[go: up one dir, main page]

EP0547363A1 - Metallisches Wärmeaustauscherrohr zur Kühlung von zähen Medien - Google Patents

Metallisches Wärmeaustauscherrohr zur Kühlung von zähen Medien Download PDF

Info

Publication number
EP0547363A1
EP0547363A1 EP92119096A EP92119096A EP0547363A1 EP 0547363 A1 EP0547363 A1 EP 0547363A1 EP 92119096 A EP92119096 A EP 92119096A EP 92119096 A EP92119096 A EP 92119096A EP 0547363 A1 EP0547363 A1 EP 0547363A1
Authority
EP
European Patent Office
Prior art keywords
tube
exchanger tube
heat exchanger
heat transfer
tube according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92119096A
Other languages
English (en)
French (fr)
Other versions
EP0547363B2 (de
EP0547363B1 (de
Inventor
Axel Dipl.-Ing. Kriegsmann (Fh)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6447032&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0547363(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Publication of EP0547363A1 publication Critical patent/EP0547363A1/de
Application granted granted Critical
Publication of EP0547363B1 publication Critical patent/EP0547363B1/de
Publication of EP0547363B2 publication Critical patent/EP0547363B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/422Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element with outside means integral with the tubular element and inside means integral with the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element

Definitions

  • the invention relates to a metallic heat exchanger tube according to the preamble of claim 1.
  • the amount of oil required for the steering function is delivered via an oil pump, which maintains an almost constant delivery rate in the oil circuit regardless of the engine speed.
  • the oil is heated.
  • the highest oil heating occurs in trailer operation when driving uphill.
  • Heat exchanger tubes are used to cool the heated oil, and air is applied to them from the outside.
  • this heat exchanger tube is a heat exchanger tube made of metal, which has integral ribs encircling the inside and outside on the inside and outside. With increasing oil temperature and constant air velocity, this heat exchanger tube has a heat dissipation proportional to the temperature difference of the oil / air temperature. With extreme steering stress, the oil temperature will continue to rise despite the heat exchanger tube. A critical point is reached when the oil temperature is equal to or higher than the resistance temperature of the sealing materials used. The result is oil loss due to leaks and thus reduced functionality or failure of the power steering, not to mention the environmental impact of escaping oil. An extension of the heat exchanger tube is due to the cramped Space in the engine compartment of the vehicle is usually excluded and increases the cost of the heat exchanger.
  • the invention is therefore based on the object of designing a heat exchanger tube of the type mentioned in such a way that the heat dissipation increases disproportionately as the oil temperature rises, in order to avoid high oil temperatures and at the same time to enable high heat output in a compact size.
  • the ratio A a / A i 5-8.
  • the viscous fluid 4 to be cooled flows inside the tube, air 5 outside.
  • the volume flow V ⁇ of the fluid (oil) in the pipes was approximately 0.4 m3 / h.
  • the external air speed was constant at 5 m / s (which corresponds to a driving speed of 18 km / h). 2 clearly shows the sudden increase in performance in the oil cooler A according to the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Lubricants (AREA)

Abstract

Die Erfindung betrifft ein metallisches Wärmeaustauscherrohr (1) mit auf der Außen- und Innenseite schraubenlinienförmig umlaufenden, integralen Rippen (2 bzw. 3) zur Kühlung von zähen Fluiden (4), insbesondere von Öl in Servokreisläufen von Fahrzeugen, wobei das zu kühlende Fluid (4) durch das Rohr (1) strömt und dessen Außenseite von Luft (5) gekühlt ist. Ein sprunghafter Anstieg der Wärmeabfuhr wird erfindungsgemäß durch folgende Merkmale erreicht: a.) das Verhältnis der äußeren Wärmeübertragungsfläche Aa des Rohres (1) / inneren Wärmeübertragungsfläche Ai des Rohres (1) beträgt: Aa/Ai; >= 4,3; b.) für den lichten Innendurchmesser d; des Rohres (1) gilt die Beziehung: <IMAGE> mit Innendurchmesser di (mm), Volumenstrom V˙ des Fluids (4) (m³/h), kinematische Viskosität ν (mm²/s). <IMAGE>

