EP0535642A1 - Retardeurs de flammes et procédé pour leur production - Google Patents
Retardeurs de flammes et procédé pour leur production Download PDFInfo
- Publication number
- EP0535642A1 EP0535642A1 EP92116754A EP92116754A EP0535642A1 EP 0535642 A1 EP0535642 A1 EP 0535642A1 EP 92116754 A EP92116754 A EP 92116754A EP 92116754 A EP92116754 A EP 92116754A EP 0535642 A1 EP0535642 A1 EP 0535642A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- aluminum
- flame retardant
- ammonium sulfate
- weight
- fatty acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/30—Sulfur-, selenium- or tellurium-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
- C08K5/098—Metal salts of carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K21/00—Fireproofing materials
- C09K21/02—Inorganic materials
Definitions
- the present invention relates to a flame retardant and a process for producing the same.
- the present invention is concerned with a flame retardant comprising ammonium sulfate as an effective component and a process for producing the same.
- ammonium sulfate is useful as a flame retardant for a flammable polymer.
- Ammonium sulfate however, has drawbacks such as strong self-agglomeration (caking or integrity), difficulty in conducting pulverization and the occurrence of agglomeration during storage even where it is pulverized.
- a synthetic resin such as a thermoplastic resin or a thermosetting resin
- agglomeration occurs due to the shearing caused at the time of mixing.
- ammonium sulfate is easily soluble in water, a molded article of a resin containing ammonium sulfate has a water resistance problem.
- ammonium sulfate when the resin composition or an article produced by molding the resin composition is brought into contact with an aqueous substance, ammonium sulfate is eluted, which causes the properties of this composition or the state of the molded article to change, so that useability becomes poor. Further, when this composition is used under highly humid conditions, ammonium sulfate is dissolved and oozed out by moisture contained therein in the case of the occurrence of moisture in the air, etc., so that practical problems, such as the deposition of an ammonium sulfate crystal on the surface of the resin occur. For this reason, although ammonium sulfate is useful as a flame retardant, the use of ammonium sulfate in synthetic resins such as thermoplastic resins or thermosetting resins is very limited.
- Japanese Unexamined Patent Publication (Kokai) No. 63-202639 describes the use of magnesium steatite as a pulverization assistant at the time of the pulverization of ammonium sulfate. This method, however, has problems such as the generation of an ammonia gas during pulverization and coloring of the resin during kneading. Further, Japanese Unexamined Patent Publication (Kokai) No. 60-26046 discloses that dispersion and fluidity can be improved by using a method of improving the self-agglomeration of ammonium sulfate that comprises treating the surface of ammonium sulfate with sodium stearate and sodium laurylsulfonate.
- Japanese Unexamined Patent Publication (Kokai) No. 59-191746 and Japanese Unexamined Patent Publication (Kokai) No. 60-6740 propose a treatment of ammonium sulfate with polysiloxane for the purpose of improving water resistance. According to this method, although an improvement in water resistance can be attained, the process is troublesome.
- the present inventors have made extensive and intensive studies with a view to attaining the pulverization of ammonium sulfate and, at the same time, an alleviation of self-agglomeration, an improvement in water resistance and the prevention of coloration of the resin during kneading, which has led to the completion of the present invention.
- an object of the present invention is to provide a flame retardant comprising ammonium sulfate as an effective component, which is in a pulverised form and has a low level of self-agglomeration, high water resistance and a less liability to coloration of the resin during kneading, and to provide a process for producing the same.
- the present invention provides a finely divided flame retardant comprising a finely divided powder comprised of ammonium sulfate and 0.1 to 10.0 % by weight, based on the weight of ammonium sulfate, of at least one fatty acid salt of aluminum.
- This flame retardant is produced by a process according to the present invention, comprising pulverizing ammonium sulfate in the presence of 0.1 to 10.0 % by weight, based on the weight of ammonium sulfate, of at least one fatty acid salt of aluminum.
- the fatty acid salt of aluminum used in the present invention is preferably an aluminum salt of a saturated or unsaturated fatty acid having 6 to 22 carbon atoms in the fatty acid group.
- Preferred examples of the fatty acid salt include a monofatty acid aluminum salt, a difatty acid aluminum salt and a trifatty acid aluminum salt.
- the amount of the fatty acid aluminum salt is 0.1 to 10.0 % by weight, preferably 0.3 to 5.0 % by weight, more preferably 0.5 to 3.0 % by weight, based on the weight of ammonium sulfate.
- this amount is less than 0.1 % by weight, prevention of self-agglomeration of pulverized ammonium sulfate and prevention of the coloration of a molded article containing ammonium sulfate added thereto are unsatisfactory.
