[go: up one dir, main page]

EP0571353B2 - Process of galvanizing a strip and arrangement for carrying out the process - Google Patents

Process of galvanizing a strip and arrangement for carrying out the process Download PDF

Info

Publication number
EP0571353B2
EP0571353B2 EP93890053A EP93890053A EP0571353B2 EP 0571353 B2 EP0571353 B2 EP 0571353B2 EP 93890053 A EP93890053 A EP 93890053A EP 93890053 A EP93890053 A EP 93890053A EP 0571353 B2 EP0571353 B2 EP 0571353B2
Authority
EP
European Patent Office
Prior art keywords
strip
layer
zinc
iron content
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93890053A
Other languages
German (de)
French (fr)
Other versions
EP0571353B1 (en
EP0571353A2 (en
EP0571353A3 (en
Inventor
Josef Dipl.-Ing. Faderl
Manfred Dipl.-Ing. Maschek
Alois Dipl.-Ing. Stadlbauer
Klaus Dr. Dipl.-Ing. Zeman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Primetals Technologies Austria GmbH
Voestalpine Stahl Linz GmbH
Original Assignee
Voestalpine Stahl GmbH
Voestalpine Stahl Linz GmbH
Voest Alpine Industrienlagenbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3496298&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0571353(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Voestalpine Stahl GmbH, Voestalpine Stahl Linz GmbH, Voest Alpine Industrienlagenbau GmbH filed Critical Voestalpine Stahl GmbH
Publication of EP0571353A2 publication Critical patent/EP0571353A2/en
Publication of EP0571353A3 publication Critical patent/EP0571353A3/en
Publication of EP0571353B1 publication Critical patent/EP0571353B1/en
Application granted granted Critical
Publication of EP0571353B2 publication Critical patent/EP0571353B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching

Definitions

  • the invention relates to a method for the method for galvanizing a band, in particular a steel band, the band continuously in a continuous process either electrolytically with Zinc or according to the hot-dip galvanizing process in a zinc bath is coated with zinc, then to form a Zn-Fe layer a heat treatment in a continuous furnace and further an online control of the zinc layer while measuring the iron content subjected to the zinc layer by means of X-ray fluorescence is, the galvanizing process depending on the iron content the zinc layer is controlled, and a plant for Execution of the procedure.
  • the post-annealing process causes the pure zinc layer to diffuse through converted into a Zn-Fe layer by iron.
  • Each A product is formed according to the iron content of the Zn-Fe alloy different mechanical properties (e.g. toughness, Hardness), whereby the area of application (abrasion behavior, weldability, Paintability, corrosion resistance, deep drawing ability) is decisively determined.
  • the Fe content can be adjusted accordingly Measuring devices (e.g. by means of X-ray fluorescence, X-ray diffraction or similar processes), i.e. on-line, be measured, e.g. described in EP-A 0 473 154 is, the measurement result is usually about one Average value of the Fe content over the thickness of the Zn-Fe layer represents.
  • the invention has for its object that described above Process to further develop that a galvanized Tape with a defined layer structure can, being directly and immediately in the manufacturing process for Ensuring a uniform quality of the galvanized Band can be intervened and the production of rejects is minimized.
  • inventive Procedure of automatic consideration of intended Enabling changes in process parameters as well as their unintentional changes so that the manufacturing process is continuously optimized and without manual intervention.
  • This object is achieved by a method for Galvanizing a strip, in particular a steel strip, solved, the belt being continuously continuous either electrolytically with zinc or according to the hot-dip galvanizing process is coated with zinc in a zinc bath, then for Formation of a Zn-Fe layer of a heat treatment in one Continuous furnace and an on-line control of the zinc layer subjected to measurement of the iron content of the zinc layer by means of X-ray fluorescence is, the galvanizing process depending on the Iron content of the zinc layer is controlled, a value of Iron content of the Zn-Fe layer is determined as a reference variable, the actual value of the iron content of the Zn-Fe layer with the Reference variable compared and a control deviation over one Controller in a closed loop with the help of a Calculator, taking into account the tape dimension, the Basic material of the tape with regard to its chemical Composition and / or structure, the zinc layer thickness, the Composition of the zinc bath, e.g. its Al content, the Belt speed and possibly other parameters such as the temperature
  • the method according to the invention is based on the knowledge that the diffusion processes of iron into the zinc layer (diffusion rate, Iron content) primarily from temperature and the duration of the heat treatment in the continuous furnace.
  • the temperature control in the continuous furnace influences the structure of the galvannealt layer crucial and therefore also the mechanical properties of the product.
  • the surface of the tape after or during the Heat treatment measured using at least one pyrometer.
  • the procedure is preferably that of the belt passage by measurement using several in the direction of tape travel successively arranged pyrometer that position is determined from which the Zn-Fe layer has reacted, and by regulation the heating power of the continuous furnace this point in Belt running direction in front of a border point, from which the Zn-Fe layer must be fully reacted at the latest.
  • the regulation is done in a closed loop performed by a computer that registers the control deviation and the heating power of the continuous furnace by means of control commands regulates, the computer to increase reproducibility the quality of the tape produced, the tape dimension, the Basic material of the tape with regard to its chemical Composition and / or structure, the zinc layer thickness, the Composition of the zinc bath, e.g. its Al content, the Belt speed and possibly other parameters such as the temperature of the belt at the inlet of the continuous furnace and the Ambient temperature, taken into account.
  • a preferred embodiment is characterized in that the heating power and thus the temperature inside the continuous furnace can be set differently in individual heating zones is.
  • the heating output in the direction of Bandwidth of adjacent heating zones varies adjustable.
  • the Heating output in the line running direction Heating zones can be set differently, which increases the warm-up speed of the tape or the holding time of the tape on a certain temperature in order to achieve optimal tape quality can be varied.
  • Measuring device for measuring the iron content of the zinc layer characterized in that the measuring device with a a controller connected to a process computer, which is connected via a control line with the heating device of the heat treatment device is coupled.
  • the controller is coupled to a process computer.
  • At least one additional one is expedient: as a pyrometer trained radiation measuring device provided on the belt path after or in the heat treatment device, which is also coupled to the controller.
  • FIG. 1 in a schematic representation illustrates a system for galvanizing a strip.
  • the dependency is in the diagram shown in FIG of the iron content from the heating output.
  • Fig. 3 shows a deviation in the iron content in the Zn-Fe layer as a function of the bandwidth
  • FIG. 4 the dependence of the radiation emission on the holding time.
  • a steel strip 1 to be galvanized is by means of a strip guide device, the one Has a plurality of tape guide rollers 2, continuously along a tape path 3 of a not shown Unwind station to a winding station, also not shown.
  • this arrives Steel strip first to a zinc coating device 4, which in the illustrated embodiment as a hot-dip galvanizing device is designed.
  • This has a zinc bath 5 and a stripping device arranged downstream in the strip running direction 6 7 to ensure a constant zinc layer which is of equal thickness over the range.
  • the steel strip 1 is placed over a hot thickness measuring system 8 for measuring the thickness of the zinc layer and via a temperature measuring device 9 into a heat treatment device having two continuous furnaces 10, 11 13 initiated.
  • the galvanized steel strip is primarily heated 1 to the required annealing temperature.
  • the steel strip 1 primarily kept at a constant annealing temperature.
  • the radiation emission is determined by means of a pyrometer 14 of the finished annealed steel strip 1 measured. Then there are cooling devices on the belt guide 15 arranged. At a location downstream of the heat treatment device 13 of the belt path 3 there is also a measuring device 16 is provided for measuring the iron content of the Zn-Fe layer. the preferably as by the double arrow 17 indicated. Can be moved across the bandwidth so that at different points in the bandwidth a measurement can be carried out.
  • the measuring device works according to the X-ray method.
  • a controller 19 coupled to a process computer 18 is provided with heating devices of the two continuous furnaces 10, 11 coupled to adjust the heating power. as illustrated by the double arrows 20.
  • the aluminum dissolved in zinc bath 5 initially forms an iron-aluminum layer (Fe 2 Al 5 ) on the steel strip due to its higher affinity for iron. which prevents a reaction of the iron substrate of the steel strip 1 and the zinc layer.
  • This system (steel strip 1 + Fe-Al layer + liquid Zn layer) enters the first continuous furnace 10 and is brought to a temperature of 450 ° C to 700 ° C.
  • the steel strip 1 is kept at a certain temperature or heated even further.
  • the process of diffusion of iron into the zinc layer that occurs converts the pure zinc layer into a zinc-iron layer.
  • the Fe-Al barrier layer formed in the zinc bath is formed by the Zn-Fe growth at the grain boundaries of the base material is broken up, and a mushroom-shaped growth of the Zn-Fe complexes begins. Depending on the iron content different metallurgical phases are formed. that have different properties.
  • Iron content of the Fe-Zn layer is determined, preferably via the entire bandwidth and also over the entire band length.
  • This The actual value of the iron content of the Zn-Fe layer is determined using the Controller 19 with a value of the predetermined as a reference variable Iron content of the Zn-Fe layer compared.
  • a possible one Control deviation is over the controller 19 by changing the the heating output of the first or the second continuous furnace 10, 11 balanced. Is that about measured iron content less than the desired, the Heating capacity of the continuous furnace increased until the Control deviation becomes zero or below a specified value has dropped (dead band), as is shown in FIG. 2 below is explained:
  • the course I gives the relationship between the Fe content of the Zn-Fe layer and heating output. This is determined empirically and e.g. as a formula or in tabular form Control computer (controller 19) provided.
  • the steel strip 1 behaves exactly according to the course I, the desired setting of the Fe content Fe 1 (point A) is achieved with the power setting P 1 . If the strip behaves somewhat differently, e.g. according to curve II, due to unintentional changes in process parameters, such as drift of the ambient temperature, drift in the transformer output when the continuous furnaces are electrically heated or if other faults occur, the strip will have an Fe content of Fe 2 which deviates from the nominal value Fe 1 (point B).
  • the heating power is now changed, for example depending on the slope dP / dFe in point A'des course I, for example by the value k. dP dFe . ⁇ Fe
  • Desired changes in process parameters e.g. on Changing the dimension of the steel strip 1, changing the chemical composition of the steel strip 1, a change of Zinc layer thickness or a change in the conveying speed of the Steel strip 1, to take into account the heat output of the Heat treatment device entered the process computer 18.
  • the emissivity of the coating changes abruptly as soon as the surface of the Zn-Fe layer has iron (see FIG. 4), can make a radiation emission measurement using a pyrometer 14 used to assess the galvanized layer become.
  • the pyrometer 14 can after or in the Heat treatment device 13 (e.g. between galvannealing furnace 10 and holding furnace 11) can be arranged. In this measurement it is information about the purely of the Surface of the steel strip 1, i.e. its Zn-Fe layer, emitted radiant energy, which is a function of temperature and the emission number of the surface condition.
  • the heating power of the continuous furnaces 10, 11th with the help of the controller connected to a process computer 18 19, to which the measured value of the pyrometer is entered, increases until a reaction through the pyrometer can be determined.
  • the heating power is the control variable of the control process.
  • the heating power of the continuous furnaces 10, 11 is now using the Regulator 19 controlled so that the reaction from one certain desired position is completed. Another Possibility of recognizing the point in the tape running direction at the the through reaction is complete, the pyrometer measurement to compare with a thermal model calculation.
  • the pyrometer measurement is the empirically determined one Emissivity for the pure zinc layer and a second time empirically determined emissivity of the fully reacted layer based on. In terms of calculations, this initially results in two different according to the different emission numbers Pyrometer temperature values for the running belt.
  • the Zn-Fe layer has an Fe content within narrow limits and that at the same time the coating is complete is fully reacted. Because from the information about the Fe content of the Zn-Fe layer alone cannot be closed immediately, that the coating has also reacted, it is advantageous the heat output distribution over the length of the heat treatment device due to a combination of the two information, namely the Fe content of the Zn-Fe layer and the Emissivity determination.
  • Each of the control methods described above is in one closed loop operated.
  • the manipulated variables for the heat treatment device 13 are from a computer of the controller 19 from the measured values and the target-actual deviation for the iron content and, if applicable calculated for emissivity.
  • the measured values can be used the hot measurement (layer thickness measurement) and / or one before Afterglow furnace arranged temperature measurement, the Belt speed, the heating power supplied in the individual zones of the heat treatment device 13 are used to increase the accuracy of the control process, as indicated by the arrows 20, 21.
  • the manipulated variables are calculated using a Rule model, which corresponds to the on the specific system for Available measuring devices and control devices can be different.
  • a Rule model corresponds to the on the specific system for Available measuring devices and control devices can be different.
  • Base material, tape dimension, Al content in the zinc bath can from a higher-level computer (e.g. Production planning computer) or an external input unit are transmitted to the process computer 18.
  • You can use the target value for the product to be manufactured to the computer of the controller 19 are transmitted, cf. Arrow 22.
  • the computer of the controller 19 then calculates taking into account this model parameter of the control model the corresponding Control commands.
  • the total output or the performance of parts of the continuous furnaces 10, 11 (zones in Belt length direction) is set within certain limits become. It is particularly advantageous if the distribution of the Heat input on the belt, i.e. the heating power of the Continuous furnaces 10, 11, also within the width certain limits can be set, since this makes it possible to achieve the deviation shown in FIG. 3 of the Fe content of the Zn-Fe layer, which can occur despite the uniform thickness of the Zn-Fe layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

