EP0571353B2 - Process of galvanizing a strip and arrangement for carrying out the process - Google Patents
Process of galvanizing a strip and arrangement for carrying out the process Download PDFInfo
- Publication number
- EP0571353B2 EP0571353B2 EP93890053A EP93890053A EP0571353B2 EP 0571353 B2 EP0571353 B2 EP 0571353B2 EP 93890053 A EP93890053 A EP 93890053A EP 93890053 A EP93890053 A EP 93890053A EP 0571353 B2 EP0571353 B2 EP 0571353B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- strip
- layer
- zinc
- iron content
- process according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 230000008569 process Effects 0.000 title claims abstract description 37
- 238000005246 galvanizing Methods 0.000 title claims abstract description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 157
- 239000011701 zinc Substances 0.000 claims abstract description 61
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 57
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 57
- 238000010438 heat treatment Methods 0.000 claims abstract description 56
- 229910052742 iron Inorganic materials 0.000 claims abstract description 46
- 229910000831 Steel Inorganic materials 0.000 claims description 27
- 239000010959 steel Substances 0.000 claims description 27
- 239000011248 coating agent Substances 0.000 claims description 14
- 238000000576 coating method Methods 0.000 claims description 14
- 238000005259 measurement Methods 0.000 claims description 13
- 230000005855 radiation Effects 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 5
- 238000004876 x-ray fluorescence Methods 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 238000010924 continuous production Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 230000008859 change Effects 0.000 abstract description 5
- 238000012544 monitoring process Methods 0.000 abstract 1
- 235000010210 aluminium Nutrition 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 5
- 238000005244 galvannealing Methods 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- KFZAUHNPPZCSCR-UHFFFAOYSA-N iron zinc Chemical compound [Fe].[Zn] KFZAUHNPPZCSCR-UHFFFAOYSA-N 0.000 description 3
- 229910001335 Galvanized steel Inorganic materials 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 239000008397 galvanized steel Substances 0.000 description 2
- 238000012821 model calculation Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- PMVSDNDAUGGCCE-TYYBGVCCSA-L Ferrous fumarate Chemical compound [Fe+2].[O-]C(=O)\C=C\C([O-])=O PMVSDNDAUGGCCE-TYYBGVCCSA-L 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- KCZFLPPCFOHPNI-UHFFFAOYSA-N alumane;iron Chemical compound [AlH3].[Fe] KCZFLPPCFOHPNI-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 210000002023 somite Anatomy 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 238000009681 x-ray fluorescence measurement Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
Definitions
- the invention relates to a method for the method for galvanizing a band, in particular a steel band, the band continuously in a continuous process either electrolytically with Zinc or according to the hot-dip galvanizing process in a zinc bath is coated with zinc, then to form a Zn-Fe layer a heat treatment in a continuous furnace and further an online control of the zinc layer while measuring the iron content subjected to the zinc layer by means of X-ray fluorescence is, the galvanizing process depending on the iron content the zinc layer is controlled, and a plant for Execution of the procedure.
- the post-annealing process causes the pure zinc layer to diffuse through converted into a Zn-Fe layer by iron.
- Each A product is formed according to the iron content of the Zn-Fe alloy different mechanical properties (e.g. toughness, Hardness), whereby the area of application (abrasion behavior, weldability, Paintability, corrosion resistance, deep drawing ability) is decisively determined.
- the Fe content can be adjusted accordingly Measuring devices (e.g. by means of X-ray fluorescence, X-ray diffraction or similar processes), i.e. on-line, be measured, e.g. described in EP-A 0 473 154 is, the measurement result is usually about one Average value of the Fe content over the thickness of the Zn-Fe layer represents.
- the invention has for its object that described above Process to further develop that a galvanized Tape with a defined layer structure can, being directly and immediately in the manufacturing process for Ensuring a uniform quality of the galvanized Band can be intervened and the production of rejects is minimized.
- inventive Procedure of automatic consideration of intended Enabling changes in process parameters as well as their unintentional changes so that the manufacturing process is continuously optimized and without manual intervention.
- This object is achieved by a method for Galvanizing a strip, in particular a steel strip, solved, the belt being continuously continuous either electrolytically with zinc or according to the hot-dip galvanizing process is coated with zinc in a zinc bath, then for Formation of a Zn-Fe layer of a heat treatment in one Continuous furnace and an on-line control of the zinc layer subjected to measurement of the iron content of the zinc layer by means of X-ray fluorescence is, the galvanizing process depending on the Iron content of the zinc layer is controlled, a value of Iron content of the Zn-Fe layer is determined as a reference variable, the actual value of the iron content of the Zn-Fe layer with the Reference variable compared and a control deviation over one Controller in a closed loop with the help of a Calculator, taking into account the tape dimension, the Basic material of the tape with regard to its chemical Composition and / or structure, the zinc layer thickness, the Composition of the zinc bath, e.g. its Al content, the Belt speed and possibly other parameters such as the temperature
- the method according to the invention is based on the knowledge that the diffusion processes of iron into the zinc layer (diffusion rate, Iron content) primarily from temperature and the duration of the heat treatment in the continuous furnace.
- the temperature control in the continuous furnace influences the structure of the galvannealt layer crucial and therefore also the mechanical properties of the product.
- the surface of the tape after or during the Heat treatment measured using at least one pyrometer.
- the procedure is preferably that of the belt passage by measurement using several in the direction of tape travel successively arranged pyrometer that position is determined from which the Zn-Fe layer has reacted, and by regulation the heating power of the continuous furnace this point in Belt running direction in front of a border point, from which the Zn-Fe layer must be fully reacted at the latest.
- the regulation is done in a closed loop performed by a computer that registers the control deviation and the heating power of the continuous furnace by means of control commands regulates, the computer to increase reproducibility the quality of the tape produced, the tape dimension, the Basic material of the tape with regard to its chemical Composition and / or structure, the zinc layer thickness, the Composition of the zinc bath, e.g. its Al content, the Belt speed and possibly other parameters such as the temperature of the belt at the inlet of the continuous furnace and the Ambient temperature, taken into account.
- a preferred embodiment is characterized in that the heating power and thus the temperature inside the continuous furnace can be set differently in individual heating zones is.
- the heating output in the direction of Bandwidth of adjacent heating zones varies adjustable.
- the Heating output in the line running direction Heating zones can be set differently, which increases the warm-up speed of the tape or the holding time of the tape on a certain temperature in order to achieve optimal tape quality can be varied.
- Measuring device for measuring the iron content of the zinc layer characterized in that the measuring device with a a controller connected to a process computer, which is connected via a control line with the heating device of the heat treatment device is coupled.
- the controller is coupled to a process computer.
- At least one additional one is expedient: as a pyrometer trained radiation measuring device provided on the belt path after or in the heat treatment device, which is also coupled to the controller.
- FIG. 1 in a schematic representation illustrates a system for galvanizing a strip.
- the dependency is in the diagram shown in FIG of the iron content from the heating output.
- Fig. 3 shows a deviation in the iron content in the Zn-Fe layer as a function of the bandwidth
- FIG. 4 the dependence of the radiation emission on the holding time.
- a steel strip 1 to be galvanized is by means of a strip guide device, the one Has a plurality of tape guide rollers 2, continuously along a tape path 3 of a not shown Unwind station to a winding station, also not shown.
- this arrives Steel strip first to a zinc coating device 4, which in the illustrated embodiment as a hot-dip galvanizing device is designed.
- This has a zinc bath 5 and a stripping device arranged downstream in the strip running direction 6 7 to ensure a constant zinc layer which is of equal thickness over the range.
- the steel strip 1 is placed over a hot thickness measuring system 8 for measuring the thickness of the zinc layer and via a temperature measuring device 9 into a heat treatment device having two continuous furnaces 10, 11 13 initiated.
- the galvanized steel strip is primarily heated 1 to the required annealing temperature.
- the steel strip 1 primarily kept at a constant annealing temperature.
- the radiation emission is determined by means of a pyrometer 14 of the finished annealed steel strip 1 measured. Then there are cooling devices on the belt guide 15 arranged. At a location downstream of the heat treatment device 13 of the belt path 3 there is also a measuring device 16 is provided for measuring the iron content of the Zn-Fe layer. the preferably as by the double arrow 17 indicated. Can be moved across the bandwidth so that at different points in the bandwidth a measurement can be carried out.
- the measuring device works according to the X-ray method.
- a controller 19 coupled to a process computer 18 is provided with heating devices of the two continuous furnaces 10, 11 coupled to adjust the heating power. as illustrated by the double arrows 20.
- the aluminum dissolved in zinc bath 5 initially forms an iron-aluminum layer (Fe 2 Al 5 ) on the steel strip due to its higher affinity for iron. which prevents a reaction of the iron substrate of the steel strip 1 and the zinc layer.
- This system (steel strip 1 + Fe-Al layer + liquid Zn layer) enters the first continuous furnace 10 and is brought to a temperature of 450 ° C to 700 ° C.
- the steel strip 1 is kept at a certain temperature or heated even further.
- the process of diffusion of iron into the zinc layer that occurs converts the pure zinc layer into a zinc-iron layer.
- the Fe-Al barrier layer formed in the zinc bath is formed by the Zn-Fe growth at the grain boundaries of the base material is broken up, and a mushroom-shaped growth of the Zn-Fe complexes begins. Depending on the iron content different metallurgical phases are formed. that have different properties.
- Iron content of the Fe-Zn layer is determined, preferably via the entire bandwidth and also over the entire band length.
- This The actual value of the iron content of the Zn-Fe layer is determined using the Controller 19 with a value of the predetermined as a reference variable Iron content of the Zn-Fe layer compared.
- a possible one Control deviation is over the controller 19 by changing the the heating output of the first or the second continuous furnace 10, 11 balanced. Is that about measured iron content less than the desired, the Heating capacity of the continuous furnace increased until the Control deviation becomes zero or below a specified value has dropped (dead band), as is shown in FIG. 2 below is explained:
- the course I gives the relationship between the Fe content of the Zn-Fe layer and heating output. This is determined empirically and e.g. as a formula or in tabular form Control computer (controller 19) provided.
- the steel strip 1 behaves exactly according to the course I, the desired setting of the Fe content Fe 1 (point A) is achieved with the power setting P 1 . If the strip behaves somewhat differently, e.g. according to curve II, due to unintentional changes in process parameters, such as drift of the ambient temperature, drift in the transformer output when the continuous furnaces are electrically heated or if other faults occur, the strip will have an Fe content of Fe 2 which deviates from the nominal value Fe 1 (point B).
- the heating power is now changed, for example depending on the slope dP / dFe in point A'des course I, for example by the value k. dP dFe . ⁇ Fe
- Desired changes in process parameters e.g. on Changing the dimension of the steel strip 1, changing the chemical composition of the steel strip 1, a change of Zinc layer thickness or a change in the conveying speed of the Steel strip 1, to take into account the heat output of the Heat treatment device entered the process computer 18.
- the emissivity of the coating changes abruptly as soon as the surface of the Zn-Fe layer has iron (see FIG. 4), can make a radiation emission measurement using a pyrometer 14 used to assess the galvanized layer become.
- the pyrometer 14 can after or in the Heat treatment device 13 (e.g. between galvannealing furnace 10 and holding furnace 11) can be arranged. In this measurement it is information about the purely of the Surface of the steel strip 1, i.e. its Zn-Fe layer, emitted radiant energy, which is a function of temperature and the emission number of the surface condition.
- the heating power of the continuous furnaces 10, 11th with the help of the controller connected to a process computer 18 19, to which the measured value of the pyrometer is entered, increases until a reaction through the pyrometer can be determined.
- the heating power is the control variable of the control process.
- the heating power of the continuous furnaces 10, 11 is now using the Regulator 19 controlled so that the reaction from one certain desired position is completed. Another Possibility of recognizing the point in the tape running direction at the the through reaction is complete, the pyrometer measurement to compare with a thermal model calculation.
- the pyrometer measurement is the empirically determined one Emissivity for the pure zinc layer and a second time empirically determined emissivity of the fully reacted layer based on. In terms of calculations, this initially results in two different according to the different emission numbers Pyrometer temperature values for the running belt.
- the Zn-Fe layer has an Fe content within narrow limits and that at the same time the coating is complete is fully reacted. Because from the information about the Fe content of the Zn-Fe layer alone cannot be closed immediately, that the coating has also reacted, it is advantageous the heat output distribution over the length of the heat treatment device due to a combination of the two information, namely the Fe content of the Zn-Fe layer and the Emissivity determination.
- Each of the control methods described above is in one closed loop operated.
- the manipulated variables for the heat treatment device 13 are from a computer of the controller 19 from the measured values and the target-actual deviation for the iron content and, if applicable calculated for emissivity.
- the measured values can be used the hot measurement (layer thickness measurement) and / or one before Afterglow furnace arranged temperature measurement, the Belt speed, the heating power supplied in the individual zones of the heat treatment device 13 are used to increase the accuracy of the control process, as indicated by the arrows 20, 21.
- the manipulated variables are calculated using a Rule model, which corresponds to the on the specific system for Available measuring devices and control devices can be different.
- a Rule model corresponds to the on the specific system for Available measuring devices and control devices can be different.
- Base material, tape dimension, Al content in the zinc bath can from a higher-level computer (e.g. Production planning computer) or an external input unit are transmitted to the process computer 18.
- You can use the target value for the product to be manufactured to the computer of the controller 19 are transmitted, cf. Arrow 22.
- the computer of the controller 19 then calculates taking into account this model parameter of the control model the corresponding Control commands.
- the total output or the performance of parts of the continuous furnaces 10, 11 (zones in Belt length direction) is set within certain limits become. It is particularly advantageous if the distribution of the Heat input on the belt, i.e. the heating power of the Continuous furnaces 10, 11, also within the width certain limits can be set, since this makes it possible to achieve the deviation shown in FIG. 3 of the Fe content of the Zn-Fe layer, which can occur despite the uniform thickness of the Zn-Fe layer.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Coating With Molten Metal (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum Verfahren zum Verzinken eines Bandes, insbesondere eines Stahlbandes, wobei das Band kontinuierlich im Durchlaufverfahren entweder elektrolytisch mit Zink oder gemäß dem Feuerverzinkungsverfahren in einem Zinkbad mit Zink beschichtet wird, anschließend zur Bildung einer Zn-Fe-Schicht einer Wärmebehandlung in einem Durchlaufofen und weiters einer on-line-Kontrolle der Zinkschicht unter Messen des Eisengehaltes der Zinkschicht mittels Röntgenfluoreszenz unterzogen wird, wobei der Verzinkungsvorgang in Abhängigkeit des Eisengehaltes der Zinkschicht gesteuert wird, sowie eine Anlage zur Durchführung des Verfahrens.The invention relates to a method for the method for galvanizing a band, in particular a steel band, the band continuously in a continuous process either electrolytically with Zinc or according to the hot-dip galvanizing process in a zinc bath is coated with zinc, then to form a Zn-Fe layer a heat treatment in a continuous furnace and further an online control of the zinc layer while measuring the iron content subjected to the zinc layer by means of X-ray fluorescence is, the galvanizing process depending on the iron content the zinc layer is controlled, and a plant for Execution of the procedure.
Bei modernen Verzinkungsverfahren dieser Art (bekannt aus der EP-A 0 473 154) zur Herstellung von sogenanntem "galvannealtem" Band, worunter man ein wärmetechnisch nachbehandeltes, metallisch beschichtetes Stahlband versteht, wird das bereits verzinkte Band kontinuierlich im Durchlaufverfahren einem Nachglühen (Galvannealen) unterzogen. Dabei wird das Band nach Durchlaufen des Verzinkungsteiles (Zinkbad + Abstreifsystem bei Feuerverzinkungsanlagen, Verzinkungszellen bei elektrolytischen Verzinkungsanlagen) durch einen als Durchlaufofen ausgebildeten Nachglühofen (Galvannealingofen und Halteofen) geführt. Dieser Ofen kann z.B. induktiv oder mit Gas betrieben werden.In modern galvanizing processes of this type (known from the EP-A 0 473 154) for the production of so-called "galvan-aged" Band, under which a thermally post-treated, metallic coated steel strip, that which is already galvanized Continuous after-glowing strip (Galvanneal). Thereby the tape is run through the galvanizing part (zinc bath + stripping system for hot-dip galvanizing plants, Galvanizing cells in electrolytic Galvanizing plants) by a continuous furnace Afterglow furnace (galvannealing furnace and holding furnace) performed. This Oven can e.g. operated inductively or with gas.
Durch den Nachglühvorgang wird die Reinzinkschicht durch Eindiffundieren von Eisen in eine Zn-Fe-Schicht umgewandelt. Je nach Eisengehalt der Zn-Fe-Legierung bildet sich ein Produkt mit unterschiedlichen mechanischen Eigenschaften (z.B. Zähigkeit, Härte) aus, wodurch das Einsatzgebiet (Abriebverhalten, Schweißbarkeit, Lackierbarkeit, Korrosionswiderstand, Tiefziehvermögen) entscheidend bestimmt wird. Der Fe-Gehalt kann durch entsprechende Meßgeräte (z.B. mittels Röntgenfluoreszenz, Röntgenbeugung oder ähnliche Verfahren) am laufenden Band, d.h. on-line, gemessen werden, wie dies z.B. in der EP-A 0 473 154 beschrieben ist, wobei das Meßergebnis in der Regel etwa einen Mittelwert des Fe-Gehaltes über die Dicke der Zn-Fe-Schicht darstellt.The post-annealing process causes the pure zinc layer to diffuse through converted into a Zn-Fe layer by iron. Each A product is formed according to the iron content of the Zn-Fe alloy different mechanical properties (e.g. toughness, Hardness), whereby the area of application (abrasion behavior, weldability, Paintability, corrosion resistance, deep drawing ability) is decisively determined. The Fe content can be adjusted accordingly Measuring devices (e.g. by means of X-ray fluorescence, X-ray diffraction or similar processes), i.e. on-line, be measured, e.g. described in EP-A 0 473 154 is, the measurement result is usually about one Average value of the Fe content over the thickness of the Zn-Fe layer represents.
Die Erfindung stellt sich die Aufgabe, das eingangs beschriebene Verfahren dahingehend weiterzuentwickeln, daß ein verzinktes Band mit einem definierten Schichtaufbau hergestellt werden kann, wobei direkt und unmittelbar in den Herstellungsprozeß zur Sicherstellung einer gleichmäßigen Qualität des verzinkten Bandes eingegriffen werden kann und die Produktion von Ausschußware minimiert wird. Insbesondere soll das erfindungsgemäße Verfahren die automatische Berücksichtigung beabsichtigter Veränderungen von Verfahrensparametern ebenso ermöglichen wie deren unbeabsichtigte Veränderungen, so daß der Herstellungsprozeß laufend und ohne manuelle Eingriffe optimiert ist.The invention has for its object that described above Process to further develop that a galvanized Tape with a defined layer structure can, being directly and immediately in the manufacturing process for Ensuring a uniform quality of the galvanized Band can be intervened and the production of rejects is minimized. In particular, the inventive Procedure of automatic consideration of intended Enabling changes in process parameters as well as their unintentional changes, so that the manufacturing process is continuously optimized and without manual intervention.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren zum Verzinken eines Bandes, insbesondere eines Stahlbandes, gelöst, wobei das Band kontinuierlich im Durchlaufverfahren entweder elektrolytisch mit Zink oder gemäß dem Feuerverzinkungsverfahren in einem Zinkbad mit Zink beschichtet wird, anschließend zur Bildung einer Zn-Fe-Schicht einer Wärmebehandlung in einem Durchlaufofen und weiters einer on-line-Kontrolle der Zinkschicht unter Messen des Eisengehaltes der Zinkschicht mittels Röntgenfluoreszenz unterzogen wird, wobei der Verzinkungsvorgang in Abhängigkeit des Eisengehaltes der Zinkschicht gesteuert wird, wobei ein Wert des Eisengehaltes der Zn-Fe-Schicht als Führungsgröße bestimmt wird, der Istwert des Eisengehaltes der Zn-Fe-Schicht mit der Führungsgröße verglichen und eine Regelabweichung über einen Regler in einem geschlossenen Regelkreis mit Hilfe eines Rechners, der unter Berücksichtigung der Banddimension, des Grundmaterials des Bandes hinsichtlich seiner chemischen Zusammensetzung und/oder Gefüge, der Zinkschichtdicke, der Zusammensetzung des Zinkbades, wie z.B. dessen Al-Gehalt, der Bandgeschwindigkeit sowie gegebenenfalls weitere Parameter, wie der Temperatur des Bandes am Einlauf des Durchlaufofens und der Umgebungstemperatur, die Regelabweichung registriert und mittels Stellbefehle die Heizleistung des Durchlaufofens regelt, ausgeglichen wird. This object is achieved by a method for Galvanizing a strip, in particular a steel strip, solved, the belt being continuously continuous either electrolytically with zinc or according to the hot-dip galvanizing process is coated with zinc in a zinc bath, then for Formation of a Zn-Fe layer of a heat treatment in one Continuous furnace and an on-line control of the zinc layer subjected to measurement of the iron content of the zinc layer by means of X-ray fluorescence is, the galvanizing process depending on the Iron content of the zinc layer is controlled, a value of Iron content of the Zn-Fe layer is determined as a reference variable, the actual value of the iron content of the Zn-Fe layer with the Reference variable compared and a control deviation over one Controller in a closed loop with the help of a Calculator, taking into account the tape dimension, the Basic material of the tape with regard to its chemical Composition and / or structure, the zinc layer thickness, the Composition of the zinc bath, e.g. its Al content, the Belt speed and possibly other parameters such as the temperature of the belt at the inlet of the continuous furnace and the Ambient temperature, the control deviation registered and by means of Control commands regulate the heating output of the continuous furnace, is balanced.
Das erfindungsgemäße Verfahren beruht auf der Erkenntnis, daß die Diffusionsvorgänge des Eisens in die Zinkschicht (Diffusionsgeschwindigkeit, Eisengehalt) primär von der Temperatur und der Dauer der Wärmebehandlung im Durchlaufofen abhängig sind. Die Temperaturführung im Durchlaufofen beeinflußt den Aufbau der galvannealten Schicht entscheidend und daher auch die mechanischen Eigenschaften des Produktes.The method according to the invention is based on the knowledge that the diffusion processes of iron into the zinc layer (diffusion rate, Iron content) primarily from temperature and the duration of the heat treatment in the continuous furnace. The temperature control in the continuous furnace influences the structure of the galvannealt layer crucial and therefore also the mechanical properties of the product.
Derzeit ist jedoch eine Temperaturerfassung des Bandes im Bereich des Nachglühofens nicht möglich, da kein kostengünstiges herkömmliches, berührungslos arbeitendes Temperaturmeßgerät zur Verfügung steht, welches unter diesen Bedingungen die Temperatur ausreichend genau messen könnte. Erfindungsgemäß ist daher vorgesehen, die Ofentemperatur indirekt über die Heizleistung einzustellen und damit eine gleichmäßige Qualität des beschichteten Bandes zu sichern.Currently, however, a temperature measurement of the belt is in the The area of the afterglow furnace is not possible because it is not an economical one conventional, non-contact temperature measuring device for Which temperature is available under these conditions could measure with sufficient accuracy. According to the invention provided the furnace temperature indirectly via the heating output adjust and thus a uniform quality of the secure coated tape.
Gemäß einer bevorzugten Verfahrensweise wird zusätzlich zur Bestimmung des Istwertes des Eisengehaltes der Zn-Fe-Schicht die Strahlungsemission (Strahlungsintensität oder Strahlungsleistung) der Oberfläche des Bandes nach oder während der Wärmebehandlung mittels mindestens eines Pyrometers gemessen. Hierdurch ist es möglich, unabhängig vom Eisengehalt der Zn-Fe-Schicht festzustellen, ob die Schicht bis zur Oberfläche durchreagiert ("durchgalvannealt") ist oder ob sich noch Reinzink an der Oberfläche befindet, in welchem Fall die Heizleistung des Durchlaufofens entsprechend eingestellt wird.According to a preferred procedure, in addition to Determination of the actual value of the iron content of the Zn-Fe layer Radiation emission (radiation intensity or radiation power) the surface of the tape after or during the Heat treatment measured using at least one pyrometer. This makes it possible, regardless of the iron content of the Zn-Fe layer determine whether the layer has reacted to the surface ("durchgalvannealt") or whether pure zinc is still on the surface, in which case the heating power of the Continuous furnace is set accordingly.
Vorzugsweise wird hierbei so vorgegangen, daß an der Banddurchlaufstrecke durch Messung mittels mehrerer in Bandlaufrichtung hintereinander angeordneter Pyrometer jene Stelle bestimmt wird, ab der die Zn-Fe-Schicht durchreagiert ist, und durch Regelung der Heizleistung des Durchlaufofens diese Stelle in Bandlaufrichtung vor eine Grenzstelle, ab der die Zn-Fe-Schicht spätestens durchreagiert sein muß, gebracht wird.In this case, the procedure is preferably that of the belt passage by measurement using several in the direction of tape travel successively arranged pyrometer that position is determined from which the Zn-Fe layer has reacted, and by regulation the heating power of the continuous furnace this point in Belt running direction in front of a border point, from which the Zn-Fe layer must be fully reacted at the latest.
Die Regelung wird in einem geschlossenen Regelkreis mit Hilfe eines Rechners durchgeführt, der die Regelabweichung registriert und mittels Stellbefehle die Heizleistung des Durchlaufofens regelt, wobei der Rechner zur Erhöhung der Reproduzierbarkeit der Qualität des erzeugten Bandes die Banddimension, das Grundmaterial des Bandes hinsichtlich seiner chemischen Zusammensetzung und/oder Gefüge, die Zinkschichtdicke, die Zusammensetzung des Zinkbades, wie z.B. dessen Al-Gehalt, die Bandgeschwindigkeit sowie gegebenenfalls weitere Parameter, wie die Temperatur des Bandes am Einlauf des Durchlaufofens und die Umgebungstemperatur, berücksichtigt.The regulation is done in a closed loop performed by a computer that registers the control deviation and the heating power of the continuous furnace by means of control commands regulates, the computer to increase reproducibility the quality of the tape produced, the tape dimension, the Basic material of the tape with regard to its chemical Composition and / or structure, the zinc layer thickness, the Composition of the zinc bath, e.g. its Al content, the Belt speed and possibly other parameters such as the temperature of the belt at the inlet of the continuous furnace and the Ambient temperature, taken into account.
Eine bevorzugte Ausführungsform ist dadurch gekennzeichnet, daß die Heizleistung und damit die Temperatur innerhalb des Durchlaufofens in einzelnen Heizzonen unterschiedlich einstellbar ist.A preferred embodiment is characterized in that the heating power and thus the temperature inside the continuous furnace can be set differently in individual heating zones is.
Hierbei ist vorteilhaft zur Berücksichtigung von über die Bandbreite unterschiedlichen Meßwerten des Eisengehaltes der Eisen-Zink-Legierung die Heizleistung in in Richtung der Bandbreite nebeneinanderliegenden Heizzonen unterschiedlich einstellbar.It is advantageous to take into account the Range of different measured values of the iron content of the Iron-zinc alloy the heating output in the direction of Bandwidth of adjacent heating zones varies adjustable.
Gemäß einer anderen Ausführungsform ist vorteilhaft die Heizleistung in in Bandlaufrichtung hintereinander liegenden Heizzonen unterschiedlich einstellbar, wodurch die Aufwärmgeschwindigkeit des Bandes bzw. die Haltezeit des Bandes auf einer bestimmten Temperatur zur Erzielung einer optimalen Bandqualität variiert werden kann.According to another embodiment, the Heating output in the line running direction Heating zones can be set differently, which increases the warm-up speed of the tape or the holding time of the tape on a certain temperature in order to achieve optimal tape quality can be varied.
Zweckmäßig wird die Messung des Eisengehaltes und/oder der Strahlungsemission an über die Bandbreite verteilt angeordneten Positionen durchgeführt.The measurement of the iron content and / or the Radiation emission at arranged over the bandwidth Positions carried out.
Eine Anlage zur Durchführung des Verfahrens mit einer ein Band kontinuierlich entlang einer Bandlaufstrecke führenden Bandführungseinrichtung, einer an der Bandlaufstrecke angeordneten Zinkbeschichtungseinrichtung, einer nachfolgend angeordneten, von einem Durchlaufofen gebildeten Wärmebehandlungseinrichtung für das Band und einer ebenfalls an der Bandlaufstrecke liegenden, der Wärmebehandlungseinrichtung nachgeordneten Meßeinrichtung zum Messen des Eisengehaltes der Zinkschicht, ist dadurch gekennzeichnet, daß die Meßeinrichtung mit einem mit einem Prozeßrechner verbundenen Regler gekoppelt ist, der über eine Steuerleitung mit der Heizeinrichtung der Wärmebehandlungseinrichtung gekoppelt ist. A plant for carrying out the process with a belt Continuously along a belt guiding belt guide device, one arranged on the belt run Zinc coating device, a subsequently arranged, heat treatment device formed by a continuous furnace for the belt and one also on the belt run lying, downstream of the heat treatment device Measuring device for measuring the iron content of the zinc layer characterized in that the measuring device with a a controller connected to a process computer, which is connected via a control line with the heating device of the heat treatment device is coupled.
Zur Berücksichtigung einer Vielzahl von die Qualität des beschichteten Bandes beeinflussenden Parametern ist vorteilhaft der Regler mit einem Prozeßrechner gekoppelt.To take into account a large number of parameters influencing the quality of the coated strip advantageously the controller is coupled to a process computer.
Zur Feststellung der Durchreaktion der Zn-Fe-Schicht ist zweckmäßig mindestens eine zusätzliche: als Pyrometer ausgebildete Strahlungs-Meßeinrichtung an der Bandlaufstrecke nach oder in der Wärmebehandlungseinrichtung vorgesehen, die ebenfalls mit dem Regler gekoppelt ist.To determine the reaction of the Zn-Fe layer, at least one additional one is expedient: as a pyrometer trained radiation measuring device provided on the belt path after or in the heat treatment device, which is also coupled to the controller.
Die Erfindung ist nachfolgend anhand der Zeichnung näher erläutert, wobei Fig. 1 in schematischer Darstellung eine Anlage zum Verzinken eines Bandes veranschaulicht. In dem in Fig. 2 dargestellten Diagramm ist die Abhängigkeit des Eisengehaltes von der Heizleistung veranschaulicht. Fig. 3 zeigt eine Abweichung des Eisengehaltes in der Zn-Fe-Schicht in Abhängigkeit der Bandbreite, Fig. 4 die Abhängigkeit der Strahlungsemission von der Haltezeit.The invention is explained in more detail below with reference to the drawing, with FIG. 1 in a schematic representation illustrates a system for galvanizing a strip. The dependency is in the diagram shown in FIG of the iron content from the heating output. Fig. 3 shows a deviation in the iron content in the Zn-Fe layer as a function of the bandwidth, FIG. 4 the dependence of the radiation emission on the holding time.
Wie aus Fig. 1 ersichtlich, wird ein zu verzinkendes Stahlband 1 mittels einer Bandführungseinrichtung, die eine
Mehrzahl von Bandführungsrollen 2 aufweist, kontinuierlich entlang einer Bandlaufstrecke 3 von einer nicht dargestellten
Abwickelstation zu einer ebenfalls nicht dargestellten Aufwickelstation geführt. An der Bandlaufstrecke 3 gelangt das
Stahlband zunächst zu einer Zinkbeschichtungseinrichtung 4, die beim dargestellten Ausführungsbeispiel als Feuerverzinkungseinrichtung
ausgestaltet ist. Diese weist ein Zinkbad 5 und eine in Bandlaufrichtung 6 nachgeordnete Abstreifeinrichtung
7 zur Sicherstellung einer konstanten und über die Bandbreite gleich dicken Zinkschicht auf.As can be seen from Fig. 1, a steel strip 1 to be galvanized is by means of a strip guide device, the one
Has a plurality of
Anschließend danach wird das Stahlband 1 über eine Heiß-Dickenmeßanlage 8 zur Messung der Dicke der Zinkschicht
und über eine Temperaturmeßeinrichtung 9 in eine zwei Durchlauföfen 10, 11 aufweisende Wärmebehandlungseinrichtung
13 eingeleitet. Im ersten Durchlaufofen 10 erfolgt in erster Linie die Aufheizung des verzinkten Stahlbandes
1 auf die erforderliche Glühtemperatur. Im nachfolgend angeordneten weiteren Durchlaufofen 11 wird das Stahlband 1
in erster Linie auf einer konstanten Glühtemperatur gehalten.Subsequently, the steel strip 1 is placed over a hot thickness measuring
Nach Austritt des Stahlbandes 1 aus dem zweiten Durchlaufofen 11 wird mittels eines Pyrometers 14 die Strahlungsemission
des fertig geglühten Stahlbandes 1 gemessen. Anschließend sind an der Bandführung Kühleinrichtungen
15 angeordnet. An einer der Wärmebehandlungseinrichtung 13 nachgeordneten Stelle der Bandlaufstrecke 3 ist weiters
eine Meßeinrichtung 16 zum Messen des Eisengehaltes der Zn-Fe-Schicht vorgesehen. die vorzugsweise, wie durch
den Doppelpfeil 17 angedeutet. über die Bandbreite verschiebbar ist so daß an verschiedenen Stellen der Bandbreite
eine Messungdurchgeführt werden kann. Die Meßeinrichtung arbeitet nach dem Röntgenstrahlverfahren.After the steel strip 1 has left the second
Ein mit einem Prozeßrechner 18 gekoppelter Regler 19 ist mit Heizeinrichtungen der beiden Durchlauföfen 10, 11
zwecks Einstellung der Heizleistung gekoppelt. wie dies durch die Doppelpfeile 20 veranschaulicht ist.A
Die Funktion der Anlage ist wie folgt:The function of the system is as follows:
Das im Zinkbad 5 gelöste Aluminium bildet aufgrund seiner höheren Affinität zum Eisen zunächst am Stahlband
eine Eisen-Aluminium-Schicht (Fe2Al5). welche eine Reaktion des Eisensubstrates des Stahlbandes 1 und der Zinkschicht
verhindert. Dieses System (Stahlband 1 + Fe-Al-Schicht + flüssige Zn-Schicht) gelangt in den ersten Durchlaufofen
10 und wird auf eine Temperatur von 450°C bis 700°C gebracht. Im zweiten Durchlaufofen 11 wird das Stahlband
1 auf einer bestimmten Temperatur gehalten oder noch weiter erwärmt. Der hierbei einsetzende Diffusionsprozeß des
Eisens in die Zinkschicht wandelt die Reinzinkschicht in eine Zink-Eisen-Schicht um.The aluminum dissolved in
Hierbei wird zuerst die im Zinkbad gebildete Fe-Al-Sperrschicht durch das Zn-Fe-Wachstum an den Korngrenzen des Grundmaterials aufgebrochen, und ein pilzförmiges Wachstum der Zn-Fe-Komplexe beginnt. Je nach Eisengehalt bilden sich unterschiedliche metallurgische Phasen aus. die unterschiedliche Eigenschaften aufweisen.First, the Fe-Al barrier layer formed in the zinc bath is formed by the Zn-Fe growth at the grain boundaries of the base material is broken up, and a mushroom-shaped growth of the Zn-Fe complexes begins. Depending on the iron content different metallurgical phases are formed. that have different properties.
Die wichtigsten Phasen sind in nachstehender Tabelle aufgelistet:
Wie aus der obigen Tabelle ersichtlich ist, werden die Phasen mit zunehmendem Eisengehalt immer härter bzw. spröder. Dies kann bei anschließender Verformung (z.B. Tiefziehen) zu erhöhtem Abrieb führen, wodurch die Haftung der Zn-Fe-Schicht sehr schlecht wird.As can be seen from the table above, the phases with increasing iron content increasingly harder or more brittle. This can with subsequent deformation (e.g. deep drawing) to increased Cause abrasion, which causes the adhesion of the Zn-Fe layer very much gets bad.
Im Fall von elektrolytischen Verzinkungsanlagen ist der Vorgang analog, wobei der Al-Gehalt jedoch eine untergeordnete Rolle spielt.The process is in the case of electrolytic galvanizing plants analogously, but the Al content, however, plays a subordinate role plays.
Zur Einstellung des optimalen Eisengehaltes, d.h. eines
Eisengehaltes, der eine Verformung des verzinkten Stahlbandes 1
ohne Schwierigkeiten zuläßt, wird mit einer on-line-Röntgenfluoreszenzmessung
mit Hilfe des Meßgerätes 16 der
Eisengehalt der Fe-Zn-Schicht bestimmt, vorzugsweise über die
gesamte Bandbreite und auch über die gesamte Bandlänge. Dieser
Istwert des Eisengehaltes der Zn-Fe-Schicht wird mit Hilfe des
Reglers 19 mit einem als Führungsgröße vorgegebenen Wert des
Eisengehaltes der Zn-Fe-Schicht verglichen. Eine eventuelle
Regelabweichung wird über den Regler 19 durch eine Änderung der
als Stellgröße dienenden Heizleistung des ersten bzw. auch des
zweiten Durchlaufofens 10, 11 ausgeglichen. Ist etwa der
gemessene Eisengehalt geringer als der gewünschte, wird die
Heizleistung des Durchlaufofens so lange erhöht, bis die
Regelabweichung Null wird oder unter einen vorgegebenen Wert
abgesunken ist (Totband), wie dies anhand der Fig. 2 nachfolgend
erläutert ist:To set the optimal iron content, i.e. one
Iron content, which is a deformation of the galvanized steel strip 1
with no problems, with an online X-ray fluorescence measurement
with the help of the
Der Verlauf I gibt den Zusammenhang zwischen Fe-Gehalt der Zn-Fe-Schicht und Heizleistung an. Dieser wird empirisch ermittelt und z.B. als formelmäßiger Zusammenhang oder in Tabellenform dem Regelungsrechner (Regler 19) zur Verfügung gestellt.The course I gives the relationship between the Fe content of the Zn-Fe layer and heating output. This is determined empirically and e.g. as a formula or in tabular form Control computer (controller 19) provided.
Verhält sich das Stahlband 1 genau entsprechend dem Verlauf I, so erreicht man mit der Leistungseinstellung P1 den gewünschten Sollwert des Fe-Gehaltes Fe1 (Punkt A). Verhält sich das Band etwas unterschiedlich, z.B. nach Verlauf II, durch unbeabsichtigte Veränderungen von Verfahrensparametern, wie z.B. Drift der Umgebungstemperatur, Drift in der Transformatorenleistung bei elektrischer Heizung der Durchlauföfen oder bei Auftreten sonstiger Störungen, so ergibt sich am Band ein Fe-Gehalt Fe2, der vom Sollwert Fe1 abweicht (Punkt B).If the steel strip 1 behaves exactly according to the course I, the desired setting of the Fe content Fe 1 (point A) is achieved with the power setting P 1 . If the strip behaves somewhat differently, e.g. according to curve II, due to unintentional changes in process parameters, such as drift of the ambient temperature, drift in the transformer output when the continuous furnaces are electrically heated or if other faults occur, the strip will have an Fe content of Fe 2 which deviates from the nominal value Fe 1 (point B).
Die Heizleistung wird nun z.B. in Abhängigkeit von der Steigung
dP/dFe im Punkt A'des Verlaufes I verändert, z.B. um den Wert
Für den Verstärkungsfaktor k = 1 ist die geänderte Leistung im Bild mit P2 eingezeichnet. Es ergibt sich ein verbesserter Wert des Fe-Gehaltes (Punkt C). Die Regelung erfolgt, solange eine Regelabweichung festgestellt wird (Fe-Gehalt ≠ Fe1).For the gain factor k = 1, the changed power is shown in the picture with P 2 . The result is an improved value of the Fe content (point C). Regulation takes place as long as a system deviation is determined (Fe content ≠ Fe 1 ).
Ungleichmäßige Fe-Gehaltsprofile über die Bandbreite können
durch verschiedene Effekte entstehen:
All die oben aufgezählten, den Eisengehalt beeinflussenden
Faktoren können erfindungsgemäß dadurch berücksichtigt werden,
daß diese Faktoren festlegende Daten in den Prozeßrechner 18
eingegeben werden und infolge der Kopplung des Prozeßrechners 18
mit dem Regler 19 von letzterem bei der Festlegung der
Heizleistung der Wärmebehandlungseinrichtung 13 berücksichtigt
werden.All of those listed above that affect iron content
According to the invention, factors can be taken into account by
that these factors defining data in the process computer 18th
can be entered and due to the coupling of the process computer 18th
with the
Gewollte Veränderungen von Verfahrensparametern, wie z.B. ein
Wechsel der Dimension des Stahlbandes 1, ein Wechsel der
chemischen Zusammensetzung des Stahlbandes 1, ein Wechsel der
Zinkschichtdicke bzw. ein Wechsel der Fördergeschwindigkeit des
Stahlbandes 1, werden zur Berücksichtigung der Heizleistung der
Wärmebehandlungseinrichtung dem Prozeßrechner 18 eingegeben. Desired changes in process parameters, e.g. on
Changing the dimension of the steel strip 1, changing the
chemical composition of the steel strip 1, a change of
Zinc layer thickness or a change in the conveying speed of the
Steel strip 1, to take into account the heat output of the
Heat treatment device entered the
Da sich bei der Umwandlung der Zinkschicht in eine Zn-Fe-Schicht
der Emissionsgrad der Beschichtung sprunghaft verändert, sobald
die Oberfläche der Zn-Fe-Schicht Eisen aufweist (vgl. Fig. 4),
kann eine Strahlungsemissionsmessung mit Hilfe eines Pyrometers
14 zur Beurteilung der galvannealten Schicht herangezogen
werden. Das Pyrometer 14 kann nach oder in der
Wärmebehandlungseinrichtung 13 (z.B. zwischen Galvannealingofen
10 und Halteofen 11) angeordnet werden. Bei dieser Messung
handelt es sich um eine Information über die rein von der
Oberfläche des Stahlbandes 1, d.h. dessen Zn-Fe-Schicht,
emittierte Strahlungsenergie, die eine Funktion der Temperatur
und der Emissionszahl des Oberflächenzustandes ist. So liegt die
Emissionszahl einer Reinzinkoberfläche bei unter 0,2 und die
einer durchreagierten Fe-Zn-Oberfläche bei etwa 0,6. Ist die Zn-Fe-Schicht
an der Stelle des Pyrometers noch nicht
durchreagiert, wird die Heizleistung der Durchlauföfen 10, 11
mit Hilfe des an einen Prozeßrechner 18 angeschlossenen Reglers
19, dem der Meßwert des Pyrometers eingegeben wird, erhöht, bis
eine Durchreaktion mit Hilfe des Pyrometers feststellbar ist.
Die Heizleistung bildet hier die Stellgröße des Regelvorganges.Since the conversion of the zinc layer into a Zn-Fe layer
the emissivity of the coating changes abruptly as soon as
the surface of the Zn-Fe layer has iron (see FIG. 4),
can make a radiation emission measurement using a
Durch die starke Änderung des Emissionsgrades im Falle des
Eintretens der sogenannten Durchreaktion, d.h. wenn das Eisen
bis an die Oberfläche der Zn-Schicht vordringt, ist es weiters
möglich, jene Stelle in Bandlaufrichtung 6 zu erkennen, ab der
die Durchreaktion abgeschlossen ist. Dies kann z.B. dadurch
erfolgen, daß zwei oder mehrere Pyrometer in Bandlaufrichtung 6
hintereinander angeordnet werden. Durch die Kenntnis über den
Emissionsgradsprung beim Durchreagieren der Zn-Fe-Schicht und
aus den gemessenen Strahlungsintensitäten der Pyrometer 14 kann
auf jene Stelle der Bandlaufstrecke 3 geschlossen werden, ab der
die Zn-Fe-Schicht bereits durchreagiert ist.Due to the strong change in emissivity in the case of
Occurrence of the so-called through reaction, i.e. if the iron
It penetrates as far as the surface of the Zn layer
possible to recognize that point in the tape running direction 6 from which
the through reaction is complete. This can e.g. thereby
take place that two or more pyrometers in the tape running direction 6
be arranged one behind the other. By knowing about the
Emissivity jump when reacting through the Zn-Fe layer and
from the measured radiation intensities the
Die Heizleistung der Durchlauföfen 10, 11 wird nun mit Hilfe des
Reglers 19 so geregelt, daß die Durchreaktion ab einer
bestimmten gewünschten Stelle abgeschlossen ist. Eine weitere
Möglichkeit, die Stelle in Bandlaufrichtung zu erkennen, an der
die Durchreaktion abgeschlossen ist, besteht darin, die Pyrometermessung
mit einer thermischen Modellrechnung zu vergleichen.The heating power of the
Dazu wird der Pyrometermessung einmal der empirisch ermittelte Emissionsgrad für die Reinzinkschicht und ein zweites Mal der empirisch ermittelte Emissionsgrad der durchreagierten Schicht zugrundegelegt. Dies ergibt rechnerisch zunächst zwei entsprechend den unterschiedlichen Emissionszahlen verschiedene Pyrometer-Temperaturwerte für das laufende Band.For this purpose, the pyrometer measurement is the empirically determined one Emissivity for the pure zinc layer and a second time empirically determined emissivity of the fully reacted layer based on. In terms of calculations, this initially results in two different according to the different emission numbers Pyrometer temperature values for the running belt.
Durch Vergleich dieser beiden Werte mit einer parallel für den betreffenden Bandabschnitt durchgeführten Modellerrechnung der Temperatur, die sich aus der Eintrittstemperatur des Stahlbandes in die Wärmebehandlungseinrichtung und der dieser zugeführten Leistung errechnen läßt, wird festgestellt, welcher der beiden Pyrometer-Temperaturwerte mit der errechneten Temperatur übereinstimmt. Dieser Temperaturwert wird dann als richtige Temperatur des laufenden Stahlbandes 1 angesehen. Der zugehörige Emissionsgrad gibt an, ob das Stahlband noch eine Reinzinkauflage aufweist oder ob die Beschichtung bereits durchreagiert ist. Die Heizleistung der Wärmebehandlungseinrichtung wird so geregelt, daß die Durchreaktion an der Stelle des Pyrometers 14 abgeschlossen ist.By comparing these two values with one in parallel for the Model calculation of the relevant band section Temperature resulting from the entry temperature of the steel strip into the heat treatment device and the one supplied to it Performance calculated, it is determined which of the two Pyrometer temperature values with the calculated temperature matches. This temperature value is then considered correct Temperature of the running steel strip 1 viewed. The associated one Emissivity indicates whether the steel strip is still a pure zinc coating or whether the coating has already reacted is. The heat output of the heat treatment device is so regulated that the reaction at the point of the pyrometer 14th is completed.
Für die Qualität des Produktes ist es von großer Bedeutung, daß die Zn-Fe-Schicht einen Fe-Gehalt innerhalb enger Grenzen aufweist und daß gleichzeitig die Beschichtung vollständig durchreagiert ist. Da aus der Information über den Fe-Gehalt der Zn-Fe-Schicht alleine nicht unmittelbar geschlossen werden kann, daß die Beschichtung auch durchreagiert ist, ist es von Vorteil, die Heizleistungsverteilung über die Länge der Wärmebehandlungseinrichtung aufgrund einer Kombination der beiden Informationen, nämlich des Fe-Gehalts der Zn-Fe-Schicht und der Emissionsgradbestimmung, einzustellen.For the quality of the product it is very important that the Zn-Fe layer has an Fe content within narrow limits and that at the same time the coating is complete is fully reacted. Because from the information about the Fe content of the Zn-Fe layer alone cannot be closed immediately, that the coating has also reacted, it is advantageous the heat output distribution over the length of the heat treatment device due to a combination of the two information, namely the Fe content of the Zn-Fe layer and the Emissivity determination.
Jedes der oben beschriebenen Regelverfahren wird in einem geschlossenen Regelkreis betrieben. Each of the control methods described above is in one closed loop operated.
Die Stellgrößen für die Wärmebehandlungseinrichtung 13 werden
von einem Rechner des Reglers 19 aus den gemessenen Werten und
der Soll-Ist-Abweichung für den Eisengehalt und gegebenenfalls
für den Emissionsgrad berechnet. Dabei können die Meßwerte aus
der Heißmessung (Schichtdickenmessung) und/oder einer vor dem
Nachglühofen angeordneten Temperaturmessung, die
Bandgeschwindigkeit, die zugeführte Heizleistung in den
einzelnen Zonen der Wärmebehandlungseinrichtung 13 herangezogen
werden, um die Treffsicherheit des Regelvorganges zu erhöhen,
wie dies durch die Pfeile 20, 21 angedeutet ist.The manipulated variables for the
Die Berechnung der Stellgrößen erfolgt mit Hilfe eines
Regelmodells, das entsprechend den an der konkreten Anlage zur
Verfügung stehenden Meßgeräten und Stelleinrichtungen
unterschiedlich sein kann. Für eine konkrete
Anlagenkonfiguration wird das Regelmodell durch Modellparameter
beschrieben. Diese Modellparameter können für unterschiedliches
Grundmaterial, Banddimension, Al-Gehalt im Zinkbad verschieden
sein. Grundmaterial, Banddimension, Al-Gehalt im Zinkbad können
von einem übergeordneten Rechner (z.B.
Produktionsplanungsrechner) oder einer externen Eingabeeinheit
an den Prozeßrechner 18 übertragen werden. Sie können mit dem
für das herzustellende Produkt gültigen Sollwert an den Rechner
des Reglers 19 übertragen werden, vgl. Pfeil 22.The manipulated variables are calculated using a
Rule model, which corresponds to the on the specific system for
Available measuring devices and control devices
can be different. For a concrete one
Plant configuration becomes the rule model through model parameters
described. These model parameters can be used for different
Base material, tape dimension, Al content in the zinc bath different
his. Base material, tape dimension, Al content in the zinc bath can
from a higher-level computer (e.g.
Production planning computer) or an external input unit
are transmitted to the
Der Rechner des Reglers 19 berechnet dann unter Berücksichtigung
dieser Modellparameter des Regelungsmodells die entsprechenden
Stellbefehle.The computer of the
Je nach Bauart der Durchlauföfen 10, 11 kann die Gesamtleistung
oder die Leistung von Teilen der Durchlauföfen 10, 11 (Zonen in
Bandlängsrichtung) innerhalb gewisser Grenzen eingestellt
werden. Von besonderem Vorteil ist es, wenn die Verteilung der
Wärmeeinbringung auf das Band, also die Heizleistung der
Durchlauföfen 10, 11, über die Breite ebenfalls innerhalb
gewisser Grenzen einstellbar ist, da es hierdurch möglich ist, die in Fig. 3 dargestellte Abweichung
des Fe-Gehaltes der Zn-Fe-Schicht, die trotz gleichmäßiger Dicke der Zn-Fe-Schicht auftreten kann, auszugleichen.Depending on the design of the
Claims (10)
- A process of galvanizing a strip (1), in particular a steel strip (1), wherein the strip (1) is continuously coated with zinc in a continuous process either electrolytically or in a zinc bath according to the hot dip galvanizing method, subsequently is subjected to a heat treatment in an open-ended furnace (10, 11) for the formation of a Zn-Fe layer and, furthermore, to an on-line control of the zinc layer by measuring the iron content of the zinc layer by means of X-ray fluorescence, wherein the galvanizing procedure is controlled as a function of the iron content of the zinc layer, characterized in that a value of the iron content of the Zn-Fe layer is determined as a reference input value, the actual value of the iron content of the Zn-Fe layer is compared to the reference input value, and a control deviation is compensated for via an automatic control (19) in a closed control circuit by aid of a computer which registers the control deviation by taking into account the dimension of the strip, the base material of the strip (1) in terms of its chemical composition and/or structure, the thickness of the zinc layer, the composition of the zinc bath, such as, e.g., its Al-content, the strip speed as well as, optionally, additional parameters, such as the temperature of the strip (1) at the entry of the open-ended furnace (10, 11) and the ambient temperature, and controls the calorific output of the open-ended furnace (10, 11) via actuating commands.
- A process according to claim 1, characterized in that for determining the complete reaction of the Zn-Fe layer, the radiation emission of the surface of the strip (1) is measured after or during the heat treatment by means of at least one pyrometer (14).
- A process according to claim 2, characterized in that along the strip conveying path (3) that site is determined by measurement by means of several pyrometers (14) consecutively arranged in the strip conveying direction (6), from which the Zn-Fe layer has completely reacted, and that this site, by controlling the calorific output of the open-ended furnace (10, 11), is brought in front of a boundary site, seen in the strip conveying direction (6), from which the Zn-Fe layer must have completely reacted at the latest.
- A process according to one or several of claims 1 to 3, characterized in that the calorific output and thus the temperature within the open-ended furnace (10, 11) are adjustable to be different in individual heating zones (12, 12').
- A process according to claim 4, characterized in that the calorific output is adjustable to be different in heating zones (12, 12') adjacently arranged in the sense of the strip width.
- A process according to claim 4 or 5, characterized in that the calorific output is adjustable to be different in heating zones consecutively arranged in the strip conveying direction.
- A process according to one or several of claims 4 to 6, characterized in that measurement of the iron content and/or of the radiation emission is effected at positions distributed over the strip width.
- An arrangement for carrying out the process according to one or several of claims 1 to 7, comprising a strip guiding means (2) guiding a strip (1) continuously along a strip conveying path (3), a zinc coating means (4) arranged on the strip conveying path (3), a consecutively arranged heat treating means (13) for the strip (1), formed by an open-ended furnace (10, 11), and a measuring means (16) for measuring the iron content of the zinc layer also located on the strip conveying path (3) downstream of the heat treating means (13), characterized in that the measuring means (16) is coupled with an automatic control (19), which, in turn, is coupled with the heating means of the heat treating means (13) via a control line.
- An arrangement according to claim 8, characterized in that the automatic control (19) is coupled with a process computer (18).
- An arrangement according to claim 8 or 9, characterized in that at least one additional radiation measuring means designed as a pyrometer (14) is provided on the strip conveying path (3) downstream of, or within, the heat treating means (13), and also is coupled with the automatic control (19).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT65492 | 1992-03-31 | ||
AT0065492A AT397815B (en) | 1992-03-31 | 1992-03-31 | METHOD FOR GALVANIZING A TAPE AND SYSTEM FOR IMPLEMENTING THE METHOD |
AT654/92 | 1992-03-31 |
Publications (4)
Publication Number | Publication Date |
---|---|
EP0571353A2 EP0571353A2 (en) | 1993-11-24 |
EP0571353A3 EP0571353A3 (en) | 1994-01-26 |
EP0571353B1 EP0571353B1 (en) | 1996-01-31 |
EP0571353B2 true EP0571353B2 (en) | 2000-01-26 |
Family
ID=3496298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93890053A Expired - Lifetime EP0571353B2 (en) | 1992-03-31 | 1993-03-23 | Process of galvanizing a strip and arrangement for carrying out the process |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0571353B2 (en) |
JP (1) | JPH06207297A (en) |
AT (2) | AT397815B (en) |
DE (1) | DE59301528D1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10021948A1 (en) * | 2000-05-05 | 2001-11-22 | Thyssenkrupp Stahl Ag | Process for galvanizing a steel strip comprises passing the strip through a coating apparatus and a continuous furnace, and heat treating to form a zinc-iron layer |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT405770B (en) * | 1997-09-24 | 1999-11-25 | Voest Alpine Ind Anlagen | METHOD FOR CONTROLLING A '' GALVANNEALING '' PROCESS |
BRPI0412601B1 (en) * | 2003-07-29 | 2013-07-23 | method for producing a hardened steel part | |
WO2009021279A1 (en) * | 2007-08-10 | 2009-02-19 | Bluescope Steel Limited | Coating line control |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3307968A (en) * | 1963-09-03 | 1967-03-07 | Armco Steel Corp | Method and apparatus for controlling the alloying of zinc coatings |
JPH068791B2 (en) * | 1984-02-10 | 1994-02-02 | 川崎製鉄株式会社 | Measuring method of alloying degree of galvannealed steel sheet |
FR2563537A1 (en) * | 1984-04-25 | 1985-10-31 | Stein Heurtey | Process and device for diffusion annealing for obtaining metal sheets with alloy coating |
US4659437A (en) * | 1985-01-19 | 1987-04-21 | Tokusen Kogyo Kabushiki Kaisha | Method of thermal diffusion alloy plating for steel wire on continuous basis |
JPH01252761A (en) * | 1987-12-08 | 1989-10-09 | Kawasaki Steel Corp | Sheet temperature controller in alloying furnace for hot-dip galvanization |
JPH0637702B2 (en) * | 1988-09-29 | 1994-05-18 | 川崎製鉄株式会社 | Fuel control method for hot dip galvanizing alloy furnace |
JP2904891B2 (en) * | 1990-08-31 | 1999-06-14 | 日新製鋼株式会社 | Online alloying degree measuring device for galvanized steel sheet |
-
1992
- 1992-03-31 AT AT0065492A patent/AT397815B/en not_active IP Right Cessation
-
1993
- 1993-03-23 DE DE59301528T patent/DE59301528D1/en not_active Expired - Fee Related
- 1993-03-23 AT AT93890053T patent/ATE133717T1/en not_active IP Right Cessation
- 1993-03-23 EP EP93890053A patent/EP0571353B2/en not_active Expired - Lifetime
- 1993-03-31 JP JP5074663A patent/JPH06207297A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10021948A1 (en) * | 2000-05-05 | 2001-11-22 | Thyssenkrupp Stahl Ag | Process for galvanizing a steel strip comprises passing the strip through a coating apparatus and a continuous furnace, and heat treating to form a zinc-iron layer |
DE10021948B4 (en) * | 2000-05-05 | 2004-02-19 | Thyssenkrupp Stahl Ag | Process and plant for galvanizing a steel strip |
Also Published As
Publication number | Publication date |
---|---|
EP0571353B1 (en) | 1996-01-31 |
EP0571353A2 (en) | 1993-11-24 |
JPH06207297A (en) | 1994-07-26 |
EP0571353A3 (en) | 1994-01-26 |
ATA65492A (en) | 1993-11-15 |
DE59301528D1 (en) | 1996-03-14 |
AT397815B (en) | 1994-07-25 |
ATE133717T1 (en) | 1996-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2010690B1 (en) | Hot dip coating process for a steel plate product made of high strengthheavy-duty steel | |
EP2044234B1 (en) | Method for flexibly rolling coated steel strips | |
DE102012101018B3 (en) | Process for hot dip coating a flat steel product | |
EP1819840B1 (en) | Method for hot dip coating a strip of heavy-duty steel | |
EP2824216B1 (en) | Method for manufacturing a flat steel product having a protective metal coating produced by means of hot-dip coating and continuous furnace for a hot-dip coating system | |
EP2795218B1 (en) | Nozzle device for a furnace for heat-treating a flat steel product, and furnace equipped with such a nozzle device | |
DE3411605C2 (en) | Process and device for gas carburizing of steel | |
DE2363223A1 (en) | METHOD AND DEVICE FOR CONTINUOUS HEATING OF A FERROUS METAL STRIP | |
EP0571353B2 (en) | Process of galvanizing a strip and arrangement for carrying out the process | |
EP0564437B1 (en) | Process of galvanizing a strip and arrangement for carrying out the process | |
EP3511430A1 (en) | Method for a continuous heat treatment of a steel strip, and installation for dip coating a steel strip | |
DE102004023886B4 (en) | Method and device for finishing flexibly rolled strip material | |
DE69224596T2 (en) | Method and device for the automatic control of continuous furnaces heated with jet pipes | |
WO2020079200A1 (en) | Method for producing a heat-formable flat steel product | |
DE2729931C3 (en) | Tower furnace for the heat treatment of rolled sheets | |
DE3933244C1 (en) | Continuous zinc coating appts. for coating metal strip - comprises melt alloy bath covered with hood having hydrogen, steam and inert gas atmos. and control system | |
WO2018050857A1 (en) | Flexible heat treatment installation for metallic strip of a horizontal construction | |
DE69107931T2 (en) | Continuous annealing line with a carburizing or nitriding furnace. | |
DE69723608T3 (en) | Primary cooling process for continuous annealing of steel strip | |
DE102015001438A1 (en) | Flexible heat treatment plant for metallic strip | |
DE10021948B4 (en) | Process and plant for galvanizing a steel strip | |
DE10321791A1 (en) | Process for controlling and/or regulating the temperature of a metal strip, especially in a finishing train, comprises comparing a theoretical temperature gradient with an actual temperature gradient to acquire adjusting signals | |
DE69123038T2 (en) | SYSTEM FOR CONTINUOUS COOLING OF METAL STRIPS | |
DE1521422B2 (en) | Process for the continuous manufacture of steel strips coated with a protective layer of metal, such as zinc, aluminum and the like | |
DE3039424C2 (en) | Burner-heated continuous furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE DE ES FR GB IT LU NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE DE ES FR GB IT LU NL SE |
|
17P | Request for examination filed |
Effective date: 19940211 |
|
17Q | First examination report despatched |
Effective date: 19950216 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE ES FR GB IT LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19960131 |
|
REF | Corresponds to: |
Ref document number: 133717 Country of ref document: AT Date of ref document: 19960215 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 59301528 Country of ref document: DE Date of ref document: 19960314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19960323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19960331 |
|
ITF | It: translation for a ep patent filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19960430 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19960523 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: SOCIETE SOLLAC Effective date: 19961022 |
|
R26 | Opposition filed (corrected) |
Opponent name: SOCIETE SOLLAC Effective date: 19961025 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: SOCIETE SOLLAC |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20000126 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE DE ES FR GB IT LU NL SE |
|
NLR2 | Nl: decision of opposition | ||
ITF | It: translation for a ep patent filed | ||
GBTA | Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977) | ||
ET3 | Fr: translation filed ** decision concerning opposition | ||
NLR3 | Nl: receipt of modified translations in the netherlands language after an opposition procedure | ||
NLR4 | Nl: receipt of corrected translation in the netherlands language at the initiative of the proprietor of the patent | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090518 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20100324 Year of fee payment: 18 Ref country code: FR Payment date: 20100325 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20100311 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20100303 Year of fee payment: 18 Ref country code: BE Payment date: 20100312 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101001 |
|
BERE | Be: lapsed |
Owner name: *VOEST-ALPINE STAHL LINZ G.M.B.H. Effective date: 20110331 Owner name: *VOEST-ALPINE INDUSTRIEANLAGENBAU G.M.B.H. Effective date: 20110331 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20111001 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110323 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20111130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110331 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110323 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110323 |