[go: up one dir, main page]

EP0579904B1 - Corrosion resistant copper alloy - Google Patents

Corrosion resistant copper alloy Download PDF

Info

Publication number
EP0579904B1
EP0579904B1 EP19930106094 EP93106094A EP0579904B1 EP 0579904 B1 EP0579904 B1 EP 0579904B1 EP 19930106094 EP19930106094 EP 19930106094 EP 93106094 A EP93106094 A EP 93106094A EP 0579904 B1 EP0579904 B1 EP 0579904B1
Authority
EP
European Patent Office
Prior art keywords
copper
alloy
cover layer
corrosion
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19930106094
Other languages
German (de)
French (fr)
Other versions
EP0579904A1 (en
Inventor
Wolfgang Dr. Dürrschnabel
Monika Dr. Breu
Gert Dr. Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Publication of EP0579904A1 publication Critical patent/EP0579904A1/en
Application granted granted Critical
Publication of EP0579904B1 publication Critical patent/EP0579904B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Definitions

  • the invention relates to a corrosion-resistant copper alloy which consists of copper and at least two alloy elements which are less noble than copper in their electrochemical voltage potential and which, together with copper, form a firmly adhering, pore-free cover layer of oxides, oxide hydrates and / or hydroxides, the amount of each Elements lies within the limits within which the alloy lies in the mixed crystal range under technical cooling conditions.
  • Such an alloy is known for example from DE-OS 3,605,796.
  • DE-OS 3,605,796 because of the high concentrations of the additional elements, there is a risk of excretion and thus of additional processing difficulties.
  • the majority of corrosion damage in copper water pipes is caused by even surface corrosion or pitting. Improper installation can also lead to corrosion attacks in the area of solder joints and connections.
  • the corrosion resistance of copper can in principle be increased by producing a firmly adhering, coherent oxide cover layer. This is applied to the inner surface of the pipe using special manufacturing processes, but this is technically complicated and labor-intensive.
  • the more advanced method is to use alloy additives to form a material that, when used, automatically forms an improved oxide coating.
  • the invention is based on the object of specifying a corrosion-resistant material which is characterized in particular by an improved covering layer formation compared to oxygen-free copper and by reduced copper solubility and for which there is no risk of pitting.
  • the mass loss should be reduced.
  • Phosphorus improves the pourability and acts as a deoxidizer.
  • the elements mentioned are added in an amount of at least 0.1% by weight.
  • the alloy according to the invention is preferably used as a material for pipes in installation and sanitary technology and for drinking water pipes.
  • Tubes measuring 18 x 1 mm were made of oxygen-free copper and three comparative alloys of the following composition.
  • the polarization resistance R p or the reciprocal, the polarization conductance R p ⁇ 1 is a measure of the rate of corrosion. The lower the polarization conductance, the greater the resistance to uniform corrosion.
  • Figures 2a to g compare the polarization conductance of the materials CuMg0.7Ti0.2, CuAl0.5, Zn0.5 and CuLi0.6Si0.1 in different states (soft / hard) with that of SF-Cu. Unalloyed Cu not only exhibits poorer behavior, but also considerable scatter.
  • the alloys according to the invention show significantly better behavior than SF-Cu. Not only is the quality of the covering layer improved, but also the rate of formation is influenced and, above all, the potential range of corrosion resistance is expanded. This formation of the passive layer significantly reduces the Cu solubility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Powder Metallurgy (AREA)
  • Laminated Bodies (AREA)

Description

Die Erfindung betrifft eine korrosionsbeständige Kupferlegierung, die aus Kupfer und mindestens zwei Legierungselementen besteht, die in ihrem elektrochemischen Spannungspotential unedler als Kupfer sind und die zusammen mit Kupfer eine festhaftende, porenfreie Deckschicht aus Oxiden, Oxidhydraten und/oder Hydroxiden bilden, wobei die Menge der einzelnen Elemente innerhalb derjenigen Grenzen liegt, innerhalb derer die Legierung unter technischen Abkühlbedingungen im Mischkristallbereich liegt.The invention relates to a corrosion-resistant copper alloy which consists of copper and at least two alloy elements which are less noble than copper in their electrochemical voltage potential and which, together with copper, form a firmly adhering, pore-free cover layer of oxides, oxide hydrates and / or hydroxides, the amount of each Elements lies within the limits within which the alloy lies in the mixed crystal range under technical cooling conditions.

Eine derartige Legierung ist beispielsweise bekannt durch die DE-OS 3.605.796. Wegen der hohen Konzentrationen der Zusatzelemente besteht dort jedoch die Gefahr der Ausscheidungsbildung und damit die Gefahr zusätzlicher Verarbeitungsschwierigkeiten.Such an alloy is known for example from DE-OS 3,605,796. However, because of the high concentrations of the additional elements, there is a risk of excretion and thus of additional processing difficulties.

Die Mehrzahl der Korrosionsschadensfälle in Wasserleitungsrohren aus Kupfer wird durch gleichmäßige Flächenkorrosion oder Lochfraß ausgelöst. Durch unsachgemäße Montage kann es außerdem zu Korrosionsangriffen im Bereich von Lötstellen und Verbindungen kommen. Die Korrosionsbeständigkeit von Kupfer kann zwar grundsätzlich dadurch erhöht werden, daß eine festhaftende, zusammenhängende oxidische Deckschicht erzeugt wird. Diese wird durch spezielle Herstellungsverfahren auf der Rohrinnenfläche aufgebracht, was jedoch technisch umständlich und arbeitsintensiv ist. Die fortschrittlichere Methode ist, durch Legierungszusätze einen Werkstoff zu bilden, bei dem sich im Gebrauch von selbst eine verbesserte oxidische Deckschicht bildet.The majority of corrosion damage in copper water pipes is caused by even surface corrosion or pitting. Improper installation can also lead to corrosion attacks in the area of solder joints and connections. The corrosion resistance of copper can in principle be increased by producing a firmly adhering, coherent oxide cover layer. This is applied to the inner surface of the pipe using special manufacturing processes, but this is technically complicated and labor-intensive. The more advanced method is to use alloy additives to form a material that, when used, automatically forms an improved oxide coating.

Der Erfindung liegt die Aufgabe zugrunde, einen korrosionsbeständigen Werkstoff anzugeben, der sich durch eine insbes. gegenüber sauerstofffreiem Kupfer verbesserte Deckschichtbildung und durch reduzierte Kupferlöslichkeit auszeichnet und für den keine Lochfraßgefährdung besteht. Der Massenabtrag soll dabei herabgesetzt werden.The invention is based on the object of specifying a corrosion-resistant material which is characterized in particular by an improved covering layer formation compared to oxygen-free copper and by reduced copper solubility and for which there is no risk of pitting. The mass loss should be reduced.

Die Aufgabe wird erfindungsgemäß durch die Merkmale von Ansprüche 1 bis 3 gelöst.The object is achieved by the features of claims 1 to 3.

Durch die Wertigkeitspaarung von zweiwertigen zu dreiwertigen positiven Ionen, von zweiwertigen zu vierwertigen Ionen oder von einwertigen zu vierwertigen Ionen wird eine festhaftende und weitgehend porenfreie Deckschicht erzeugt. Es hat sich überraschenderweise gezeigt, daß durch die Auswahl der Wertigkeitspaarungen die Struktur der Cu₂O-Phase dahingehend beeinflußt wird, daß sich sowohl schneller eine Deckschicht bildet, als auch, daß die Schutzwirkung der entstehenden Deckschicht wirksamer ist.Through the valence pairing of divalent to trivalent positive ions, from divalent to tetravalent ions or from monovalent to tetravalent ions a firmly adhering and largely pore-free cover layer is generated. It has surprisingly been found that the structure of the Cu₂O phase is influenced by the selection of the valence pairs in such a way that a cover layer is formed more quickly, and that the protective effect of the resulting cover layer is more effective.