In a process for galvanising a strip (1) the strip (1) is continuously coated with zinc, is then, so as to form a Zn-Fe layer, subjected to a heat treatment in a continuous furnace (10, 11), followed by on-line monitoring of the zinc layer, the iron content of the zinc layer being measured and the galvanising operation being controlled as a function of the iron content of the zinc layer. In order to be able to manufacture a strip (1) having a defined layer structure ensuring uniform quality, a value of the iron content of the Zn-Fe layer is determined as a reference input variable, the actual value of the iron content of the Zn-Fe layer is compared with the reference input variable and any system deviation is compensated via a controller (19) by means of a change in the continuous furnace (10, 11) heating output which serves as the manipulated variable (Fig. 1). <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zum Verfahren zum Verzinken eines Bandes, insbesondere eines Stahlbandes, wobei das Band kontinuierlich im Durchlaufverfahren entweder elektrolytisch mit Zink oder gemäß dem Feuerverzinkungsverfahren in einem Zinkbad mit Zink beschichtet wird, anschließend zur Bildung einer Zn-Fe-Schicht einer Wärmebehandlung in einem Durchlaufofen und weiters einer on-line-Kontrolle der Zinkschicht unter Messen des Eisengehaltes der Zinkschicht mittels Röntgenfluoreszenz unterzogen wird, wobei der Verzinkungsvorgang in Abhängigkeit des Eisengehaltes der Zinkschicht gesteuert wird, sowie eine Anlage zur Durchführung des Verfahrens.The invention relates to a method for the method for galvanizing a band, in particular a steel band, the band continuously in a continuous process either electrolytically with Zinc or according to the hot-dip galvanizing process in a zinc bath is coated with zinc, then to form a Zn-Fe layer a heat treatment in a continuous furnace and further an online control of the zinc layer while measuring the iron content subjected to the zinc layer by means of X-ray fluorescence is, the galvanizing process depending on the iron content the zinc layer is controlled, and a plant for Execution of the procedure.

Bei modernen Verzinkungsverfahren dieser Art (bekannt aus der EP-A 0 473 154) zur Herstellung von sogenanntem "galvannealtem" Band, worunter man ein wärmetechnisch nachbehandeltes, metallisch beschichtetes Stahlband versteht, wird das bereits verzinkte Band kontinuierlich im Durchlaufverfahren einem Nachglühen (Galvannealen) unterzogen. Dabei wird das Band nach Durchlaufen des Verzinkungsteiles (Zinkbad + Abstreifsystem bei Feuerverzinkungsanlagen, Verzinkungszellen bei elektrolytischen Verzinkungsanlagen) durch einen als Durchlaufofen ausgebildeten Nachglühofen (Galvannealingofen und Halteofen) geführt. Dieser Ofen kann z.B. induktiv oder mit Gas betrieben werden.In modern galvanizing processes of this type (known from the EP-A 0 473 154) for the production of so-called "galvan-aged" Band, under which a thermally post-treated, metallic coated steel strip, that which is already galvanized Continuous after-glowing strip (Galvanneal). Thereby the tape is run through the galvanizing part (zinc bath + stripping system for hot-dip galvanizing plants, Galvanizing cells in electrolytic Galvanizing plants) by a continuous furnace Afterglow furnace (galvannealing furnace and holding furnace) performed. This Oven can e.g. operated inductively or with gas.

Durch den Nachglühvorgang wird die Reinzinkschicht durch Eindiffundieren von Eisen in eine Zn-Fe-Schicht umgewandelt. Je nach Eisengehalt der Zn-Fe-Legierung bildet sich ein Produkt mit unterschiedlichen mechanischen Eigenschaften (z.B. Zähigkeit, Härte) aus, wodurch das Einsatzgebiet (Abriebverhalten, Schweißbarkeit, Lackierbarkeit, Korrosionswiderstand, Tiefziehvermögen) entscheidend bestimmt wird. Der Fe-Gehalt kann durch entsprechende Meßgeräte (z.B. mittels Röntgenfluoreszenz, Röntgenbeugung oder ähnliche Verfahren) am laufenden Band, d.h. on-line, gemessen werden, wie dies z.B. in der EP-A 0 473 154 beschrieben ist, wobei das Meßergebnis in der Regel etwa einen Mittelwert des Fe-Gehaltes über die Dicke der Zn-Fe-Schicht darstellt.The post-annealing process causes the pure zinc layer to diffuse through converted into a Zn-Fe layer by iron. Each A product is formed according to the iron content of the Zn-Fe alloy different mechanical properties (e.g. toughness, Hardness), whereby the area of application (abrasion behavior, weldability, Paintability, corrosion resistance, deep drawing ability) is decisively determined. The Fe content can be adjusted accordingly Measuring devices (e.g. by means of X-ray fluorescence, X-ray diffraction or similar processes), i.e. on-line, be measured, e.g. described in EP-A 0 473 154 is, the measurement result is usually about one Average value of the Fe content over the thickness of the Zn-Fe layer represents.

Die Erfindung stellt sich die Aufgabe, das eingangs beschriebene Verfahren dahingehend weiterzuentwickeln, daß ein verzinktes Band mit einem definierten Schichtaufbau hergestellt werden kann, wobei direkt und unmittelbar in den Herstellungsprozeß zur Sicherstellung einer gleichmäßigen Qualität des verzinkten Bandes eingegriffen werden kann und die Produktion von Ausschußware minimiert wird. Insbesondere soll das erfindungsgemäße Verfahren die automatische Berücksichtigung beabsichtigter Veränderungen von Verfahrensparametern ebenso ermöglichen wie deren unbeabsichtigte Veränderungen, so daß der Herstellungsprozeß laufend und ohne manuelle Eingriffe optimiert ist.The invention has for its object that described above Process to further develop that a galvanized Tape with a defined layer structure can, being directly and immediately in the manufacturing process for Ensuring a uniform quality of the galvanized Band can be intervened and the production of rejects is minimized. In particular, the inventive Procedure of automatic consideration of intended Enabling changes in process parameters as well as their unintentional changes, so that the manufacturing process is continuously optimized and without manual intervention.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren zum Verzinken eines Bandes, insbesondere eines Stahlbandes, gelöst, wobei das Band kontinuierlich im Durchlaufverfahren entweder elektrolytisch mit Zink oder gemäß dem Feuerverzinkungsverfahren in einem Zinkbad mit Zink beschichtet wird, anschließend zur Bildung einer Zn-Fe-Schicht einer Wärmebehandlung in einem Durchlaufofen und weiters einer on-line-Kontrolle der Zinkschicht unter Messen des Eisengehaltes der Zinkschicht mittels Röntgenfluoreszenz unterzogen wird, wobei der Verzinkungsvorgang in Abhängigkeit des Eisengehaltes der Zinkschicht gesteuert wird, wobei ein Wert des Eisengehaltes der Zn-Fe-Schicht als Führungsgröße bestimmt wird, der Istwert des Eisengehaltes der Zn-Fe-Schicht mit der Führungsgröße verglichen und eine Regelabweichung über einen Regler in einem geschlossenen Regelkreis mit Hilfe eines Rechners, der unter Berücksichtigung der Banddimension, des Grundmaterials des Bandes hinsichtlich seiner chemischen Zusammensetzung und/oder Gefüge, der Zinkschichtdicke, der Zusammensetzung des Zinkbades, wie z.B. dessen Al-Gehalt, der Bandgeschwindigkeit sowie gegebenenfalls weitere Parameter, wie der Temperatur des Bandes am Einlauf des Durchlaufofens und der Umgebungstemperatur, die Regelabweichung registriert und mittels Stellbefehle die Heizleistung des Durchlaufofens regelt, ausgeglichen wird. This object is achieved by a method for Galvanizing a strip, in particular a steel strip, solved, the belt being continuously continuous either electrolytically with zinc or according to the hot-dip galvanizing process is coated with zinc in a zinc bath, then for Formation of a Zn-Fe layer of a heat treatment in one Continuous furnace and an on-line control of the zinc layer subjected to measurement of the iron content of the zinc layer by means of X-ray fluorescence is, the galvanizing process depending on the Iron content of the zinc layer is controlled, a value of Iron content of the Zn-Fe layer is determined as a reference variable, the actual value of the iron content of the Zn-Fe layer with the Reference variable compared and a control deviation over one Controller in a closed loop with the help of a Calculator, taking into account the tape dimension, the Basic material of the tape with regard to its chemical Composition and / or structure, the zinc layer thickness, the Composition of the zinc bath, e.g. its Al content, the Belt speed and possibly other parameters such as the temperature of the belt at the inlet of the continuous furnace and the Ambient temperature, the control deviation registered and by means of Control commands regulate the heating output of the continuous furnace, is balanced.

Das erfindungsgemäße Verfahren beruht auf der Erkenntnis, daß die Diffusionsvorgänge des Eisens in die Zinkschicht (Diffusionsgeschwindigkeit, Eisengehalt) primär von der Temperatur und der Dauer der Wärmebehandlung im Durchlaufofen abhängig sind. Die Temperaturführung im Durchlaufofen beeinflußt den Aufbau der galvannealten Schicht entscheidend und daher auch die mechanischen Eigenschaften des Produktes.The method according to the invention is based on the knowledge that the diffusion processes of iron into the zinc layer (diffusion rate, Iron content) primarily from temperature and the duration of the heat treatment in the continuous furnace. The temperature control in the continuous furnace influences the structure of the galvannealt layer crucial and therefore also the mechanical properties of the product.

Derzeit ist jedoch eine Temperaturerfassung des Bandes im Bereich des Nachglühofens nicht möglich, da kein kostengünstiges herkömmliches, berührungslos arbeitendes Temperaturmeßgerät zur Verfügung steht, welches unter diesen Bedingungen die Temperatur ausreichend genau messen könnte. Erfindungsgemäß ist daher vorgesehen, die Ofentemperatur indirekt über die Heizleistung einzustellen und damit eine gleichmäßige Qualität des beschichteten Bandes zu sichern.Currently, however, a temperature measurement of the belt is in the The area of the afterglow furnace is not possible because it is not an economical one conventional, non-contact temperature measuring device for Which temperature is available under these conditions could measure with sufficient accuracy. According to the invention provided the furnace temperature indirectly via the heating output adjust and thus a uniform quality of the secure coated tape.

Gemäß einer bevorzugten Verfahrensweise wird zusätzlich zur Bestimmung des Istwertes des Eisengehaltes der Zn-Fe-Schicht die Strahlungsemission (Strahlungsintensität oder Strahlungsleistung) der Oberfläche des Bandes nach oder während der Wärmebehandlung mittels mindestens eines Pyrometers gemessen. Hierdurch ist es möglich, unabhängig vom Eisengehalt der Zn-Fe-Schicht festzustellen, ob die Schicht bis zur Oberfläche durchreagiert ("durchgalvannealt") ist oder ob sich noch Reinzink an der Oberfläche befindet, in welchem Fall die Heizleistung des Durchlaufofens entsprechend eingestellt wird.According to a preferred procedure, in addition to Determination of the actual value of the iron content of the Zn-Fe layer Radiation emission (radiation intensity or radiation power) the surface of the tape after or during the Heat treatment measured using at least one pyrometer. This makes it possible, regardless of the iron content of the Zn-Fe layer determine whether the layer has reacted to the surface ("durchgalvannealt") or whether pure zinc is still on the surface, in which case the heating power of the Continuous furnace is set accordingly.

Vorzugsweise wird hierbei so vorgegangen, daß an der Banddurchlaufstrecke durch Messung mittels mehrerer in Bandlaufrichtung hintereinander angeordneter Pyrometer jene Stelle bestimmt wird, ab der die Zn-Fe-Schicht durchreagiert ist, und durch Regelung der Heizleistung des Durchlaufofens diese Stelle in Bandlaufrichtung vor eine Grenzstelle, ab der die Zn-Fe-Schicht spätestens durchreagiert sein muß, gebracht wird.In this case, the procedure is preferably that of the belt passage by measurement using several in the direction of tape travel successively arranged pyrometer that position is determined from which the Zn-Fe layer has reacted, and by regulation the heating power of the continuous furnace this point in Belt running direction in front of a border point, from which the Zn-Fe layer must be fully reacted at the latest.

Die Regelung wird in einem geschlossenen Regelkreis mit Hilfe eines Rechners durchgeführt, der die Regelabweichung registriert und mittels Stellbefehle die Heizleistung des Durchlaufofens regelt, wobei der Rechner zur Erhöhung der Reproduzierbarkeit der Qualität des erzeugten Bandes die Banddimension, das Grundmaterial des Bandes hinsichtlich seiner chemischen Zusammensetzung und/oder Gefüge, die Zinkschichtdicke, die Zusammensetzung des Zinkbades, wie z.B. dessen Al-Gehalt, die Bandgeschwindigkeit sowie gegebenenfalls weitere Parameter, wie die Temperatur des Bandes am Einlauf des Durchlaufofens und die Umgebungstemperatur, berücksichtigt.The regulation is done in a closed loop performed by a computer that registers the control deviation and the heating power of the continuous furnace by means of control commands regulates, the computer to increase reproducibility the quality of the tape produced, the tape dimension, the Basic material of the tape with regard to its chemical Composition and / or structure, the zinc layer thickness, the Composition of the zinc bath, e.g. its Al content, the Belt speed and possibly other parameters such as the temperature of the belt at the inlet of the continuous furnace and the Ambient temperature, taken into account.

Eine bevorzugte Ausführungsform ist dadurch gekennzeichnet, daß die Heizleistung und damit die Temperatur innerhalb des Durchlaufofens in einzelnen Heizzonen unterschiedlich einstellbar ist.A preferred embodiment is characterized in that the heating power and thus the temperature inside the continuous furnace can be set differently in individual heating zones is.

Hierbei ist vorteilhaft zur Berücksichtigung von über die Bandbreite unterschiedlichen Meßwerten des Eisengehaltes der Eisen-Zink-Legierung die Heizleistung in in Richtung der Bandbreite nebeneinanderliegenden Heizzonen unterschiedlich einstellbar.It is advantageous to take into account the Range of different measured values of the iron content of the Iron-zinc alloy the heating output in the direction of Bandwidth of adjacent heating zones varies adjustable.

Gemäß einer anderen Ausführungsform ist vorteilhaft die Heizleistung in in Bandlaufrichtung hintereinander liegenden Heizzonen unterschiedlich einstellbar, wodurch die Aufwärmgeschwindigkeit des Bandes bzw. die Haltezeit des Bandes auf einer bestimmten Temperatur zur Erzielung einer optimalen Bandqualität variiert werden kann.According to another embodiment, the Heating output in the line running direction Heating zones can be set differently, which increases the warm-up speed of the tape or the holding time of the tape on a certain temperature in order to achieve optimal tape quality can be varied.

Zweckmäßig wird die Messung des Eisengehaltes und/oder der Strahlungsemission an über die Bandbreite verteilt angeordneten Positionen durchgeführt.The measurement of the iron content and / or the Radiation emission at arranged over the bandwidth Positions carried out.

Eine Anlage zur Durchführung des Verfahrens mit einer ein Band kontinuierlich entlang einer Bandlaufstrecke führenden Bandführungseinrichtung, einer an der Bandlaufstrecke angeordneten Zinkbeschichtungseinrichtung, einer nachfolgend angeordneten, von einem Durchlaufofen gebildeten Wärmebehandlungseinrichtung für das Band und einer ebenfalls an der Bandlaufstrecke liegenden, der Wärmebehandlungseinrichtung nachgeordneten Meßeinrichtung zum Messen des Eisengehaltes der Zinkschicht, ist dadurch gekennzeichnet, daß die Meßeinrichtung mit einem mit einem Prozeßrechner verbundenen Regler gekoppelt ist, der über eine Steuerleitung mit der Heizeinrichtung der Wärmebehandlungseinrichtung gekoppelt ist. A plant for carrying out the process with a belt Continuously along a belt guiding belt guide device, one arranged on the belt run Zinc coating device, a subsequently arranged, heat treatment device formed by a continuous furnace for the belt and one also on the belt run lying, downstream of the heat treatment device Measuring device for measuring the iron content of the zinc layer characterized in that the measuring device with a a controller connected to a process computer, which is connected via a control line with the heating device of the heat treatment device is coupled.

Zur Berücksichtigung einer Vielzahl von die Qualität des beschichteten Bandes beeinflussenden Parametern ist vorteilhaft der Regler mit einem Prozeßrechner gekoppelt.To take into account a large number of parameters influencing the quality of the coated strip advantageously the controller is coupled to a process computer.

Zur Feststellung der Durchreaktion der Zn-Fe-Schicht ist zweckmäßig mindestens eine zusätzliche: als Pyrometer ausgebildete Strahlungs-Meßeinrichtung an der Bandlaufstrecke nach oder in der Wärmebehandlungseinrichtung vorgesehen, die ebenfalls mit dem Regler gekoppelt ist.To determine the reaction of the Zn-Fe layer, at least one additional one is expedient: as a pyrometer trained radiation measuring device provided on the belt path after or in the heat treatment device, which is also coupled to the controller.

Die Erfindung ist nachfolgend anhand der Zeichnung näher erläutert, wobei Fig. 1 in schematischer Darstellung eine Anlage zum Verzinken eines Bandes veranschaulicht. In dem in Fig. 2 dargestellten Diagramm ist die Abhängigkeit des Eisengehaltes von der Heizleistung veranschaulicht. Fig. 3 zeigt eine Abweichung des Eisengehaltes in der Zn-Fe-Schicht in Abhängigkeit der Bandbreite, Fig. 4 die Abhängigkeit der Strahlungsemission von der Haltezeit.The invention is explained in more detail below with reference to the drawing, with FIG. 1 in a schematic representation illustrates a system for galvanizing a strip. The dependency is in the diagram shown in FIG of the iron content from the heating output. Fig. 3 shows a deviation in the iron content in the Zn-Fe layer as a function of the bandwidth, FIG. 4 the dependence of the radiation emission on the holding time.

Wie aus Fig. 1 ersichtlich, wird ein zu verzinkendes Stahlband 1 mittels einer Bandführungseinrichtung, die eine Mehrzahl von Bandführungsrollen 2 aufweist, kontinuierlich entlang einer Bandlaufstrecke 3 von einer nicht dargestellten Abwickelstation zu einer ebenfalls nicht dargestellten Aufwickelstation geführt. An der Bandlaufstrecke 3 gelangt das Stahlband zunächst zu einer Zinkbeschichtungseinrichtung 4, die beim dargestellten Ausführungsbeispiel als Feuerverzinkungseinrichtung ausgestaltet ist. Diese weist ein Zinkbad 5 und eine in Bandlaufrichtung 6 nachgeordnete Abstreifeinrichtung 7 zur Sicherstellung einer konstanten und über die Bandbreite gleich dicken Zinkschicht auf.As can be seen from Fig. 1, a steel strip 1 to be galvanized is by means of a strip guide device, the one Has a plurality of tape guide rollers 2, continuously along a tape path 3 of a not shown Unwind station to a winding station, also not shown. At the belt path 3, this arrives Steel strip first to a zinc coating device 4, which in the illustrated embodiment as a hot-dip galvanizing device is designed. This has a zinc bath 5 and a stripping device arranged downstream in the strip running direction 6 7 to ensure a constant zinc layer which is of equal thickness over the range.

Anschließend danach wird das Stahlband 1 über eine Heiß-Dickenmeßanlage 8 zur Messung der Dicke der Zinkschicht und über eine Temperaturmeßeinrichtung 9 in eine zwei Durchlauföfen 10, 11 aufweisende Wärmebehandlungseinrichtung 13 eingeleitet. Im ersten Durchlaufofen 10 erfolgt in erster Linie die Aufheizung des verzinkten Stahlbandes 1 auf die erforderliche Glühtemperatur. Im nachfolgend angeordneten weiteren Durchlaufofen 11 wird das Stahlband 1 in erster Linie auf einer konstanten Glühtemperatur gehalten.Subsequently, the steel strip 1 is placed over a hot thickness measuring system 8 for measuring the thickness of the zinc layer and via a temperature measuring device 9 into a heat treatment device having two continuous furnaces 10, 11 13 initiated. In the first continuous furnace 10, the galvanized steel strip is primarily heated 1 to the required annealing temperature. In the further continuous furnace 11 arranged subsequently, the steel strip 1 primarily kept at a constant annealing temperature.

Nach Austritt des Stahlbandes 1 aus dem zweiten Durchlaufofen 11 wird mittels eines Pyrometers 14 die Strahlungsemission des fertig geglühten Stahlbandes 1 gemessen. Anschließend sind an der Bandführung Kühleinrichtungen 15 angeordnet. An einer der Wärmebehandlungseinrichtung 13 nachgeordneten Stelle der Bandlaufstrecke 3 ist weiters eine Meßeinrichtung 16 zum Messen des Eisengehaltes der Zn-Fe-Schicht vorgesehen. die vorzugsweise, wie durch den Doppelpfeil 17 angedeutet. über die Bandbreite verschiebbar ist so daß an verschiedenen Stellen der Bandbreite eine Messungdurchgeführt werden kann. Die Meßeinrichtung arbeitet nach dem Röntgenstrahlverfahren.After the steel strip 1 has left the second continuous furnace 11, the radiation emission is determined by means of a pyrometer 14 of the finished annealed steel strip 1 measured. Then there are cooling devices on the belt guide 15 arranged. At a location downstream of the heat treatment device 13 of the belt path 3 there is also a measuring device 16 is provided for measuring the iron content of the Zn-Fe layer. the preferably as by the double arrow 17 indicated. Can be moved across the bandwidth so that at different points in the bandwidth a measurement can be carried out. The measuring device works according to the X-ray method.

Ein mit einem Prozeßrechner 18 gekoppelter Regler 19 ist mit Heizeinrichtungen der beiden Durchlauföfen 10, 11 zwecks Einstellung der Heizleistung gekoppelt. wie dies durch die Doppelpfeile 20 veranschaulicht ist.A controller 19 coupled to a process computer 18 is provided with heating devices of the two continuous furnaces 10, 11 coupled to adjust the heating power. as illustrated by the double arrows 20.

Die Funktion der Anlage ist wie folgt:The function of the system is as follows:

Das im Zinkbad 5 gelöste Aluminium bildet aufgrund seiner höheren Affinität zum Eisen zunächst am Stahlband eine Eisen-Aluminium-Schicht (Fe2Al5). welche eine Reaktion des Eisensubstrates des Stahlbandes 1 und der Zinkschicht verhindert. Dieses System (Stahlband 1 + Fe-Al-Schicht + flüssige Zn-Schicht) gelangt in den ersten Durchlaufofen 10 und wird auf eine Temperatur von 450°C bis 700°C gebracht. Im zweiten Durchlaufofen 11 wird das Stahlband 1 auf einer bestimmten Temperatur gehalten oder noch weiter erwärmt. Der hierbei einsetzende Diffusionsprozeß des Eisens in die Zinkschicht wandelt die Reinzinkschicht in eine Zink-Eisen-Schicht um.The aluminum dissolved in zinc bath 5 initially forms an iron-aluminum layer (Fe 2 Al 5 ) on the steel strip due to its higher affinity for iron. which prevents a reaction of the iron substrate of the steel strip 1 and the zinc layer. This system (steel strip 1 + Fe-Al layer + liquid Zn layer) enters the first continuous furnace 10 and is brought to a temperature of 450 ° C to 700 ° C. In the second continuous furnace 11, the steel strip 1 is kept at a certain temperature or heated even further. The process of diffusion of iron into the zinc layer that occurs converts the pure zinc layer into a zinc-iron layer.

Hierbei wird zuerst die im Zinkbad gebildete Fe-Al-Sperrschicht durch das Zn-Fe-Wachstum an den Korngrenzen des Grundmaterials aufgebrochen, und ein pilzförmiges Wachstum der Zn-Fe-Komplexe beginnt. Je nach Eisengehalt bilden sich unterschiedliche metallurgische Phasen aus. die unterschiedliche Eigenschaften aufweisen.First, the Fe-Al barrier layer formed in the zinc bath is formed by the Zn-Fe growth at the grain boundaries of the base material is broken up, and a mushroom-shaped growth of the Zn-Fe complexes begins. Depending on the iron content different metallurgical phases are formed. that have different properties.

Die wichtigsten Phasen sind in nachstehender Tabelle aufgelistet: Phase % Fe Kristallstruktur Härte (MPa) Eta .. < 0,03 Hexagonal 300 - 500 Zeta .. 5 - 6 Monoklinisch 1800 - 2700 Delta .. 7 - 12 Hexagonal 2500 - 4500 Gamma .. 21 - 28 Kubisch 4500 - 5500 The main phases are listed in the table below: phase % Fe Crystal structure Hardness (MPa) Eta .. <0.03 Hexagonal 300-500 Zeta .. 5 - 6 Monoclinic 1800-2700 Delta .. 7-12 Hexagonal 2500 - 4500 Gamma .. 21-28 Cubic 4500 - 5500

Wie aus der obigen Tabelle ersichtlich ist, werden die Phasen mit zunehmendem Eisengehalt immer härter bzw. spröder. Dies kann bei anschließender Verformung (z.B. Tiefziehen) zu erhöhtem Abrieb führen, wodurch die Haftung der Zn-Fe-Schicht sehr schlecht wird.As can be seen from the table above, the phases with increasing iron content increasingly harder or more brittle. This can with subsequent deformation (e.g. deep drawing) to increased Cause abrasion, which causes the adhesion of the Zn-Fe layer very much gets bad.

Im Fall von elektrolytischen Verzinkungsanlagen ist der Vorgang analog, wobei der Al-Gehalt jedoch eine untergeordnete Rolle spielt.The process is in the case of electrolytic galvanizing plants analogously, but the Al content, however, plays a subordinate role plays.

Zur Einstellung des optimalen Eisengehaltes, d.h. eines Eisengehaltes, der eine Verformung des verzinkten Stahlbandes 1 ohne Schwierigkeiten zuläßt, wird mit einer on-line-Röntgenfluoreszenzmessung mit Hilfe des Meßgerätes 16 der Eisengehalt der Fe-Zn-Schicht bestimmt, vorzugsweise über die gesamte Bandbreite und auch über die gesamte Bandlänge. Dieser Istwert des Eisengehaltes der Zn-Fe-Schicht wird mit Hilfe des Reglers 19 mit einem als Führungsgröße vorgegebenen Wert des Eisengehaltes der Zn-Fe-Schicht verglichen. Eine eventuelle Regelabweichung wird über den Regler 19 durch eine Änderung der als Stellgröße dienenden Heizleistung des ersten bzw. auch des zweiten Durchlaufofens 10, 11 ausgeglichen. Ist etwa der gemessene Eisengehalt geringer als der gewünschte, wird die Heizleistung des Durchlaufofens so lange erhöht, bis die Regelabweichung Null wird oder unter einen vorgegebenen Wert abgesunken ist (Totband), wie dies anhand der Fig. 2 nachfolgend erläutert ist:To set the optimal iron content, i.e. one Iron content, which is a deformation of the galvanized steel strip 1 with no problems, with an online X-ray fluorescence measurement with the help of the measuring device 16 Iron content of the Fe-Zn layer is determined, preferably via the entire bandwidth and also over the entire band length. This The actual value of the iron content of the Zn-Fe layer is determined using the Controller 19 with a value of the predetermined as a reference variable Iron content of the Zn-Fe layer compared. A possible one Control deviation is over the controller 19 by changing the the heating output of the first or the second continuous furnace 10, 11 balanced. Is that about measured iron content less than the desired, the Heating capacity of the continuous furnace increased until the Control deviation becomes zero or below a specified value has dropped (dead band), as is shown in FIG. 2 below is explained:

Der Verlauf I gibt den Zusammenhang zwischen Fe-Gehalt der Zn-Fe-Schicht und Heizleistung an. Dieser wird empirisch ermittelt und z.B. als formelmäßiger Zusammenhang oder in Tabellenform dem Regelungsrechner (Regler 19) zur Verfügung gestellt.The course I gives the relationship between the Fe content of the Zn-Fe layer and heating output. This is determined empirically and e.g. as a formula or in tabular form Control computer (controller 19) provided.

Verhält sich das Stahlband 1 genau entsprechend dem Verlauf I, so erreicht man mit der Leistungseinstellung P1 den gewünschten Sollwert des Fe-Gehaltes Fe1 (Punkt A). Verhält sich das Band etwas unterschiedlich, z.B. nach Verlauf II, durch unbeabsichtigte Veränderungen von Verfahrensparametern, wie z.B. Drift der Umgebungstemperatur, Drift in der Transformatorenleistung bei elektrischer Heizung der Durchlauföfen oder bei Auftreten sonstiger Störungen, so ergibt sich am Band ein Fe-Gehalt Fe2, der vom Sollwert Fe1 abweicht (Punkt B).If the steel strip 1 behaves exactly according to the course I, the desired setting of the Fe content Fe 1 (point A) is achieved with the power setting P 1 . If the strip behaves somewhat differently, e.g. according to curve II, due to unintentional changes in process parameters, such as drift of the ambient temperature, drift in the transformer output when the continuous furnaces are electrically heated or if other faults occur, the strip will have an Fe content of Fe 2 which deviates from the nominal value Fe 1 (point B).

Die Heizleistung wird nun z.B. in Abhängigkeit von der Steigung dP/dFe im Punkt A'des Verlaufes I verändert, z.B. um den Wert k . dPdFe . ΔFe The heating power is now changed, for example depending on the slope dP / dFe in point A'des course I, for example by the value k. dP dFe . ΔFe

Für den Verstärkungsfaktor k = 1 ist die geänderte Leistung im Bild mit P2 eingezeichnet. Es ergibt sich ein verbesserter Wert des Fe-Gehaltes (Punkt C). Die Regelung erfolgt, solange eine Regelabweichung festgestellt wird (Fe-Gehalt ≠ Fe1).For the gain factor k = 1, the changed power is shown in the picture with P 2 . The result is an improved value of the Fe content (point C). Regulation takes place as long as a system deviation is determined (Fe content ≠ Fe 1 ).

Ungleichmäßige Fe-Gehaltsprofile über die Bandbreite können durch verschiedene Effekte entstehen:

  • 1) ungleichmäßige Beschichtungsdicke
  • 2) Querwölbung des Bandes
  • 3) Bandprofil
  • 4) ungleichmäßige Heizleistung über die Bandbreite
  • 5) ungleichmäßige Temperaturverteilung über die Bandbreite beim Eintritt des Bandes in den Galvannealingofen usw. Primär ist die Beschichtungsdicke innerhalb enger Toleranzen gleichmäßig über die Bandbreite einzustellen (bekannte Verfahren zur Schichtdickenregelung). Trotz gleichmäßiger Schichtdicke über die Bandbreite entsteht durch die Ursachen 2) bis 5) usw. ein ungleichmäßiger Fe-Gehalt über die Bandbreite. Der Einfluß ungleichmäßiger Wärmeeinbringung in das Stahlband 1 kann z.B. zu dem in Fig. 3 dargestellten Fe-Gehalt führen, obwohl die Beschichtungsdicke gleichmäßig über die Bandbreite ist.Gewünscht werden aber eine möglichst gleichmäßige Beschichtungsdicke und ein gleichmäßiger Fe-Gehalt über die Bandbreite (und -länge).Durch Reduktion der Heizleistung der Durchlauföfen 10, 11 in Heizzonen 12, die hauptsächlich auf die Bandmitte wirken, oder durch Erhöhung der Heizleistung in Heizzonen 12', die hauptsächlich auf die Bandränder wirken, kann die Gleichmäßigkeit des Fe-Gehaltes über die Bandbreite verbessert werden.Mit Hilfe des erfindungsgemäßen Verfahrens lassen sich weiters noch folgende Beeinflussungen berücksichtigen:
  • 6) Die Dicke der Zinkschicht: Mit der Schichtdicke verändern sich die Diffusionswege und daher auch der Gefügeaufbau der Beschichtung. Unter gleichen Ofenleistungsverhältnissen führt eine kleinere Schichtdicke (geringere Schichtauflage) zu einem höheren Eisengehalt. Man kann dies bei den Bandkanten beobachten, die eine andere Schichtdicke als im Bandmittenbereich aufweisen können.
  • 7) Der Aluminiumgehalt im Zinkbad: Das im Zinkbad 5 gelöste Aluminium lagert sich vor allem in folgenden zwei Schichten ab:
  • a) Grenzschicht zwischen Eisensubstrat und Zinkschicht: Durch seine hohe Affinität zum Eisen bildet das Aluminium im Zinkbad zuerst eine Fe2Al5-Sperrschicht aus, die ein vorzeitiges Wachstum der spröden Zn-Fe-Phase verhindert. Diese muß beim Galvannealingprozeß durchbrochen werden, um das Zink-Eisen-Wachstum zu starten.
  • b) Oberflächenoxidschicht: Ein Großteil des Aluminiums liegt als Al2O3 an der Oberfläche der Zinkbeschichtung vor.
  • 8) Die Geschwindigkeit, mit der das Stahlband 1 durch die Anlage bewegt wird: Sie beeinflußt die Aufenthaltsdauer (Haltezeit) des Stahlbandes 1 in den Durchlauföfen 11, 12 und somit die Temperaturführung für das Stahlband 1. Dadurch wird die Reaktionszeit verändert, und dies beeinflußt den Eisengehalt.
  • 9) Die chemische Zusammensetzung des Stahlbandes 1 und dessen Gefüge: Da das Wachstum der Zn-Fe-Komplexe hauptsächlich an den Korngrenzen beginnt, hängt die Reaktionsfähigkeit auch von der Grundmaterialzusammensetzung und dem Gefüge ab.
  • 10) Des weiteren beeinflussen die Bandabmessungen die Wärmeeinbringung und damit die Diffusionsbedingungen.
  • Uneven Fe content profiles across the range can result from various effects:
  • 1) uneven coating thickness
  • 2) Cross curvature of the band
  • 3) Belt profile
  • 4) uneven heating power across the range
  • 5) Uneven temperature distribution over the bandwidth when the strip enters the galvannealing furnace etc. Primarily, the coating thickness has to be adjusted uniformly over the bandwidth within narrow tolerances (known methods for regulating the layer thickness). Despite the uniform layer thickness over the bandwidth, causes 2) to 5) etc. cause an uneven Fe content over the bandwidth. The influence of uneven heat input into the steel strip 1 can, for example, lead to the Fe content shown in FIG. 3, although the coating thickness is uniform over the bandwidth. However, a coating thickness that is as uniform as possible and a uniform Fe content over the bandwidth are desired (and - By reducing the heating capacity of the continuous furnaces 10, 11 in heating zones 12, which mainly affect the strip center, or by increasing the heating capacity in heating zones 12 ', which mainly affect the strip edges, the uniformity of the Fe content over the strip width can be reduced The following influences can also be taken into account with the aid of the method according to the invention:
  • 6) The thickness of the zinc layer: With the layer thickness the diffusion paths change and therefore also the structure of the coating. Under the same furnace performance ratios, a smaller layer thickness (less layer support) leads to a higher iron content. This can be observed with the strip edges, which can have a different layer thickness than in the strip center area.
  • 7) The aluminum content in the zinc bath: The aluminum dissolved in the zinc bath 5 is mainly deposited in the following two layers:
  • a) Boundary layer between the iron substrate and the zinc layer: Due to its high affinity for iron, the aluminum in the zinc bath first forms an Fe 2 Al 5 barrier layer, which prevents the brittle Zn-Fe phase from growing prematurely. This must be broken during the galvannealing process in order to start zinc-iron growth.
  • b) Surface oxide layer: A large part of the aluminum is present as Al 2 O 3 on the surface of the zinc coating.
  • 8) The speed at which the steel strip 1 is moved through the system: it influences the length of stay (holding time) of the steel strip 1 in the continuous furnaces 11, 12 and thus the temperature control for the steel strip 1. This changes the reaction time, and this affects the iron content.
  • 9) The chemical composition of the steel strip 1 and its structure: Since the growth of the Zn-Fe complexes mainly begins at the grain boundaries, the reactivity also depends on the base material composition and the structure.
  • 10) Furthermore, the strip dimensions influence the heat input and thus the diffusion conditions.
  • All die oben aufgezählten, den Eisengehalt beeinflussenden Faktoren können erfindungsgemäß dadurch berücksichtigt werden, daß diese Faktoren festlegende Daten in den Prozeßrechner 18 eingegeben werden und infolge der Kopplung des Prozeßrechners 18 mit dem Regler 19 von letzterem bei der Festlegung der Heizleistung der Wärmebehandlungseinrichtung 13 berücksichtigt werden.All of those listed above that affect iron content According to the invention, factors can be taken into account by that these factors defining data in the process computer 18th can be entered and due to the coupling of the process computer 18th with the controller 19 of the latter when determining the Heating power of the heat treatment device 13 is taken into account become.

    Gewollte Veränderungen von Verfahrensparametern, wie z.B. ein Wechsel der Dimension des Stahlbandes 1, ein Wechsel der chemischen Zusammensetzung des Stahlbandes 1, ein Wechsel der Zinkschichtdicke bzw. ein Wechsel der Fördergeschwindigkeit des Stahlbandes 1, werden zur Berücksichtigung der Heizleistung der Wärmebehandlungseinrichtung dem Prozeßrechner 18 eingegeben. Desired changes in process parameters, e.g. on Changing the dimension of the steel strip 1, changing the chemical composition of the steel strip 1, a change of Zinc layer thickness or a change in the conveying speed of the Steel strip 1, to take into account the heat output of the Heat treatment device entered the process computer 18.

    Da sich bei der Umwandlung der Zinkschicht in eine Zn-Fe-Schicht der Emissionsgrad der Beschichtung sprunghaft verändert, sobald die Oberfläche der Zn-Fe-Schicht Eisen aufweist (vgl. Fig. 4), kann eine Strahlungsemissionsmessung mit Hilfe eines Pyrometers 14 zur Beurteilung der galvannealten Schicht herangezogen werden. Das Pyrometer 14 kann nach oder in der Wärmebehandlungseinrichtung 13 (z.B. zwischen Galvannealingofen 10 und Halteofen 11) angeordnet werden. Bei dieser Messung handelt es sich um eine Information über die rein von der Oberfläche des Stahlbandes 1, d.h. dessen Zn-Fe-Schicht, emittierte Strahlungsenergie, die eine Funktion der Temperatur und der Emissionszahl des Oberflächenzustandes ist. So liegt die Emissionszahl einer Reinzinkoberfläche bei unter 0,2 und die einer durchreagierten Fe-Zn-Oberfläche bei etwa 0,6. Ist die Zn-Fe-Schicht an der Stelle des Pyrometers noch nicht durchreagiert, wird die Heizleistung der Durchlauföfen 10, 11 mit Hilfe des an einen Prozeßrechner 18 angeschlossenen Reglers 19, dem der Meßwert des Pyrometers eingegeben wird, erhöht, bis eine Durchreaktion mit Hilfe des Pyrometers feststellbar ist. Die Heizleistung bildet hier die Stellgröße des Regelvorganges.Since the conversion of the zinc layer into a Zn-Fe layer the emissivity of the coating changes abruptly as soon as the surface of the Zn-Fe layer has iron (see FIG. 4), can make a radiation emission measurement using a pyrometer 14 used to assess the galvanized layer become. The pyrometer 14 can after or in the Heat treatment device 13 (e.g. between galvannealing furnace 10 and holding furnace 11) can be arranged. In this measurement it is information about the purely of the Surface of the steel strip 1, i.e. its Zn-Fe layer, emitted radiant energy, which is a function of temperature and the emission number of the surface condition. That's the way it is Emission number of a pure zinc surface below 0.2 and the a fully reacted Fe-Zn surface at about 0.6. Is the Zn-Fe layer not at the point of the pyrometer yet fully reacted, the heating power of the continuous furnaces 10, 11th with the help of the controller connected to a process computer 18 19, to which the measured value of the pyrometer is entered, increases until a reaction through the pyrometer can be determined. The heating power is the control variable of the control process.

    Durch die starke Änderung des Emissionsgrades im Falle des Eintretens der sogenannten Durchreaktion, d.h. wenn das Eisen bis an die Oberfläche der Zn-Schicht vordringt, ist es weiters möglich, jene Stelle in Bandlaufrichtung 6 zu erkennen, ab der die Durchreaktion abgeschlossen ist. Dies kann z.B. dadurch erfolgen, daß zwei oder mehrere Pyrometer in Bandlaufrichtung 6 hintereinander angeordnet werden. Durch die Kenntnis über den Emissionsgradsprung beim Durchreagieren der Zn-Fe-Schicht und aus den gemessenen Strahlungsintensitäten der Pyrometer 14 kann auf jene Stelle der Bandlaufstrecke 3 geschlossen werden, ab der die Zn-Fe-Schicht bereits durchreagiert ist.Due to the strong change in emissivity in the case of Occurrence of the so-called through reaction, i.e. if the iron It penetrates as far as the surface of the Zn layer possible to recognize that point in the tape running direction 6 from which the through reaction is complete. This can e.g. thereby take place that two or more pyrometers in the tape running direction 6 be arranged one behind the other. By knowing about the Emissivity jump when reacting through the Zn-Fe layer and from the measured radiation intensities the pyrometer 14 can be concluded on that point of the belt path 3 from which the Zn-Fe layer has already reacted.

    Die Heizleistung der Durchlauföfen 10, 11 wird nun mit Hilfe des Reglers 19 so geregelt, daß die Durchreaktion ab einer bestimmten gewünschten Stelle abgeschlossen ist. Eine weitere Möglichkeit, die Stelle in Bandlaufrichtung zu erkennen, an der die Durchreaktion abgeschlossen ist, besteht darin, die Pyrometermessung mit einer thermischen Modellrechnung zu vergleichen.The heating power of the continuous furnaces 10, 11 is now using the Regulator 19 controlled so that the reaction from one certain desired position is completed. Another Possibility of recognizing the point in the tape running direction at the the through reaction is complete, the pyrometer measurement to compare with a thermal model calculation.

    Dazu wird der Pyrometermessung einmal der empirisch ermittelte Emissionsgrad für die Reinzinkschicht und ein zweites Mal der empirisch ermittelte Emissionsgrad der durchreagierten Schicht zugrundegelegt. Dies ergibt rechnerisch zunächst zwei entsprechend den unterschiedlichen Emissionszahlen verschiedene Pyrometer-Temperaturwerte für das laufende Band.For this purpose, the pyrometer measurement is the empirically determined one Emissivity for the pure zinc layer and a second time empirically determined emissivity of the fully reacted layer based on. In terms of calculations, this initially results in two different according to the different emission numbers Pyrometer temperature values for the running belt.

    Durch Vergleich dieser beiden Werte mit einer parallel für den betreffenden Bandabschnitt durchgeführten Modellerrechnung der Temperatur, die sich aus der Eintrittstemperatur des Stahlbandes in die Wärmebehandlungseinrichtung und der dieser zugeführten Leistung errechnen läßt, wird festgestellt, welcher der beiden Pyrometer-Temperaturwerte mit der errechneten Temperatur übereinstimmt. Dieser Temperaturwert wird dann als richtige Temperatur des laufenden Stahlbandes 1 angesehen. Der zugehörige Emissionsgrad gibt an, ob das Stahlband noch eine Reinzinkauflage aufweist oder ob die Beschichtung bereits durchreagiert ist. Die Heizleistung der Wärmebehandlungseinrichtung wird so geregelt, daß die Durchreaktion an der Stelle des Pyrometers 14 abgeschlossen ist.By comparing these two values with one in parallel for the Model calculation of the relevant band section Temperature resulting from the entry temperature of the steel strip into the heat treatment device and the one supplied to it Performance calculated, it is determined which of the two Pyrometer temperature values with the calculated temperature matches. This temperature value is then considered correct Temperature of the running steel strip 1 viewed. The associated one Emissivity indicates whether the steel strip is still a pure zinc coating or whether the coating has already reacted is. The heat output of the heat treatment device is so regulated that the reaction at the point of the pyrometer 14th is completed.

    Für die Qualität des Produktes ist es von großer Bedeutung, daß die Zn-Fe-Schicht einen Fe-Gehalt innerhalb enger Grenzen aufweist und daß gleichzeitig die Beschichtung vollständig durchreagiert ist. Da aus der Information über den Fe-Gehalt der Zn-Fe-Schicht alleine nicht unmittelbar geschlossen werden kann, daß die Beschichtung auch durchreagiert ist, ist es von Vorteil, die Heizleistungsverteilung über die Länge der Wärmebehandlungseinrichtung aufgrund einer Kombination der beiden Informationen, nämlich des Fe-Gehalts der Zn-Fe-Schicht und der Emissionsgradbestimmung, einzustellen.For the quality of the product it is very important that the Zn-Fe layer has an Fe content within narrow limits and that at the same time the coating is complete is fully reacted. Because from the information about the Fe content of the Zn-Fe layer alone cannot be closed immediately, that the coating has also reacted, it is advantageous the heat output distribution over the length of the heat treatment device due to a combination of the two information, namely the Fe content of the Zn-Fe layer and the Emissivity determination.

    Jedes der oben beschriebenen Regelverfahren wird in einem geschlossenen Regelkreis betrieben. Each of the control methods described above is in one closed loop operated.

    Die Stellgrößen für die Wärmebehandlungseinrichtung 13 werden von einem Rechner des Reglers 19 aus den gemessenen Werten und der Soll-Ist-Abweichung für den Eisengehalt und gegebenenfalls für den Emissionsgrad berechnet. Dabei können die Meßwerte aus der Heißmessung (Schichtdickenmessung) und/oder einer vor dem Nachglühofen angeordneten Temperaturmessung, die Bandgeschwindigkeit, die zugeführte Heizleistung in den einzelnen Zonen der Wärmebehandlungseinrichtung 13 herangezogen werden, um die Treffsicherheit des Regelvorganges zu erhöhen, wie dies durch die Pfeile 20, 21 angedeutet ist.The manipulated variables for the heat treatment device 13 are from a computer of the controller 19 from the measured values and the target-actual deviation for the iron content and, if applicable calculated for emissivity. The measured values can be used the hot measurement (layer thickness measurement) and / or one before Afterglow furnace arranged temperature measurement, the Belt speed, the heating power supplied in the individual zones of the heat treatment device 13 are used to increase the accuracy of the control process, as indicated by the arrows 20, 21.

    Die Berechnung der Stellgrößen erfolgt mit Hilfe eines Regelmodells, das entsprechend den an der konkreten Anlage zur Verfügung stehenden Meßgeräten und Stelleinrichtungen unterschiedlich sein kann. Für eine konkrete Anlagenkonfiguration wird das Regelmodell durch Modellparameter beschrieben. Diese Modellparameter können für unterschiedliches Grundmaterial, Banddimension, Al-Gehalt im Zinkbad verschieden sein. Grundmaterial, Banddimension, Al-Gehalt im Zinkbad können von einem übergeordneten Rechner (z.B. Produktionsplanungsrechner) oder einer externen Eingabeeinheit an den Prozeßrechner 18 übertragen werden. Sie können mit dem für das herzustellende Produkt gültigen Sollwert an den Rechner des Reglers 19 übertragen werden, vgl. Pfeil 22.The manipulated variables are calculated using a Rule model, which corresponds to the on the specific system for Available measuring devices and control devices can be different. For a concrete one Plant configuration becomes the rule model through model parameters described. These model parameters can be used for different Base material, tape dimension, Al content in the zinc bath different his. Base material, tape dimension, Al content in the zinc bath can from a higher-level computer (e.g. Production planning computer) or an external input unit are transmitted to the process computer 18. You can use the target value for the product to be manufactured to the computer of the controller 19 are transmitted, cf. Arrow 22.

    Der Rechner des Reglers 19 berechnet dann unter Berücksichtigung dieser Modellparameter des Regelungsmodells die entsprechenden Stellbefehle.The computer of the controller 19 then calculates taking into account this model parameter of the control model the corresponding Control commands.

    Je nach Bauart der Durchlauföfen 10, 11 kann die Gesamtleistung oder die Leistung von Teilen der Durchlauföfen 10, 11 (Zonen in Bandlängsrichtung) innerhalb gewisser Grenzen eingestellt werden. Von besonderem Vorteil ist es, wenn die Verteilung der Wärmeeinbringung auf das Band, also die Heizleistung der Durchlauföfen 10, 11, über die Breite ebenfalls innerhalb gewisser Grenzen einstellbar ist, da es hierdurch möglich ist, die in Fig. 3 dargestellte Abweichung des Fe-Gehaltes der Zn-Fe-Schicht, die trotz gleichmäßiger Dicke der Zn-Fe-Schicht auftreten kann, auszugleichen.Depending on the design of the continuous furnace 10, 11, the total output or the performance of parts of the continuous furnaces 10, 11 (zones in Belt length direction) is set within certain limits become. It is particularly advantageous if the distribution of the Heat input on the belt, i.e. the heating power of the Continuous furnaces 10, 11, also within the width certain limits can be set, since this makes it possible to achieve the deviation shown in FIG. 3 of the Fe content of the Zn-Fe layer, which can occur despite the uniform thickness of the Zn-Fe layer.

    Claims (10)

    1. A process of galvanizing a strip (1), in particular a steel strip (1), wherein the strip (1) is continuously coated with zinc in a continuous process either electrolytically or in a zinc bath according to the hot dip galvanizing method, subsequently is subjected to a heat treatment in an open-ended furnace (10, 11) for the formation of a Zn-Fe layer and, furthermore, to an on-line control of the zinc layer by measuring the iron content of the zinc layer by means of X-ray fluorescence, wherein the galvanizing procedure is controlled as a function of the iron content of the zinc layer, characterized in that a value of the iron content of the Zn-Fe layer is determined as a reference input value, the actual value of the iron content of the Zn-Fe layer is compared to the reference input value, and a control deviation is compensated for via an automatic control (19) in a closed control circuit by aid of a computer which registers the control deviation by taking into account the dimension of the strip, the base material of the strip (1) in terms of its chemical composition and/or structure, the thickness of the zinc layer, the composition of the zinc bath, such as, e.g., its Al-content, the strip speed as well as, optionally, additional parameters, such as the temperature of the strip (1) at the entry of the open-ended furnace (10, 11) and the ambient temperature, and controls the calorific output of the open-ended furnace (10, 11) via actuating commands.
    2. A process according to claim 1, characterized in that for determining the complete reaction of the Zn-Fe layer, the radiation emission of the surface of the strip (1) is measured after or during the heat treatment by means of at least one pyrometer (14).
    3. A process according to claim 2, characterized in that along the strip conveying path (3) that site is determined by measurement by means of several pyrometers (14) consecutively arranged in the strip conveying direction (6), from which the Zn-Fe layer has completely reacted, and that this site, by controlling the calorific output of the open-ended furnace (10, 11), is brought in front of a boundary site, seen in the strip conveying direction (6), from which the Zn-Fe layer must have completely reacted at the latest.
    4. A process according to one or several of claims 1 to 3, characterized in that the calorific output and thus the temperature within the open-ended furnace (10, 11) are adjustable to be different in individual heating zones (12, 12').
    5. A process according to claim 4, characterized in that the calorific output is adjustable to be different in heating zones (12, 12') adjacently arranged in the sense of the strip width.
    6. A process according to claim 4 or 5, characterized in that the calorific output is adjustable to be different in heating zones consecutively arranged in the strip conveying direction.
    7. A process according to one or several of claims 4 to 6, characterized in that measurement of the iron content and/or of the radiation emission is effected at positions distributed over the strip width.
    8. An arrangement for carrying out the process according to one or several of claims 1 to 7, comprising a strip guiding means (2) guiding a strip (1) continuously along a strip conveying path (3), a zinc coating means (4) arranged on the strip conveying path (3), a consecutively arranged heat treating means (13) for the strip (1), formed by an open-ended furnace (10, 11), and a measuring means (16) for measuring the iron content of the zinc layer also located on the strip conveying path (3) downstream of the heat treating means (13), characterized in that the measuring means (16) is coupled with an automatic control (19), which, in turn, is coupled with the heating means of the heat treating means (13) via a control line.
    9. An arrangement according to claim 8, characterized in that the automatic control (19) is coupled with a process computer (18).
    10. An arrangement according to claim 8 or 9, characterized in that at least one additional radiation measuring means designed as a pyrometer (14) is provided on the strip conveying path (3) downstream of, or within, the heat treating means (13), and also is coupled with the automatic control (19).
    EP93890053A 1992-03-31 1993-03-23 Process of galvanizing a strip and arrangement for carrying out the process Expired - Lifetime EP0571353B2 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    AT65492 1992-03-31
    AT0065492A AT397815B (en) 1992-03-31 1992-03-31 METHOD FOR GALVANIZING A TAPE AND SYSTEM FOR IMPLEMENTING THE METHOD
    AT654/92 1992-03-31

    Publications (4)

    Publication Number Publication Date
    EP0571353A2 EP0571353A2 (en) 1993-11-24
    EP0571353A3 EP0571353A3 (en) 1994-01-26
    EP0571353B1 EP0571353B1 (en) 1996-01-31
    EP0571353B2 true EP0571353B2 (en) 2000-01-26

    Family

    ID=3496298

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP93890053A Expired - Lifetime EP0571353B2 (en) 1992-03-31 1993-03-23 Process of galvanizing a strip and arrangement for carrying out the process

    Country Status (4)

    Country Link
    EP (1) EP0571353B2 (en)
    JP (1) JPH06207297A (en)
    AT (2) AT397815B (en)
    DE (1) DE59301528D1 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10021948A1 (en) * 2000-05-05 2001-11-22 Thyssenkrupp Stahl Ag Process for galvanizing a steel strip comprises passing the strip through a coating apparatus and a continuous furnace, and heat treating to form a zinc-iron layer

    Families Citing this family (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    AT405770B (en) * 1997-09-24 1999-11-25 Voest Alpine Ind Anlagen METHOD FOR CONTROLLING A '' GALVANNEALING '' PROCESS
    BRPI0412601B1 (en) * 2003-07-29 2013-07-23 method for producing a hardened steel part
    WO2009021279A1 (en) * 2007-08-10 2009-02-19 Bluescope Steel Limited Coating line control

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3307968A (en) * 1963-09-03 1967-03-07 Armco Steel Corp Method and apparatus for controlling the alloying of zinc coatings
    JPH068791B2 (en) * 1984-02-10 1994-02-02 川崎製鉄株式会社 Measuring method of alloying degree of galvannealed steel sheet
    FR2563537A1 (en) * 1984-04-25 1985-10-31 Stein Heurtey Process and device for diffusion annealing for obtaining metal sheets with alloy coating
    US4659437A (en) * 1985-01-19 1987-04-21 Tokusen Kogyo Kabushiki Kaisha Method of thermal diffusion alloy plating for steel wire on continuous basis
    JPH01252761A (en) * 1987-12-08 1989-10-09 Kawasaki Steel Corp Sheet temperature controller in alloying furnace for hot-dip galvanization
    JPH0637702B2 (en) * 1988-09-29 1994-05-18 川崎製鉄株式会社 Fuel control method for hot dip galvanizing alloy furnace
    JP2904891B2 (en) * 1990-08-31 1999-06-14 日新製鋼株式会社 Online alloying degree measuring device for galvanized steel sheet

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10021948A1 (en) * 2000-05-05 2001-11-22 Thyssenkrupp Stahl Ag Process for galvanizing a steel strip comprises passing the strip through a coating apparatus and a continuous furnace, and heat treating to form a zinc-iron layer
    DE10021948B4 (en) * 2000-05-05 2004-02-19 Thyssenkrupp Stahl Ag Process and plant for galvanizing a steel strip

    Also Published As

    Publication number Publication date
    EP0571353B1 (en) 1996-01-31
    EP0571353A2 (en) 1993-11-24
    JPH06207297A (en) 1994-07-26
    EP0571353A3 (en) 1994-01-26
    ATA65492A (en) 1993-11-15
    DE59301528D1 (en) 1996-03-14
    AT397815B (en) 1994-07-25
    ATE133717T1 (en) 1996-02-15

    Similar Documents

    Publication Publication Date Title
    EP2010690B1 (en) Hot dip coating process for a steel plate product made of high strengthheavy-duty steel
    EP2044234B1 (en) Method for flexibly rolling coated steel strips
    DE102012101018B3 (en) Process for hot dip coating a flat steel product
    EP1819840B1 (en) Method for hot dip coating a strip of heavy-duty steel
    EP2824216B1 (en) Method for manufacturing a flat steel product having a protective metal coating produced by means of hot-dip coating and continuous furnace for a hot-dip coating system
    EP2795218B1 (en) Nozzle device for a furnace for heat-treating a flat steel product, and furnace equipped with such a nozzle device
    DE3411605C2 (en) Process and device for gas carburizing of steel
    DE2363223A1 (en) METHOD AND DEVICE FOR CONTINUOUS HEATING OF A FERROUS METAL STRIP
    EP0571353B2 (en) Process of galvanizing a strip and arrangement for carrying out the process
    EP0564437B1 (en) Process of galvanizing a strip and arrangement for carrying out the process
    EP3511430A1 (en) Method for a continuous heat treatment of a steel strip, and installation for dip coating a steel strip
    DE102004023886B4 (en) Method and device for finishing flexibly rolled strip material
    DE69224596T2 (en) Method and device for the automatic control of continuous furnaces heated with jet pipes
    WO2020079200A1 (en) Method for producing a heat-formable flat steel product
    DE2729931C3 (en) Tower furnace for the heat treatment of rolled sheets
    DE3933244C1 (en) Continuous zinc coating appts. for coating metal strip - comprises melt alloy bath covered with hood having hydrogen, steam and inert gas atmos. and control system
    WO2018050857A1 (en) Flexible heat treatment installation for metallic strip of a horizontal construction
    DE69107931T2 (en) Continuous annealing line with a carburizing or nitriding furnace.
    DE69723608T3 (en) Primary cooling process for continuous annealing of steel strip
    DE102015001438A1 (en) Flexible heat treatment plant for metallic strip
    DE10021948B4 (en) Process and plant for galvanizing a steel strip
    DE10321791A1 (en) Process for controlling and/or regulating the temperature of a metal strip, especially in a finishing train, comprises comparing a theoretical temperature gradient with an actual temperature gradient to acquire adjusting signals
    DE69123038T2 (en) SYSTEM FOR CONTINUOUS COOLING OF METAL STRIPS
    DE1521422B2 (en) Process for the continuous manufacture of steel strips coated with a protective layer of metal, such as zinc, aluminum and the like
    DE3039424C2 (en) Burner-heated continuous furnace

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE DE ES FR GB IT LU NL SE

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE DE ES FR GB IT LU NL SE

    17P Request for examination filed

    Effective date: 19940211

    17Q First examination report despatched

    Effective date: 19950216

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE DE ES FR GB IT LU NL SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 19960131

    REF Corresponds to:

    Ref document number: 133717

    Country of ref document: AT

    Date of ref document: 19960215

    Kind code of ref document: T

    REF Corresponds to:

    Ref document number: 59301528

    Country of ref document: DE

    Date of ref document: 19960314

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Effective date: 19960323

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19960331

    ITF It: translation for a ep patent filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Effective date: 19960430

    ET Fr: translation filed
    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19960523

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    26 Opposition filed

    Opponent name: SOCIETE SOLLAC

    Effective date: 19961022

    R26 Opposition filed (corrected)

    Opponent name: SOCIETE SOLLAC

    Effective date: 19961025

    NLR1 Nl: opposition has been filed with the epo

    Opponent name: SOCIETE SOLLAC

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    PLAW Interlocutory decision in opposition

    Free format text: ORIGINAL CODE: EPIDOS IDOP

    PLAW Interlocutory decision in opposition

    Free format text: ORIGINAL CODE: EPIDOS IDOP

    PUAH Patent maintained in amended form

    Free format text: ORIGINAL CODE: 0009272

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: PATENT MAINTAINED AS AMENDED

    27A Patent maintained in amended form

    Effective date: 20000126

    AK Designated contracting states

    Kind code of ref document: B2

    Designated state(s): AT BE DE ES FR GB IT LU NL SE

    NLR2 Nl: decision of opposition
    ITF It: translation for a ep patent filed
    GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
    ET3 Fr: translation filed ** decision concerning opposition
    NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
    NLR4 Nl: receipt of corrected translation in the netherlands language at the initiative of the proprietor of the patent
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20090518

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20100324

    Year of fee payment: 18

    Ref country code: FR

    Payment date: 20100325

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20100311

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20100303

    Year of fee payment: 18

    Ref country code: BE

    Payment date: 20100312

    Year of fee payment: 18

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20101001

    BERE Be: lapsed

    Owner name: *VOEST-ALPINE STAHL LINZ G.M.B.H.

    Effective date: 20110331

    Owner name: *VOEST-ALPINE INDUSTRIEANLAGENBAU G.M.B.H.

    Effective date: 20110331

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20111001

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20110323

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20111130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110331

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110331

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111001

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110323

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110323