Description

  • Die Erfindung betrifft ein metallisches Wärmeaustauscherrohr nach dem Oberbegriff des Anspruchs 1.
    In Fahrzeugen mit Servolenksystemen wird die für die Lenkfunktion notwendige Ölmenge über eine Ölpumpe gefördert, die unabhängig von der Motordrehzahl eine nahezu konstante Fördermenge im Ölkreislauf aufrecht erhält.
  • Je nach Motorbelastung und Lenkbetätigung wird das Öl erwärmt. Die höchste Ölerwärmung tritt im Anhängerbetrieb bei einer Bergfahrt auf. Zur Abkühlung des erwärmten Öles werden Wärmeaustauscherrohre verwendet, die von außen mit Luft beaufschlagt werden.
  • Bei einer bekannten Ausführung handelt es sich um ein Wärmeaustauscherrohr aus Metall, das auf der Innen- und Außenseite schraubenlinienförmig umlaufende, integrale Rippen besitzt. Dieses Wärmeaustauscherrohr hat bei zunehmender Öltemperatur und konstanter Luftgeschwindigkeit eine zur Temperaturdifferenz der Öl-/Lufttemperatur proportionale Wärmeabfuhr. Bei extremer Lenkungsbeanspruchung wird die Öltemperatur trotz Wärmeaustauscherrohr weiter ansteigen. Ein kritischer Punkt wird dann erreicht, wenn die Öltemperatur gleich oder höher ist als die Beständigkeitstemperatur der verwendeten Dichtmaterialien. Die Folge ist Ölverlust durch undichte Stellen und damit Funktionsminderung oder Ausfall der Servolenkung, ganz abgesehen von der Umweltbelastung durch austretendes Öl. Eine Verlängerung des Wärmeaustauscherrohres ist aufgrund der beengten Platzverhältnisse im Motorraum des Fahrzeuges meist ausgeschlossen und verteuert den Wärmeaustauscher.
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein Wärmeaustauscherrohr der genannten Art so zu gestalten, daß die Wärmeabfuhr bei steigender Öltemperatur überproportional zunimmt, um hohe Öltemperaturen zu vermeiden und gleichzeitig eine hohe Wärmeleistung in einer kompakten Baugröße zu ermöglichen.
  • Diese Aufgabe wird erfindungsgemäß durch ein Wärmeaustauscherrohr mit den beiden kennzeichneten Merkmalen des Anspruchs 1 gelöst:
    • a.) das Verhältnis der äußeren Wärmeübertragsfläche Aa des Rohres / inneren Wärmeübertragungsfläche Ai des Rohres beträgt:

      A a /A i > 4,3;
      Figure imgb0001


    • b.) für den lichten Innendurchmesser des Rohres gilt die Beziehung:
      Figure imgb0002
      mit Innendurchmesser di (mm), Volumenstrom V̇ des Fluids (m³/h), kinematische Viskosität ν (mm²/s). (Die Größen Aa und Ai sind jeweils auf 1m Rohrlänge bezogen).
  • Es hat sich überraschenderweise gezeigt, daß ein sprunghafter Anstieg der Wärmeabfuhr und damit die Aktivierung der inneren Rippenfläche eintritt, wenn der Rohrinnendurchmesser di an die zu begrenzende Fluidtemperatur und an den vorliegenden Fluidvolumenstrom angepaßt wird. Das erfindungsgemäße Verhältnis Aa/Ai sorgt für die erforderliche Wärmeabfuhr nach außen. Zudem läßt sich durch diese überproportionale Leistungszunahme der Wärmeaustauscher kompakt und damit platzsparend bauen.
  • Nach einer bevorzugten Ausführungsform der Erfindung beträgt das Verhältnis Aa/Ai = 5-8.
  • Für einen üblichen Fluidvolumenstrom V̇ von etwa 0,4 m³/h gilt die Beziehung

    di ≦ 60 ν .
    Figure imgb0003

  • Hinsichtlich der Ausbildung der inneren Rippenfläche empfiehlt es sich, wenn das Verhältnis der inneren (berippten) Wärmeübertragungsfläche Ai des Rohres / inneren glatten Wärmeübertragungsfläche Ai, glatt des Rohres beträgt:

    A i /A i , glatt = 1,4-2,5;
    Figure imgb0004


    dabei beträgt der Drallwinkel der inneren Rippen vorzugsweise

    α = 15 - 30°,
    Figure imgb0005


    insbesondere

    α = 18 - 25°.
    Figure imgb0006

  • (Ai und Ai, glatt sind wiederum auf 1 m Rohrlänge bezogen).
  • Zur Erzielung optimaler Wärmeübertragungskoeffizienten beträgt die Quadratwurzel aus dem Verhältnis der inneren Wärmeübertragungsfläche Ai / inneren (freien) Querschnittsfläche Ai, quer vorzugsweise

    A i /A i , ¯ quer ¯ = 24 - 34, insbes. 26-32.
    Figure imgb0007

  • Die Erfindung wird anhand des folgenden Ausführungsbeispiels näher erläutert. Es zeigt
  • Fig.1 a
    ein Wärmeaustauscherrohr im Teillängsschnitt,
    Fig.1 b
    einen Querschnitt eines Wärmeaustauscherrohres und
    Fig.2
    den sprunghaften Leistungsanstieg eines erfindungsgemäßen Ölkühlers im Vergleich zu einem Ölkühler nach dem Stand der Technik.
  • Das metallische Wärmeaustauscherrohr 1 nach Fig. 1a / 1b ist auf der Außen- und Innenseite mit integralen Rippen 2 bzw. 3 versehen, die schraubenlinienförmig umlaufen. Der -auf die Rohrlängsachse bezogene- Drallwinkel der Innenrippen 3 ist mit α bezeichnet. Weiterhin sind eingetragen:
  • Aa:
    äußere Wärmeübertragungsfläche des Rohres 1,
    Ai :
    innere (berippte) Wärmeübertragungsfläche des Rohres 1,
    Ai, quer :
    innere (freie) Querschnittsfläche des Rohres 1 und
    di :
    lichter Rohrinnendurchmesser des Rohres 1.
  • Das zu kühlende, zähe Fluid 4 strömt im Rohrinneren, Luft 5 außen.
  • Die Vorteile der Erfindung werden anhand der Fig.2 erläutert:
    Es wurden Messungen an einem erfindungsgemäßen Wärmeaustauscherrohr 1 (Ölkühler A) und Vergleichsmessungen an einem Wärmeausstauscherrohr nach dem Stand der Technik (Ölkühler B) durchgeführt.
  • In der folgenden Tabelle sind die Geometriedaten der untersuchten Rohre (Ölkühler A und B) aufgeführt:
    Figure imgb0008
  • Der Volumenstrom V̇ des Fluids (Öl) in den Rohren betrug jeweils ca. 0,4 m³/h. Die äußere Luftgeschwindigkeit war bei den Untersuchungen konstant 5 m/s ( was einer Fahrgeschwindigkeit von 18 km/h entspricht).
    Fig.2 zeigt deutlich den sprunghaften Leistungsanstieg beim erfindungsgemäßen Ölkühler A.

Claims (8)

  1. Metallisches Wärmeaustauscherrohr (1) mit auf der Außen- und Innenseite schraubenlinienförmig umlaufenden, integralen Rippen (2 bzw. 3) zur Kühlung von zähen Fluiden (4), insbesondere von Öl in Servokreisläufen von Fahrzeugen, wobei das zu kühlende Fluid (4) durch das Rohr (1) strömt und dessen Außenseite von Luft (5) gekühlt ist,
    gekennzeichnet durch folgende Merkmale:
    a.) das Verhältnis der äußeren Wärmeübertragungsfläche Aa des Rohres (1) / inneren Wärmeübertragungsfläche Ai des Rohres (1) beträgt:

    A a /A i > 4,3;
    Figure imgb0009


    b.) für den lichten Innendurchmesser di des Rohres (1) gilt die Beziehung:
    Figure imgb0010
    mit Innendurchmesser di (mm), Volumenstrom V̇ des Fluids (4) (m³/h), kinematische Viskosität ν (mm²/s).
  2. Wärmeaustauscherrohr nach Anspruch 1, dadurch gekennzeichnet,
    daß das Verhältnis Aa/Ai = 5-8 beträgt.
  3. Wärmeaustauscherrohr nach Anspruch 1 oder 2, dadurch gekennzeichnet,
    daß für den lichten Innendurchmesser di des Rohres (1) die Beziehung gilt:

    d i 60 ν .
    Figure imgb0011
  4. Wärmeaustauscherrohr nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Verhältnis der inneren (berippten) Wärmeübertragungsfläche Ai des Rohres (1) / inneren glatten Wärmeübertragungsfläche Ai, glatt des Rohres (1) beträgt:

