladezyklen oder einen oberen Grenzwert (io) für die Höhe des Ladestroms (i) der Induktivität (L) als Funktion der Phase der Eingangsspannung (UN) vorgibt und den jeweiligen Zyklus nach Ablauf der phasenabhängigen Zyklusdauer (tz) beendet oder nach Erreichen des phasenabhängigen oberen Grenzwertes (io) des Ladestroms das Entladen beginnt und den jeweiligen Zyklus nach Ablauf einer konstanten Zyklusdauer (tz) beendet. - Wechselspannungs-Vorschaltgerät nach Anspruch 1, dadurch gekennzeichnet, daß die Steuereinheit (SE) ein dem Ladestrom der Induktivität (L) entsprechendes Signal empfängt und das Laden der Induktivität (L) beendet und das Entladen beginnt, wenn der Ladestrom (i) einen vorgegebenen oberen Grenzwert (io) erreicht.
- Wechselspannungs-Vorschaltgerät nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Zyklusfrequenz (fz), bzw. der obere Grenzwert (io) des Ladestroms (i), über einen Phasenwinkelbereich der Eingangsspannung von 180° im wesentlichen trapezförmigen Verlauf hat.
- Wechselspannungs-Vorschaltgerät nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Zyklusfrequenz (fz), bzw. der obere Grenzwert (io) des Ladestroms (i), über einen Phasenwinkelbereich der Eingangsspannung (UN) von 180° einer Kurve entspricht, die aus einer Grundschwingung und aus zahlreichen geradzahligen und ungeradzahligen Oberschwingungen, deren Grundschwingungsanteile dem maximal zulässigen Verformungsgrad der Grundschwingung entsprechen, besteht.
- Wechselspannungs-Vorschaltgerät nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß der obere Grenzwert (io) des Ladestroms (i) zum Dimmen veränderbar ist.
- Wechselspannungs-Vorschaltgerät nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß in einer Zündphase der erste elektronische Schalter (T1) in gleicher Weise gesteuert ist wie in der Betriebsphase, wobei die mit der Zyklusfrequenz (fz) an der Lampe (EL) erzeugten Impulse als Zünd-Impulse benutzt werden.
- Wechselspannungs-Vorschaltgerät nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, daß in einer Vorheizphase bei miteinander verbundenen Lampenelektroden (E1,E2) der obere Grenzwert (io) des Ladestroms gegenüber der Betriebsphase verringert ist.
- Wechselspannungs-vorschaltgerät nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Induktivität (L) aus einem Transformator besteht, der den ersten elektronischen Schalter (T1) enthaltenden Stromkreis von dem die Lampe (EL) enthaltenden Stromkreis galvanisch trennt.
- Wechselspannungs-Vorschaltgerät nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Induktivität (L) aus einer zur Lampe (EL) parallelgeschalteten Parallelinduktivität (L3) und aus einer zwischen den ersten elektronischen Schalter (T1) und die Lampe (EL) geschalteten Serieninduktivität (L4) besteht, die beide einen gemeinsamen Kern (25) haben.
- Wechselspannungs-Vorschaltgerät nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß zwei erste elektronische Schalter (T11,T12) vorgesehen sind, die mit Gleichrichtern (D1,D2) unterschiedlicher Polarität in Reihe geschaltet sind, und daß jeder erste elektronische Schalter (T11,T12) zusammen mit seinem Gleichrichter (D1,D2) an eine eigene Induktivität (L5,L6) angeschlossen ist.
- Wechselspannungs-Vorschaltgerät nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß ein einziger erster elektronischer Schalter (T1) vorgesehen ist, der mit zwei Gleichrichterzweigen aus gegenpolig in Reihe geschalteten Gleichrichtern (D3,D1;D4,D2) in Reihe geschaltet ist, und daß jeder Gleichrichterzweig an eine eigene Induktivität (L5,L6) angeschlossen ist.
- Wechselspannungs-Vorschaltgerät nach einem der Ansprüche 1 bis 12 dadurch gekennzeichnet, daß der Lampe (EL) ein Widerstandselement (Rv) parallelgeschaltet ist, das nach Beendigung der Vorheizphase durch Erwärmung hochohmig wird.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT92119005T ATE167352T1 (de) | 1992-11-06 | 1992-11-06 | Wechselspannungs-vorschaltgerät für elektrische entladungslampen |
DE59209374T DE59209374D1 (de) | 1992-11-06 | 1992-11-06 | Wechselspannungs-Vorschaltgerät für elektrische Entladungslampen |
EP92119005A EP0596152B1 (de) | 1992-11-06 | 1992-11-06 | Wechselspannungs-Vorschaltgerät für elektrische Entladungslampen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP92119005A EP0596152B1 (de) | 1992-11-06 | 1992-11-06 | Wechselspannungs-Vorschaltgerät für elektrische Entladungslampen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0596152A1 EP0596152A1 (de) | 1994-05-11 |
EP0596152B1 true EP0596152B1 (de) | 1998-06-10 |
Family
ID=8210209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92119005A Expired - Lifetime EP0596152B1 (de) | 1992-11-06 | 1992-11-06 | Wechselspannungs-Vorschaltgerät für elektrische Entladungslampen |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0596152B1 (de) |
AT (1) | ATE167352T1 (de) |
DE (1) | DE59209374D1 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19619745A1 (de) * | 1996-05-15 | 1997-11-20 | Tridonic Bauelemente | Schaltungsanordnung zum Betreiben einer Last und elektronisches Vorschaltgerät mit einer derartigen Schaltungsanordnung zum Betreiben einer Lampe |
JP2002528885A (ja) * | 1998-10-22 | 2002-09-03 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 回路配置 |
WO2000025555A1 (en) * | 1998-10-22 | 2000-05-04 | Koninklijke Philips Electronics N.V. | Circuit arrangement |
US6707285B2 (en) | 2001-01-10 | 2004-03-16 | Iwatt | Phase-controlled AC-DC power converter |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4873471A (en) * | 1986-03-28 | 1989-10-10 | Thomas Industries Inc. | High frequency ballast for gaseous discharge lamps |
DE4101980A1 (de) * | 1991-01-24 | 1992-08-06 | Trilux Lenze Gmbh & Co Kg | Wechselspannungs-vorschaltgeraet fuer elektrische entladungslampen |
-
1992
- 1992-11-06 DE DE59209374T patent/DE59209374D1/de not_active Expired - Fee Related
- 1992-11-06 AT AT92119005T patent/ATE167352T1/de not_active IP Right Cessation
- 1992-11-06 EP EP92119005A patent/EP0596152B1/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP0596152A1 (de) | 1994-05-11 |
ATE167352T1 (de) | 1998-06-15 |
DE59209374D1 (de) | 1998-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3319739C2 (de) | Vorschaltgerät für Gasentladungslampen | |
DE69201882T2 (de) | Dimmer mit minimalen Filterungsverlusten für eine Leistungslast. | |
EP0113451B1 (de) | Wechselrichter mit einem einen Reihenresonanzkreis und eine Entladungslampe enthaltenden Lastkreis | |
AT392384B (de) | Vorschaltgeraet zum betrieb von gasentladungslampen mit gleichstrom | |
DE3623306A1 (de) | Entladungslampen-treiber | |
EP0301436B1 (de) | Gleichspannungswandler | |
DE69111547T2 (de) | Dimbares Vorschaltgerät für Entladungslampen. | |
DE2657450C2 (de) | Speiseschaltung für einen Mikrowellengenerator und Verfahren zum Betrieb eines Mikrowellengenerators eines Mikrowellen-Erhitzungsgerätes | |
DE19955673A1 (de) | Leistungsversorgungseinheit mit einem Wechselrichter | |
DE69816950T2 (de) | Schaltungsanordnung | |
EP0740494A2 (de) | Schaltungsanordnung zum Impulsbetrieb von Entladungslampen | |
DE69835328T2 (de) | Steuerschaltung für eine Fluroreszenzlampe | |
DE2632247A1 (de) | Anordnung zum speisen einer elektrischen entladungslampe | |
DE3338464C2 (de) | Schaltungsanordnung zum Betrieb mindestens einer Leuchtstofflampe mit einstellbarer Helligkeit an einem selbstschwingenden Wechselrichter | |
EP0596152B1 (de) | Wechselspannungs-Vorschaltgerät für elektrische Entladungslampen | |
DE69109333T2 (de) | Schaltanordnung. | |
DE4219958C1 (en) | Ballast circuit for discharge lamp - uses phase gate control to short out electrodes for interval in each half cycle, depending on brightness | |
DE3312572A1 (de) | Elektronisches vorschaltgeraet fuer eine leuchtstofflampe | |
EP0496040B1 (de) | Wechselspannungs-Vorschaltgerät für elektrische Entladungslampen | |
DE3608362A1 (de) | Vorschaltgeraet fuer entladungslampen | |
DE3343930A1 (de) | Schaltungsanordnung zum betrieb von leuchtstoff- oder ultraviolett-niederspannungs-entladungslampen | |
DE2315497A1 (de) | Helligkeitssteuerschaltung fuer gasentladungslampen | |
DE3517297C1 (de) | Vorschaltgerät für Entladungslampen | |
EP0471228A1 (de) | Elektronisches Startgerät für Fluoreszenzlampen | |
DE60117764T2 (de) | Zündvorrichtung mit störkapazitätsunterdrücker |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FR GB IT LI LU NL |
|
17P | Request for examination filed |
Effective date: 19940929 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19970721 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR GB IT LI LU NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 19980610 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980610 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19980610 |
|
REF | Corresponds to: |
Ref document number: 167352 Country of ref document: AT Date of ref document: 19980615 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: TROESCH SCHEIDEGGER WERNER AG Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59209374 Country of ref document: DE Date of ref document: 19980716 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19980910 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981130 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
BERE | Be: lapsed |
Owner name: TRILUX-LENZE G.M.B.H. & CO. K.G. Effective date: 19981130 |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20001116 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20001122 Year of fee payment: 9 Ref country code: CH Payment date: 20001122 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20011018 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20011219 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020730 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030603 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |