[go: up one dir, main page]

EP0566978A2 - Use of a copper-aluminium-zinc alloy as corrosion resistant material - Google Patents

Use of a copper-aluminium-zinc alloy as corrosion resistant material Download PDF

Info

Publication number
EP0566978A2
EP0566978A2 EP93106091A EP93106091A EP0566978A2 EP 0566978 A2 EP0566978 A2 EP 0566978A2 EP 93106091 A EP93106091 A EP 93106091A EP 93106091 A EP93106091 A EP 93106091A EP 0566978 A2 EP0566978 A2 EP 0566978A2
Authority
EP
European Patent Office
Prior art keywords
copper
copper alloy
maximum
alloy according
aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93106091A
Other languages
German (de)
French (fr)
Other versions
EP0566978A3 (en
EP0566978B1 (en
Inventor
Wolfgang Dr. Dürrschnabel
Monika Dr. Breu
Gert Dr. Müller
Phan Tan Dr. Tai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Publication of EP0566978A2 publication Critical patent/EP0566978A2/en
Publication of EP0566978A3 publication Critical patent/EP0566978A3/en
Application granted granted Critical
Publication of EP0566978B1 publication Critical patent/EP0566978B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent

Definitions

  • the invention relates to the use of a copper-aluminum-zinc alloy as a corrosion-resistant material for pipes in installation and sanitary engineering and in the drinking water sector.
  • Pipes for the purpose mentioned are widely made from oxygen-free copper (SF-Cu).
  • SF-Cu oxygen-free copper
  • a special manufacturing process can be used to create an oxidic protective layer on the inside of the pipe.
  • An alternative is an alloyed material, in which an oxidic, protective cover layer automatically forms under operating conditions.
  • a Cu-Mg-Al / Si alloy (DE-PS 3,043,833), for example, has also been proposed for the purpose mentioned, but it was only able to partially meet the requirements.
  • the invention is therefore based on the object of specifying a corrosion-resistant material for which there is no risk of pitting and in which the copper solubility and the mass removal are reduced.
  • the object is achieved in accordance with the invention by using a copper-aluminum-zinc alloy which consists of 0.1-1.0% aluminum; 0.1-1.0% zinc; The rest is copper and usual impurities (the percentages relate to the weight).
  • composition of a copper alloy of the type mentioned is known, for example, from GB-PS 1,152,481, but there is no indication of the claimed use.
  • a copper alloy with 0.1-0.5% aluminum and 0.1-0.5% zinc is used. It is also recommended to use a copper alloy that additionally contains one or more of the elements silicon, magnesium, iron, tin, niobium up to a maximum content of 1.5%. Copper alloys having the compositions according to claims 4 to 10 are preferably used.
  • Phosphorus improves the pourability and acts as a deoxidizer.
  • Pipes measuring 18 x 1 mm were made of SF-Cu and an alloy according to the invention with the composition according to the following table: material SF-Cu soft, 50-70 HB hard, 100-120 HB CuAl0.3Zn0.3 soft, 50-70 HB hard, 100-120 HB
  • the current density-potential curves of the alloy CuAl0.3Zn0.3 and SF-Cu are shown in comparison in FIG. It can be seen that the alloyed elements significantly expand the range of corrosion resistance. The passive current density is reduced compared to SF-Cu, which speaks for the better cover layer quality. The breakthrough potentials have shifted towards more positive potentials.
  • the polarization resistance R p or the reciprocal, the polarization conductance R p ⁇ 1 is a measure of the rate of corrosion. The lower the polarization conductance, the greater the resistance to uniform corrosion.
  • Figures 2a to c compare the polarization conductance of the material CuAl0.3Zn0.3 in different states (soft / hard) with that of SF-Cu. Unalloyed Cu not only exhibits poorer behavior, but also considerable scatter.
  • the mass loss is considerably reduced compared to SF-Cu according to FIG. 3.
  • the copper-aluminum-zinc alloy according to the invention shows a significantly better behavior than SF-Cu. Not only is the quality of the covering layer improved, but also the rate of formation is influenced and, above all, the potential range of corrosion resistance is expanded. This formation of the passive layer significantly reduces the Cu solubility.
  • Al is capable of forming reaction products in acidic media and thus contributing to the formation of an effective protective layer, the same applies to Zn in alkaline media.
  • Both additives stabilize each other and are able to cover a relatively wide pH range together in the Cu-Al-Zn system.
  • the materials relating to the invention can thus not only be used in neutral waters. Certain pH fluctuations do not have a negative effect on the corrosion behavior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

The invention relates to the use of a copper-aluminium-zinc alloy, consisting of 0.1 - 1.0% of aluminium; 0.1 - 1.0% of zinc; the remainder being copper and the usual impurities, as a corrosion-resistant material for pipes in plumbing and sanitary technology and in the drinking-water field. <IMAGE>

Description

Die Erfindung betrifft die Verwendung einer Kupfer-Aluminium-Zink-Legierung als korrosionsbeständiger Werkstoff für Rohre in der Installations- und Sanitärtechnik und auf dem Trinkwassersektor.The invention relates to the use of a copper-aluminum-zinc alloy as a corrosion-resistant material for pipes in installation and sanitary engineering and in the drinking water sector.

Werkstoffe, die für den obigen Verwendungszweck eingesetzt werden, müssen vielfachen Anforderungen hinsichtlich ihrer Korrosionsbeständigkeit genügen. Die Mehrzahl der Schadensfälle wird durch gleichmäßige Flächenkorrosion oder Lochfraß ausgelöst. Durch unsachgemäße Montage kann es außerdem zu Korrosionsangriffen im Bereich von Lötstellen und Verbindungen kommen.Materials that are used for the above purpose have to meet multiple requirements with regard to their corrosion resistance. The majority of damage cases are caused by even surface corrosion or pitting. Improper installation can also lead to corrosion attacks in the area of solder joints and connections.

Rohre für den genannten Einsatzzweck werden verbreitet aus sauerstofffreiem Kupfer (SF-Cu) hergestellt. Durch spezielle Herstellungsverfahren kann auf der Rohrinnenfläche eine oxidische Schutzschicht erzeugt werden. Eine Alternative ist ein legierter Werkstoff, bei dem sich unter Einsatzbedingungen von selbst eine oxidische, schützende Deckschicht bildet.Pipes for the purpose mentioned are widely made from oxygen-free copper (SF-Cu). A special manufacturing process can be used to create an oxidic protective layer on the inside of the pipe. An alternative is an alloyed material, in which an oxidic, protective cover layer automatically forms under operating conditions.

Für den genannten Einsatzweck ist weiterhin beispielsweise eine Cu-Mg-Al/Si-Legierung (DE-PS 3.043.833) vorgeschlagen worden, welche jedoch die gestellten Anforderungen auch nur teilweise erfüllen konnte.A Cu-Mg-Al / Si alloy (DE-PS 3,043,833), for example, has also been proposed for the purpose mentioned, but it was only able to partially meet the requirements.

Der Erfindung liegt daher die Aufgabe zugrunde, einen korrosionsbeständigen Werkstoff anzugeben, für den keine Lochfraßgefährdung besteht und bei dem die Kupfer-Löslichkeit und der Massenabtrag herabgesetzt werden.The invention is therefore based on the object of specifying a corrosion-resistant material for which there is no risk of pitting and in which the copper solubility and the mass removal are reduced.

Die Aufgabe wird erfindunsgemäß durch die Verwendung einer Kupfer-Aluminium-Zink-Legierung gelöst, die aus 0,1 - 1,0 % Aluminium; 0,1 - 1,0 % Zink; Rest Kupfer und üblichen Verunreinigungen besteht (die Prozentangaben beziehen sich dabei auf das Gewicht).The object is achieved in accordance with the invention by using a copper-aluminum-zinc alloy which consists of 0.1-1.0% aluminum; 0.1-1.0% zinc; The rest is copper and usual impurities (the percentages relate to the weight).

Die Zusammensetzung einer Kupferlegierung der genannten Art ist zwar beispielsweise aus der GB-PS 1.152.481 bekannt, dort findet sich jedoch kein Hinweis auf den beanspruchten Verwendungszweck.The composition of a copper alloy of the type mentioned is known, for example, from GB-PS 1,152,481, but there is no indication of the claimed use.

Nach einer bevorzugten Ausführungsform der Erfindung wird eine Kupferlegierung mit 0,1 - 0,5 % Aluminium und 0,1 - 0,5 % Zink verwendet. Weiterhin empfiehlt es sich, eine Kupferlegierung zu verwenden, die zusätzlich ein oder mehrere der Elemente Silizium, Magnesium, Eisen, Zinn, Niob bis zu einem Maximalgehalt von insgesamt 1,5 % enthält. Vorzugsweise werden Kupferlegierungen mit den Zusammensetzungen nach den Ansprüchen 4 bis 10 verwendet.According to a preferred embodiment of the invention, a copper alloy with 0.1-0.5% aluminum and 0.1-0.5% zinc is used. It is also recommended to use a copper alloy that additionally contains one or more of the elements silicon, magnesium, iron, tin, niobium up to a maximum content of 1.5%. Copper alloys having the compositions according to claims 4 to 10 are preferably used.

Weiterhin ist es vorteilhaft, der Legierung maximal 0,04 % Phosphor zuzusetzen. Phosphor verbessert dabei die Gießbarkeit und wirkt als Desoxidationsmittel.It is also advantageous to add a maximum of 0.04% phosphorus to the alloy. Phosphorus improves the pourability and acts as a deoxidizer.

Die Erfindung wird anhand der folgenden Ausführungsbeispiele näher erläutert:
Es wurden Rohre der Abmessung 18 x 1 mm aus SF-Cu und einer erfindungsgemäßen Legierung mit der Zusammensetzung gemäß der folgenden Tabelle hergestellt: Werkstoff SF-Cu weich, 50 - 70 HB hart, 100 - 120 HB CuAl0.3Zn0.3 weich, 50 - 70 HB hart, 100 - 120 HB
The invention is explained in more detail using the following exemplary embodiments:
Pipes measuring 18 x 1 mm were made of SF-Cu and an alloy according to the invention with the composition according to the following table: material SF-Cu soft, 50-70 HB hard, 100-120 HB CuAl0.3Zn0.3 soft, 50-70 HB hard, 100-120 HB

Zur Beurteilung des Korrosionsverhaltens wurden an den Rohrmustern Stromdichte-Potential-Kurven (Fig.1) und der elektrochemische Polarisationswiderstand (Rp) bzw. Polarisationsleitwert (Rp⁻¹) gemäß Fig. 2a - 2c gemessen sowie der Massenabtrag (Fig.3) ermittelt.To assess the corrosion behavior, current density-potential curves (Fig. 1) and the electrochemical polarization resistance (R p ) or polarization conductance (R p ⁻¹) according to Figs. 2a - 2c were measured and the mass removal (Fig. 3) determined.

Es zeigen im einzelnen:

Fig.1:
die Stromdichte-Potential-Kurve der Legierung CuAl0.3Zn0.3 im Vergleich zu SF-Cu. Bezugselektrode: gesättigte Kalomelelektrode;
Fig.2a bis 2c:
den Polarisationsleitwert Rp⁻¹ als Funktion der Versuchsdauer.
  • (a) SF-Cu, Zustand weich, 50-70 HB bzw. hart, 100-120 HB
  • (b) CuAl0.3Zn0.3, Zustand weich, 50-70 HB
  • (c) CuAl0.3Zn0,3, Zustand hart, 100-120 HB;
Fig.3:
den auf die Fläche bezogenen Gewichtsverlust nach einer Zeit von 1000 h.
The individual shows:
Fig.1:
the current density-potential curve of the alloy CuAl0.3Zn0.3 compared to SF-Cu. Reference electrode: saturated calomel electrode;
Fig.2a to 2c:
the polarization conductance R p ⁻¹ as a function of the test duration.
  • (a) SF-Cu, soft state, 50-70 HB or hard, 100-120 HB
  • (b) CuAl0.3Zn0.3, soft state, 50-70 HB
  • (c) CuAl0.3Zn0.3, hard state, 100-120 HB;
Fig. 3:
the weight loss related to the area after a period of 1000 h.

In Fig.1 sind die Stromdichte-Potential-Kurven der Legierung CuAl0.3Zn0.3 und SF-Cu im Vergleich dargestellt. Es ist zu erkennen, daß die zulegierten Elemente den Bereich der Korrosionsbeständigkeit deutlich erweitern. Die Passivstromdichte ist gegenüber SF-Cu verringert, was für die bessere Deckschichtqualität spricht. Die Durchbruchpotentiale sind zu positiveren Potentialen hin verschoben.The current density-potential curves of the alloy CuAl0.3Zn0.3 and SF-Cu are shown in comparison in FIG. It can be seen that the alloyed elements significantly expand the range of corrosion resistance. The passive current density is reduced compared to SF-Cu, which speaks for the better cover layer quality. The breakthrough potentials have shifted towards more positive potentials.

Der Polaristationswiderstand Rp bzw. der Kehrwert, der Polaristationsleitwert Rp⁻¹, ist ein Maß für die Korrossionsgeschwindigkeit. Je geringer der Polarisationsleitwert, desto größer ist die Beständigkeit gegen gleichmäßige Korrosion. Die Figuren 2a bis c vergleichen den Polarisationsleitwert des Werkstoffes CuAl0.3Zn0.3 in verschiedenen Zuständen (weich/hart) mit demjenigen von SF-Cu. Unlegiertes Cu zeigt nicht nur ein schlechteres Verhalten, sondern auch eine beträchtliche Streuung.The polarization resistance R p or the reciprocal, the polarization conductance R p ⁻¹, is a measure of the rate of corrosion. The lower the polarization conductance, the greater the resistance to uniform corrosion. Figures 2a to c compare the polarization conductance of the material CuAl0.3Zn0.3 in different states (soft / hard) with that of SF-Cu. Unalloyed Cu not only exhibits poorer behavior, but also considerable scatter.

Der Massenverlust ist gegenüber SF-Cu entsprechend Fig. 3 erheblich reduziert.The mass loss is considerably reduced compared to SF-Cu according to FIG. 3.

In allen Fällen Zeigt die erfindungsgemäße Kupfer-Aluminium-Zink-Legierung ein deutlich besseres Verhalten als SF-Cu. Es wird nicht nur die Deckschichtqualität verbessert, sondern auch die Bildungsgeschwindigkeit beeinflußt und vor allem der Potentialbereich der Korrosionsbeständigkeit ausgedehnt. Durch diese Ausbildung der Passivschicht wird die Cu-Löslichkeit deutlich herabgesetzt.In all cases, the copper-aluminum-zinc alloy according to the invention shows a significantly better behavior than SF-Cu. Not only is the quality of the covering layer improved, but also the rate of formation is influenced and, above all, the potential range of corrosion resistance is expanded. This formation of the passive layer significantly reduces the Cu solubility.

Es ist weiterhin als entscheidender Vorteil anzusehen, daß durch die Kombination der Zwangskomponenten Al und Zn der pH-Wert-Bereich für die Bildung von Deckschichten erweitert wird. Während Al gemäß dem Pourbaix-Diagramm fähig ist, auch in sauren Medien Reaktionsprodukte zu bilden und somit zum Aufbau einer wirksamen Schutzschicht beizutragen, gilt entsprechendes für Zn in alkalischen Medien. Beide Zusätze stabilisieren sich wechselseitig und sind in der Lage, gemeinsam im System Cu-Al-Zn einen verhältnismaßig weiten pH-Wert-Bereich abzudecken. Somit sind die die Erfindung betreffenden Werkstoffe nicht nur in neutralen Wässern einsetzbar. Gewisse pH-Wert-Schwankungen wirken sich nicht negativ auf das Korrosionsverhalten aus.It is also to be regarded as a decisive advantage that the combination of the compulsory components Al and Zn extends the pH range for the formation of cover layers. According to the Pourbaix diagram, Al is capable of forming reaction products in acidic media and thus contributing to the formation of an effective protective layer, the same applies to Zn in alkaline media. Both additives stabilize each other and are able to cover a relatively wide pH range together in the Cu-Al-Zn system. The materials relating to the invention can thus not only be used in neutral waters. Certain pH fluctuations do not have a negative effect on the corrosion behavior.

Verschiebt sich das Durchbruchpotential außerdem so weit in positive Richtung, daß es sich nicht mehr im Bereich des freien Korrosionspotentials befindet, so liegt ein zusätzlicher Schutz gegen Elementbildung wie z. B. Kontakt- oder Belüftungselemente vor. Zudem konnte bei den überprüften Rohrmustern keine Lochfraßgefährdung festgestellt werden.If the breakthrough potential also shifts so far in the positive direction that it is no longer in the area of the free corrosion potential, additional protection against element formation such as e.g. B. contact or ventilation elements. In addition, no risk of pitting was found in the tube samples checked.

Claims (11)

Verwendung einer Kupfer-Aluminium-Zink-Legierung, bestehend aus
0,1 - 1,0 % Aluminium; 0,1 - 1,0 % Zink;
Rest Kupfer und üblichen Verunreinigungen,
als korrosionsbeständiger Werkstoff für Rohre in der Installations- und Sanitärtechnik und auf dem Trinkwassersektor.
Use of a copper-aluminum-zinc alloy consisting of
0.1-1.0% aluminum; 0.1-1.0% zinc;
Remainder copper and usual impurities,
as a corrosion-resistant material for pipes in installation and sanitary engineering and in the drinking water sector.
Verwendung einer Kupferlegierung nach Anspruch 1 mit 0,1 - 0,5 % Aluminium; 0,1 - 0,5 % Zink für den Zweck nach Anspruch 1.Use of a copper alloy according to claim 1 with 0.1-0.5% aluminum; 0.1-0.5% zinc for the purpose of claim 1. Verwendung einer Kupferlegierung nach Anspruch 1 oder 2, die zusätzlich ein oder mehrere der Elemente Silizium, Magnesium, Eisen, Zinn, Niob bis zu einem Maximalgehalt von insgesamt 1,5 % enthält, für den Zweck nach Anspruch 1.Use of a copper alloy according to claim 1 or 2, which additionally contains one or more of the elements silicon, magnesium, iron, tin, niobium up to a maximum content of 1.5% in total, for the purpose according to claim 1. Verwendung einer Kupferlegierung nach Anspruch 3 mit maximal 0,5 % Silizium für den Zweck nach Anspruch 1.Use of a copper alloy according to claim 3 with a maximum of 0.5% silicon for the purpose according to claim 1. Verwendung einer Kupferlegierung nach Anspruch 3 mit maximal 1,5 % Magnesium für den Zweck nach Anspruch 1.Use of a copper alloy according to claim 3 with a maximum of 1.5% magnesium for the purpose according to claim 1. Verwendung einer Kupferlegierung nach Anspruch 3 mit maximal 0,1 % Eisen für den Zweck nach Anspruch 1.Use of a copper alloy according to claim 3 with a maximum of 0.1% iron for the purpose according to claim 1. Verwendung einer Kupferlegierung nach Anspruch 6 mit maximal 0,05 % Eisen für den Zweck nach Anspruch 1.Use of a copper alloy according to claim 6 with a maximum of 0.05% iron for the purpose according to claim 1. Verwendung einer Kupferlegierung nach Anspruch 3 mit maximal 0,5 % Zinn für den Zweck nach Anspruch 1.Use of a copper alloy according to claim 3 with a maximum of 0.5% tin for the purpose according to claim 1. Verwendung einer Kupferlegierung nach Anspruch 3 mit maximal 0,1 % Niob für den Zweck nach Anspruch 1.Use of a copper alloy according to claim 3 with a maximum of 0.1% niobium for the purpose according to claim 1. Verwendung einer Kupferlegierung nach Anspruch 9 mit maximal 0,05 % Niob für den Zweck nach Anspruch 1.Use of a copper alloy according to claim 9 with a maximum of 0.05% niobium for the purpose according to claim 1. Verwendung einer Kupferlegierung nach einem oder mehrerenn der Ansprüche 1 bis 10 mit maximal 0,04 % Phosphor für den Zweck nach Anspruch 1.Use of a copper alloy according to one or more of claims 1 to 10 with a maximum of 0.04% phosphorus for the purpose according to claim 1.
EP19930106091 1992-04-24 1993-04-15 Use of a copper-aluminium-zinc alloy as corrosion resistant material Expired - Lifetime EP0566978B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4213487 1992-04-24
DE19924213487 DE4213487C1 (en) 1992-04-24 1992-04-24 Use of a copper-aluminum-zinc alloy as a corrosion-resistant material

Publications (3)

Publication Number Publication Date
EP0566978A2 true EP0566978A2 (en) 1993-10-27
EP0566978A3 EP0566978A3 (en) 1993-12-29
EP0566978B1 EP0566978B1 (en) 1995-06-28

Family

ID=6457380

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19930106091 Expired - Lifetime EP0566978B1 (en) 1992-04-24 1993-04-15 Use of a copper-aluminium-zinc alloy as corrosion resistant material

Country Status (5)

Country Link
EP (1) EP0566978B1 (en)
DE (2) DE4213487C1 (en)
DK (1) DK0566978T3 (en)
ES (1) ES2075740T3 (en)
FI (1) FI102621B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013004081A1 (en) * 2013-03-11 2014-09-11 Hansa Metallwerke Ag Sanitary fitting body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4417455C2 (en) * 1994-05-19 1997-09-25 Wieland Werke Ag Use of a corrosion-resistant tube with inner oxide layers
DE19606162C2 (en) 1996-02-20 2003-01-30 Wieland Werke Ag Use of a copper-aluminum-zinc alloy as a corrosion-resistant material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231131A (en) * 1985-04-05 1986-10-15 Kobe Steel Ltd Corrosion resistant copper alloy pipe
JPS61270579A (en) * 1985-05-27 1986-11-29 古河電気工業株式会社 Corrosion-resistant feed water copper pipe
JPH01316431A (en) * 1988-06-15 1989-12-21 Furukawa Electric Co Ltd:The Corrosion-resistant copper alloy pipe for piping of refrigerant

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5675541A (en) * 1979-11-22 1981-06-22 Sumitomo Light Metal Ind Ltd Copper alloy for water or hot water supply piping material and heat exchanger tube material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231131A (en) * 1985-04-05 1986-10-15 Kobe Steel Ltd Corrosion resistant copper alloy pipe
JPS61270579A (en) * 1985-05-27 1986-11-29 古河電気工業株式会社 Corrosion-resistant feed water copper pipe
JPH01316431A (en) * 1988-06-15 1989-12-21 Furukawa Electric Co Ltd:The Corrosion-resistant copper alloy pipe for piping of refrigerant

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Week 8648, Derwent Publications Ltd., London, GB; AN 86-314306 & JP-A-61 231 131 (KOBE STEEL KK) 15. Oktober 1986 *
Week 8731, Derwent Publications Ltd., London, GB; AN 87-215916 & JP-A-61 270 579 (FURUKAWA ELECTRIC CO) 29. November 1986 *
Week 9006, Derwent Publications Ltd., London, GB; AN 90-040228 & JP-A-1 316 431 (FURUKAWA ELECTRIC CO) 21. Dezember 1989 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013004081A1 (en) * 2013-03-11 2014-09-11 Hansa Metallwerke Ag Sanitary fitting body
DE102013004081B4 (en) 2013-03-11 2023-06-07 Hansa Metallwerke Ag Sanitary fitting body

Also Published As

Publication number Publication date
FI931829A0 (en) 1993-04-23
FI102621B1 (en) 1999-01-15
EP0566978A3 (en) 1993-12-29
FI931829A (en) 1993-10-25
ES2075740T3 (en) 1995-10-01
DE4213487C1 (en) 1993-11-18
DE59300302D1 (en) 1995-08-03
FI102621B (en) 1999-01-15
DK0566978T3 (en) 1995-11-06
EP0566978B1 (en) 1995-06-28

Similar Documents

Publication Publication Date Title
DE3031439C2 (en) Hard-solderable cooling fin composite for heat exchangers based on aluminum alloys
DE602004013327T2 (en) HIGH-RESISTANT ALUMINUM ALLOY HARD SOLDERING PLATE
DE3027768C2 (en) Clad material made of aluminum alloys for the manufacture of heat exchangers
DE60211879T2 (en) ALUMINUM ALLOY WITH INTERGRANULAR CORROSION RESISTANCE, MANUFACTURING METHOD AND USE THEREOF
DE60020890T2 (en) aluminum brazing alloy
DE60021619T2 (en) brazing
EP3026134B1 (en) Heat exchanger, use of an aluminium alloy and an aluminium tape and method for producing an aluminium tape
DE3518407C2 (en)
DE60100251T2 (en) Multi-layer brazing sheet made of aluminum alloy
DE69707699T2 (en) ALUMINUM ALLOY FOR USE AS THE NUCLEAR MATERIAL OF A HARD SOLDER PLATE
DE69704124T2 (en) Aluminum alloy solder foil for soldered heat exchangers
DE69229813T2 (en) Composite material made of aluminum alloys for brazing
DE2928303A1 (en) ALUMINUM COMPOSITE
DE102020208138A1 (en) Aluminum alloy plating material
DE3206298A1 (en) Method of producing an aluminium heat exchanger
EP0566978B1 (en) Use of a copper-aluminium-zinc alloy as corrosion resistant material
DE68916631T2 (en) Copper-based material for the cooling fins of a heat exchanger and process for its production.
DE3908513A1 (en) COPPER ALLOY MATERIAL FOR LINE FRAME OF SEMICONDUCTOR DEVICES
EP0579904B1 (en) Corrosion resistant copper alloy
EP0792941B1 (en) Use of a copper-aluminium-(zinc) alloy as a corrosion-resistant material
DE2353238B1 (en) Use of a phosphorus-containing brass alloy
DE112019001827T5 (en) ALUMINUM ALLOY HEAT EXCHANGER
DE102014011745B4 (en) Brazed heat exchanger and method of manufacture
DE19811447C2 (en) Wire based on zinc and aluminum and its use in thermal spraying as corrosion protection
DE3514332A1 (en) CORROSION-RESISTANT COPPER ALLOY

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930415

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE DK ES FR IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE DK ES FR IT NL SE

17Q First examination report despatched

Effective date: 19940704

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE DK ES FR IT NL SE

REF Corresponds to:

Ref document number: 59300302

Country of ref document: DE

Date of ref document: 19950803

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2075740

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20070403

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070404

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20070416

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070521

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20070615

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070627

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070411

Year of fee payment: 15

BERE Be: lapsed

Owner name: *WIELAND-WERKE A.G.

Effective date: 20080430

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20081101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080416

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100430

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59300302

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59300302

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031