    A i /A i, glatt = 1,4 - 2,5.
    Figure imgb0012
  5. Wärmeaustauscherrohr nach Anspruch 4, dadurch gekennzeichnet,
    daß der Drallwinkel der inneren Rippen (3)

    α = 15 - 30° beträgt.
    Figure imgb0013
  6. Wärmeaustauscherrohr nach Anspruch 5, dadurch gekennzeichnet,
    daß der Drallwinkel α = 18 - 25° beträgt.
  7. Wärmeaustauscherrohr nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet,
    daß die Quadratwurzel aus dem Verhältnis der inneren Wärmeübertragsfläche Ai / inneren (freien) Querschnittsfläche Ai, quer beträgt:

    A i /A i , ¯ quer ¯ = 24 - 34.
    Figure imgb0014
  8. Wärmeaustauscherrohr nach Anspruch 7, dadurch gekennzeichnet,
    daß

    A i /A i , ¯ quer ¯ = 26 -32.
    Figure imgb0015
EP92119096A 1991-12-14 1992-11-07 Metallisches Wärmeaustauscherrohr zur Kühlung von zähen Medien Expired - Lifetime EP0547363B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4141240 1991-12-14
DE4141240A DE4141240C2 (de) 1991-12-14 1991-12-14 Metallisches Wärmeaustauscherrohr zur Kühlung von zähen Medien

Publications (3)

Publication Number Publication Date
EP0547363A1 true EP0547363A1 (de) 1993-06-23
EP0547363B1 EP0547363B1 (de) 1995-05-24
EP0547363B2 EP0547363B2 (de) 1997-08-06

Family

ID=6447032

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92119096A Expired - Lifetime EP0547363B2 (de) 1991-12-14 1992-11-07 Metallisches Wärmeaustauscherrohr zur Kühlung von zähen Medien

Country Status (3)

Country Link
EP (1) EP0547363B2 (de)
DE (2) DE4141240C2 (de)
ES (1) ES2074795T5 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2520892A1 (de) * 2002-11-23 2012-11-07 Endress + Hauser GmbH + Co. KG Messgerät

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2447386C2 (ru) * 2007-10-29 2012-04-10 Дженерал Электрик Компани Устройство повышения теплопередачи и способ изготовления устройства теплопередачи
RU2543586C2 (ru) * 2013-07-05 2015-03-10 Павел Николаевич Брянский Теплообменная труба

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847212A (en) * 1973-07-05 1974-11-12 Universal Oil Prod Co Heat transfer tube having multiple internal ridges
US4059147A (en) * 1972-07-14 1977-11-22 Universal Oil Products Company Integral finned tube for submerged boiling applications having special O.D. and/or I.D. enhancement
US4086959A (en) * 1976-07-19 1978-05-02 Uop Inc. Automotive oil cooler
EP0102407A1 (de) * 1982-09-03 1984-03-14 Wieland-Werke Ag Rippenrohr mit inneren Vorsprüngen sowie Verfahren und Vorrichtung zu dessen Herstellung
EP0114640A2 (de) * 1983-01-25 1984-08-01 Wickes Products, Inc. Rippenrohr für Wärmetauscher mit optimierten Wärmeübertragungseigenschaften
DE3735915A1 (de) * 1987-10-23 1989-05-03 Wieland Werke Ag Waermeaustauscher
DE3813040C1 (en) * 1988-04-19 1989-08-03 Wieland-Werke Ag, 7900 Ulm, De Use of a finned tube as reaction tube for exothermic chemical reactions

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059147A (en) * 1972-07-14 1977-11-22 Universal Oil Products Company Integral finned tube for submerged boiling applications having special O.D. and/or I.D. enhancement
US3847212A (en) * 1973-07-05 1974-11-12 Universal Oil Prod Co Heat transfer tube having multiple internal ridges
US4086959A (en) * 1976-07-19 1978-05-02 Uop Inc. Automotive oil cooler
EP0102407A1 (de) * 1982-09-03 1984-03-14 Wieland-Werke Ag Rippenrohr mit inneren Vorsprüngen sowie Verfahren und Vorrichtung zu dessen Herstellung
EP0114640A2 (de) * 1983-01-25 1984-08-01 Wickes Products, Inc. Rippenrohr für Wärmetauscher mit optimierten Wärmeübertragungseigenschaften
DE3735915A1 (de) * 1987-10-23 1989-05-03 Wieland Werke Ag Waermeaustauscher
DE3813040C1 (en) * 1988-04-19 1989-08-03 Wieland-Werke Ag, 7900 Ulm, De Use of a finned tube as reaction tube for exothermic chemical reactions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2520892A1 (de) * 2002-11-23 2012-11-07 Endress + Hauser GmbH + Co. KG Messgerät

Also Published As

Publication number Publication date
DE4141240A1 (de) 1993-06-17
ES2074795T5 (es) 1997-11-01
EP0547363B2 (de) 1997-08-06
DE59202339D1 (de) 1995-06-29
DE4141240C2 (de) 1993-09-30
EP0547363B1 (de) 1995-05-24
ES2074795T3 (es) 1995-09-16

Similar Documents

Publication Publication Date Title
DE69915431T2 (de) Integrierter Wärmetauscher, insbesondere für Kraftfahrzeug
EP1454106B1 (de) Wärmetauscher
DE69531922T2 (de) Wellrippen-Wärmetauscher
DE19536116B4 (de) Wärmeübertrager für ein Kraftfahrzeug
DE10392627T5 (de) Verbesserter Wärmeübertrager
WO2009007168A1 (de) Wärmeaustauschsystem mit einem wärmetauscher, sowie ein verfahren zur herstellung eines wärmeaustauschsystems
EP2204628A1 (de) Kunststoff-Wärmeübertrager
EP0547363B2 (de) Metallisches Wärmeaustauscherrohr zur Kühlung von zähen Medien
EP1611374A1 (de) Im getriebe integrierter wärmetauscher
DE60306291T2 (de) Wärmetauscher
DE19740114A1 (de) Wärmetauscher
EP2699864B1 (de) Kondensator
DE102004001786A1 (de) Wärmeübertrager, insbesondere für überkritischen Kältekreislauf
DE10058110B4 (de) Automatgetriebe
DE10212249A1 (de) Wärmetauscher und Kühlsytem
DE60219389T2 (de) Flüssigkeitskühler mit Laminarströmung
DE102019132955B4 (de) Wärmeübertrager mit integriertem Trockner und Platte für einen Plattenwärmeübertrager
DE3800296A1 (de) Kuehlvorrichtung an einem kraftfahrzeug
DE3147027C2 (de) Motorkühler
EP1700077A1 (de) Bauanordnung für vorrichtungen zum austausch von wärme
EP3569953B1 (de) Kältekreislaufvorrichtung und verfahren zum betrieb einer kältekreislaufvorrichtung mit einem hybridverdampfer
DE10253813B4 (de) Luftgekühlte Kühler mit nacheinander von Kühlluft durchströmten Kühlerelementen
DE3815095A1 (de) Waermetauscher
EP0482378B1 (de) Luftkühler für Hydraulikölpumpen
DE9014655U1 (de) Wärmetauscher, insbesondere Verflüssiger und Verdampfer für Fahrzeug - Klimaanlagen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19921107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 19940225

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950523

REF Corresponds to:

Ref document number: 59202339

Country of ref document: DE

Date of ref document: 19950629

ITF It: translation for a ep patent filed
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2074795

Country of ref document: ES

Kind code of ref document: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: OUTOKUMPU OY

Effective date: 19960226

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19970806

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE ES FR GB IT

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Kind code of ref document: T5

Effective date: 19970926

ET3 Fr: translation filed ** decision concerning opposition
GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20071219

Year of fee payment: 16

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20081108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101130

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101113

Year of fee payment: 19

Ref country code: GB

Payment date: 20101103

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20111118

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59202339

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59202339

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20121106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20121106