Es ist vorteilhaft, der Legierung bis zu 0,04 Gew.-% Phosphor zuzusetzen. Phosphor verbessert die Gießbarkeit und wirkt als Desoxidationsmittel.It is advantageous to add up to 0.04% by weight of phosphorus to the alloy. Phosphorus improves the pourability and acts as a deoxidizer.

Nach einer bevorzugten Ausführungsform der Erfindung werden die genannten Elemente in einer Menge von mindestens 0,1 Gew.-% zugesetzt.According to a preferred embodiment of the invention, the elements mentioned are added in an amount of at least 0.1% by weight.

Bevorzugt wird die erfindungsgemäße Legierung als Werkstoff für Rohre in der Installations- und Sanitärtechnik sowie für Trinkwasserleitungen verwendet.The alloy according to the invention is preferably used as a material for pipes in installation and sanitary technology and for drinking water pipes.

Die Erfindung wird anhand der folgenden Ausführungsbeispiele näher erläutert:
Es wurden Rohre der Abmessung 18 x 1 mm aus sauerstofffreiem Kupfer und aus drei Vergleichslegierungen der folgenden Zusammensetzung hergestellt. Werkstoff SF-Cu weich, 50 - 70 HB hart, 100 - 120 HB Cu Mg0,7Ti0,2 (Paarung 2+/4+) weich, 50 - 70 HB Bsp. 1 hart, 100 - 120 HB Bsp. 2 Cu Al0,5Zn0,5 (Paarung 3+/2+) weich, 50 - 70 HB Bsp. 3 hart, 100 - 120 HB Bsp. 4 Cu Li0,6Si0,1 (Paarung 1+/4+) weich, 50 - 70 HB Bsp. 5 hart, 100 - 120 HB Bsp. 6
The invention is explained in more detail using the following exemplary embodiments:
Tubes measuring 18 x 1 mm were made of oxygen-free copper and three comparative alloys of the following composition. material SF-Cu soft, 50 - 70 HB hard, 100 - 120 HB Cu Mg0.7Ti0.2 (pairing 2 + / 4 +) soft, 50 - 70 HB Ex. 1 hard, 100 - 120 HB Ex. 2 Cu Al0.5Zn0.5 (pairing 3 + / 2 +) soft, 50 - 70 HB Ex. 3 hard, 100 - 120 HB Ex. 4 Cu Li0.6Si0.1 (pairing 1 + / 4 +) soft, 50 - 70 HB Ex. 5 hard, 100 - 120 HB Ex. 6

Zur Beurteilung des Korrosionsverhaltens wurden an den Rohrmustern Stromdichte-Potential-Kurven (Fig.1) und der elektrochemische Polarisationswiderstand (Rp) bzw. Polarisationsleitwert (Rp⁻¹) gemäß Fig. 2a - 2g gemessen sowie der Massenabtrag (Fig.3) ermittelt.To assess the corrosion behavior, current density-potential curves (Fig. 1) and the electrochemical polarization resistance (R p ) or polarization conductance (R p ⁻¹) according to Figs. 2a - 2g were measured and the mass removal (Fig. 3) determined.

Es zeigen im einzelnen:

Fig.1:
die Stromdichte-Potential-Kurven der Legierungssysteme Cu-Mg-Ti, Cu-Al-Zn und Cu-Li-Si im Vergleich zu SF-Cu.
Bezugselektrode: gesättigte Kalomelektrode.
Fig.2a bis 2g:
den Polarisationsleitwert Rp⁻¹ als Funktion der Versuchsdauer.
  • (a) SF-Cu, Zustand weich, 50-70 HB bzw. hart, 100-120 HB
  • (b) CuMg0,7Ti0,2, Zustand weich, 50-70 HB
  • (c) CuMg0,7Ti0,2, Zustand hart, 100-120 HB
  • (d) CuAl0,5Zn0,5, Zustand weich, 50-70 HB
  • (e) CuAl0,5Zn0,5, Zustand hart, 100-120 HB
  • (f) CuLi0,6Si0,1, Zustand weich, 50-70 HB
  • (g) CuLi0,6Si0,1, Zustand hart, 100-120HB
Fig.3:
den auf die Fläche bezogenen Gewichtsverlust nach einer Zeit von 1000 h.
The individual shows:
Fig.1:
the current density-potential curves of the alloy systems Cu-Mg-Ti, Cu-Al-Zn and Cu-Li-Si compared to SF-Cu.
Reference electrode: saturated calom electrode.
Fig.2a to 2g:
the polarization conductance R p ⁻¹ as a function of the test duration.
  • (a) SF-Cu, soft state, 50-70 HB or hard, 100-120 HB
  • (b) CuMg0.7Ti0.2, soft state, 50-70 HB
  • (c) CuMg0.7Ti0.2, hard condition, 100-120 HB
  • (d) CuAl0.5Zn0.5, soft state, 50-70 HB
  • (e) CuAl0.5Zn0.5, hard condition, 100-120 HB
  • (f) CuLi0.6Si0.1, soft state, 50-70 HB
  • (g) CuLi0.6Si0.1, hard condition, 100-120HB
Fig. 3:
the weight loss related to the area after a period of 1000 h.

In Fig. 1 sind die Stromdichte-Potential-Kurven der Legierungen CuMg0,7Ti0,2, CuAl0,5Zn0,5, CuLi0,6Si0,1 und SF-Cu im Vergleich dargestellt. Es ist zu erkennen, daß die zulegierten Elemente den Bereich der Korrosionsbeständigkeit deutlich erweitern. Die Passivstromdichte ist gegenüber SF-Cu verringert, was für die bessere Deckschichtqualität spricht. Die Durchbruchpotentiale sind zu positiveren Werten hin verschoben.1 shows the current density-potential curves of the alloys CuMg0.7Ti0.2, CuAl0.5Zn0.5, CuLi0.6Si0.1 and SF-Cu in comparison. It can be seen that the alloyed elements significantly expand the range of corrosion resistance. The passive current density is reduced compared to SF-Cu, which speaks for the better cover layer quality. The breakthrough potential has shifted towards more positive values.

Der Polarisationswiderstand Rp bzw. der Kehrwert, der Polarisationsleitwert Rp⁻¹, ist ein Maß für die Korrosionsgeschwindigkeit. Je geringer der Polarisationsleitwert, desto größer ist die Beständigkeit gegen gleichmäßige Korrosion. Die Figuren 2a bis g vergleichen den Polarisationsleitwert der Werkstoffe CuMg0,7Ti0,2, CuAl0,5,Zn0,5 und CuLi0,6Si0,1 in verschiedenen Zuständen (weich/hart) mit demjenigen von SF-Cu. Unlegiertes Cu zeigt nicht nur ein schlechteres Verhalten, sondern auch eine beträchtliche Streuung.The polarization resistance R p or the reciprocal, the polarization conductance R p ⁻¹, is a measure of the rate of corrosion. The lower the polarization conductance, the greater the resistance to uniform corrosion. Figures 2a to g compare the polarization conductance of the materials CuMg0.7Ti0.2, CuAl0.5, Zn0.5 and CuLi0.6Si0.1 in different states (soft / hard) with that of SF-Cu. Unalloyed Cu not only exhibits poorer behavior, but also considerable scatter.

Bei allen untersuchten Werkstoffen war der Massenverlust gegenüber SF-Cu entsprechend Fig.3 erheblich reduziert.The mass loss compared to SF-Cu was significantly reduced in accordance with Fig. 3 for all investigated materials.

In allen Fällen zeigen die erfindungsgemäßen Legierungen ein deutlich besseres Verhalten als SF-Cu. Es wird nicht nur die Deckschichtqualität verbessert, sondern auch die Bildungsgeschwindigkeit beeinflußt und vor allem der Potentialbereich der Korrosionsbeständigkeit ausgedehnt. Durch diese Ausbildung der Passivschicht wird die Cu-Löslichkeit deutlich herabgesetzt.In all cases, the alloys according to the invention show significantly better behavior than SF-Cu. Not only is the quality of the covering layer improved, but also the rate of formation is influenced and, above all, the potential range of corrosion resistance is expanded. This formation of the passive layer significantly reduces the Cu solubility.

Es ist weiterhin als entscheidender Vorteil anzusehen, daß durch die Kombination bestimmter Zwangskomponenten der pH-Wert-Bereich für die Bildung von Deckschichten erweitert wird. Während einige Legierungselemente entsprechend ihrem Pourbaix-Diagramm fähig sind, auch in sauren Medien Reaktionsprodukte zu bilden und somit zum Aufbau einer wirksamen Schutzschicht beizutragen, gilt entsprechendes für andere Elemente in alkalischen Medien. Somit sind die die Erfindung betreffenden Werkstoffe nicht nur in neutralen Wässern einsetzbar. Gewisse pH-Wert-Schwankungen wirken sich nicht negativ auf das Korrosionsverhalten aus.It is also considered to be a decisive advantage that the combination of certain compulsory components extends the pH range for the formation of cover layers. While some alloy elements are capable of forming reaction products in acidic media according to their Pourbaix diagram and thus contribute to the formation of an effective protective layer, the same applies to other elements in alkaline media. The materials relating to the invention can thus not only be used in neutral waters. Certain pH fluctuations do not have a negative effect on the corrosion behavior.

Verschiebt sich das Durchbruchpotential außerdem so weit in positive Richtung, daß es sich nicht mehr im Bereich des freien Korrosionspotentials befindet, so liegt ein zusätzlicher Schutz gegen Elementbildung wie z. B. Kontakt- oder Belüftungselemente vor. Zudem konnte bei den überprüften Rohrmustern keine Lochfraßgefährdung festgestellt werden.If the breakthrough potential also shifts so far in the positive direction that it is no longer in the area of the free corrosion potential, additional protection against element formation such as e.g. B. contact or ventilation elements. In addition, no risk of pitting was found in the tube samples checked.

Claims (6)

  1. Corrosion-resistant copper alloy, consisting of copper and at least two alloy elements, whose electrochemical stress potentials are more base than copper and which together with copper form an adherent, nonporous cover layer of oxides, oxide hydrates and/or hydroxides, with the levels of the individual elements lying within those limits within which the alloy remains in the mixed-crystal range under technical cooling conditions, characterized by the following features:
    the melting point of the mixed crystal is above 400°C, the copper alloy contains at least 99.0 percent by weight copper, the remains two or more alloy elements of unequal valence chosen from groups A and B, with at least one element from group A consisting of zinc, cadmium, beryllium, calcium, strontium, barium, manganese, iron, cobalt or nickel, forming thermodynamically stable chemical compounds of the stated type in the form of bivalent positive ions in the cover layer
    and
    at least one further element from group B consisting of boron, aluminium, gallium, indium, scandium, yttrium, lanthanum, cerium, mixed metal, chromium, iron or cobalt, forming thermodynamically stable chemical compounds of the stated type in the form of trivalent positive ions in the cover layer.
  2. Corrosion-resistant copper alloy, consisting of copper and at least two alloy elements, whose electrochemical stress potentials are more base than copper and which together with copper form an adherent, nonporous cover layer of oxides, oxide hydrates and/or hydroxides, with the levels of the individual elements lying within those limits within which the alloy remains in the mixed-crystal range under technical cooling conditions, characterized by the following features:
    the melting point of the mixed crystal is above 400°C, the copper alloy contains at least 99.0 percent by weight copper, the remains two or more alloy elements of unequal valence chosen from groups A and C, with at least one element from group A consisting of zinc, cadmium, beryllium, calcium, strontium, barium, manganese, iron, cobalt or nickel, forming thermodynamically stable chemical compounds of the stated type in the form of bivalent positive ions in the cover layer
    and
    at least one further element from group C consisting of silicon, germanium, titanium, zirconium or hafnium, forming thermodynamically stable chemical compounds of the stated type in the form of quadrivalent positive ions in the cover layer.
  3. Corrosion-resistant copper alloy, consisting of copper and at least two alloy elements, whose electrochemical stress potentials are more base than copper and which together with copper form an adherent, nonporous cover layer of oxides, oxide hydrates and/or hydroxides, with the levels of the individual elements lying within those limits within which the alloy remains in the mixed-crystal range under technical cooling conditions, characterized by the following features:
    the melting point of the mixed crystal is above 400°C, the copper alloy contains at least 99.0 percent by weight copper, the remains two or more alloy elements of unequal valence chosen from groups D and C, with at least one element from group D consisting of lithium, sodium, potassium, rubidium or cesium, forming thermodynamically stable chemical compounds of the stated type in the form of monovalent positive ions in the cover layer
    and
    at least one further element from group C consisting of silicon, germanium, titanium, zirconium or hafnium, forming thermodynamically stable chemical compounds of the stated type in the form of quadrivalent positive ions in the cover layer.
  4. Corrosion-resistant copper alloy according to claim 1, 2 or 3,
    characterized by the fact that it contains up to 0.04 percent by weight phosphorous.
  5. Corrosion-resistant copper alloy according to one or several of the claims 1 to 4,
    characterized by the fact that the elements amount to at least 0.1 percent by weight.
  6. Use of a corrosion-resistant copper alloy according to one or several of the claims 1 to 5 as material for pipes in installation and sanitary engineering and for drinking water pipes.
EP19930106094 1992-04-24 1993-04-15 Corrosion resistant copper alloy Expired - Lifetime EP0579904B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4213488 1992-04-24
DE19924213488 DE4213488C2 (en) 1992-04-24 1992-04-24 Corrosion resistant copper alloy

Publications (2)

Publication Number Publication Date
EP0579904A1 EP0579904A1 (en) 1994-01-26
EP0579904B1 true EP0579904B1 (en) 1995-11-02

Family

ID=6457381

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19930106094 Expired - Lifetime EP0579904B1 (en) 1992-04-24 1993-04-15 Corrosion resistant copper alloy

Country Status (5)

Country Link
EP (1) EP0579904B1 (en)
DE (2) DE4213488C2 (en)
DK (1) DK0579904T3 (en)
ES (1) ES2081653T3 (en)
FI (1) FI102908B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4401997C2 (en) * 1994-01-25 1999-02-25 Okan Dipl Ing Dr Akin Use of a copper alloy for components in flowing water
DE4423635A1 (en) * 1994-07-06 1996-01-11 Prym William Gmbh & Co Kg Corrosion-resistant copper alloy
DE29916516U1 (en) 1999-09-20 2000-04-20 Reif, Peter, 87600 Kaufbeuren Faucet with integrated soap dispenser
DE102007015442B4 (en) 2007-03-30 2012-05-10 Wieland-Werke Ag Use of a corrosion-resistant copper alloy
DE102011016318A1 (en) * 2011-04-07 2012-10-11 Wieland-Werke Ag Hard phase copper-tin multicomponent bronze, method of manufacture and use

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4047978A (en) * 1975-04-17 1977-09-13 Olin Corporation Processing copper base alloys
JPS5675541A (en) * 1979-11-22 1981-06-22 Sumitomo Light Metal Ind Ltd Copper alloy for water or hot water supply piping material and heat exchanger tube material
DE3605796A1 (en) * 1985-08-24 1987-03-26 Prym Werke William Corrosion-resistant copper material for pipes, receptacles or the like for flowing media, in particular cold and/or hot water pipes
US4749548A (en) * 1985-09-13 1988-06-07 Mitsubishi Kinzoku Kabushiki Kaisha Copper alloy lead material for use in semiconductor device

Also Published As

Publication number Publication date
DK0579904T3 (en) 1996-02-05
DE4213488A1 (en) 1993-10-28
DE59300844D1 (en) 1995-12-07
FI931830A0 (en) 1993-04-23
FI931830A (en) 1993-10-25
ES2081653T3 (en) 1996-03-16
FI102908B (en) 1999-03-15
DE4213488C2 (en) 1995-05-24
FI102908B1 (en) 1999-03-15
EP0579904A1 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
DE19816671C2 (en) Use of alloys as lead-free solder alloys
DE4021842C2 (en) Copper alloy for connectors for electrical devices with high wiring density
DE3634495C2 (en) Process for producing a copper-tin alloy and its use as a conductor material
EP1430489B1 (en) Electroceramic component comprising a plurality of contact surfaces
DE3401065A1 (en) COPPER ALLOYS WITH IMPROVED SOLDERABILITY DURABILITY
DE4036096A1 (en) SYNTHETIC SEALED SEMICONDUCTOR DEVICE
DE102006010760A1 (en) Copper alloy and method of making the same
DE2701411A1 (en) CERAMIC CONNECTIONS WITH HIGH DIELECTRICITY CONSTANTS
DE69229813T2 (en) Composite material made of aluminum alloys for brazing
DE69133422T2 (en) LADDER FRAME AND THESE USING SEMICONDUCTOR PACKAGING
DE69904237T2 (en) Electro-extraction anodes with a fast-forming oxide protective layer
DE2017858A1 (en) Process for the production of aluminum or aluminum alloys coated with a tin alloy
EP0579904B1 (en) Corrosion resistant copper alloy
DE112010000752T5 (en) Lead-free solder alloy, fatigue-resistant solder materials containing the solder alloy, and combined products using the solder materials
DE68916631T2 (en) Copper-based material for the cooling fins of a heat exchanger and process for its production.
DE2536896A1 (en) PROCEDURE FOR SOLDERING ALUMINUM OR ALUMINUM ALLOYS USING FLUX-SOLVENT COMPOSITIONS AND FLUX-SOLDER COMPOSITIONS FOR USE IN THIS PROCESS
DE3530736C2 (en)
DE2218460C3 (en) Electrical contact material
DE3908513A1 (en) COPPER ALLOY MATERIAL FOR LINE FRAME OF SEMICONDUCTOR DEVICES
EP1273671A1 (en) Dezincification resistant copper-zinc alloy and method for producing the same
AT393697B (en) IMPROVED COPPER-BASED METAL ALLOY, IN PARTICULAR FOR THE CONSTRUCTION OF ELECTRONIC COMPONENTS
EP0566978B1 (en) Use of a copper-aluminium-zinc alloy as corrosion resistant material
DE1514003A1 (en) Capacitive decoupling device
EP0792941B1 (en) Use of a copper-aluminium-(zinc) alloy as a corrosion-resistant material
DE2349233C3 (en) Matrix of photoconductive cells

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930415

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE DK ES FR IT NL SE

17Q First examination report despatched

Effective date: 19940704

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE DK ES FR IT NL SE

REF Corresponds to:

Ref document number: 59300844

Country of ref document: DE

Date of ref document: 19951207

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2081653

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100521

Year of fee payment: 18

Ref country code: ES

Payment date: 20100505

Year of fee payment: 18

Ref country code: DK

Payment date: 20100412

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100402

Year of fee payment: 18

Ref country code: IT

Payment date: 20100419

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100423

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20100409

Year of fee payment: 18

BERE Be: lapsed

Owner name: *WIELAND-WERKE A.G.

Effective date: 20110430

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20111101

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111101

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110415

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110416

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120430

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59300844

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130416