- the use of a fatty acid aluminum salt in an amount exceeding 10 % by weight has an adverse effect on pulverization and flame retardancy.
- Examples of the means for pulverization include a method wherein use is made of a pulverizer.
- ammonium sulfate is pulverized by means of a pulverizer in the presence of at least one fatty acid aluminum salt, so that ammonium sulfate becomes a finely divided powder comprising a particle preferably having a maximum diameter of 75 ⁇ m or less and, at the same time, the surface of the ammonium sulfate particle is treated with the fatty acid aluminum salt.
- a conventional wet or dry type pulverizer can be used for the pulverization, it is preferable to use a pulverizer having a grinding effect, and there is no particular limitation on the solvent used in the case of wet pulverization as long as the solvent, other than water, is inert.
- the solvent other than water
- alcohols such as methanol and ethanol
- hydrocarbons such as n-heptane
- aromatic solvents such as benzene, toluene and xylene are preferable from the viewpoint of easy handleability and drying ease.
- the amount of use of the solvent may vary depending upon the specific gravity of the solvent and the type of pulverizer, it is preferably 1 to 10 times by weight, and preferably 1.5 to 5 times by weight that of ammonium sulfate.
- the solid matter is preferably collected by filtration or centrifuging according to a conventional method and dried under reduced pressure. There is no particular limitation on the particle diameter of ammonium sulfate used in the pulverization.
- thermoplastic resins for example, polyolefin resins such as polypropylene and polyethylene, polyvinyl resins such as polystyrene, polymethyl methacrylate, polyvinyl acetate and polyvinyl alcohol, ethylene-vinyl acetate copolymer, polyamide resins such as nylon, polyester resins such as polyethylene terephthalate and polycarbonate, polyacrylonitrile resins such as ABS resin and AS resin and polyether resins, mixtures and copolymers of the above-described resins and various resins produced by modifying the above-described resins, elastic polymers such as SBR, NBR, polybutadiene and polyisoprene and thermosetting resins such as phenolic resin, unsaturated polyester resin, polyurethane resin and epoxy resin.
- thermoplastic resins for example, polyolefin resins such as polypropylene and polyethylene, polyvinyl resins such as polystyrene, polymethyl methacrylate, polyvinyl a
- pulverization assistants commonly used in the art, for example, titanium oxide and fatty acids.
- the flame retardant according to the present invention does not give rise to agglomeration during storage, and can be homogeneously dispersed in the resin to provide a molded article having excellent water resistance and flame retardancy when it is incorporated and kneaded with the resin, and does not color the resin during kneading.
- the maximum particle diameter and the mean particle diameter were measured by means of a centrifugal automatic particle size distribution measuring apparatus (model CAPA-700 manufactured by Horiba, Ltd.).
- One liter of the flame retardant was placed in a container having a bottom area of 200 cm2 (10 cm x 20 cm), and the surface of the flame retardant was leveled. A load of 200 g/cm2 was applied on the flame retardant, and the number of days taken for the flame retardant to agglomerate was observed.
- the molded article was subjected to through-view ( thickness: 1/16 in.), and the dispersion was judged based on whether or not a coarse agglomerate is present.
- the coloration of the molded article was evaluated with the naked eye immediately after molding.
- Flame retardancy was measured according to UL-94 (thickness of test piece: 1/16 in. for PP and 1/8 in. for other resins) and JIS K 7201 (LOI).
- test piece having a length of 2.5 in., a width of 0.5 in. and a thickness of 1/8 in. was dried in an oven of 50°C for 24 hr, allowed to cool in a desiccator of 23°C for 3 hr and then weighed (A).
- the test piece was immersed in pure water of 23°C for 168 hr, water droplets on the test piece were wiped off with a dry cloth, and the test piece was then immediately weighed (B). This test was conducted on three test pieces, and water absorption was determined by the following equation:
- the resultant flame retardant powder had a maximum particle diameter of 50 ⁇ m and a mean particle diameter of 19 ⁇ m and was free from caking.
- This flame retardant was mixed with a resin in an amount ratio specified in Tables 2 to 6; the mixture was subjected to melt mixing by means of a kneader (manufactured by Irie Shokai Co., Ltd.), and a test piece was molded from the mixture by means of a press molding machine of 200°C (manufactured by Shinto Kinzoku K.K.).
- Example 1 499.5 g of ammonium sulfate and 0.5 g of aluminum dicaproate were previously mixed with each other, and a flame retardant powder was prepared therefrom in the same manner as that of Example 1.
- the resultant flame retardant powder had a maximum particle diameter of 44 ⁇ m and a mean particle diameter of 15 ⁇ m and was free from caking.
- This flame retardant was used according to the formulation specified in Table 2, and a test piece was molded therefrom in the same manner as that of Example 1. The results are given in Tables 1 and 2.
- Example 1 450 g of ammonium sulfate and 50 9 of aluminum trimyristate were previously mixed with each other, and a flame retardant powder was prepared therefrom in the same manner as that of Example 1.
- the resultant flame retardant powder had a maximum particle diameter of 46 ⁇ m and a mean particle diameter of 16 ⁇ m and was free from caking.
- This flame retardant was used according to the formulation specified in Table 2, and a test piece was molded therefrom in the same manner as that of Example 1. The results are given in Tables 1 and 2.
- Example 1 490 g of ammonium sulfate and 10 g of aluminum tristearate were previously mixed with each other, and a flame retardant powder was prepared therefrom in the same manner as that of Example 1.
- the resultant flame retardant powder had a maximum particle diameter of 40 ⁇ m and a mean particle diameter of 12 ⁇ m and was free from caking.
- This flame retardant was used according to the formulations specified in Tables 2 to 6, and test pieces were molded therefrom in the same manner as that of Example 1. The results are given in Tables 1 to 6.
- Example 1 460 g of ammonium sulfate and 40 g of aluminum monobehenate were previously mixed with each other, and a flame retardant powder was prepared therefrom in the same manner as that of Example 1.
- the resultant flame retardant powder had a maximum particle diameter of 48 ⁇ m and a mean particle diameter of 16 ⁇ m and was free from caking.
- This flame retardant was used according to the formulations specified in Tables 2 to 6, and test pieces were molded therefrom in the same manner as that of Example 1. The results are given in Tables 1 to 6.
- a flame retardant powder was prepared in the same manner as that of Example 1, except that silicic anhydride was used instead of aluminum monocaproate.
- the resultant flame retardant powder had a maximum particle diameter of 48 ⁇ m and a mean particle diameter of 18 ⁇ m. However, this flame retardant powder immediately gave rise to caking.
- Test pieces were molded therefrom according to the formulations specified in Tables 2 to 6 in the same manner as that of Example 1. In this case, as opposed to the results of Example 1, the flame retardant gave rise to agglomeration, so that a molded article in which the flame retardant was homogeneously dispersed could not be obtained. Further, the molded articles were colored. The results are given in Tables 1 to 6.
- a flame retardant powder was prepared in the same manner as that of Example 6, except that silicic anhydride was used instead of aluminum tristearate.
- the resultant flame retardant powder was passed through a 200-mesh standard sieve (JIS) to remove coarse particles having a size of 75 ⁇ m or more (1.0 % or less). The mean particle diameter was 14 ⁇ m. In this case, however, caking immediately occurred.
- Test pieces were prepared according to the formulations specified in Tables 2 to 6 in the same manner as that of Example 6. In this case, as opposed to the results of Example 6, the flame retardant gave rise to agglomeration, so that a molded article in which the flame retardant was homogeneously dispersed could not be obtained. Further, the molded articles were colored. The results are given in Tables 1 to 6.
- a flame retardant powder was prepared in the same manner as that of Example 7, except that silicic anhydride was used instead of aluminum tristearate.
- the resultant flame retardant powder was passed through a 200-mesh standard sieve (JIS) to remove coarse particles having a size of 75 ⁇ m (1.0 % or less). The mean particle diameter was 14 ⁇ m. However, caking immediately occurred.
- Test pieces were molded therefrom according to the formulations specified in Tables 2 to 6 in the same manner as that of Example 7. In this case, as opposed to the results of Example 7, the flame retardant gave rise to agglomeration, so that a molded article in which the flame retardant was homogeneously dispersed could not be obtained. Further, the molded articles were colored. The results are given in Tables 1 to 6.
- a flame retardant powder was prepared in the same manner as that of Example 6, except that magnesium stearate was used instead of aluminum tristearate. In this case, when a lid of the porcelain ball mill was opened, a gas within the ball mill blew up. At the same time, there was a very strong odor of ammonia, and a pH test paper wetted with water showed that the gas evolved in the ball mill were basic, that is, there was ammonia gas.
- the resultant flame retardant powder was passed through a 200-mesh standard sieve (JIS) to remove coarse particles having a size of 75 ⁇ m or more (1.0 % or less). The mean particle diameter was 15 ⁇ m, and no caking was observed.
- JIS 200-mesh standard sieve
- This flame retardant was used according to the formulations specified in Tables 2 to 6, and test pieces were molded therefrom in the same manner as that of Example 6. As a result, although molded articles in which the flame retardant was homogeneously dispersed could be prepared, they were colored. The results are given in Tables 2 to 6.
- a flame retardant powder was prepared in the same manner as that of Example 6, except that sodium stearate was used instead of aluminum tristearate. In this case, when a lid of the porcelain ball mill was opened, a gas within the ball mill blew up. At the same time, there was a very strong odor of ammonia, and a pH test paper wetted with water showed that the gas evolved in the ball mill were basic, that is, there was ammonia gas.
- the resultant flame retardant powder was passed through a 200-mesh standard sieve (JIS) to remove coarse particles having a size of 75 ⁇ m or more (1.0 % or less). The mean particle diameter was 12 ⁇ m, and no caking was observed.
- JIS 200-mesh standard sieve
- This flame retardant was used according to the formulations specified in Tables 2 to 6, and test pieces were molded therefrom in the same manner as that of Example 6. As a result, although molded articles in which the flame retardant was homogeneously dispersed could be prepared, they were colored. The results are given in Tables 2 to 6.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Fireproofing Substances (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25784691A JPH0772272B2 (ja) | 1991-10-04 | 1991-10-04 | 難燃剤およびその製造方法 |
JP257846/91 | 1991-10-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0535642A1 true EP0535642A1 (fr) | 1993-04-07 |
EP0535642B1 EP0535642B1 (fr) | 1995-11-29 |
Family
ID=17311967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19920116754 Expired - Lifetime EP0535642B1 (fr) | 1991-10-04 | 1992-09-30 | Retardeurs de flammes et procédé pour leur production |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0535642B1 (fr) |
JP (1) | JPH0772272B2 (fr) |
DE (1) | DE69206376T2 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10334889A1 (de) * | 2003-07-29 | 2005-02-24 | Röhm GmbH & Co. KG | Verwendung von feinteiligem Ammoniumsulfat (AMSU) zur Herstellung von flammgeschützten Kunststoffformkörpern |
EP2082900A1 (fr) | 2007-12-31 | 2009-07-29 | Bridgestone Corporation | Savons métalliques incorporés dans des compositions en caoutchouc et procédé d'incorporation de tels savons dans les compositions en caoutchouc |
US9670341B2 (en) | 2012-11-02 | 2017-06-06 | Bridgestone Corporation | Rubber compositions comprising metal carboxylates and processes for making the same |
US9803060B2 (en) | 2009-09-10 | 2017-10-31 | Bridgestone Corporation | Compositions and method for making hollow nanoparticles from metal soaps |
CN114377337A (zh) * | 2021-12-20 | 2022-04-22 | 佛山市南海铧杨消防器材有限公司 | 一种磷酸铵盐干粉灭火剂的生产系统及生产方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2582231T3 (es) | 2008-06-26 | 2016-09-09 | Bridgestone Corporation | Composiciones de caucho que incluyen derivados de poliisobutileno funcionalizado con metal y métodos para preparar tales composiciones |
US8389609B2 (en) | 2009-07-01 | 2013-03-05 | Bridgestone Corporation | Multiple-acid-derived metal soaps incorporated in rubber compositions and method for incorporating such soaps in rubber compositions |
US8802755B2 (en) | 2011-01-18 | 2014-08-12 | Bridgestone Corporation | Rubber compositions including metal phosphate esters |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0052868A1 (fr) * | 1980-11-20 | 1982-06-02 | Kyowa Chemical Industry Co., Ltd. | Composition de résine ignifugée et composition ignifuge |
US4888136A (en) * | 1988-05-02 | 1989-12-19 | Witco Corporation | New flame retardant compositions of matter and cellulosic products containing same |
EP0355808A2 (fr) * | 1988-08-24 | 1990-02-28 | Plüss-Staufer AG | Charge minérale revêtue ou retardateur de flamme revêtu |
-
1991
- 1991-10-04 JP JP25784691A patent/JPH0772272B2/ja not_active Expired - Fee Related
-
1992
- 1992-09-30 EP EP19920116754 patent/EP0535642B1/fr not_active Expired - Lifetime
- 1992-09-30 DE DE1992606376 patent/DE69206376T2/de not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0052868A1 (fr) * | 1980-11-20 | 1982-06-02 | Kyowa Chemical Industry Co., Ltd. | Composition de résine ignifugée et composition ignifuge |
US4888136A (en) * | 1988-05-02 | 1989-12-19 | Witco Corporation | New flame retardant compositions of matter and cellulosic products containing same |
EP0355808A2 (fr) * | 1988-08-24 | 1990-02-28 | Plüss-Staufer AG | Charge minérale revêtue ou retardateur de flamme revêtu |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10334889A1 (de) * | 2003-07-29 | 2005-02-24 | Röhm GmbH & Co. KG | Verwendung von feinteiligem Ammoniumsulfat (AMSU) zur Herstellung von flammgeschützten Kunststoffformkörpern |
EP2082900A1 (fr) | 2007-12-31 | 2009-07-29 | Bridgestone Corporation | Savons métalliques incorporés dans des compositions en caoutchouc et procédé d'incorporation de tels savons dans les compositions en caoutchouc |
US9637613B2 (en) | 2007-12-31 | 2017-05-02 | Bridgestone Corporation | Metal soaps incorporated in rubber compositions and method for incorporating such soaps in rubber compositions |
US9803060B2 (en) | 2009-09-10 | 2017-10-31 | Bridgestone Corporation | Compositions and method for making hollow nanoparticles from metal soaps |
US9670341B2 (en) | 2012-11-02 | 2017-06-06 | Bridgestone Corporation | Rubber compositions comprising metal carboxylates and processes for making the same |
CN114377337A (zh) * | 2021-12-20 | 2022-04-22 | 佛山市南海铧杨消防器材有限公司 | 一种磷酸铵盐干粉灭火剂的生产系统及生产方法 |
Also Published As
Publication number | Publication date |
---|---|
JPH0598260A (ja) | 1993-04-20 |
EP0535642B1 (fr) | 1995-11-29 |
JPH0772272B2 (ja) | 1995-08-02 |
DE69206376D1 (de) | 1996-01-11 |
DE69206376T2 (de) | 1996-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1318073C (fr) | Additif-polymere sous forme concentree | |
US5075359A (en) | Polymer additive concentrate | |
US4017452A (en) | Polymer modified hydrophilic inorganic fillers for thermoplastic polymeric materials | |
RU2441886C2 (ru) | Уф-поглощающая композиция | |
US4347334A (en) | Particulate agent for impeding the combustibility of combustible substances | |
EP0535642B1 (fr) | Retardeurs de flammes et procédé pour leur production | |
CA1136844A (fr) | Procede d'incorporation d'additifs dans des produits polymeriques | |
RU2292376C2 (ru) | Огнестойкая композиция, способ ее получения и применение | |
EP0769033B1 (fr) | Agent anti-bloquant et son procede de fabrication | |
US6149850A (en) | Addition of additives to polymeric materials | |
DE19681539B4 (de) | Polyacetalharz-Formkörper und Verfahren zu seiner Herstellung | |
DE60030716T2 (de) | Polyesterzusammensetzungen mit niedrigem restaldehydgehalt | |
JPS621734A (ja) | ポリマ−類の難燃剤として安定化されかつ担持された赤リン | |
EP3559103B1 (fr) | Composition d'additif et ses procédés d'utilisation | |
US3756979A (en) | Method of plasticizing vinyl halide polymers | |
US4731397A (en) | Thermal stabilization of acetal polymers | |
CA2007510A1 (fr) | Systemes ignifugeants intumescents | |
US5164437A (en) | Anionic surfactant surface-modified ammonium polyphosphate | |
JPH0420368B2 (fr) | ||
US5122558A (en) | Static dissipative interpolymers | |
JP2540554B2 (ja) | 樹脂用充填剤組成物及びその製法 | |
US5071901A (en) | Quaternary ammonium salt surface-modified ammonium polyphosphate | |
AU652689B2 (en) | Dispersions of polymer additives in fatty acid esters | |
US5382653A (en) | Preparation of copolymers | |
JP3137220B2 (ja) | 樹脂改質用メラミン−ホルムアルデヒド系縮合物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19920930 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE FR GB NL |
|
17Q | First examination report despatched |
Effective date: 19940517 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB NL |
|
REF | Corresponds to: |
Ref document number: 69206376 Country of ref document: DE Date of ref document: 19960111 |
|
ET | Fr: translation filed | ||
ET1 | Fr: translation filed ** revision of the translation of the patent or the claims | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19960802 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19960827 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19960904 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19960930 Year of fee payment: 5 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19961018 Year of fee payment: 5 |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19970930 Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19970930 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19970930 |
|
BERE | Be: lapsed |
Owner name: MARUBISHI OIL CHEMICAL CO. LTD Effective date: 19970930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980401 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19970930 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19980401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980603 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |